
REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Solitary waves in a non-integrable FPU chain

Lev Truskinovsky
LMS, CNRS-UMR 7649, École Polytechnique, Route de Saclay, 91128 Palaiseau, France

Anna Vainchtein
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

(Dated: September 13, 2014)

We present a new family of exact solutions describing discrete solitary waves in a non-integrable
Fermi-Pasta-Ulam chain. The family is sufficiently rich to cover the whole spectrum of known be-
haviors from delocalized quasicontinuum waves moving with near-sonic velocities, to highly localized
anticontinuum excitations with only one particle moving at a time.
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I. INTRODUCTION

Solitary waves in lattices, represented by homoclinic
traveling wave trajectories of discrete dynamical systems,
play a crucial role in many areas of science from con-
densed matter theory to biophysics [1]. In integrable sys-
tems solitary waves, known as solitons or quasiparticles,
are understood rather thoroughly, with Toda lattice be-
ing the most prominent example that covers the whole
range of possible behaviors from weak quasicontinuum
(QC) waves in almost harmonic chains, to strong anti-
continuum (AC) waves in chains of rigid disks [2]. How-
ever, quasiparticles in integrable systems do not interact
during collisions, which excludes, for instance, finite ther-
mal conductivity. Therefore integrable systems cannot
be used as a generic description of localized excitations,
and the challenge is to find a non-integrable equivalent
of the Toda lattice allowing one to capture a similarly
broad range of behaviors.

Most of our theoretical knowledge about solitary waves
in non-integrable systems comes from the study of var-
ious quasicontinuum approximations which adequately
describe weak excitations in elastic lattices [3, 4] and slow
waves in granular chains [5] but fail in a generic AC limit.
Solitary waves in general Fermi-Pasta-Ulam (FPU) lat-
tices have been studied mostly numerically [6] or using
qualitative asymptotic methods [7]. Some exact solutions
were obtained for special classes of potentials [8] which
were too narrow to describe the QC → AC crossover.

In this paper we construct a family of exact soli-
tary wave solutions for a parametric non-integrable FPU
problem with piecewise quadratic energy [9]. This class
of energies can be viewed as an analytically transpar-
ent approximation of general FPU potentials. We treat
nonlinearity as inhomogeneity [10, 11] and show that
for this class of potentials the problem of finding soli-
tary wave solutions reduces to a linear integral equation
plus a nonlinear algebraic equation. We solve the inte-
gral equation using the Wiener-Hopf technique and ex-
press the solution as a combination of linear waves whose
phase speeds are equal to the speed of the solitary wave.
Truncations of the ensuing series, involving progressively

decreasing wavelengths, generate converging approxima-
tions that are fully explicit.

The importance of the obtained family of solutions is
clear from the fact that it can be used as a non-integrable
interpolant between two integrable limits: weak KdV-
type QC solitary waves [12, 13] and high-energy strongly
discrete AC solitary waves [14, 15]. Our numerical re-
sults indicate that the members of the crossover family
exhibit (weakly) inelastic interactions and that their sta-
bility is controlled by the sign of the derivative of the
energy-velocity relation. We also show that the simplest
long-wave truncation of the obtained series provides a
much better overall quasicontinuum approximation of the
discrete solution than the conventional quasicontinuum
theories based on either Taylor [16] or Padé [17, 18] ap-
proximations.

The remainder of the paper is organized as follows. In
Sec. II we formulate the problem and introduce the piece-
wise quadratic potential. The main ideas involved in the
construction of the solitary wave solutions are presented
in Sec. III, where we also briefly discuss some numerical
results on stability and collision of the solitary waves. In
Sec. IV we compare the simplest long-wave approxima-
tion of the constructed solution to the more conventional
quasicontinuum models and discuss the low-energy KdV-
type limit. The strongly discrete AC limit is presented
in Sec. V. Sec. VI summarizes our findings. The two
Appendices contain the results of more technical nature,
including the details of the derivation of the solitary wave
solution (Appendix A) and numerical study of its stabil-
ity (Appendix B).

II. PROBLEM FORMULATION

The dimensionless energy of the FPU chain can be
written as

H =

∞
∑

j=−∞

[

1

2
u̇2j + φ(uj − uj−1)

]

, (1)

where uj(t) is the displacement of a mass point and φ(w)
is the interaction potential. In strain variables yj = uj −
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FIG. 1. (a) Bilinear approximation (bold curve) of a generic
smooth force-strain relation (dashed curve). Inset shows a
schematic structure of the solitary wave. (b) The structure of
nonzero roots of L(k) = 0 (gray circles) and G(k) = 0 (black cir-
cles) at V = 3 and α = 16. The simplest approximation with n = 1
includes the roots ±γ1 and λ±

1
located within the strip |Rek| < l1

marked by the dashed lines. The next approximation with n = 3
also includes the roots ±γ2,3 and λ±

2,3
.

uj−1 the traveling wave solution moving with velocity
V has the form yj(t) = w(x), where x = j − V t. The
function w(x) satisfies

V 2w′′ = f(w(x + 1))− 2f(w(x)) + f(w(x − 1)), (2)

where f(w) = φ′(w). Solitary waves are selected by the
conditions at infinity: w(x) → 0 at |x| → ∞.

The main idea of our approximation is to replace the
general potential φ(w) by a smooth piecewise quadratic
function with bilinear derivative

f(w) =

{

w, w ≤ wc

α(w − wc) + wc, w ≥ wc.
(3)

In view of the invariance f(w) → −f(−w), w → −w(x),
it suffices to consider the case α > 1, as in Fig. 1a. One
can show that the velocity of the solitary wave must be
within the range 1 < V <

√
α.

III. SOLITARY WAVE SOLUTION

Due to the linearity of f(w) at w 6= wc the solution of
our boundary value problem can be written as a sum of
plane waves with phase velocities equal to the velocity of
the solitary wave. The corresponding wave numbers can
be found from the characteristic equations

G(k) = 4α sin2
k

2
− V 2k2 = 0

at |x| < z, where we assume w(x) > wc, and

L(k) = 4 sin2
k

2
− V 2k2 = 0

at |x| > z, where w(x) < wc. To find the amplitudes of
the plane waves we write (cf. [19, 20])

f(w(x)) = w(x) +A

∫ z

−z

θ(s− x)h(s)ds, (4)
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FIG. 2. (a) Several finite-root approximations of the solitary wave
at V = 3, wc = 1 and α = 16 compared with the numerical solu-
tion of (6), (7). (b) The enlarged view of the solutions inside the
rectangle in (a) around w = wc.

where θ(x) is the Heaviside function. We assume that the
unknown function h(x) representing the ‘inhomogeneity’
is odd and that it vanishes at |x| > z. It is also normal-
ized via

∫ z

0

h(s)ds = 1. (5)

The ensuing linear problem for the ‘inhomogeneous’ ma-
terial (4) yields the following relation between the Fourier
transform H(k) =

∫ z

−z
h(s) exp(−iks)ds of h(x) and

w(x):

w(x) =
A

2πi(α− 1)

∞
∫

−∞

(

G(k)

L(k)
− 1

)

H(k)

k
eikxdk. (6)

Using (6) together with the consistency condition
Ah(x) = (1 − α)w′(x) for |x| < z that follows from (3),
(4), we obtain the linear integral equation for h(x):

(α− 1)

∫ z

−z

q(x− s)h(s)ds+ h(x) = 0, |x| < z, (7)

where

q(x) =
1

2π(α− 1)

∫ ∞

−∞

(

G(k)

L(k)
− 1

)

eikxdk.

The remaining nonlinear problem is to find z ensuring
the existence of a nontrivial solution of (7). Once z and
h(x) are known, one can recover w(x) from (6), with the
multiplicative constant A determined from w(z) = wc.

An explicit solution of (7) can be constructed using a
variant of the Wiener-Hopf method [21–23]. Let λ+i and
λ−i be the roots of L(k) = 0 with positive and negative
imaginary parts, respectively, and let γi denote the roots
of G(k) = 0 with positive real parts [24]. Suppose that n
roots γi and n roots λ+i are located within a strip |Rek| <
ln; such n is necessarily odd, and due to the symmetry
of the roots the total number of the nonzero roots in the
nth strip is 4n; see Fig. 1b. Then

w(x) =















a0 +
∞
∑

j=1

aj cos(γjx), |x| ≤ z

∞
∑

j=1

bj exp(iλ
+
j |x|), |x| ≥ z,

(8)
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FIG. 3. (a) The energy of the solitary wave H as a function of V
at α = 4 and wc = 1. The dashed portion of the curve corresponds
to unstable waves. Circles and crosses mark velocities at which the
solitary wave solutions were found stable and unstable, respectively,
in the numerical simulations of (B1) with initial conditions (B2) or
(B3); (b) Snapshots of two stable solitary waves before the collision
(upper panel, t = 30, V = 1.6) and after the collision (lower panel,
t = 90, Ṽ ≈ 1.6).

where the coefficients aj , bj derived in Appendix A are
given by (A13), (A14), (A15) as limits of expressions in-
volving the roots of characteristic equations inside the
nth strip. The derivation also yields the location of the
transition point as z = limn→∞ zn, where zn is a solution
of the algebraic equation detMn(zn) = 0, with

(Mn)jm = γm−1
j

(

(−1)m−1eiγjzn

n
∏

i=1

(γj − λ−i )

+
e−iγjzn

n
∏

i=1

(γj − λ+i )

)

. (9)

Using the normalization condition (5), we obtain a
unique approximation wn(x) of the solution (8) for each
n; see Appendix A for details. The convergence of these
approximations is illustrated in Fig. 2 (see also Fig. 8 in
Appendix A). The ‘corners’ at x = ±zn are the arti-
facts of the series truncation and disappear in the limit
n→ ∞.

Stability and collision properties of the obtained soli-
tary waves were studied numerically; see Appendix B for
details. Our results, summarized in Fig. 3a, suggest that
the instability condition is dH/dV < 0, which is known
as the Vakhitov-Kolokolov criterion [25, 26]. In view of
the non-integrable nature of the system it is not surpris-
ing that a typical collision test for two stable solitary
waves shows (slightly) inelastic interaction; see Fig. 3b.
Additional stability and collision results are presented in
Appendix B.

IV. QUASICONTINUUM APPROXIMATIONS

Consider now in more detail the simplest approximate
solution wn(x) corresponding to n = 1. It involves four
nonzero roots of the characteristic equations that are
closest to k = 0 and therefore qualifies as a quasicon-
tinuum (QC) approximation. Letting ±γ1 = ±r and
λ±1 = ±ip (see Fig. 1b), where r and p are positive real
numbers, we obtain the following explicit representation:

w(x) =
wc

α− V 2

(

α−1+(V 2−1)

√

p2 + r2

p
cos rx

)

(10)
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FIG. 4. The velocity dependence of the magnitudes r and p of
real and purely imaginary roots of the characteristic equations in
the discrete model (solid lines) and in Taylor (dashed) and Padé
(dotted) quasicontinuum approximations. Here α = 16.

for |x| < z and

w(x) = wce
−p(|x|−z) (11)

for |x| > z, with

z =
1

r

(

π − arctan
r

p

)

. (12)

The typical dependence of p and r on V is shown in Fig. 4.
It is instructive to compare the underlying nonlocal

QC theory with the more conventional local QC theories
based on either Taylor or Padé approximations of the
operator Λ(k) = 4 sin2(k/2)/k2 involved in the Fourier
representation of (2) [16, 27]. The first-order Taylor ex-
pansion of Λ(k) near k = 0 leads to the Boussinesq-type
equation

utt = (f(uξ) + (1/12)(f(uξ))ξξ)ξ (13)

for the displacement field u(ξ, t). The solitary wave
solution of (13) is given again by (10)-(12) but with

r =
√

12(1− V 2/α) and p =
√

12(V 2 − 1). Similarly,
using the simplest Padé approximation [17, 18], we ob-
tain the equation

utt − (1/12)uξξtt = (f(uξ))ξ, (14)

whose solitary wave solution is still (10)-(12) but now

with r =
√

12(αV −2 − 1) and p =
√

12(1− V −2). All
three QC theories have the same structure of the roots of
the characteristic equations and therefore solutions differ
only through the way r and p depend on V .

From Fig. 4 we see that the Taylor approximation
(dashed curve) underestimates r and overestimates p,
while the Padé approximation (dotted curve) overesti-
mates r and underestimates p. A comparison of the ve-
locity dependence of the transition point location z and
amplitude of the solitary wave w(0) generated by the
three QC theories and by numerical solution of (6), (7)
suggests that in the crossover regimes the n = 1 trunca-
tion provides a better overall approximation of the dis-
crete problem than the conventional QC theories; see
Fig. 5 and Fig. 6. The reason is that in these regimes the
first roots of the characteristic equations are not close to
the origin and are therefore captured rather poorly by
the low-order asymptotic expansions around k = 0.
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FIG. 6. Solitary wave profile at V = 2.5 (numerical solution of
(6), (7), solid curve) compared with n = 1 (gray), Taylor (dashed)
and Padé (dotted) QC approximations. Here α = 16 and wc = 1.

Both conventional QC theories work better at V & 1
and V .

√
α but these two sonic limits are not phys-

ically relevant. Indeed, a realistic FPU potential with
superquadratic growth would produce solutions with
w(0) → 0 for weak near-sonic waves instead of our
w(0) → wc and V → ∞ for strong waves instead of our
V → √

α. Similar artifact is the divergence of the en-
ergy of solitary waves in both sonic limits (see Fig. 3a),
and therefore the bilinear model with fixed wc and α ad-
equately describes only the intermediate (crossover) ve-
locity range between QC and AC limits. The limiting
regimes themselves can be captured through the appro-
priate double limits.

To reproduce the QC regime with V & 1, the bilin-
ear approximation needs to be adjusted so that α → 1
and wc → 0 as V → 1. Consider, for example, a
generic smooth interaction force satisfying f(0) = 0,
f ′(0) = f ′′(0) = 1 and construct a V -dependent bilinear
approximation of f(w) with α ≈ 2V 2−1 and wc ≈ V 2−1.
It is then easy to show that when V & 1 the first roots
approach the origin, and the solitary wave solution in all
three QC theories converge to the same KdV-type soli-
ton.

V. THE ANTICONTINUUM LIMIT

The AC limit can be captured if f(w) has a vertical
asymptote, as in the hard-core models, so that the veloc-
ity V can grow to infinity. In this case we need to assume
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FIG. 7. The asymptotic almost triangular profiles of the strong
solitary waves at large V and small a.

that α → ∞ and V → ∞ while V/
√
α → 0. Indeed,

when α > V 2 ≫ 1, the Fourier transform of q(x) has the
asymptotic representation q̂(k) ≈ −4 sin2(k/2)/(k2V 2).

For sufficiently small finite a = V/
√

2(α− 1) the inte-
gral equation (7) can be then approximated by

−α− 1

V 2

∫ z

−z

(1−|x−s|)h(s)ds+h(x) = 0, |x| < z. (15)

Differentiating (15) twice, we obtain

h′′ +
h

a2
= 0,

which yields

h(x) =
1

a
sin

x

a
, |x| < z, z =

πa

2
. (16)

Next, we observe that (6) can be written as

w(x) = A

z
∫

−z

ρ(x− s)h(s)ds, (17)

where

ρ(x) =

x
∫

−∞

q(s)ds ≈ − 1

V 2

∫ x

−∞

(1− |s|)θ(1 − |s|)ds

at V ≫ 1. Substituting this and (16) into (17) and using
w(πa/2) = wc to find A, we obtain

w(x) ≈ wc

1− πa
2

×

×



















a cos x
a
+ 1− πa

2 , |x| ≤ πa
2

1− |x|, πa
2 ≤ |x| ≤ 1− πa

2
1
2 (1 +

πa
2 − |x| − a cos |x|−1

a
), 1− πa

2 ≤ |x| ≤ 1 + πa
2

0, |x| ≥ 1 + πa
2 .

(18)

In the limit a→ 0 the profile w(x) approaches the local-
ized ‘triangular’ shape

w∞(x) = wc(1− |x|)θ(1 − |x|). (19)
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Eq. (19) describes the AC regime when only one particle
moves at a time [15]. The convergence to this limiting
case is illustrated in Fig. 7. It is clear that neither of
our three QC theories is applicable in this limit since it
implies infinite values for either r (Padé approximation)
or p (Taylor and n = 1 models).

VI. CONCLUSIONS

We constructed a non-integrable analog of the Toda
family of solitary waves linking two universal asymp-
totic limits: weak delocalized QC solitary waves mov-
ing with near-sonic velocities and strong highly localized
AC solitary waves where only one particle moves at a
time. This new family of exact solutions of the FPU
system makes fully explicit the contributions due to pro-
gressively smaller characteristic wavelengths. The solu-
tions were obtained by a nontrivial application of the ‘bi-
linearization’ method which can be viewed as an exten-
sion of the classical ‘linearization’ approach. We showed
that even the simplest truncation of the obtained series
solution, accounting for the longest wave lengths, pro-
vides a better overall QC approximation of solitary waves
than any of the conventional low-order QC models.

We provided numerical evidence of stability for some of
the constructed solitary wave solutions. To access linear
stability we need to consider small perturbations in

yj(t) = w(x) + eλV t∆(x)

and linearize the governing equation (B1) around the soli-
tary wave w(x). Observing that f ′(w(x)) = 1 + (α −
1)θ(z− |x|), where z is known for given V , we obtain the
following eigenvalue problem (quadratic in λ):

V 2(∆′′(x)− 2λ∆′(x) + λ2∆(x)) −∆(x+ 1) + 2∆(x)

−∆(x − 1)− (α− 1)

(

θ(z − |x+ 1|)∆(x + 1)

− 2θ(z − |x|)∆(x) + θ(z − |x− 1|)∆(x− 1)

)

= 0.

(20)

Here ∆(x) tends to zero at infinity. In view of the Hamil-
tonian nature of the problem, a solitary wave is lin-
early stable if all eigenvalues λ are purely imaginary and
semisimple. Study of the spectrum of the advance-delay
differential operator in (20) will be part of the future
work.

Appendix A: Derivation of the solution

To solve the linear integral equation (7), we follow [21–
23] and extend the left hand side of the equation to the
entire real axis:

(α− 1)

∫ z

−z

q(x− s)h(s)ds+ h(x)

= ψ−(x− z) + ψ+(x+ z), −∞ < x <∞.

Here ψ±(x) are some unknown functions satisfying
ψ−(x) ≡ 0 for x < 0 and ψ+(x) ≡ 0 for x > 0. Tak-
ing Fourier transform of both sides, we obtain

G(k)

L(k)
H(k) = eikzΨ̂+(k) + e−ikzΨ̂−(k), (A1)

where Ψ̂±(k) are Fourier transforms of ψ±(x). Us-
ing an infinite product representation [28] of the ratio
G(k)/L(k) in the generic case when all nonzero roots of
L(k) = 0 and G(k) = 0 are simple [29], we have

α− V 2

1− V 2

∞
∏

i=1

1− k2

γ2i
∞
∏

i=1

(

1− k

λ+i

)(

1− k

λ−i

)H(k)

= eikzΨ̂+(k) + e−ikzΨ̂−(k).

(A2)

If only finitely many roots ±γi λ±i , i = 1, . . . , n, located
within some strip |Rek| < ln are included, (A2) is ap-
proximated by

n
∏

i=1

(k2 − γ2i )

n
∏

i=1

(k − λ+i )
n
∏

i=1

(k − λ−i )
Hn(k)

= eikznΨ
(n)
+ (k) + e−ikznΨ

(n)
− (k),

(A3)

where Hn(k) and zn approximate H(k) and z, respec-
tively, and

Ψ
(n)
± (k) =

V 2 − 1

α− V 2

n
∏

i=1

|γi|2
|λ+i |2

Ψ̂±(k). (A4)

An analytic continuation argument [22, 23] then shows
that

Hn(k) =

{ n
∑

m=1

(

(−1)m−1
n
∏

i=1

(k − λ+i )e
ikzn

+

n
∏

i=1

(k − λ−i )e
−ikzn

)

c(n)m km−1

}/ n
∏

i=1

(k2 − γ2i ),

where we took into account the symmetry of the roots
about the real and imaginary axes.

To determine the unknown coefficients c
(n)
m , we observe

that as a Fourier transform of an L2 function, the func-
tion Hn(k) must be entire, which means that all roots
of its denominator are also the roots of the numerator.
This yields the following linear system for the coefficients

c
(n)
m :

n
∑

m=1

(Mn)jm(zn)c
(n)
m = 0, j = 1, . . . , n, (A5)

where (Mn)jm(zn) are given by (9). The system of linear
equations (A5) has a nontrivial solution if and only if the
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determinant of the n×n matrix Mn(zn) with the entries
(Mn)jm(zn) is zero. Therefore we obtain an algebraic
equation

detMn(zn) = 0, (A6)

allowing one to find zn. Once zn is found, we can solve

(A5) for c
(n)
m , which are determined up to an arbitrary

multiplicative constant. We can then compute Hn(k),
which after some algebra reduces to [22]

Hn(k) = i

n
∑

j=1

n
∏

i=1

(γj − λ−i )

γj
n
∏

i=1, i6=j

(γ2j − γ2i )

n
∑

m=1

c(n)m γm−1
j ×

× e−iγjzn

(

sin((k + γj)z)

k + γj
− sin((k − γj)z)

k − γj

)

,

(A7)

where we used the symmetry of the roots. This yields

hn(x) =

n
∑

j=1

sin(γjx)e
−iγjzn

n
∏

i=1

(γj − λ−i )

γj
n
∏

i=1, i6=j

(γ2j − γ2i )

n
∑

m=1

c(n)m γm−1
j .

(A8)
The normalization condition

∫ zn

0
hn(x)dx = 1 then se-

lects a unique set of coefficients c
(n)
m and yields the ap-

proximate solution hn(x) of the integral equation. The
exact solution of (7) and the value of z are obtained in
the limit n→ ∞.

We now show how the knowledge of hn(x) can be used
to recover the strain field wn(x). Substituting into (6)
the truncated approximation of G(k)H(k)/L(k) that in-
cludes only the first 4n roots and recalling (A3), (A4),
we obtain

wn(x) =
An

2πi(α− 1)

α− V 2

1− V 2

( n
∏

i=1

|γi|
)−2

×

×
( n
∏

i=1

λ+i

∫

Γ

n
∑

m=1
(−1)m−1c

(n)
m km−1

k
n
∏

i=1

(

1− k

λ−i

) eik(x+zn)dk

+

n
∏

i=1

λ−i

∫

Γ

n
∑

m=1
c
(n)
m km−1

k
n+
∏

i=1

(

1− k

λ+i

)eik(x−zn)dk

)

+
An

α− 1

zn
∫

x

hn(x)dx.

(A9)

Here the contour Γ goes along the real line everywhere
except a small neighborhood of k = 0, where it goes
above the origin in order to resolve the simple pole at
k = 0. In addition to this singularity on the real axis,
the first integrand has simple poles at k = λ−i in the lower

2 4 6 8 10 12 14

0.01

0.02

0.03

0 5 10 15
0.0

0.1

0.2

0.3

0.4

1-wn(0)/w(0)

n

zn/z-1

n

V=1.2
V=1.2

V=3
V=3

FIG. 8. The errors due to finite truncation of the series at α =
16 and wc = 1. Here wn(0) and zn were obtained from (A12)
and (A6), respectively, and the reference values w(0) and z were
computed numerically using trapezoidal approximation of (7) and
(17).

half Imk < 0 of the complex plane, and the second inte-
grand has simple poles at k = λ+i in the upper half-plane
Imk > 0. Applying the residue theorem, recalling (A8)
and using wn(±zn) = wc to determine An, we obtain

wn(x) = wc

(

1− V 2 − 1

c
(n)
1 (α− V 2)

n
∑

j=1

n
∏

i=1

(

1− γj

λ−i

)

n
∏

i=1, i6=j

(

1−
γ2j
γ2i

)
×

× e−iγjzn

n
∑

m=1

c(n)m γm−1
j (cos(γjx) − cos(γjzn))

)

(A10)

for |x| < zn and

wn(x) =
wc

c
(n)
1

n
∑

j=1

n
∑

m=1
c
(n)
m (λ+j )

m−1

n
∏

i=1, i6=j

(

1−
λ+j

λ+i

)

eiλ
+

j
(|x|−zn) (A11)

for |x| > zn. The continuity at x = ±zn is automatically
ensured by the fact that the sum of residues of the first
integrand of (A9) at x = −zn and the second integrand
at x = zn at all poles equals zero, meaning that

c
(n)
1 −

n
∑

j=1

n
∑

m=1
c
(n)
m (λ+j )

m−1

n
∏

i=1, i6=j

(

1−
λ+j

λ+i

)

= 0.

Equations (A8) and (A10) together with the constraint
∫ zn

0 hn(x)dx = 1 yield an explicit formula for the ampli-
tude of the solitary wave:

wn(0) = wc

(

1 +
V 2 − 1

α− V 2

( n
∏

i=1

|γi|
)2(

c
(n)
1

n
∏

i=1

λ−i

)−1)

.

(A12)

The expressions (A10), (A11), with coefficients c
(n)
m ,

m = 1, . . . , n, solving the linear system (A5), and with
zn satisfying the nonlinear equation (A6), furnish an ap-
proximate solution of the problem (2), (3). In the limit
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FIG. 9. (a) Amplitude-velocity relation and (b) the corresponding
z(V ) at α = 4 and wc = 1 obtained from the semi-analytical so-
lution (solid curves) and numerical simulation of (B1) with initial
conditions (B2) (black circles) and (B3) (gray circles).

n→ ∞ we obtain the exact solution (8) with

a0 = wc

(

1 +
V 2 − 1

α− V 2
lim
n→∞

1

c
(n)
1

n
∑

j=1

n
∏

i=1

(

1− γj

λ−i

)

n
∏

i=1, i6=j

(

1−
γ2j
γ2i

)
×

× e−iγjzn

n
∑

m=1

c(n)m γm−1
j cos(γjzn)

)

,

(A13)

aj = −wc

V 2 − 1

α− V 2
lim
n→∞

1

c
(n)
1

n
∏

i=1

(

1− γj

λ−i

)

n
∏

i=1, i6=j

(

1−
γ2j
γ2i

)
×

× e−iγjzn

n
∑

m=1

c(n)m γm−1
j

(A14)

and

bj = wc lim
n→∞

e−iλ
+

j
zn

c
(n)
1

n
∑

m=1
c
(n)
m (λ+j )

m−1

n
∏

i=1, i6=j

(

1−
λ+j

λ+i

)

. (A15)

Numerical results shown in Fig. 2 and in Fig. 8 illustrate
convergence to the exact solution.

Appendix B: Numerical evidence of stability for

some of the solitary wave solutions

To study stability of the obtained solitary wave solu-
tions we consider the initial value problem for the original
discrete system

ÿj = f(yj+1)− 2f(yj) + f(yj−1) (B1)

with zero boundary conditions.
The first type of initial conditions was constructed

from the solitary wave solutions yj(t) = w(x), x = j−V t
computed numerically at a given V :

yj(0) = w(j − j0), ẏj(0) = −V w′(j − j0), (B2)
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j
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1.5

2.0
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V

z

V

V1dV1

in (a), (b)

~

V2 in (a)

V2 in (b)
~

(d)(c) 

FIG. 10. Numerical simulations showing collision of the solitary
waves: (a) a faster (V1 = 1.8) and a slower (V2 = 1.2) waves moving
to the right before the collision (t = 30); (b) after the collision
(t = 145) the faster wave propagates with Ṽ1 ≈ 1.8, while the
slower wave slows down to Ṽ2 ≈ 1.1. The corresponding amplitude
and z values are shown by circles in (c) and (d), respectively.

where we set j0 = 100. We found that at 1 < V < Vcr,
where Vcr depends on α (e.g. Vcr ≈ 1.05 at α = 4),
the amplitude of the initial perturbation decreases with
time and at large times the strain localizes in the first
linear regime (yj < wc). At Vcr < V <

√
α in (B2) the

numerical solution converges to a steadily propagating
solitary wave. We found that the velocities, amplitudes
and the values of z of the attracting solitary waves were
very close to the ones in the initial conditions, suggesting
stability of the corresponding traveling wave solutions.
The results are presented by black circles in Fig. 9.

To probe stability of the solitary waves in a larger do-
main, we also considered the second type of initial con-
ditions with a localized initial profile

yj(0) = A0 exp

(

−1

2

∣

∣

∣

∣

j − M

2

∣

∣

∣

∣

2)

, ẏj(0) = 0, (B3)

where the amplitude A0 served as a parameter. At suf-
ficiently small amplitudes (e.g. A0 < 1.94 at α = 4),
the long-time behavior corresponded again to a solution
of the linear equation with yj < wc. For larger A0 the
initial data evolved into two solitary waves propagating
towards different ends of the chain. A broad agreement
in the whole range of velocities Vcr < V <

√
α can be

seen on the amplitude-velocity relation shown in Fig. 9,
where the results numerical solutions with initial condi-
tions (B3) are presented by gray circles.

In both sets of simulations the threshold velocity V =
Vcr at which the stability changes corresponds to the min-
imum of the energy (1) as the function of V , with soli-
tary waves stable along the increasing portion of H(V )
(V > Vcr) and unstable otherwise; see Fig. 3a.

We now report the results of two collision tests. In the
first test, illustrated in Fig. 3b, two solitary waves travel-
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ing towards each other with the speed V = 1.6 were cho-
sen as the initial condition. After the collision both waves
continued propagating with only slightly lower velocities
and with some oscillations developing in the wake. This
numerical experiment shows that the collision is not fully
elastic, as expected since the system is non-integrable. In
the second test the initial conditions involved two waves
moving in the same direction but with different veloci-
ties, a faster wave, with V1 = 1.8, behind, and a slower
wave, with V2 = 1.2, ahead; see Fig. 10a. In this case af-
ter the faster wave overtook the slower one, it continued
propagating with almost the same speed as before, while
the slower wave’s velocity decreased to Ṽ2 ≈ 1.1, and a

dispersive wave developed behind it, as can be seen in
Fig. 10b. Once again, the collision was not completely
elastic even though solitary wave profiles have been re-
built after the collision. The values of amplitude and z for
the two collision experiments are shown in Fig. 10(c,d).
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