Seminar

Graph Matching via the Projected Power Method and Mirror Descent

In the Graph Matching (also known as Network Alignment) problem, the goal is to find a shared vertex labeling (matching) between two observed, unlabelled graphs, focusing on maximizing the alignment of their edges. This problem can be framed as a random instance of the well-known quadratic assignment problem. We explore two versions of graph matching: the seeded version, where partial matching is provided as side information, and the seedless version, where only the input graphs are given.

A Banach space formulation for the fully dynamic Navier–Stokes/Biot coupled problem

Abstract: We introduce and analyse a fully-mixed formulation for the coupled problem arising in the interaction between a free fluid and a poroelastic medium. The flows in the free fluid and poroelastic regions are governed by the Navier-Stokes and Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of stresses, and the Beavers-Joseph-Saffman law.