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Abstract. The existence and uniqueness of the global strong solution with small ini-
tial data to the three-dimensional density-dependent incompressible viscoelastic fluids is
established. The local existence and uniqueness of the global strong solution with small
initial data to the three-dimensional compressible viscoelastic fluids is also obtained. A
new method is developed to estimate the solution with weak regularity. Moreover, as a
byproduct, we show the global existence and uniqueness of strong solution to the density-
dependent incompressible Navier-Stokes equations using a different technique from [8].
All the results apply to the two-dimensional case.
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1. Introduction

Elastic solids and viscous fluids are two extremes of material behavior. Viscoelastic
fluids show intermediate behavior with some remarkable phenomena due to their “elastic”
nature. These fluids exhibit a combination of both fluid and solid characteristics, keep
memory of their past deformations, and their behaviour is a function of these old deforma-
tions. Viscoelastic fluids have a wide range of applications and hence have received a great
deal of interest. Examples and applications of viscoelastic fluids include from oil, liquid
polymers, mucus, liquid soap, toothpaste, clay, ceramics, gels, some types of suspensions,
to bioactive fluids, coatings and drug delivery systems for controlled drug release, scaffolds
for tissue engineering, and viscoelastic blood flow flow past valves; see [10, 13, 35] for more
applications. For the viscoelastic materials, the competition between the kinetic energy
and the internal elastic energy through the special transport properties of their respective
internal elastic variables makes the materials more untractable in understanding their be-
havior, since any distortion of microstructures, patterns or configurations in the dynamical
flow will involve the deformation tensor. For classical simple fluids, the internal energy can
be determined solely by the determinant of the deformation tensor; however, the internal
energy of complex fluids carries all the information of the deformation tensor. The inter-
action between the microscopic elastic properties and the macroscopic fluid motions leads
to the rich and complicated rheological phenomena in viscoelastic fluids, and also causes
formidable analytic and numerical challenges in mathematical analysis. The equations of
the density-dependent incompressible viscoelastic fluids of Oldroyd type ([27, 28]) in three
spatial dimensions take the following form [12, 23, 29]:

ρt + div(ρu) = 0, (1.1a)

(ρu)t + div (ρu⊗ u)− µ∆u +∇P (ρ) = div(ρFF>), (1.1b)

Ft + u · ∇F = ∇u F, (1.1c)

divu = 0, (1.1d)

where ρ stands for the density, u ∈ R3 the velocity, and F ∈M3×3 (the set of 3×3 matrices)
the deformation gradient. The viscosity coefficient µ > 0 is a constant. The increasing
convex function P (ρ) = Aργ is the pressure, where γ > 1 and A > 0 are constant. Without
loss of generality, we set A = 1 in this paper. The symbol ⊗ denotes the Kronecker tensor
product and F> means the transpose matrix of F. As usual we call equation (1.1a) the
continuity equation. For system (1.1), the corresponding elastic energy is chosen to be the
special form of the Hookean linear elasticity:

W (F) =
1
2
|F|2,

which, however, does not reduce the essential difficulties for analysis. The methods and
results of this paper can be applied to more general cases.

In this paper, we consider equations (1.1) subject to the initial condition:

(ρ,u, E)|t=0 = (ρ0(x),u0(x), E0(x)), x ∈ R3, (1.2)

and we are interested in the global existence and uniqueness of strong solution to the
initial-value problem (1.1)-(1.2) near its equilibrium state in the three dimensional space
R3. Here the equilibrium state of the system (1.1) is defined as: ρ is a positive constant
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(for simplicity, ρ = 1), u = 0, and F = I (the identity matrix in M3×3). We introduce a
new unknown variable E by setting

F = I + E.

Then, (1.1c) reads
Et + u · ∇E = ∇uE +∇u. (1.3)

By a strong solution, we mean a triple (ρ,u, F) satisfying (1.1) almost everywhere with
initial condition (1.2), in particular, (ρ,u, F)(·, t) ∈ W 2,q, q ∈ (3, 6] for almost all t > 0 in
this paper.

When density ρ is a constant, system (1.1) governs the homogeneous incompressible
viscoelastic fluids, and there exist rich results in the literature for the global existence of
classical solutions (namely in H3 or other functional spaces with much higher regularity);
see [5, 6, 15, 16, 18, 19, 20, 23] and the references therein. When density ρ is not a
constant, the question related to existence becomes much more complicated and not much
has been done. In [17] the authors considered the global existence of classical solutions
in H3 of small perturbation near its equilibrium for the compressible viscoelastic fluids
without the pressure term. One of the main difficulties in proving the global existence
is the lacking of the dissipative estimate for the deformation gradient. To overcome this
difficulty, the authors in [16] introduced an auxiliary function to obtain the dissipative
estimate, while the authors in [18] directly deal with the quantities such as ∆u + divF.
Those methods can provide them with some good estimates, partly because of their high
regularity of (u, F). However, in this paper, we deal with the strong solution with much
less regularity in W 2,q, q ∈ (3, 6], hence those methods do not apply. Thus, we need a new
method to overcome this obstacle, and we find that a combination between the velocity
and the convolution of the divergence of the deformation gradient with the fundamental
solution of Laplace operator will develop some good dissipative estimates required for the
global existence. The global existence of strong solution to the initial-value problem (1.1)-
(1.2) is established based on the local existence and global uniform estimates. The local
existence is obtained using a fixed point theorem without incompressible condition (1.1d),
that is, the local existence holds for both the incompressible viscoelastic fluids (1.1a)-
(1.1d) and the compressible viscoelastic fluids (1.1a)-(1.1c). The global existence and
uniqueness of strong solution also holds for the density-dependent incompressible Navier-
Stokes equations when the deformation gradient does not appear, which, as a byproduct,
gives a similar result to [8] but through a different technique.

The viscoelastic fluid system (1.1) can be regarded as a combination of the inhomo-
geneous incompressible Navier-Stokes equation with the source term div(ρFF>) and the
equation (1.1c). For the global existence of classical solutions with small perturbation
near an equilibrium for the compressible Navier-Stokes equations, we refer the reader to
[24, 25, 26, 30] and the references cited therein. We remark that, for the nonlinear invis-
cid elastic systems, the existence of solutions was established by Sideris-Thomases in [33]
under the null condition; see also [31] for a related discussion.

The existence of global weak solutions with large initial data of (1.1) is still an out-
standing open question. In this direction for the homogeneous incompressible viscoelastic
fluids, when the contribution of the strain rate (symmetric part of ∇u) in the constitutive
equation is neglected, Lions-Masmoudi in [22] proved the global existence of weak solu-
tions with large initial data for the Oldroyd model. Also Lin-Liu-Zhang in [19] proved the
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existence of global weak solutions with large initial data for the incompressible viscoelastic
fluids when the velocity satisfies the Lipschitz condition. When dealing with the global
existence of weak solutions of the viscoelastic fluid system (1.1) with large data, the rapid
oscillation of the density and the non-compatibility between the quadratic form and the
weak convergence are two of the major difficulties.

The rest of the paper is organized as follows. In Section 2, we recall briefly the density-
dependent incompressible viscoelastic fluids from some basic mechanics and conservation
laws. In Section 3, we state our main results, including the local and global existence and
uniqueness of the strong solution to the equations of the viscoelastic fluids, as well as to the
incompressible Navier-Stokes equations with small data. In Section 4, we prove the local
existence via a fixed-point theorem. In Section 5, we prove the uniqueness of the solution
obtained in Section 4. In Section 6, we establish some global a priori estimates, especially
on the dissipation of the deformation gradient and gradient of the density. In Section 7,
we first prove some energy estimates uniform in time and some refined estimates on the
density and the deformation gradient, and then give the proof of the global existence.

2. Background of Mechanics for Viscoelastic Fluids

To provide a better understanding of system (1.1), we recall briefly some background
of viscoelastic fluids from mechanics in this section.

First, we discuss the deformation gradient F. The dynamics of a velocity field u(x, t)
in mechanics can be described by the flow map or particle trajectory x(t,X), which is a
time dependent family of orientation preserving diffeomorphisms defined by:{

d
dtx(t,X) = u(t, x(t,X)),
x(0, X) = X,

(2.1)

where the material point X (Lagrangian coordinate) is deformed to the spatial position
x(t,X) , the reference (Eulerian) coordinate at time t. The deformation gradient F̃ is
defined as

F̃(t,X) =
∂x

∂X
(t,X),

which describes the change of configuration, amplification or pattern during the dynamical
process, and satisfies the following equation by changing the order of differentiation:

∂F̃(t,X)
∂t

=
∂u(t, x(t,X))

∂X
. (2.2)

In the Eulerian coordinate, the corresponding deformation gradient F(t, x) is defined as

F(t, x(t,X)) = F̃(t,X).

Equation (2.2), combined with the chain rule and (2.1), gives

∂tF(t, x(t,X)) + u · ∇F(t, x(t,X)) = ∂tF(t, x(t,X)) +
∂F(t, x(t,X))

∂x
· ∂x(t,X)

∂t

=
∂F̃(t,X)

∂t
=
∂u(t, x(t,X))

∂X
=
∂u(t, x(t,X))

∂x

∂x

∂X

=
∂u(t, x(t,X))

∂x
F̃(t,X) = ∇u · F,
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which is exactly equation (1.1c). Here, and in what follows, we use the conventional
notations:

(∇u)ij =
∂ui
∂xj

, (∇u F)i,j = (∇u)ikFkj , (u · ∇F)ij = uk
∂Fij
∂xk

,

and summation over repeated indices will always be well understood. In viscoelastic fluids,
(1.1c) can also be interpreted as the consistency of the flow maps generated by the velocity
field u and the deformation gradient F.

The difference between fluids and solids lies in the fact that, in fluids, such as Navier-
Stokes equations [26], the internal energy can be determined solely by the determinant part
of F (equivalently the density ρ, and hence, (1.1c) can be disregarded); while in elasticity,
the energy depends on all information of F.

In the continuum physics, if we assume the material is homogeneous, the conservation
laws of mass and of momentum become [7, 16, 31]

∂tρ+ div(ρu) = 0, (2.3)

and
∂t(ρu) + div(ρu⊗ u)− µ∆u +∇P (ρ) = div((det F)−1SF>), (2.4)

with divu = 0 where
ρdet F = 1, (2.5)

and
Sij(F) =

∂W

∂Fij
. (2.6)

Here S, ρSF>, W (F) denote Piola-Kirchhoff stress, Cauchy stress, and the elastic energy
of the material, respectively. Recall that the condition (2.6) implies that the material is
hyperelastic [23]. In the case of Hookean (linear) elasticity [15, 16, 20],

W (F) =
1
2
|F|2 =

1
2
tr(FF>), (2.7)

where the notation “tr” stands for the trace operator of a matrix, and hence,

S(F) = F. (2.8)

Combining equations (2.1)-(2.8) together, we obtain system (1.1).
If the viscoelastic system (1.1) satisfies

div(ρ0F
>
0 ) = 0,

initially at t = 0 with F0 = I + E0, it was verified in [18] (see Proposition 3.1) that this
condition will insist in time, that is,

div(ρ(t)F(t)>) = 0, for t ≥ 0. (2.9)

Another hidden, but important, property of the viscoelastic fluids system (1.1) is con-
cerned with the curl of the deformation gradient (see [15, 16]). Formally, the fact that the
Lagrangian derivatives commute and the definition of the deformation gradient imply

∂Xk
F̃ij =

∂2xi
∂Xk∂Xj

=
∂2xi

∂Xj∂Xk
= ∂Xj F̃ik,

which is equivalent to, in the Eulerian coordinates,

F̃lk∇lFij(t, x(t,X)) = F̃nj∇nFik(t, x(t,X)),
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that is,
Flk∇lFij(t, x) = Fnj∇nFik(t, x),

which means that, using F = I + E,

∇kEij + Elk∇lEij = ∇jEik + Enj∇nEik. (2.10)

According to (2.10), it is natural to assume that the initial condition of E in the viscoelastic
fluids system (1.1) should satisfy the compatibility condition

∇kE(0)ij + E(0)lk∇lE(0)ij = ∇jE(0)ik + E(0)nj∇nE(0)ik. (2.11)

Finally, if the density ρ is a constant, (1.1) becomes its corresponding homogeneous
(density-independent) incompressible form (see [6, 15, 16, 18, 19, 20] and references therein)

divu = 0,
∂tu + u · ∇u− µ∆u +∇P = div(FF>),
∂tF + u · ∇F = ∇u F.

(2.12)

For more discussions on viscoelastic fluids and related models, see [4, 5, 7, 11, 12, 14,
19, 22, 23, 29, 34] and the references cited therein.

3. Main Results

In this Section, we state our main results. As usual, the global existence is built on the
local existence and global uniform estimates.

In this paper, the standard notations for Sobolev spaces W s,q and Besov spaces Bs
pq ([3])

will be used. Throughout this paper, the real interpolation method ([3]) will be adopted
and the following interpolation spaces will be needed

X
2(1− 1

p
)

p =
(
Lq(R3),W 2,q(R3)

)
1− 1

p
,p

= B
2(1− 1

p
)

qp ,

and
Y

1− 1
p

p =
(
Lq(R3),W 1,q(R3)

)
1− 1

p
,p

= B
1− 1

p
qp .

Now we introduce the following functional spaces to which the solution and initial con-
ditions of the system (1.1) will belong. Given 1 ≤ p, q ≤ ∞ and T > 0, we set
QT = R3 × (0, T ), and

Wp,q(0, T ) :=
{
u ∈W 1,p(0, T ; (Lq(R3))3) ∩ Lp(0, T ; (W 2,q(R3))3) : divu = 0

}
with the norm

‖u‖Wp,q(0,T ) := ‖u‖W 1,p(0,T ;Lq(R3)) + ‖u‖Lp(0,T ;W 2,q(R3)),

as well as

V p,q
0 :=

(
X

2(1− 1
p

)
p ∩ Y

1− 1
p

p

)3

×
(
W 1,q(R3)

)10

with the norm

‖(f, g)‖V p,q
0

:= ‖f‖
X

2(1− 1
p )

p

+ ‖f‖
Y

1− 1
p

p

+ ‖g‖W 1,q(R3).

We denote
W(0, T ) =Wp,q(0, T ) ∩W2,2(0, T ),
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and
V0 = V p,q

0 ∩ V 2,2
0 .

Our first result is the following local existence:

Theorem 3.1 (Local existence for viscoelastic fluids). Let T0 > 0 be given and (u0, ρ0, E0)
∈ V0 with p ∈ [2,∞), q ∈ (3,∞). There exists a positive constant δ0 < 1, depending on T0,
such that if

‖(u0, ρ0 − 1, E0)‖V0 ≤ δ0,

then the initial-value problem (1.1a)-(1.1c) with (1.2) as well as the initial-value problem
(1.1)-(1.2) have a unique strong solution on R3 × (0, T0), satisfying

(u, ρ, F) ∈ W(0, T0)×
(
W 1,p(0, T0;Lq(R3) ∩ L2(R3)) ∩ Lp(0, T0;W 1,q(R3) ∩W 1,2(R3))

)10
.

Remark 3.1. The solution constructed in Section 4 later does not require the incompress-
ible condition (1.1d), thus we have the local existence for both the compressible and
incompressible cases. The solutions in Theorem 3.1 is local in time since δ0 = δ0(T0)
implies that T0 is finite for a given δ0 � 1.

Remark 3.2. An interesting case is the case q ≤ p. Indeed, by the real interpolation
method and Theorem 6.4.4 in [3], we have

W
2(1− 1

p
),q ⊂ B

2(1− 1
p

)
qp = X

2(1− 1
p

)
p ,

and

W
1− 1

p
,q ⊂ B

1− 1
p

qp = Z
1− 1

p
p .

Then, if we replace the functional space V p,q
0 in Theorem 3.1 by

Vp,q0 :=
(

(W 2(1− 1
p

),q(R3))3 ∩ (W 1− 1
p
,q(R3))3

)
× (W 1,q(R3))10,

Theorem 3.1 is still valid.

The above local existence, with the aid of global estimates and the suitable choice of
the smallness of the initial data, will result in the following global existence:

Theorem 3.2 (Global existence for viscoelastic fluids). Assume that
• p = 2 and q ∈ (3, 6];
• There exists a δ0 > 0, such that, for any δ with 0 < δ ≤ δ0 � 1, the initial data

satisfies
‖(u0, ρ0 − 1, E0)‖V0 ≤ δ2, (3.1)

with compatibility condition (2.11), divu0 = 0, and

div(ρ0F
>
0 ) = 0; (3.2)

• In addition, the initial data satisfies∫
R3

(
1
2
ρ0|u0|2 +

1
2
ρ0|E0|2 +

1
γ − 1

(ργ0 − γρ0 + γ − 1)
)
dx ≤ δ4, (3.3)

and

‖∇u0‖L2 + ‖u0 · ∇u0‖L2 + ‖∆u0‖L2 + ‖∇ρ0‖L2 + ‖∇E0‖L2∩Lq ≤ δ4. (3.4)
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Then, there exists a µ0 > 0 depending only on q (and determined by (6.18)), such that if
0 < µ ≤ µ0, the initial-value problem (1.1)-(1.2) has a unique strong solution defined on
R3 × (0,∞) with

(u, ρ, F) ∈ W(0, T )×
(
W 1,p(0, T ;Lq(R3) ∩ L2(R3)) ∩ Lp(0, T ;W 1,q(R3) ∩W 1,2(R3))

)10
,

for each T > 0. Furthermore, the solution satisfies

sup
t∈[0,∞)

‖(u(t), ρ(t)− 1, E(t))‖V p,q
0

<
√
δ0. (3.5)

Remark 3.3. Notice that if q > 3, then by Theorem 5.15 in [1], the imbedding W 1,q(R3) ↪→
C0
B(R3) is continuous. Here, the notation C0

B(R3) means the spaces of bounded, continuous
functions in R3. Hence the condition (3.1) implies that, if we choose δ sufficiently small,
by Sobolev’s imbedding theorem, there exists a positive constant C0 such that

ρ0 ≥ C0 > 0, for a.e. x ∈ R3. (3.6)

Remark 3.4. Under assumption (3.2), the authors in [17, 18] showed that the property
will insist in time, that is, for all t ≥ 0,

div(ρF>) = 0.

Remark 3.5. If the density ρ is a constant, for simplicity, ρ = 1, Theorems 3.1 and 3.2
become the analogous results of the homogeneous incompressible viscoelastic fluids (2.12).
In other words, following our argument in this paper, we can recover the global existence of
strong solutions, or even classical solutions, of the homogeneous incompressible viscoelastic
fluids near its equilibrium.

An important consequence of Theorem 3.2 is the case as E = 0 and disregarding the
equation (1.1c) . In this case, one has the global existence of density-dependent incom-
pressible Navier-Stokes equations, since the term on the right-hand side of (1.1b) can be
incorporated into the pressure. We state the result without proof as follows.

Corollary 3.1 (Global existence for Navier-Stokes equations). Assume that
• p = 2 and q ∈ (3, 6];
• There exists a δ0 > 0, such that, for any δ with 0 < δ ≤ δ0 � 1, the initial data

satisfies
‖(u0, ρ0 − 1)‖V0 ≤ δ2,

with divu0 = 0;
• In addition, the initial data satisfies∫

R3

(
1
2
ρ0|u0|2 +

1
γ − 1

(ργ0 − γρ0 + γ − 1)
)
dx ≤ δ4.

Then, the initial-value problem for the density-dependent incompressible Navier-Stokes
equations has a unique strong solution defined on R3 × (0,∞) such that

(u, ρ) ∈ W(0, T )×
(
W 1,p(0, T ;Lq(R3) ∩ L2(R3)) ∩ Lp(0, T ;W 1,q(R3) ∩W 1,2(R3))

)
,

for each T > 0. Furthermore, the solution satisfies

sup
t∈[0,∞)

‖(u(t), ρ(t)− 1)‖V p,q
0

<
√
δ0.
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Remark 3.6. The similar result to Corollary 3.1 was shown in [8]. It is worthy of noticing
that there is no assumption on the amplitude of the viscosity µ or condition (3.4) because
those two conditions are only useful when dealing with the dissipation of the transforma-
tion gradient F. Actually, as seen from the argument later in this paper, Corollary 3.1 still
holds if p ≥ 2 and q > 3.

4. Local Existence

In this section, we prove the local existence of strong solution in Theorem 3.1. To this
end, we introduce the following new variables by scaling

s := ν2t, y := νx, v(y, s) :=
1
ν

u(x, t), r(y, s) := ρ(x, t), G(y, s) := E(x, t),

where ν > 0 will be determined later. Then, system (1.1), with (1.1c) replaced by (1.3),
becomes

rt + div(rv) = 0, (4.1a)

(rv)t + div (rv ⊗ v)− µ∆v + ν−2∇P = ν−2div
(
r(I +G)(I +G)>

)
, (4.1b)

Gt + v · ∇G = ∇vG+∇v, (4.1c)

divv = 0. (4.1d)

From (2.10), one has

∇kGij +Glk∇lGij = ∇jGik +Gnj∇nGik. (4.2)

Thus, if we denote by Gi the i-th row of the matrix G (or the i-th component of the vector
G), then (4.2) becomes

curl Gi = Gnj∇nGik −Glk∇lGij . (4.3)

The proof of local existence of strong solution with small initial data will be carried out
through three steps by using a fixed point theorem. Instead of working on (1.1) directly,
we will work on (4.1). We note that (4.1) is just a scaling version of (1.1). It can be seen
from the argument below that we only need to verify the local existence in Wp,q(0, T ),
0 < T ≤ T0, while initial data belongs to V p,q

0 .

4.1. Solvability of the density with a fixed velocity. Let Aj(x, t), j = 1, ..., n, be
symmetric m × m matrices in Rn × (0, T ), f(x, t) and υ0(x) be m-dimensional vector
functions defined in Rn × (0, T ) and Rn, respectively.

For the following initial-value problem: ∂tυ +
n∑
i=1

Aj(x, t)∂jυ +B(x, t)υ = f(x, t),

υ(x, 0) = υ0(x),
(4.4)

we have
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Lemma 4.1. Assume that

Aj ∈
[
C(0, T ;Hs(Rn)) ∩ C1(0, T ;Hs−1(Rn))

]m×m
, j = 1, ..., n,

B ∈ C((0, T ), Hs−1(Rn))m×m, f ∈ C((0, T ), Hs(Rn))m, υ0 ∈ Hs(Rn)m,

with s > n
2 + 1 is an integer. Then there exists a unique solution to (4.4), i.e, a function

υ ∈
[
C([0, T ), Hs(Rn)) ∩ C1((0, T ), Hs−1(Rn))

]m
satisfying (4.4) pointwise.

Proof. This lemma is a direct consequence of Theorem 2.16 in [26] with A0(x, t) = I. �

To solve the density with respect to the fixed velocity, we have

Lemma 4.2. Under the same conditions as Theorem 3.1, there is a unique strictly positive
function

r := S(v) ∈W 1,p(0, T ;Lq(R3)) ∩ L∞(0, T ;W 1,q(R3))

which satisfies the continuity equation (4.1a) and r−1 ∈ L∞(0, T ;Lq(R3)). Moreover, the
density satisfies

‖∇r‖L∞(0,T ;Lq(R3)) ≤ C(T, ‖v‖W(0,T ))
(
‖∇r0‖Lq(R3) + 1

)
, (4.5)

and the norm ‖S(v)− 1‖W 1,q(R3)(t) is a continuous function in time.

Here, and in what follows, C stands for a generic positive constant, and in some case,
we will specify its dependence on parameters by the notation C(·).

Proof. For the proof of the first part of this lemma, we refer the reader to Theorem 9.3 in
[26], or the first part of the proof for Lemma 4.3 below. The positivity of density follows
directly from the observations: by writing (4.1a) along characteristics d

dtX(t) = v,

d

dt
r(t,X(t)) = −r(t,X(t))divv(t,X(t)), X(0) = x,

and with the help of Gronwall’s inequality,

(inf
x
ρ0)exp

(
−
∫ t

0
‖divv(t)‖L∞(R3)dx

)
≤ r(t, x)

≤ (sup
x
ρ0)exp

(∫ t

0
‖divv(t)‖L∞(R3)dx

)
.

Now, we can assume that the continuity equation holds pointwise in the following form:

∂tr + rdivv + v · ∇r = 0.
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Taking the gradient in both sides of the above identity, multiplying by |∇r|q−2∇r and
then integrating over R3, we get, by Young’s inequality

1
q

d

dt
‖∇r‖q

Lq(R3)
≤
∫

R3

|∇r|q|divv|dx+
∫

R3

r|∇r|q−1|∇divv|dx

+
∫

R3

|∇v||∇r|qdx− 1
q

∫
R3

v∇|∇r|qdx

≤ ‖∇r‖q
Lq(R3)

(
‖∇v‖L∞(R3) + ‖r‖L∞(R3)‖∇divv‖Lq(R3)

)
+

1
q

∫
R3

divv|∇r|qdx+ ‖r‖L∞(R3)‖∇divv‖Lq(R3)

≤ C‖∇r‖q
Lq(R3)

‖v‖W 2,q(R3) + ‖r‖L∞(R3)‖∇divv‖Lq(R3),

(4.6)

since q > 3. Then (4.5) follows from Gronwall’s inequality.
Finally, noting from (4.6) and (4.5) that d

dt‖∇r‖
q
Lq(R3)

∈ L1(0, T ), and hence

d

dt
‖∇(r − 1)‖q

Lq(R3)
∈ L1(0, T ),

which together with (4.5) implies that ‖∇(r−1)‖q
Lq(R3)

(t) is continuous in time, and hence,
‖∇(r−1)‖Lq(R3)(t) is continuous in time. Similarly, from the continuity equation, we know
that

∂t(r − 1) = −div((r − 1)v)− divv ∈ Lp(0, T ;Lq(R3)),
which, together with the fact r − 1 ∈ L∞(0, T ;Lq(R3)), yields r − 1 ∈ C([0, T ];Lq(R3)).
Hence, the quantity ‖r − 1‖W 1,q(R3)(t) is continuous in time. The proof of Lemma 4.2 is
complete. �

4.2. Solvability of the deformation gradient with a fixed velocity. Due to the
hyperbolic structure of (4.1c), we can apply Lemma 4.1 again to solve the deformation
gradient G in terms of the given velocity. For this purpose, we have

Lemma 4.3. Under the same conditions as Theorem 3.1, there is a unique function

G := T (v) ∈W 1,p(0, T ;Lq(R3)) ∩ L∞(0, T ;W 1,q(R3))

which satisfies the equation (4.1c). Moreover, the deformation gradient satisfies

‖∇G‖L∞(0,T ;Lq(R3)) ≤ C(T, ‖v‖W(0,T ))
(
‖∇G(0)‖Lq(R3) + 1

)
, (4.7)

and, the norm ‖G‖W 1,q(R3)(t) is a continuous function in time.

Proof. First, we assume that v ∈ C1(0, T ;C∞0 (R3)), G0 ∈ C∞0 (R3). Then, we can rewrite
(4.1c) in the component form as

∂tGj + v · ∇Gj = ∇v Gj +∇vj , for all 1 ≤ j ≤ 3.

Applying Lemma 4.1 successively with Ak(x, t) = vk(x, t)I for all 1 ≤ k ≤ 3, B(x, t) = ∇v,
and f(x, t) = ∇vj , we get a solution

G ∈ ∩∞l=1

{
C1(0, T,H l−1(R3)) ∩ (0, T ;H l(R3))

}
,

which implies, by the Sobolev imbedding theorem,

G ∈ ∩∞k=1C
1(0, T ;Ck(R3)) = C1(0, T ;C∞(R3)). (4.8)
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Next, for v ∈ Wp,q(0, T ), there are two sequences:

vn ∈ C1(0, T ;C∞0 (R3)), Gn0 ∈ C∞0 (R3),

such that

vn → v in W(0, T ), Gn0 → G0 in W 1,q(R3),

thus vn → v in C(B(0, a)× (0, T )) for all a > 0 where B(0, a) denotes the ball with radius
a and centered at the origin. According to the previous result (4.8), there are a sequence
of functions {Gn}∞n=1 ⊂ C1(0, T ;C∞(R3)) satisfying

∂tGn + vn · ∇Gn = ∇vnGn +∇vn, (4.9)

with Gn(0) = Gn0 . Multiplying (4.9) by |Gn|q−2Gn, and integrating over R3, using inte-
gration by parts and Young’s inequality, we obtain,

1
q

d

dt

∫
R3

|Gn|qdx

= −1
q

∫
R3

vn · ∇|Gn|qdx+
∫

R3

∇vn|Gn|q−2G2
ndx+

∫
R3

∇vn|Gn|q−2Gndx

≤ 1 + q

q
‖Gn‖qLq(‖∇vn‖L∞ + ‖∇vn‖Lq) + ‖∇vn‖Lq .

From Gronwall’s inequality, one obtains,∫
R3

|Gn|qdx

≤
(∫

R3

|Gn(0)|qdx+ q

∫ t

0
‖∇vn‖Lqexp

(
−
∫ t

0
(q + 1)(‖∇vn‖L∞ + ‖∇vn‖Lq)dτ

)
ds

)
× exp

(∫ t

0
(q + 1)(‖∇vn‖L∞ + ‖∇vn‖Lq)ds

)
≤
(∫

R3

|Gn(0)|qdx+ q

∫ t

0
‖∇vn‖Lqds

)
exp

(∫ t

0
(q + 1)(‖∇vn‖L∞ + ‖∇vn‖Lq)ds

)
.

Thus,

‖Gn‖L∞(0,T ;Lq(R3)) ≤ C(T, ‖v‖Lp(0,T ;W 2,q(R3)))
(
‖G(0)‖Lq(R3) + 1

)
<∞. (4.10)

Hence, up to a subsequence, we can assume that the sequence {vn} was chosen so that

Gn → G weak-* in L∞(0, T ;Lq(R3)).
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Taking the gradient in both sides of (4.9), multiplying by |∇Gn|q−2∇Gn and then
integrating over R3, we get, with the help of Hölder’s inequality and Young’s inequality,

1
q

d

dt
‖∇Gn‖qLq(R3)

≤
∫

R3

|∇Gn|q|∇vn|dx+
∫

R3

|Gn||∇Gn|q−1|∇∇vn|dx

+
∫

R3

|∇vn||∇Gn|qdx−
1
q

∫
R3

vn∇|∇Gn|qdx

+
∫

R3

|∇∇vn||∇Gn|q−1dx

≤
∫

R3

|∇Gn|q|∇vn|dx+
∫

R3

|Gn||∇Gn|q−1|∇∇vn|dx

+
∫

R3

|∇vn||∇Gn|qdx+
1
q

∫
R3

|∇vn||∇Gn|qdx

+
∫

R3

|∇∇vn||∇Gn|q−1dx

≤ C‖∇Gn‖qLq(R3)
‖vn‖W 2,q(R3) + (‖Gn‖qL∞(R3)

+ 1)‖vn‖W 2,q(R3)

≤ C‖∇Gn‖qLq(R3)
‖vn‖W 2,q(R3) + (‖Gn‖qLq(R3)

+ 1)‖vn‖W 2,q(R3),

(4.11)

since q > 3. Using Gronwall’s inequality and (4.10), we conclude from (4.11) that

‖∇Gn‖L∞(0,T ;Lq(R3)) ≤ C(T, ‖vn‖W(0,T ))
(
‖∇Gn(0)‖Lq(R3) + 1

)
,

and hence,

‖∇G‖L∞(0,T ;Lq(R3)) ≤ lim inf
n→∞

‖∇Gn‖L∞(0,T ;Lq(R3))

≤ C(T, ‖v‖W(0,T ))
(
‖∇G(0)‖Lq(R3) + 1

)
.

(4.12)

Therefore,

‖Gn‖L∞(0,T ;W 1,q(R3)) ≤ C(T, ‖v‖Lp(0,T ;W 2,q(R3)), ‖G(0)‖W 1,q(R3)) <∞.

Furthermore, since q > 3, we deduce G ∈ L∞(QT ) and

‖G‖L∞(QT ) ≤ C(T, ‖v‖Lp(0,T ;W 2,q(R3)), ‖G(0)‖W 1,q(R3)) <∞.

Passing to the limit as n→∞ in (4.9), we show that (4.1c) holds at least in the sense of
distributions. Therefore,

∂tG ∈ Lp(0, T ;Lq(R3)),

then G ∈W 1,p(0, T ;Lq(R3)), and hence G ∈ C([0, T ];Lq(R3)).
Finally, to show that the quantity ‖G‖W 1,q(R3)(t) is continuous in time, it suffices to

show that ‖∇G‖Lq(R3) is continuous in time. Indeed, from (4.11), we know that

d

dt
‖∇G‖q

Lq(R3)
(t) ∈ Lp(0, T ),

which, with (4.12), implies that ‖∇G‖Lq(R3) ∈ C([0, T ]). The proof of Lemma 4.3 is
complete. �
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4.3. Local existence via the fixed-point theorem. In order to solve locally system
(4.1), we need to use the following fixed point theorem (cf. 1.4.11.6 in [26]):

Theorem 4.1 (Tikhonov Theorem). Let M be a nonempty bounded closed convex subset
of a separable reflexive Banach space X and let F : M 7→ M be a weakly continuous
mapping (i.e. if xn ∈ M,xn → x weakly in X, then F (xn)→ F (x) weakly in X as well).
Then F has at least one fixed point in M .

Now, let us consider the following operator

Lω :=
dω

dt
− µ∆ω, ω ∈ Wp,q(0, T ).

One has the following theorem by the maximal regularity of parabolic equations; see
Theorem 9.2 in [26], or equivalently Theorem 4.10.7 and Remark 4.10.9 in [2] (page 188).

Theorem 4.2. Given 1 < p < ∞, ω0 ∈ V p,q
0 and f ∈ Lp(0, T ;Lq(R3)3), the Cauchy

problem
Lω = f, t ∈ (0, T ); ω(0) = ω0,

has a unique solution ω := L−1(ω0, f) ∈ Wp,q(0, T ), and

‖ω‖Wp,q(0,T ) ≤ C
(
‖f‖Lp(0,T ;Lq(R3)) + ‖ω0‖V p,q

0

)
,

where C is independent of ω0, f and T . Moreover, there exists a positive constant c0

independent of f and T such that

‖ω‖Wp,q(0,T ) ≥ c0 sup
t∈(0,T )

‖ω(t)‖V p,q
0
.

Notice that Theorem 4.2 implies that the operator L is invertible. Thus we define the
operator H(v) :Wp,q(0, T ) 7→ Wp,q(0, T ) by

H(v) := L−1
(
v0, ∂t((1− S(v))v)− div(S(v)v ⊗ v) + ν−2∇(P (1)− P (S(v)))

+ ν−2div(S(v)(I + T (v))(I + T (v))>)
)
. (4.13)

Then, solving system (4.1) is equivalent to solving

v = H(v). (4.14)

To solve (4.14), we define

BR(0) := {v ∈ Wp,q(0, T ) : ‖v‖Wp,q(0,T ) ≤ R}.
Then, we prove first the following claim:

Lemma 4.4. There are ν, T > 0, and 0 < R < 1 such that

H(BR(0)) ⊂ BR(0).

Proof. Let T > 0, 0 < R < 1 and v ∈ BR(0). Since S(v) solves (4.1a), we can rewrite
operator H as

H(v) = L−1
(
v0, (1− S(v))∂tv − S(v)v · ∇v + ν−2∇(P (1)− P (S(v)))

+ ν−2div(S(v)(I + T (v))(I + T (v))>)
)
. (4.15)
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Thus, it suffices to prove that the terms in the above expression are small in the norm of
Lp(0, T ; (Lq(R3))3).

First of all, we begin to deal with the first term by letting r := S(v) − 1. Thus, r
satisfies the equations {

∂tr + div(rv) = 0,
r(x, 0) = r0 − 1.

Repeating the argument in Section 4.2 again, we obtain
‖r‖L∞(QT ) ≤ C‖r‖L∞(0,T ;W 1,q(R3))

≤ C‖r0 − 1‖W 1,q(R3)C(T, ‖v‖W(0,T ))

≤ ‖r0 − 1‖W 1,q(R3)C(T,R) ≤ C(T )R,

where, by the formula of change of variables, we deduce that

‖r0 − 1‖Lq(R3) ≤ ν
3
q ‖ρ0 − 1‖Lq(R3) ≤ R,

and
‖∇r0‖Lq(R3) ≤ ν

3−q
q ‖∇ρ0‖Lq(R3) ≤ R,

if ‖ρ0− 1‖Lq(R3) is small enough and ν > 1 is large enough. Hence, due to the assumption
v ∈ BR(0), we obtain

‖(1− S(v))∂tv‖Lp(0,T ;Lq(R3)) ≤ C(T )R2. (4.16)

Secondly, by the Sobolev imbedding,∫
R3

|v∇v|qdx ≤ ‖v‖q
Lq(R3)

‖∇v‖q
L∞(R3)

≤ C‖v‖q
Lq(R3)

‖v‖q
W 2,q(R3)

,

and thus, since W 1,p(0, T ;Lq(R3)) ↪→ C([0, T ];Lq(R3)), we deduce∫ T

0

(∫
R3

|v∇v|qdx
) p

q

ds ≤ C
∫ T

0
‖v‖p

Lq(R3)
‖v‖p

W 2,q(R3)
ds

≤ C‖v‖p
L∞(0,T ;Lq(R3))

‖v‖p
Lp(0,T ;W 2,q(R3))

≤ ‖v‖2pW(0,T ) ≤ CR
2p.

Therefore, we get
‖S(v)(v · ∇)v‖Lp(0,T ;Lq(R3)) ≤ CR2. (4.17)

Thirdly, for the term ∇P (S(v)), we can estimate it as follows

‖∇P (S(v))‖Lp(0,T ;Lq(R3))

≤ C(T ) sup
{
P ′(η) : C(T )−1 ≤ η ≤ C(T )

}
(‖∇r0‖Lq(R3) + 1).

(4.18)

Fourthly, for the term div(S(v)(I + T (v))(I + T (v))>, we have

|div(S(v)(I + T (v))(I + T (v))>)| ≤ |∇S(v)||I + T (v)|2 + 2S(v)|∇T (v)||I + T (v)|,
and hence,

‖div(S(v)(I + T (v))(I + T (v))>)‖Lp(0,T ;Lq)

≤ ‖|∇S(v)||I + T (v)|2‖Lp(0,T ;Lq) + 2‖S(v)|∇T (v)||I + T (v)|‖Lp(0,T ;Lq)

≤ C(T )M,

(4.19)
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with

M = max
{
‖G0‖W 1,q + 1, ‖G0‖L∞(R3) + 1, ‖r0‖W 1,q + 1, ‖r0‖L∞(R3) + 1

}3
<∞.

Combining together (4.16), (4.17), (4.18), (4.19), using the Theorem 4.2, and assuming
parameter ν sufficiently large and R < 1 sufficiently small, we get

‖H(v)‖W(0,T ) ≤ C(T )(R2 + ν−2) ≤ R.
The proof of Lemma 4.4 is complete. �

Thus, it is only left to show the following:

Lemma 4.5. The operator H is weakly continuous from Wp,q(0, T ) into itself.

Proof. Assume that vn → v weakly in Wp,q(0, T ), and set rn := S(vn), Gn := T (vn), then
{rn}∞n=1 and {Gn}∞n=1 are uniformly bounded in L∞(0, T ;W 1,q(R3)) ∩W 1,p(0, T ;Lq(R3))
by Lemmas 4.1 and 4.3. Hence, up to a subsequence, we can assume that rn → r and Gn →
G weakly∗ in L∞(0, T ;W 1,q(R3)) ∩ W 1,p(0, T ;Lq(R3)) and then strongly in C((0, T ) ×
B(0, a)) for all a > 0. And at least the same convergence holds for vn. Thus, (4.1a) and
(4.1c) follow easily from above convergence.

Since rn → r weakly* in L∞(0, T ;W 1,q(R3)) ∩W 1,p(0, T ;Lq(R3)), we can assume that
P ′(S(vn))∇S(vn)→ P ′(S(v))∇S(v) weakly in Lp(0, T ;Lq(R3)) and hence,

L−1 (0,∇P (S(vn)))→ L−1 (0,∇P (S(v))) weakly in W(0, T ),

since the strong continuity of L−1 from Lp(0, T ;Lq(R3)) into W(0, T ) and the linearity of
the operator L imply also the weak continuity in these spaces.

Similarly, since ∂tvn → ∂tv weakly in Lp(0, T ;Lq(R3)) and rn → r in C((0, T )×B(0, a))
for all a > 0, we have (re − rn)∂tvn → (re − r)∂tv weakly in Lp(0, T ;Lq(R3)) and conse-
quently

L−1 (0, (re − rn)∂tvn)→ L−1 (0, (re − r)∂tv) weakly in W(0, T ).

Since ∇vn → ∇v weakly in W 1,p(0, T ;W−1,q(R3)) ∩ Lp(0, T ;W 1,q(R3)) which is com-
pactly imbedded in to C([0, T ];Lq(B(0, a))) for all a > 0, we can assume that vn → v
strongly in L∞(0, T ;Lq(B(0, a))) for all a > 0, and then

S(vn)(vn · ∇)vn → S(v)(v · ∇)v

weakly in Lp(0, T ;Lq(R3)). Hence

L−1 (0,S(vn)(vn · ∇)vn)→ L−1 (0,S(v)(v · ∇)v) weakly in W(0, T ).

Finally, due to the facts that rn → r and Gn → G weakly∗ in L∞(0, T ;W 1,q(R3)) ∩
W 1,p(0, T ;Lq(R3)) and strongly in C((0, T )×B(0, a)) for all a > 0, we deduce that

div(S(vn)(I + T (vn))(I + T (vn))>)→ div(S(v)(I + T (v))(I + T (v))>)

weakly in Lp(0, T ;Lq(R3)). Therefore,

L−1
(

0,div(S(vn)(I + T (vn))(I + T (vn))>)
)
→ L−1

(
0,div(S(v)(I + T (v))(I + T (v))>)

)
weakly in W(0, T ).

Thus, we can conclude that

H(vn)→ H(v) weakly in W(0, T ),

due to the weak continuity of map L−1(v, 0). The proof of Lemma 4.5 is complete. �
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Therefore, by Theorem 4.1, there exists at least a fixed point

v = H(v) ∈ BR(0) ⊂ W(0, T ), (4.20)

of mapping H. The fixed point v provides a local in time solution (ρ,u, F) of system (1.1)
near its equilibrium through the scaling with ν sufficiently large.

The proof of the local existence in Theorem 3.1 is complete. The uniqueness will be
proved in the next section.

5. Uniqueness

In this section, we prove the uniqueness of the local solution found in the previous
section. Notice that, the argument in Section 4 yields that

∂tv ∈ L2(0, T ;L2(R3), ∇r ∈ L2(0, T ;L2(R3)), ∇G ∈ L2(0, T ;L2(R3)).

Hence, using the interpolation, we deduce that

∂tv ∈ Lp0(0, T ;L3(R3), ∇r ∈ Lp0(0, T ;L3(R3)), ∇G ∈ Lp0(0, T ;L3(R3)),

where
1
p0

=
θ

2
+

1− θ
p

,
1
3

=
θ

2
+

1− θ
q

,

for some θ ∈ [0, 1]. Now, assume that v1, v2 satisfying (4.20) for some T > 0. Let

r := S(v1)− S(v2), v := v1 − v2, G := T (v1)− T (v2),

with a little abuse of notations (however, there should be no confusion in the rest of this
section). Then, we have{

∂tr + v1 · ∇r + v · ∇S(v2) + rdivv1 + S(v2)divv = 0,
r(0) = 0.

(5.1)

Multiplying (5.1) by r, and integrating over R3, we get

1
2
d

dt
‖r‖2L2 −

1
2

∫
R3

|r|2divv1dx+
∫

R3

(
v∇S(v2)r + |r|2divv1 + rS(v2)divv

)
dx = 0,

which yields
d

dt
‖r‖2L2(R3) ≤ ‖divv1‖L∞‖r‖2L2 + ε‖∇v‖2L2 + C(ε)‖∇S(v2)r‖2

L
6
5

+ ε‖∇v‖2L2(R3) + C(ε)‖S(v2)‖2L∞‖r‖22
≤ ‖divv1‖L∞‖r‖2L2 + ε‖∇v‖2L2 + C(ε)‖∇S(v2)‖2L3‖r‖2L2

+ ε‖∇v‖2L2(R3) + C(ε)‖S(v2)‖2L∞‖r‖22
≤ η1(ε)‖r‖2L2 + 2ε‖∇v‖2L2(R3),

(5.2)

where ε > 0, η1(ε) = ‖divv1‖L∞ + C(ε)
(
‖∇S(v2)‖2L3 + ‖S(v2)‖2L∞

)
.

Similarly, from (4.1c), we obtain{
∂tG+ v1 · ∇G+ v · ∇G2 = ∇v1G+∇vG2 +∇v,
G(0) = 0.

(5.3)
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Multiplying (5.3) by G, and integrating over R3, we get

1
2
d

dt
‖G‖2L2 −

1
2

∫
R3

|G|2divv1dx+
∫

R3

v · ∇T (v2) : Gdx

=
∫

R3

|G|2∇v1dx+
∫

R3

∇vT (v2) : Gdx+
∫

R3

∇v : Gdx,

which yields

d

dt
‖G‖2L2(R3) ≤ ‖divv1‖L∞‖G‖2L2 + ε‖∇v‖2L2 + C(ε)‖∇T (v2)G‖2

L
6
5

+ ε‖∇v‖2L2(R3) + C(ε)‖T (v2)‖2L∞‖G‖22 + ε‖∇v‖2L2 + C(ε)‖G‖2L2

≤ ‖divv1‖L∞‖G‖2L2 + ε‖∇v‖2L2 + C(ε)‖∇T (v2)‖2L3‖G‖2L2

+ ε‖∇v‖2L2(R3) + C(ε)‖T (v2)‖2L∞‖G‖22 + ε‖∇v‖2L2 + C(ε)‖G‖2L2

≤ η2(ε)‖G‖2L2 + 3ε‖∇v‖2L2(R3),

(5.4)

where η2(ε) = ‖divv1‖L∞ + C(ε)
(
‖∇T (v2)‖2L3 + ‖T (v2)‖2L∞ + 1

)
.

For each vj , j = 1, 2, we deduce from (4.1b) that
S(vj)∂tvj − µ∆vj

= −S(vj)(vj · ∇)vj −∇P (S(vj)) + div(S(vj)(I + T (vj))(I + T (vj))>),
vj(0) = v0.

Subtracting these equations, we obtain,

S(v1)∂tv1 − S(v2)∂tv2 − µ∆v

= −S(v1)(v1 · ∇)v1 + S(v2)(v2 · ∇)v2 −∇P (S(v1)) +∇P (S(v2))

+ div(S(v1)(I + T (v1))(I + T (v1))>)− div(S(v2)(I + T (v2))(I + T (v2))>).

(5.5)

Since

− S(v1)(v1 · ∇)v1 + S(v2)(v2 · ∇)v2

= −S(v1)(v · ∇)v1 − (S(v1)− S(v2))(v2 · ∇)v1 − S(v2)(v2 · ∇)v,

and

S(v1)(I + T (v1))(I + T (v1))> − S(v2)(I + T (v2))(I + T (v2))>

= S(v1)G(I + T (v1))> + r(I + T (v2))(I + T (v1))> + S(v2)(I + T (v2))G>,

we can rewrite (5.5) as

S(v1)∂tv − µ∆v

= −r∂tv2 − S(v1)(v · ∇)v1 − S(v2 · ∇)v1 − S(v2)(v2 · ∇)v −∇P (S(v1)) +∇P (S(v2))

+ div(S(v1)G(I + T (v1))> + r(I + T (v2))(I + T (v1))> + S(v2)(I + T (v2))G>).
(5.6)
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Multiplying (5.6) by v, using the continuity equation (1.1a) and integrating over R3, we
deduce that

1
2
d

dt

∫
R3

S(v1)|v|2dx+
∫

R3

µ|∇v|2dx

=
∫

R3

1
2
S(v1)(v1 · ∇)v · v − r∂tv2v − S(v1)(v · ∇)v1v − S(v2 · ∇)v1v

− S(v2)(v2 · ∇)vv −∇P (S(v1))v +∇P (S(v2))v

− (S(v1)G(I + T (v1))> + r(I + T (v2))(I + T (v1))> + S(v2)(I + T (v2))G>)∇vdx
≤ ε‖∇v‖2L2 + C(ε)‖S(v1)‖2L∞‖v1‖2L∞‖v‖2L2 + ε‖∇v‖2L2 + C(ε)‖∂tv2‖2L3‖r‖2L2

+ ‖S(v1)‖L∞‖∇v1‖L∞‖v‖2L2 + 2‖v2‖L∞‖∇v1‖L∞(‖r‖2L2 + ‖v‖2L2)

+ ε‖∇v‖2L2 + C(ε)‖S(v2)‖2L∞‖v2‖2L∞‖v‖2L2 + ε‖∇v‖2L2

+ C(ε)(sup{P ′(η) : C(T )−1 ≤ η ≤ C(T )})2‖r‖2L2 + ε‖∇v‖2L2

+ C(ε)(‖S(v1)‖2L∞(1 + ‖T (v1)‖2L∞)‖G‖2L2

+ ‖S(v2)‖2L∞(1 + ‖T (v2)‖2L∞)‖G‖2L2 + ‖r‖2L2(1 + ‖T (v1)‖2L∞)(1 + ‖T (v2)‖2L∞))

≤ 5ε‖∇v‖2L2 + η3(ε)(‖r‖2L2 + ‖v‖2L2 + ‖G‖2L2)
(5.7)

with

η3(ε) = C(ε)‖S(v1)‖2L∞‖v1‖2L∞ + C(ε)‖∂tv2‖2L3 + ‖S(v1)‖L∞‖∇v1‖L∞

+ 2‖v2‖L∞‖∇v1‖L∞ + C(ε)‖S(v2)‖2L∞‖v2‖2L∞
+ C(ε)(sup{P ′(η) : C(T )−1 ≤ η ≤ C(T )})2

+ C(ε)(‖S(v1)‖2L∞(1 + ‖T (v1)‖2L∞) + ‖S(v2)‖2L∞(1 + ‖T (v2)‖2L∞)

+ (1 + ‖T (v1)‖2L∞)(1 + ‖T (v2)‖2L∞)).

Summing up (5.2), (5.4), and (5.7), by taking ε = µ
20 , we obtain

d

dt

∫
R3

(S(v1)|v|2 + |r|2 + |G|2)dx+ µ

∫
R3

|∇v|2dx

≤ 2(η3(ε) + η2(ε) + η1(ε))(‖v‖2L2 + ‖r‖2L2 + ‖G‖2L2)

≤ 2η(ε, t)
∫

R3

(S(v1)|v|2 + |r|2 + |G|2)dx,

(5.8)

with

η(ε, t) =
η3(ε) + η2(ε) + η1(ε)

min{minx∈R3 S(v1)(x, t), 1}
.

It is a routine matter to establish the integrability with respect to t of the function η(ε, t)
on the interval (0, T ). This is a consequence of the regularity of v1, v2 ∈ W(0, T ) and the
estimates in Lemmas 4.2 and 4.3 for S(vi), T (vi) with i = 1, 2. Therefore, (5.8), combining
with Gronwall’s inequality, implies∫

R3

(
S(v1)|v|2 + |r|2 + |G|2

)
dx = 0, for all t ∈ (0, T ), (5.9)
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and consequently
v ≡ 0, r ≡ 0, G ≡ 0.

Thus, the uniqueness in Theorem 3.1 is established.

6. Global A Priori Estimates

Up to now, we prove that for any given T0, we can find a unique solution to the scaling
system (4.1). That is, we have proved the local existence of solution to the viscoelastic
fluid system (1.1) and its uniqueness. In order to establish the global existence for the
unique solution we constructed in the previous sections, we need to obtain some uniform
a priori estimates which are independent of the time T . To simplify the presentation, we
will focus on the case ν = 1, that is, system (1.1).

We introduce the new variable:
σ := ∇ ln ρ.

Then, we have

Lemma 6.1. Function σ satisfies

∂tσ +∇(u · σ) = 0, (6.1)

in the sense of distributions. Moreover, the norm ‖σ(t)‖Lq(R3) is continuous in time.

Proof. We follow the argument in [26] (Section 9.8) by denoting σε = Sεσ, where Sε is the
standard mollifier in the spatial variables. Then, we have

∂tσε +∇(u · σε) = Rε,
with

Rε = ∇(u · σε)− Sε∇(u · σ)

= (u · ∇σε − Sε(u · ∇σ)) + (σε∇u− Sε(σ · ∇u))

=: R1
ε +R2

ε.

(6.2)

Since σ ∈ L∞(0, T ;Lq(R3)) and u ∈ Lp(0, T ;W 1,∞(R3)), we deduce from Lemma 6.7 in
[26] (cf. Lemma 2.3 in [21]) that R1

ε → 0 as ε→ 0. Moreover,

‖(σε − σ)∇u‖L1(0,T ;Lq(R3)) ≤ ‖σ − σε‖
L

p
p−1 (0,T ;Lq(R3))

‖∇u‖Lp(0,T ;L∞(R3)) → 0,

and Sε(σ · ∇u) → σ · ∇u in L1(0, T ;Lq(R3)) since σ · ∇u ∈ Lp(0, T ;Lq(R3)). Thus, we
have R2

ε → 0 in Lp(0, T ;Lq(R3)). Then, taking the limit as ε→ 0 in (6.2), we get (6.1).
Multiplying (6.1) by |σ|q−2σ, and integrating over R3, we get

1
q

∣∣∣∣ ddt‖σ‖qLq(R3)

∣∣∣∣ =
∣∣∣∣∫

R3

(−∂jukσjσk|σ|q−2 − 1
q

divu|σ|q)dx
∣∣∣∣

≤ ‖∇u‖L∞‖σ‖qLq +
1
q
‖divu‖L∞‖σ‖qLq

≤ C‖u‖W 2,q‖σ‖qLq .

Dividing the above inequality by ‖σ‖q−1
Lq , we obtain∣∣∣∣ ddt‖σ‖Lq

∣∣∣∣ ≤ C‖u‖W 2,q‖σ‖Lq .
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Since σ ∈ L∞(0, T ;Lq(R3)), d
dt‖σ‖Lq ∈ Lp(0, T ). Thus, ‖σ‖Lq ∈ C(0, T ). The proof of

Lemma 6.1 is complete. �

For a given R = δ0 � 1 as in Section 4, if the initial data satisfies ‖u(0), ρ0−1, E(0)‖V0 ≤
δ2 with 0 < δ � min{1

3 , δ0}, let T (R) be the maximal time T such that there is a solution
of the equation u = H(u) in BR(0). By virtue of Lemma 4.2, Lemma 4.3 and Lemma 6.1,
we know that ‖S(u) − 1‖W 1,q(R3), ‖σ‖Lq and ‖T (u)‖W 1,q are continuous in the interval
[0, T (R)). On the other hand, under the assumptions on initial data and Remark 3.3, we
know, if δ is sufficiently small, then

‖σ(0)‖Lq(R3) ≤
1
C0
‖∇ρ(0)‖Lq(R3) ≤ δ

3
2 � 1.

Hence, there exists a maximum positive number T1 such that

max
{
‖S(u)− 1‖W 1,q(t), ‖σ‖Lq(t), ‖T (u)‖W 1,q(t)

}
≤
√
R� 1 for all t ∈ [0, T1]. (6.3)

Now, we denote T = min{T (R), T1}. Without loss of generality, we assume that T <∞.
Since q > 3, we have

‖ρ− 1‖L∞(R3) ≤ C‖ρ− 1‖W 1,q(R3) ≤ C
√
R <

1
2
,

if R is sufficiently small. Hence, one obtains

1
2
≤ ρ ≤ 3

2
.

On the other hand, for any given t ∈ (0, T ), we can write

‖u(t)‖pLq = ‖u(0)‖pLq +
∫ t

0

d

ds
‖u(s)‖pLqds

= ‖u0‖pLq +
p

q

∫ t

0

(
‖u(t)‖p−qLq

∫
R3

|u(s)|q−2u(s)∂su(t)dx
)
dt

≤ ‖u0‖pLq +
p

q

∫ t

0
‖u(s)‖p−1

Lq ‖∂su‖Lqds

≤ δ2p +
p

q

(∫ t

0
‖u‖pLqds

) p−1
p
(∫ t

0
‖∂su‖pLqds

) 1
p

≤ δ2p +
p

q
Rp,

and consequently,

‖u‖L∞(0,t;Lq) ≤
(
δ2p +

p

q
Rp
) 1

p

≤ CR, t ∈ (0, T ). (6.4)

Similarly, we have, for all t ∈ [0, T ],

‖u‖L∞(0,t;L2) ≤ CR.



22 XIANPENG HU AND DEHUA WANG

6.1. Dissipation of the deformation gradient. The main difficulty of the proof of
Theorem 3.2 lies in the lack of estimates on the dissipation of the deformation gradient.
This is partly because of the transport structure of equation (1.1c). It is worthy of pointing
out that it is extremely difficult to directly deduce the dissipation of the deformation
gradient. Fortunately, for the viscoelastic fluids system (1.1), as we can see in [6, 15,
16, 17, 18, 19, 20], some sort of combinations between the gradient of the velocity and
the deformation gradient indeed induce some dissipation. To make this statement more
precise, we rewritten the momentum equation (1.1b) as, using (1.1a)

∂tu− µ∆u− divE = −ρ(u · ∇)u−∇P (ρ) + div(ρ(I + E)>)

+ div((ρ− 1)E) + div(ρEE>) + (1− ρ)∂tu,
(6.5)

and prove the following estimate:

Lemma 6.2.

‖∇E‖Lp(0,T ;Lq(R3)) ≤ C(p, q, µ)
(
R+
√
R‖σ‖Lp(0,T ;Lq(R3))

)
. (6.6)

Proof. Now we introduce the function Z1(x, t) as

Z1 := E ∗ divE =
∫

R3

E(x− y)divEdy, (6.7)

where E is the fundamental solution of the Laplacian −∆ in R3. Then, (6.5) becomes

∂tu− µ∆
(

u− 1
µ
Z1

)
= F1, (6.8)

where, with the help of Remark 3.4,

F1 = −ρ(u · ∇)u−∇P (ρ) + div((ρ− 1)E) + div(ρEE>) + (1− ρ)∂tu.

Also, from (1.3), we have

∂Z1

∂t
=
∫

R3

E(x− y)div
∂E

∂t
dy

=
∫

R3

E(x− y)div(∇u +∇uE − (u · ∇)E)dy.
(6.9)

From (6.8) and (6.9), we deduce, denoting Z = u− 1
µZ1,

∂tZ − µ∆Z = F := F1 −F2, (6.10)

where

F2 = − 1
µ

u +
1
µ
E ∗ div(∇uE − (u · ∇)E).

Equation (6.10) with Theorem 4.2 implies that

‖Z‖W(0,T ) ≤ C(p, q)
(
‖Z(0)‖

X
2(1− 1

p )

p

+ ‖F‖Lp(0,T ;Lq(R3))

)
≤ C(p, q)

(
R+ ‖F‖Lp(0,T ;Lq(R3))

)
.

(6.11)



STRONG SOLUTIONS TO INCOMPRESSIBLE VISCOELASTIC FLUIDS 23

Next, we estimate ‖Fi‖Lp(0,T ;Lq(R3)), i = 1, 2, term by term. Indeed, for F1, using (6.4),
we have
‖F1‖Lp(0,T ;Lq(R3)) ≤ ‖ρ‖L∞(QT )‖u‖L∞(0,T ;Lq(R3))‖∇u‖Lp(0,T ;L∞(R3))

+ α‖∇E‖Lp(0,T ;Lq(Ω)) + α‖σ‖Lp(0,T ;Lq(Ω))‖E‖L∞(QT )

+ ‖ρ− 1‖L∞(QT )‖∇E‖Lp(0,T ;Lq(R3))

+ ‖σ‖Lp(0,T ;Lq(R3))‖E‖L∞(QT ) + ‖σ‖Lp(0,T ;Lq(R3))‖E‖2L∞(QT )

+ ‖E‖L∞(QT )‖∇E‖Lp(0,T ;Lq(R3))

+ ‖ρ− 1‖L∞(QT )‖∂tv‖Lp(0,T ;Lq(R3))

≤ 2R‖u‖Lp(0,T ;W 2,q(R3)) + α‖∇E‖Lp(0,T ;Lq(R3))

+ α‖σ‖Lp(0,T ;Lq(R3))‖E‖L∞(QT ) +
√
R‖σ‖Lp(0,T ;Lq(R3))

+R‖σ‖Lp(0,T ;Lq(R3)) +
√
R‖∇E‖Lp(0,T ;Lq(R3)) +R

3
2

≤ R
3
2 + α‖∇E‖Lp(0,T ;Lq(R3)) +

√
R‖σ‖Lp(0,T ;Lq(R3))

+
√
R‖∇E‖Lp(0,T ;Lq(R3)).

(6.12)

Here, α = sup
{
xP ′(x) : 1

2 ≤ x ≤
3
2

}
and in the first inequality, we used the identity

∇ρ = −ρdivE> −∇ρE>

due to Remark 3.4. And, for F2, noting that |∇E| ≤ C 1
|x|2 , and from integrating by parts,

we have

|F2| ≤
1
µ
|u|+ C

µ

1
|x|2
∗ (∇uE − (u · ∇)E),

with
‖∇uE − (u · ∇)E‖

Lp(0,T ;L
3q

q+3 (R3))
≤ ‖∇u‖Lp(0,T ;L3(R3))‖E‖L∞(0,T ;Lq(R3))

+ ‖u‖Lp(0,T ;L3(R3))‖∇E‖L∞(0,T ;Lq(R3))

≤ R
3
2 .

Hence, one can estimate, by Lp − Lq estimate of Riesz potential,

‖F2‖Lp(0,T ;Lq(R3)) ≤
1
µ
‖u‖Lp(0,T ;Lq(R3)) +

C

µ

∥∥∥∥ 1
|x|2
∗ (∇uE − (u · ∇)E)

∥∥∥∥
Lp(0,T ;Lq(R3))

≤ 1
µ
R+

C

µ
‖∇uE − (u · ∇)E‖

Lp(0,T ;L
3q

3+q (R3))

≤ 1
µ

(R+ CR
3
2 ).

(6.13)

Therefore, from (6.12) and (6.13), we obtain

‖F‖Lp(0,T ;Lq(R3)) ≤ R
3
2 +

1
µ
R+ α‖∇E‖Lp(0,T ;Lq(R3)) +

√
R‖σ‖Lp(0,T ;Lq(R3))

+
√
R‖∇E‖Lp(0,T ;Lq(R3)).

(6.14)
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Inequalities (6.11) and (6.14) imply that

‖Z‖Lp(0,T ;W 2,q(R3))

≤ C(p, q)
(

2R+
1
µ
R+ α‖∇E‖Lp(0,T ;Lq(R3)) +

√
R‖σ‖Lp(0,T ;Lq(R3))

+
√
R‖∇E‖Lp(0,T ;Lq(R3))

)
.

(6.15)

Hence, we have, from (6.7)

‖divE‖Lp(0,T ;Lq(R3))

≤ µ
(
‖Z‖Lp(0,T ;W 2,q(R3)) + ‖u‖Lp(0,T ;W 2,q(R3))

)
≤ C(p, q)µ

(
3R+

1
µ
R+ α‖∇E‖Lp(0,T ;Lq(R3)) +

√
R‖σ‖Lp(0,T ;Lq(R3))

+
√
R‖∇E‖Lp(0,T ;Lq(R3))

)
.

(6.16)

On the other hand, from the identity (4.3), we deduce that

‖curl Ei‖Lp(0,T ;Lq(R3)) ≤ 2‖E‖L∞(QT )‖∇E‖Lp(0,T ;Lq(R3))

≤ C‖E‖L∞(0,T ;W 1,q(R3))‖∇E‖Lp(0,T ;Lq(R3))

≤ C
√
R‖∇E‖Lp(0,T ;Lq(R3)).

(6.17)

Combining together (6.16) and (6.17), we obtain

‖∇E‖Lp(0,T ;Lq(R3)) ≤ C(p, q)µ
(

3R+
1
µ
R+ α‖∇E‖Lp(0,T ;Lq(R3)) +

√
R‖σ‖Lp(0,T ;Lq(R3))

+
√
R‖∇E‖Lp(0,T ;Lq(R3))

)
,

and hence, by choosing
√
R� 1

2 and the assumption

C(p, q)µα < 1, (6.18)

one obtains (6.6). The proof of Lemma 6.2 is complete. �

Remark 6.1. Notice that, in view of the above argument, estimate (6.6) is actually valid
for all t ∈ [0, T ], that is, for all t ∈ [0, T ],

‖∇E‖Lp(0,t;Lq(R3)) ≤ C(p, q, µ)
(
R+
√
R‖σ‖Lp(0,t;Lq(R3))

)
.

6.2. Dissipation of the gradient of the density. To make Theorem 3.2 valid, we need
further the uniform estimate on the dissipation of the gradient of the density.

Lemma 6.3. For any t ∈ (0, T ),

‖σ‖Lp(0,t;Lq(R3)) ≤ C(p, q, µ)R. (6.19)
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Proof. Multiplying (1.1b) by σ|σ|q−2 and integrating over R3, we obtain
µ+ λ

q

d

dt
‖σ‖qLq +

∫
R3

ρP ′(ρ)|σ|qdx

= µ

∫
R3

∆u · σ|σ|q−2dx−
∫

R3

ρ∂tu · σ|σ|q−2dx

−
∫

R3

ρ(u · ∇)u · σ|σ|q−2dx− (µ+ λ)
∫

R3

∇(u · σ) · σ|σ|q−2dx

+
∫

R3

div(ρ(I + E)(I + E)>) · σ|σ|q−2dx.

(6.20)

We estimate the right-hand side of (6.20) term by term,∣∣∣∣∫
R3

∆u · σ|σ|q−2dx

∣∣∣∣ ≤ ‖∆u‖Lq‖σ‖q−1
Lq ;∣∣∣∣∫

R3

ρ∂tu · σ|σ|q−2dx

∣∣∣∣ ≤ ‖∂tu‖Lq‖σ‖q−1
Lq ;∣∣∣∣∫

R3

ρu · ∇u · σ|σ|q−2dx

∣∣∣∣ ≤ ‖u · ∇u‖Lq‖σ‖q−1
Lq

≤ ‖u‖Lq‖u‖W 2,q‖σ‖q−1
Lq ;∣∣∣∣∫

R3

∇(u · σ) · σ|σ|q−2dx

∣∣∣∣ =
∣∣∣∣∫

R3

∂jukσkσj |σ|q−2dx+
∫

R3

uk∂j∂k(ln ρ)∂j ln ρ|σ|q−2dx

∣∣∣∣
=
∣∣∣∣∫

R3

∂jukσkσj |σ|q−2dx+
1
2

∫
R3

uk∂k|σ|2|σ|q−2dx

∣∣∣∣
=
∣∣∣∣∫

R3

∂jukσkσj |σ|q−2dx+
∫

R3

uk∂k|σ||σ|q−1dx

∣∣∣∣
=
∣∣∣∣∫

R3

∂jukσkσj |σ|q−2dx+
1
q

∫
R3

uk∂k|σ|qdx
∣∣∣∣

=
∣∣∣∣∫

R3

∂jukσkσj |σ|q−2dx− 1
q

∫
R3

|σ|qdivudx
∣∣∣∣

≤ C‖∇u‖L∞‖σ‖qLq ≤ C‖u‖W 2,q‖σ‖qLq ,

and, due to (2.9), we can rewrite(
div(ρ(I + E)(I + E)>)

)
i

=
∂(ρ(ei + Ei)(ej + Ej))

∂xj

= (ei + Ei)
∂(ρ(ej + Ej))

∂xj
+ ρ(ej + Ej)

∂(ei + Ei)
∂xj

= ρ(ej + Ej)
∂Ei
∂xj

,

then one has∣∣∣∣∫
R3

div(ρ(I + E)(I + E)>) · σ|σ|q−2dx

∣∣∣∣ =
∣∣∣∣∫

R3

ρ(ej + Ej)
∂Ei
∂xj

σi|σ|q−2dx

∣∣∣∣
≤ ‖∇E‖Lq‖I + E‖L∞‖σ‖q−1

Lq ≤ 2‖∇E‖Lq(R3)‖σ‖
q−1
Lq .
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On the other hand, we have

ρP ′(ρ) = P ′(1) + (ρ− 1)
∫ 1

0

(
P ′(η(ρ− 1) + 1) + (η(ρ− 1) + 1)P ′′(η(ρ− 1) + 1)

)
dη,

for ρ close to 1 and consequently

‖ρP ′(ρ)− P ′(1)‖L∞ ≤ ‖ρ− 1‖L∞ sup
{
|f(x)| : 1

2
≤ x ≤ 3

2

}
≤ C
√
R sup

{
|f(x)| : 1

2
≤ x ≤ 3

2

}
≤ C
√
R,

where f(x) = P ′(x) + xP ′′(x). Thus, from (6.20), we obtain

µ+ λ

q

d

dt
‖σ‖qLq + P ′(1)‖σ‖qLq

≤ ‖σ‖q−1
Lq

(
‖∆u‖Lq + ‖∂tu‖Lq + ‖u‖W 2,q‖u‖Lq

+ C‖u‖W 2,q‖σ‖Lq + C‖∇E‖Lq(R3) +
√
R‖σ‖Lq

)
≤ C‖σ‖q−1

Lq

(
‖∆u‖Lq + ‖∂tu‖Lq + ‖u‖W 2,q‖u‖Lq

+ ‖u‖W 2,q‖σ‖Lq + ‖∇E‖Lq(R3) +
√
R‖σ‖Lq

)
,

and hence, by assuming that R� 1, one obtains

µ+ λ

q

d

dt
‖σ‖qLq +

1
2
P ′(1)‖σ‖qLq

≤ C‖σ‖q−1
Lq

(
‖∆u‖Lq + ‖∂tu‖Lq + ‖u‖W 2,q‖u‖Lq + ‖u‖W 2,q‖σ‖Lq + ‖∇E‖Lq

)
.

(6.21)

Multiplying (6.21) by ‖σ‖p−qLq , we obtain

µ+ λ

p

d

dt
‖σ‖pLq +

1
2
P ′(1)‖σ‖pLq

≤ C‖σ‖p−1
Lq

(
‖∆u‖Lq + ‖∂tu‖Lq + ‖u‖W 2,q‖u‖Lq + ‖u‖W 2,q‖σ‖Lq + ‖∇E‖Lq

)
.
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Integrating the above inequality over the interval (0, t), one obtains, by using (6.6),

µ+ λ

p
‖σ(t)‖pLq +

1
2
P ′(1)

∫ t

0
‖σ‖pLqds

≤ µ+ λ

p
‖σ(0)‖pLq + C

(∫ t

0
‖σ‖pLqds

) p−1
p

((∫ t

0
‖∂tu‖pLqds

) 1
p

+
(
‖u‖L∞(0,t;Lq(R3)) + ‖σ‖L∞(0,t;Lq(R3)) + 1

)(∫ t

0
‖u‖p

W 2,qds

) 1
p

+ ‖∇E‖Lp(0,t;Lq(R3))

)
≤ µ+ λ

p
‖σ(0)‖pLq + C(p, q, µ)

√
R‖σ‖p

Lp(0,T ;Lq(R3))

+ C(p, q, µ)R
(∫ t

0
‖σ‖pLqds

) p−1
p (

1 + ‖σ‖L∞(0,t;Lq(R3)) + ‖u‖L∞(0,t;Lq(R3))

)
.

and hence, by letting R be so small such that C(p, q, µ)
√
R < 1

4 , one obtains

µ+ λ

p
‖σ(t)‖pLq +

1
4
P ′(1)

∫ t

0
‖σ‖pLqds

≤ µ+ λ

p
‖σ(0)‖pLq + C(p, q, µ)R

(∫ t

0
‖σ‖pLqds

) p−1
p (

1 + ‖σ‖L∞(0,t;Lq) + ‖u‖L∞(0,t;Lq)

)
.

(6.22)

Plugging (6.4) into (6.22), we obtain

µ+ λ

p
‖σ(t)‖pLq +

1
4
P ′(1)

∫ t

0
‖σ‖pLqds

≤ µ+ λ

p
‖σ(0)‖pLq + C(p, q, µ)R

(∫ t

0
‖σ‖pLqds

) p−1
p

(1 + ‖σ‖L∞(0,t;Lq(R3))).

Then, Young’s inequality yields

µ+ λ

p
‖σ(t)‖pLq +

1
8
P ′(1)

∫ t

0
‖σ‖pLqds

≤ µ+ λ

p
δ

3
2
p + C(p, q, µ)Rp(1 + ‖σ‖L∞(0,t;Lq(R3)))

p,

(6.23)

for all 0 ≤ t < T .
Now, we let R be so small that

C(p, q, µ)
1
p
√
R
(

1 +
√
R
)
<

1
2
.

Due to the fact that ‖σ(0)‖Lq(R3) ≤ δ
3
2 , we can assume that ‖σ(t)‖Lq < 1

2

√
R in some

maximal interval (0, tmax) ⊂ (0, T ). If tmax < T , then, ‖σ(tmax)‖Lq = 1
2

√
R and by (6.23),

1
2

√
R = ‖σ(tmax)‖Lq ≤ C(p, q, µ)

1
pR(1 +

√
R) <

1
2

√
R,
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which is a contradiction. Hence, tmax = T and

‖σ‖Lq ≤ 1
2

√
R, for all t ∈ [0, T ]. (6.24)

Thus, by (6.23), one obtains (6.19). The proof of Lemma 6.3 is complete. �

We remark that, from (6.6) and (6.19), one has

‖∇E‖Lp(0,T ;Lq(R3)) ≤ C(p, q, µ)R. (6.25)

7. Global Existence

In this section, we prove the global existence in Theorem 3.2. Define

Tmax := sup
{
T > 0 : ∃ u ∈ W(0, T ) with u = H(u), such that, ‖u‖W(0,T ) ≤ R,

‖S(u)− 1‖L∞(0,T ;W 1,q) ≤
√
R, ‖σ‖L∞(0,T ;Lq) ≤

√
R, and

‖T (u)‖L∞(0,T ;W 1,q) ≤
√
R
}
,

where R was constructed in the previous section.
If Tmax =∞, we are done. From now on, we assume that Tmax <∞.

7.1. Uniform estimates in time. We now establish some estimates which are uniform
in time T . First we prove the following energy estimates:

Lemma 7.1. Under the same assumptions as Theorem 3.1, we have

‖∇u‖L2(0,T ;L2(R3)) ≤ CR2, (7.1)

‖u‖L∞(0,T ;L2(R3)) ≤ CR2, (7.2)

‖E‖L∞(0,T ;L2(R3)) ≤ CR2, (7.3)

‖ρ− 1‖L∞(0,T ;L2(R3)) ≤ CR2, (7.4)

where C is a constant independent of T ∈ (0, Tmax).

Proof. First we recall that

u ∈W 1,2(0, T ;L2(R3)) ∩ L2(0, T ;W 2,2(R3))

and
ρ,E ∈W 1,2(0, T ;L2(R3)) ∩ L2(0, T ;W 1,2(Ω)).

Multiplying equation (1.1b) by u, and integrating over R3, we obtain, using the conserva-
tion of mass (1.1a),

d

dt

∫
R3

(
1
2
ρ|u|2 +

1
γ − 1

(ργ + γ − 1)
)
dx+

∫
R3

µ|∇u|2dx

= −
∫

R3

ρFF> : ∇udx.
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Here, the notation A : B means the dot product between two matrices. Thus, we have∫
R3

(
1
2
ρ|u|2 +

1
γ − 1

(ργ + γ − 1)
)
dx+

∫ t

0

∫
R3

µ|∇u|2dxds

=
∫

R3

(
1
2
ρ0|u0|2 +

1
γ − 1

(ργ0 + γ − 1)
)
dx−

∫ t

0

∫
R3

ρFF> : ∇udxds.

From the conservation of mass (1.1a), one has∫
R3

(
1
2
ρ|u|2 +

1
γ − 1

(ργ − γρ+ γ − 1)
)
dx+

∫ t

0

∫
R3

µ|∇u|2dxds

=
∫

R3

(
1
2
ρ0|u0|2 +

1
γ − 1

(ργ0 − γρ0 + γ − 1)
)
dx−

∫ t

0

∫
R3

ρFF> : ∇udxds.
(7.5)

On the other hand, due to equations (1.1c) and (1.1a), we have

∂

∂t

(
ρ|F|2

)
=
∂ρ

∂t
|F|2 + 2ρF :

∂F

∂t

=
∂ρ

∂t
|F|2 + 2ρF : (∇u F− u · ∇F)

=
∂ρ

∂t
|F|2 + 2ρF : (∇u F)− ρu · ∇|F|2

=
∂ρ

∂t
|F|2 + 2ρF : (∇u F) + div(ρu)|F|2 − div(ρu|F|2)

= 2ρF : (∇u F)− div(ρu|F|2).

(7.6)

Integrating (7.6) over R3, we arrive at

1
2
d

dt

∫
R3

ρ|F|2dx =
∫

R3

ρF : (∇u F)dx. (7.7)

Since ∫ t

0

∫
R3

ρF : (∇u F)dxds =
∫ t

0

∫
R3

ρFF> : ∇udxds,

we finally obtain, by summing (7.5) and (7.6),∫
R3

(
1
2
ρ|u|2 +

1
2
ρ|F|2 +

1
γ − 1

(ργ − γρ+ γ − 1)
)
dx+

∫ t

0

∫
R3

µ|∇u|2dxds

=
∫

R3

(
1
2
ρ0|u0|2 +

1
2
ρ0|F0|2 +

1
γ − 1

(ργ0 − γρ0 + γ − 1)
)
dx.

(7.8)

Thanks to Remark 3.4, we have

ρ(I + E>) : ∇u = 0.

Hence, from (1.1c) and (1.1a), we have

∂t(ρ trE) = 0. (7.9)



30 XIANPENG HU AND DEHUA WANG

Therefore, from (7.8), (7.9) and the conservation of mass (1.1a), we finally arrive at∫
R3

(
1
2
ρ|u|2 +

1
2
ρ|E|2 +

1
γ − 1

(ργ − γρ+ γ − 1)
)
dx+

∫ t

0

∫
R3

µ|∇u|2dxds

=
∫

R3

(
1
2
ρ0|u0|2 +

1
2
ρ0|E0|2 +

1
γ − 1

(ργ0 − γρ0 + γ − 1)
)
dx ≤ R4.

(7.10)

Since µ > 0 is a constant and ρ ∈ [1
2 ,

3
2 ], then inequalities (7.1)-(7.3) follow from (7.10),

and inequality (7.4) follows from (7.10) and the following straightforward inequalities: for
some η > 0, we have

xγ − 1− γ(x− 1) ≥

{
η|x− 1|2, if γ ≥ 2,
η|x− 1|2, if |x| < 2 and γ < 2.

The proof of Lemma 7.1 is complete. �

Based on the uniform estimates from Section 6, we have

Lemma 7.2. Under the same assumptions as Theorem 3.2,

‖S(u)− 1‖L∞(0,T ;W 1,q) <
√
R, ‖σ‖L∞(0,T ;Lq) <

√
R, (7.11)

for any T ∈ [0, Tmax].

Proof. According to (6.24), it is obvious to see that

max
t∈[0,T ]

‖σ‖Lq(t) <
√
R.

Hence, we are only left to show

max
t∈[0,T ]

‖S(u)− 1‖W 1,q(t) <
√
R.

Indeed, for any t ∈ (0, T ), we have, by using (1.1a) and (6.19),

‖S(u)(t)− 1‖αLq

= ‖ρ0 − 1‖αLq +
∫ t

0

d

ds
‖S(u)(s)− 1‖αLqds

= ‖ρ0 − 1‖αLq +
α

q

∫ t

0

(
‖S(u)(s)− 1‖α−qLq

×
∫

R3

|S(u)(s)− 1|q−2(S(u)(s)− 1)∂sS(u)(s)dx
)
ds

≤ ‖ρ0 − 1‖αLq +
α

q

∫ t

0
‖S(u)(s)− 1‖α−1

Lq ‖∂sS(u)‖Lqds

≤ δ2α +
α

q

(∫ t

0
‖S(u)(s)− 1‖

(5q−6)p
3q−6

Lq ds

) p−1
p
(∫ t

0
‖∂sS(u)‖pLqds

) 1
p

,

(7.12)

where

α =
(5q − 6)(p− 1)

3q − 6
+ 1.
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From (1.1a) and (1.1d), we obtain
‖∂tρ‖Lp(0,T ;Lq(R3)) = ‖∇ρ · u‖Lp(0,T ;Lq(R3))

≤ 2‖σ‖L∞(0,T ;Lq(R3))‖u‖Lp(0,T ;L∞(R3)) ≤ CR2.
(7.13)

On the other hand, from the Gagliardo-Nirenberg inequality, we have

‖ρ− 1‖Lq(R3) ≤ C‖ρ− 1‖θL2(R3)‖∇(ρ− 1)‖1−θ
Lq(R3)

≤ C‖ρ− 1‖θL2(R3)‖σ‖
1−θ
Lq(R3)

,

with θ = 2q
5q−6 . Thus, by Hölder’s inequality, (7.4), and (6.19), one has

‖ρ− 1‖
L

(5q−6)p
3q−6 (0,T ;Lq(R3))

≤ C‖ρ− 1‖θL∞(0,T ;L2(R3))‖σ‖
1−θ
Lp(0,T ;Lq(R3))

≤ CR,

which, together (7.12) and (7.13), yields

‖S(u)(t)− 1‖Lq ≤ CR.
Hence, according to (6.19), we obtain, by letting R be sufficiently small,

max
t∈[0,T ]

max
{
‖S(v)(t)− 1‖W 1,q(R3), ‖σ(t)‖Lq(R3)

}
<
√
R. (7.14)

The proof of Lemma 7.2 is complete. �

Lemma 7.3. For each 1 ≤ l ≤ 3, ∂E
∂xl

satisfies

∂t
∂E

∂xl
+ u · ∇∂E

∂xl
= − ∂u

∂xl
· ∇E +∇

(
∂u
∂xl

)
E +∇u

∂E

∂xl
+∇ ∂u

∂xl
(7.15)

in the sense of distributions, that is, for all ψ ∈ C∞0 (QT ), we have∫ T

0

∫
R3

∂E

∂xl
∂tψdxdt+

∫ T

0

∫
R3

div(uψ)
∂E

∂xl

= −
∫ T

0

∫
R3

(
− ∂u
∂xl
· ∇E +∇

(
∂u
∂xl

)
E +∇u

∂E

∂xl
+∇ ∂u

∂xl

)
ψdxdt,

for any T ∈ (0, Tmax).

Proof. The proof is a direct application of the regularization. Indeed, one easily obtains,
using (1.3),

∂t(SεE) + u · ∇(SεE) = Sε(∂tE + u · ∇E) + u · ∇(SεE)− Sε(u · ∇E)

= Sε(∇uE +∇u) + u · ∇(SεE)− Sε(u · ∇E).
(7.16)

Differentiate (7.16) with respect to xl, we get

∂t

(
∂SεE

∂xl

)
+ u · ∇

(
∂SεE

∂xl

)
= Sε

(
∂

∂xl
(∇uE +∇u)

)
+

∂

∂xl

(
u · ∇(SεE)− Sε(u · ∇E)

)
− ∂u
∂xl
· ∇SεE.

(7.17)

Notice that
∂

∂xl

(
u · ∇(SεE)− Sε(u · ∇E)

)
=
∂u
∂xl
· ∇SεE − Sε

(
∂u
∂xl
· ∇E

)
+ u · ∇Sε

(
∂E

∂xl

)
− Sε

(
u · ∇∂E

∂xl

)
.
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According to Lemma 6.7 in [26] (cf. Lemma 2.3 in [21]), we know that

∂u
∂xl
· ∇SεE − Sε

(
∂u
∂xl
· ∇E

)
→ 0,

and

u · ∇Sε
(
∂E

∂xl

)
− Sε

(
u · ∇∂E

∂xl

)
→ 0,

in L1(0, T ;Lq(R3)) as ε→ 0. Hence,

∂

∂xl

(
u · ∇(SεE)− Sε(u · ∇E)

)
→ 0

in L1(0, T ;Lq(R3)). Thus, letting ε→ 0 in (7.17), we deduce

∂t
∂E

∂xl
+ u · ∇∂E

∂xl
= − ∂u

∂xl
· ∇E +∇

(
∂u
∂xl

)
E +∇u

∂E

∂xl
+∇ ∂u

∂xl
,

in the sense of weak solutions. The proof of Lemma 7.3 is complete. �

Using (7.15), formally we have,

∫
R3

∂t

(
∂E

∂xl

) ∣∣∣∣∂E∂xl
∣∣∣∣q−2 ∂E

∂xl
dx

=
∫

R3

(
−u · ∇∂E

∂xl
− ∂u
∂xl
· ∇E +∇

(
∂u
∂xl

)
E +∇u

∂E

∂xl
+∇ ∂u

∂xl

) ∣∣∣∣∂E∂xl
∣∣∣∣q−2 ∂E

∂xl
dx

≤ C
(
‖∇u‖L∞‖∇E‖qLq(R3)

+ ‖E‖L∞(QT )‖u‖W 2,q‖∇E‖q−1
Lq(R3)

+ ‖u‖W 2,q‖∇E‖q−1
Lq

)
≤ C

(
‖∇u‖L∞‖∇u‖q

Lq(R3)
+
√
R‖u‖W 2,q‖∇E‖q−1

Lq(R3)
+ ‖u‖W 2,q‖∇E‖q−1

Lq

)
.

(7.18)

We remark that the rigorous argument for the above estimate involves a tedious regular-
ization procedure as in DiPerna-Lions [9], thus we omit the details and refer the reader to
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[9]. Using (7.18), one obtains∥∥∥∥∂E∂xl (t)
∥∥∥∥p
Lq

=
∥∥∥∥∂E(0)
∂xl

∥∥∥∥p
Lq

+
∫ t

0

d

ds

∥∥∥∥∂E∂xl (s)
∥∥∥∥p
Lq

ds

=
∥∥∥∥∂E(0)
∂xl

∥∥∥∥p
Lq

+
p

q

∫ t

0

[∥∥∥∥∂E∂xl
∥∥∥∥p−q
Lq

∫
R3

∣∣∣∣∂E∂xl
∣∣∣∣q−2(∂E

∂xl

)
∂s

(
∂E

∂xl
(s)
)
dx

]
ds

≤
∥∥∥∥∂E(0)
∂xl

∥∥∥∥p
Lq

+ C

(
p

q

)∫ t

0

∥∥∥∥∂E∂xl
∥∥∥∥p−q
Lq

[
‖∇u‖L∞‖∇E‖qLq(R3)

+
√
R‖u‖W 2,q‖∇E‖q−1

Lq(R3)
+ ‖u‖W 2,q‖∇E‖q−1

Lq

]
ds

≤
∥∥∥∥∂E(0)
∂xl

∥∥∥∥p
Lq

+ C

(
p

q

)∫ t

0
‖∇E‖p−1

Lq [‖∇u‖L∞‖∇E‖Lq(R3) + (1 +
√
R)‖u‖W 2,q ]ds

≤ δ2p + C

(
p

q

)(∫ t

0
‖∇E‖pLqds

) p−1
p
(∫ t

0
‖u‖p

W 2,qds

) 1
p
(

max
t∈[0,T ]

‖∇E‖+
√
R+ 1

)
≤ δ2p + C

(
p

q

)
Rp
(

max
t∈[0,T ]

‖∇E‖+
√
R+ 1

)
.

(7.19)

Taking the summation over l in (7.19) and taking the maximum over the time t, one has,

max
t∈[0,T ]

‖∇E‖p ≤ δ2p + C

(
p

q

)
Rp
(

max
t∈[0,T ]

‖∇E‖+
√
R+ 1

)
,

and hence, by letting R, δ be sufficiently small and using (6.25), we obtain,

max
t∈[0,T ]

‖∇E‖p ≤ δ2p + CRp < (
√
R)p. (7.20)

We are now left to deal with the quantity ‖E‖Lq(R3). To this end, from the Gagliardo-
Nirenberg inequality, we have

‖E‖Lq(R3) ≤ C‖E‖θL2(R3)‖∇E‖
1−θ
Lq(R3)

,

with θ = 2q
5q−6 . Thus, by Hölder’s inequality, (7.3), and (6.25)

‖E‖
L

(5q−6)p
3q−6 (0,T ;Lq(R3))

≤ C‖E‖θL∞(0,T ;L2(R3))‖∇E‖
1−θ
Lp(0,T ;Lq(R3))

≤ CR. (7.21)

Hence, we have the following estimate:

Lemma 7.4. Under the same assumptions as Theorem 3.2, it holds

‖E‖L∞(0,T ;Lq(R3)) <
√
R, (7.22)

for any T ∈ [0, Tmax].

Proof. By (1.3), (6.25) and (7.20), and letting

α =
(5q − 6)(p− 1)

3q − 6
+ 1,
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one obtains,

‖E(t)‖αLq

= ‖E(0)‖αLq +
∫ t

0

d

ds
‖E(s)‖αLqds

= ‖E(0)‖αLq +
α

q

∫ t

0

(
‖E(s)‖α−qLq

∫
R3

|E(s)|q−2E(s)∂sE(s)dx
)
ds

= ‖E(0)‖αLq +
α

q

∫ t

0

(
‖E(s)‖α−qLq

∫
R3

|E(s)|q−2E(s)
[
∇uE +∇u− u · ∇E

]
dx

)
ds

≤ ‖E(0)‖αLq +
α

q

∫ t

0

(
‖E(s)‖α−1

Lq

[
2‖∇u‖L∞‖E‖Lq + ‖∇u‖Lq

])
ds

≤ ‖E(0)‖αLq +
α

q

(∫ t

0
‖E(s)‖

(5q−6)p
3q−6

Lq dt

) p−1
p

‖u‖Lp(0,T ;W 2,q(R3))

×

(
2 sup
t∈(0,Tmax)

‖E(t)‖Lq(R3) + 1

)

≤ ‖E(0)‖αLq +
(

2α
q

)
R

(∫ t

0
‖E(s)‖

(5q−6)p
3q−6

Lq dt

) p−1
p

≤ ‖E(0)‖αLq + CR‖E‖α−1

L
(5q−6)p
3q−6 (0,T ;Lq(R3))

.

(7.23)

Then, according to (7.21), one has, for all t ∈ [0, Tmax],

‖E(t)‖αLq ≤ δ2α + CRα <
√
R
α
, (7.24)

if R is sufficiently small. Thus, (7.22) follows from (7.24). The proof of Lemma 7.4 is
complete. �

Lemma 7.4, together with (7.20) and Lemma 7.2, gives

max
t∈[0,T ]

max
{
‖S(u)− 1‖W 1,q(t), ‖σ‖Lq(t), ‖T (u)‖W 1,q(t)

}
≤ CR <

√
R. (7.25)

Similarly, we can obtain

max
t∈[0,T ]

max
{
‖S(u)− 1‖W 1,2(t), ‖σ‖L2(t), ‖T (u)‖W 1,2(t)

}
≤ CR <

√
R. (7.26)

7.2. Refined estimates on ∇ρ and ∇E. In order to prove Theorem 3.2, we need some
refined estimates on ‖∇ρ‖L2(0,T ;Lq(R3)) and ‖∇E‖L2(0,T ;Lq(R3)).

Lemma 7.5.
‖∇ρ‖L2(0,T ;Lq(R3)) ≤ R2, (7.27)

for any T ∈ (0, Tmax).

Proof. Taking the divergence in (1.1b), and using divu = 0, one obtains

∆P (ρ) = div(div(ρEE>)) + div(div(ρE))− div(ρu · ∇u)− div((ρ− 1)∂tu). (7.28)
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Since, div(ρ(I + E)>) = 0, we get

div(div(ρE)) =
∂

∂xi

∂

∂xj
(ρEij) =

∂

∂xj

∂

∂xi
(ρEij) = −∆ρ

in the sense of distributions. Hence, (7.28) becomes

∆P (ρ) + ∆ρ = divdiv(ρEE>)− div(ρu · ∇u)− div((ρ− 1)∂tu). (7.29)

Hence, one obtains, using Lq theory of elliptic equations and Taylor’s formula,

‖∇ρ‖L2(0,T ;Lq(R3)) ≤ C
(
‖ρu∇u‖L2(0,T ;Lq(R3)) + ‖div(ρEE>)‖L2(0,T ;Lq(R3))

+ ‖(ρ− 1)∂tu‖L2(0,T ;Lq(R3))

)
≤ C

(
‖ρ‖L∞(QT )‖∇u‖L2(0,T ;L∞(R3))‖u‖L∞(0,T ;Lq(R3))

+ ‖∇ρ‖L2(0,T ;Lq(R3))‖E‖2L∞(QT )

+ ‖ρ‖L∞(QT )‖∇E‖L2(0,T ;Lq(R3))‖E‖L∞(QT )

+ ‖ρ− 1‖L∞(QT )‖∂tu‖L2(0,T ;Lq(R3))

)
≤ C

(
‖ρ‖L∞(QT )‖u‖L2(0,T ;W 2,q(R3))‖u‖L∞(0,T ;Lq(R3))

+ ‖∇ρ‖L2(0,T ;Lq(R3))‖E‖2L∞(0,T ;W 1,q(R3))

+ ‖ρ‖L∞(QT )‖∇E‖L2(0,T ;Lq(R3))‖E‖L∞(0,T ;W 1,q(R3))) +R2
)

≤ CR2.

The proof of Lemma 7.5 is complete. �

Ir order to refine ‖∇E‖L2(0,T ;Lq(R3)), we need the following estimate:

Lemma 7.6.
‖∂tu‖L2(0,T ;Lq(R3)) ≤ CR

3
2 , (7.30)

for any T ∈ (0, Tmax).

Proof. We first notice that, by the Gagliardo-Nirenberg inequality, for q ∈ (3, 6],

‖u‖L2(0,T ;Lq(R3)) ≤ C‖∇u‖θL2(0,T ;L2(R3))‖u‖
1−θ
L2(0,T ;L2(R3))

≤ CR1+θ, (7.31)

with θ = 3(q−2)
2q ∈ (1

2 , 1]. Next, we multiply (1.1b) by ∂tu and integrate over R3 × (0, t) to
deduce ∫ t

0

∫
R3

ρ|∂tu|2dxds+ µ

∫
R3

|∇u(t)|2dx

= µ

∫
R3

|∇u0|2dx−
∫ t

0

∫
R3

ρu · ∇u · ∂tudxds−
∫ t

0

∫
R3

∇P∂tudxds

+
∫ t

0

∫
R3

div(ρEE>)∂tudxds+
∫ t

0

∫
R3

div(ρE)∂tudxds

:= µ

∫
R3

|∇u0|2dx+
4∑
i=1

Ii,

(7.32)
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with the following estimates on Ii (i = 1...4): recalling QT = R3 × (0, T ),

|I1| ≤ ‖
√
ρ∂tu‖L2(QT )‖

√
ρ‖L∞(QT )‖u‖L∞(0,T ;L2(R3))‖∇u‖L2(0,T ;L∞(R3))

≤ 1
8

∫ T

0

∫
R3

ρ|∂tu|2dxds+ CR4;

|I2| ≤ C‖∇ρ‖L2(QT )‖
√
ρ∂tu‖L2(QT ) ≤

1
8

∫ T

0

∫
R3

ρ|∂tu|2dxds+ C‖∇ρ‖2L2(QT )

≤ 1
8

∫ T

0

∫
R3

ρ|∂tu|2dxds+ CR4;

|I3| ≤ C‖∇ρ‖L2(QT )‖E‖2L∞(QT )‖
√
ρ∂tu‖L2(QT ) + C‖E‖L∞(QT )‖∇E‖L2(QT )‖

√
ρ∂tu‖L2(QT )

≤ 1
8

∫ T

0

∫
R3

ρ|∂tu|2dxds+ CR4;

|I4| ≤
∣∣∣∣∫ t

0

∫
R3

∂t(ρE)∇udxds
∣∣∣∣+
∣∣∣∣∫

R3

ρ0E0∇u0dx

∣∣∣∣+
∣∣∣∣∫

R3

ρ(T )E(T )∇u(T )dx
∣∣∣∣

≤ (‖ρ‖L∞(QT )‖∂tE‖L2(QT ) + ‖E‖L∞(QT )‖∂tρ‖L2(QT ))‖∇u‖L2(QT )

+ CR3 + (‖∇ρ(T )‖L2(R3)‖E(T )‖L∞(R3) + ‖∇E(T )‖L2(R3)‖ρ(T )‖L∞(R3))‖u(T )‖L2(R3)

≤ CR3,

where, for the estimate I4, we used equations (1.1a), (1.1c), Lemma 7.1 and estimate
(7.31). Thus, from (7.32), one obtains

‖∂tu‖L2(QT ) ≤ CR
3
2 , (7.33)

and

‖∇u‖L∞(0,T ;L2(R3)) ≤ CR
3
2 . (7.34)

Now, we differentiate (1.1b) with respect to t, multiply the resulting equation by ∂tu, and
integrate it over R3 to obtain

1
2
d

dt

∫
R3

ρ|∂tu|2dx+ µ

∫
R3

|∇∂tu|2dx

=
1
2

∫
R3

∂tρ|∂tu|2dx−
∫

R3

∂tρu · ∇u · ∂tudx

−
∫

R3

ρ∂tu · ∇u · ∂tudx−
∫

R3

ρu · ∇∂tu · ∂tudx−
∫

R3

∇∂tP∂tudx

−
∫

R3

∂t(ρEE>)∇∂tudx−
∫

R3

∂t(ρE)∇∂tudx

:=
7∑
j=1

Jj ,

(7.35)

where using (7.34), we can control Jj (j = 1...7) as follows:

|J1| =
∣∣∣∣∫

R3

∇ρu|∂tu|2dx
∣∣∣∣ ≤ ‖∂tu‖2L6‖∇ρ‖L3‖u‖L3 ≤ CR2‖∇∂tu‖2L2 ;
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|J2| ≤ ‖∂tu‖L6‖∇ρ‖L3‖u‖2L6‖∇u‖L6 ≤ R‖∇∂tu‖L2‖∇u‖2L2‖∆u‖L2

≤ R2‖∇∂tu‖2L2 +R3‖∆u‖2L2 ;

|J3| ≤ ‖ρ‖L∞‖∇u‖
L

3
2
‖∂tu‖2L6 ≤ ‖ρ‖L∞‖u‖

1
2

L2‖∇u‖
1
2

L2‖∇∂tu‖2L2 ≤ CR
7
4 ‖∇∂tu‖2L2 ;

|J4| ≤ ‖ρ‖L∞‖u‖L3‖∇∂tu‖L2‖∂tu‖L6 ≤ CR‖∇∂tu‖2L2 ;

|J5| ≤ C‖∂tρ‖L2‖∇∂tu‖L2 ≤ C‖∇ρu‖L2‖∇∂tu‖L2

≤ C‖∇ρ‖L3‖u‖L6‖∇∂tu‖L2 ≤ C‖∇ρ‖L3‖∇u‖L2‖∇∂tu‖L2

≤ µ

4
‖∇∂tu‖2L2 + CR2‖∇u‖2L2 ;

|J6| ≤ ‖∂tρ‖L2‖E‖2L∞‖∇∂tu‖L2 + ‖ρ‖L∞‖E‖L∞‖∂tE‖L2‖∇∂tu‖L2

≤ R2‖∇ρ‖L3‖u‖L6‖∇∂tu‖L2 +R‖∇uE − u · ∇E +∇u‖L2‖∇∂tu‖L2

≤ R2‖∇ρ‖L3‖∇u‖L2‖∇∂tu‖L2

+R (‖∇u‖L3‖E‖L6 + ‖∇E‖L3‖u‖L6 + ‖∇u‖L2) ‖∇∂tu‖L2

≤ R6‖∇u‖2L2 +
µ

4
‖∇∂tu‖2L2 +R2(R2‖∇u‖2L3 + ‖∇u‖2L2);

and
|J7| ≤ ‖ρ‖L∞‖∂tE‖L2‖∇∂tu‖L2 + ‖E‖L∞‖∂tρ‖L2‖∇∂tu‖L2

≤ µ

4
‖∇∂tu‖2L2 +R2‖∇u‖2L3 + ‖∇u‖2L2 +R2‖∇ρu‖2L2

≤ µ

4
‖∇∂tu‖2L2 +R2‖∇u‖2L3 + ‖∇u‖2L2 +R4‖∇u‖2L2 .

We remark that in the above estimates, we used several times the interpolation inequality:

‖f‖W 2,3(R3) ≤ ‖f‖θW 2,2(R3)‖f‖
1−θ
W 2,q(R3)

for some θ ∈ (0, 1). These estimates and (7.35) imply that, for R sufficiently small,
1
2
d

dt

∫
R3

ρ|∂tu|2dx+
µ

8

∫
R3

|∇∂tu|2dx ≤ R3‖∆u‖2L2 + C‖∇u‖2L2 +R2‖∇u‖2L3 . (7.36)

Integrating (7.36) over (0, T ), we obtain that, using (7.1),

‖∇∂tu‖L2(QT ) ≤ CR
3
2 . (7.37)

Here we used the estimate

‖ρ0∂tu(0)‖L2 ≤ C‖u0 · ∇u0‖L2 + ‖∆u0‖L2 + ‖∇ρ0‖L2 + ‖∇E0‖L2 ≤ δ4

by letting t = 0 in (1.1b). Thus, by (7.33), (7.37) and the Gagliardo-Nirenberg inequality,
we obtain

‖∂tu‖L2(0,T ;Lq(R3)) ≤ ‖∂tu‖θL2(QT )‖∇∂tu‖
1−θ
L2(QT )

≤ CR
3
2 ,

for some θ ∈ (1
2 , 1]. The proof of Lemma 7.6 is complete. �

With (7.30) in hand, we can now get the estimate for ‖∇E‖L2(0,T ;Lq(R3)).

Lemma 7.7.
‖∇E‖L2(0,T ;Lq(R3)) ≤ CR

3
2 , (7.38)

for any T ∈ (0, Tmax).
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Proof. Substituting the following two facts

∂tdivE = div(−u · ∇E +∇uE) + ∆u,

and
div(ρE) = div((ρ− 1)E) + divE,

into (1.1b), multiplying the resulting equation by |divE|q−2divE and integrating it over
R3, we can obtain

µ

q

d

dt
‖divE‖qLq + ‖divE‖qLq

≤
∣∣∣∣∫

R3

ρ∂tu|divE|q−2divEdx
∣∣∣∣+
∣∣∣∣∫

R3

ρu∇u|divE|q−2divEdx
∣∣∣∣

+
∣∣∣∣∫

R3

∇P |divE|q−2divEdx
∣∣∣∣+
∣∣∣∣∫

R3

div(ρEE>)|divE|q−2divEdx
∣∣∣∣

+
∣∣∣∣∫

R3

div((ρ− 1)E)|divE|q−2divEdx
∣∣∣∣

+
∣∣∣∣∫

R3

div(∇uE − u · ∇E)|divE|q−2divEdx
∣∣∣∣

:=
6∑

m=1

Mm,

(7.39)

where

M1 ≤ ‖ρ‖L∞‖∂tu‖Lq‖divE‖q−1
Lq ;

M2 ≤ ‖ρ‖L∞‖u‖Lq‖∇u‖L∞‖divE‖q−1
Lq ≤ R‖u‖W 2,q(R3)‖divE‖q−1

Lq ;

M3 ≤ C‖∇ρ‖Lq‖divE‖q−1
Lq ;

M4 ≤ ‖∇ρ‖Lq‖E‖2L∞‖divE‖q−1
Lq + ‖ρ‖L∞‖E‖L∞‖∇E‖Lq‖divE‖q−1

Lq

≤ (R2‖∇ρ‖Lq +R‖∇E‖Lq)‖divE‖q−1
Lq ;

M5 ≤ ‖ρ− 1‖L∞‖∇E‖Lq‖divE‖q−1
Lq + ‖∇ρ‖Lq‖E‖L∞‖divE‖q−1

Lq

≤ R(‖∇E‖Lq + ‖∇ρ‖Lq)‖divE‖q−1
Lq ;

M6 ≤ (‖∇u‖L∞‖∇E‖Lq + ‖∆u‖Lq‖E‖L∞)‖divE‖q−1
Lq ≤ R‖u‖W 2,q‖divE‖q−1

Lq .

Here in M6, we used divu = 0. With those estimates in hand, we multiply (7.39) by
|divE|2−qLq to deduce that, using Young’s inequality,

µ

2
d

dt
‖divE‖2Lq + ‖divE‖2Lq ≤ C‖∂tu‖2Lq +R2‖u‖2W 2,q + ‖∇ρ‖2Lq +R2‖∇E‖2Lq . (7.40)

On the other hand, we still have

‖curlE‖2Lq ≤ ‖E‖2L∞‖∇E‖2Lq ≤ CR2‖∇E‖2Lq .

Hence, substituting this into (7.40), we get
µ

2
d

dt
‖divE‖2Lq + ‖∇E‖2Lq ≤ C‖∂tu‖2Lq +R2‖u‖2W 2,q + ‖∇ρ‖2Lq + CR2‖∇E‖2Lq . (7.41)
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Integrating (7.41) over (0, T ) and using the estimates (7.27), (7.30), we obtain

‖∇E‖L2(0,T ;Lq(R3)) ≤ CR
3
2 .

The proof of Lemma 7.7 is complete. �

7.3. Proof of Theorem 3.2. First we have the following estimate on ‖u‖W(0,T ):

Lemma 7.8.
‖u‖W(0,T ) < R, (7.42)

for all T ∈ [0, Tmax], if R is small enough.

Proof. First from Theorem 4.1, we have

‖u‖W(0,T ) = ‖H(u)‖W(0,T )

≤ C(q)
(
‖u0‖V 2,q

0
+ ‖(1− S(u))∂tu‖L2(0,T ;Lq(R3))

+ ‖S(u)(u · ∇)u‖L2(0,T ;Lq(R3)) + ‖∇P (S(u))‖L2(0,T ;Lq(R3))

+ ‖div(S(u)(I + T (u))(I + T (u))>)‖L2(0,T ;Lq(R3))

)
.

From the previous computations in Lemma 7.2, we have

‖(1− S(u))∂tu‖L2(0,T ;Lq(R3)) ≤ ‖S(u)− 1‖L∞(QT )‖u‖W(0,T )

≤ C‖S(u)− 1‖L∞(0,T ;W 1,q(R3))‖u‖W(0,T )

≤ C(q)R
3
2 .

Similarly, one has

‖S(u)(u · ∇)u‖L2(0,T ;Lq(R3)) ≤ ‖S(u)‖L∞(QT )‖u‖2W(0,T ) ≤ C(q)R2;

‖∇P (S(u))‖L2(0,T ;Lq(R3)) = ‖P ′(S(u))∇ρ‖L2(0,T ;Lq(R3)) ≤ CR2;

and

‖div(S(u)(I + T (u))(I + T (u))>)‖L2(0,T ;Lq(R3))

≤ ‖∇ρ‖L2(0,T ;Lq(R3))

(
1 + ‖E‖2L∞(QT )

)
+ ‖∇E‖L2(0,T ;Lq(R3))‖ρ‖L∞(QT )

(
1 + ‖E‖L∞(QT )

)
≤ C(q)R

3
2 .

Thus, we obtain,

‖u‖W(0,T ) ≤ C(q)(R2 +R
3
2 ) < R, for all T ∈ [0, Tmax],

if R is small enough. The proof of Lemma 7.8 is complete. �

Finally we are in the position to give the proof of Theorem 3.2 as follows.
Let Tn ↗ Tmax be an increasing sequence with limit equal to Tmax. Then, it is necessary

to have, according to Theorem 4.2,

sup
n∈N
‖u(Tn)‖

X
2(1− 1

p )

p

≤ C(q)
c0

R,
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which, combining with the definition of Tmax, implies

‖(u(Tn),S(u)(Tn)− 1, T (u)(Tn))‖V p,q
0
≤ C(q, c0)R.

Therefore, if we take each triple (u(Tn),S(u)(Tn)−1, T (u)(Tn)) as a new initial condition,
then according to Theorem 3.1, we know the solution can be extended to the interval
(0, Tn+T0), for some T0 > 0. Hence, the solution can be extended to the interval (0, Tmax+
T0), which, together with (7.25) and (7.26), is a contradiction with the maximality of Tmax.
So it cannot be true that Tmax <∞, but Tmax =∞, i.e. u, S(u), and T (u) are well-defined
on R3 × (0,∞). The proof of Theorem 3.2 is complete.
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