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Abstract

We study kinetics of a step propagating along a twin boundary in a cubic lattice
undergoing an antiplane shear deformation. To model twinning, we consider a piece-
wise quadratic double-well interaction potential with respect to one component of
the shear strain and harmonic interaction with respect to another. We construct
semi-analytical traveling wave solutions that correspond to a steady step propaga-
tion and obtain the kinetic relation between the applied stress and the velocity of
the step. We show that this relation strongly depends on the width of the spinodal
region where the double-well potential is nonconvex and on the material anisotropy
parameter. In the limiting case when the spinodal region degenerates to a point,
we construct new solutions that extend the kinetic relation obtained in the earlier
work of Celli, Flytzanis and Ishioka into the low-velocity regime. Numerical sim-
ulations suggest stability of some of the obtained solutions, including low-velocity
step motion when the spinodal region is sufficiently wide. When the applied stress
is above a certain threshold, nucleation and steady propagation of multiple steps
are observed.

1 Introduction

Deformation twinning is a phenomenon observed in many metals and alloys. A twin
boundary separates two adjacent regions of a crystal lattice that are related to one an-
other by simple shear. Martensites, in particular, are known to form twinning microstruc-
tures under mechanical deformation [1]. Formation and motion of twin boundaries are
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responsible for the ability of these materials to accommodate very large deformations (up
to 8-10% strain). A twin boundary propagates forward via the motion of steps, or ledges,
along it [2–5]. Lattice dynamics of steps thus largely determines the macroscopic kinetics
of a twin boundary [6, 7].

In this work we study the kinetics of a single step propagating along the twin bound-
ary. To model this phenomenon in the simplest setting, we consider antiplane shear
deformation of a cubic lattice, with piecewise quadratic double-well interaction potential
with respect to one component of the shear strain and harmonic interaction with respect
to another. The two wells represent two different twin variants and are separated by
a spinodal region where the potential is nonconvex. This is an extension of the model
with bilinear interactions that was used in [8,9] to study high-velocity dynamics of steps
along a phase boundary and in [10], where their quasistatic evolution was considered.
Piecewise linear interactions were assumed by many authors to describe propagation of
phase boundaries, fracture and dislocations in a crystal lattice (see [11–24] and references
therein). The advantage of such models is that they allow a semi-analytical treatment
through the application of Fourier transform, Wiener-Hopf technique and related meth-
ods.

To find the kinetic relation between the applied stress and the velocity of the step, we
need to construct traveling wave solutions representing the steady motion of a twinning
step. The problem trivially reduces to the uniform motion of a screw dislocation studied
in [15] (see also [25,26]), where it is shown that semi-analytical solutions can be obtained
by solving a linear integral equation. The kernel of the integral equation is determined
by the solution of the problem where spinodal region degenerates into a point, which was
studied in [13, 16]; see also [11] for a closely related one-dimensional Frenkel-Kontorova
(FK) model. Despite the long history of this problem, some important questions remained
open. One of these questions is the existence and stability of the low-velocity motion.
In fact, the work in [15, 25, 26] focused primarily on solutions at some fixed velocities
in the medium to high range and their dependence on the width of the spinodal region,
while the slow propagation was not investigated. Here we use the approach in [15] to
construct solutions for a wide range of velocities, including slow motion, and obtain the
associated kinetic relation. We show that this relation strongly depends on the width of
the spinodal region and the material anisotropy parameter given by the relative strength of
the harmonic bonds. We then conduct numerical simulations to independently verify some
of these results and test stability of the obtained solutions. We provide semi-analytical
and numerical evidence that not only steady slow dislocation (step) motion exists, it
may become stable when the spinodal region is sufficiently wide. Unlike the high-velocity
motion, a slowly moving step requires very small stress and emits lattice waves that may
propagate both behind and ahead of the moving front. Our work thus complements and
extends the results in [15,25,26]. It also extends to the higher-dimensional case the work
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in [23], where a similar investigation was recently undertaken for the FK model.
We also revisit the limiting case when the spinodal region between the two wells degen-

erates into a single point (spinodal value). In this case the earlier work [13,16] considered
traveling wave solutions in which a transforming bond goes through the spinodal value
at a single transition point, which means that it instantaneously switches from one well
to another and remains there. While this assumption seems reasonable, it generates so-
lutions only at relatively high velocities above a certain threshold value V0 (and below
another critical velocity where the solutions break down). Below V0, the formally con-
structed solutions violate the assumption used to obtain them because the transforming
bond crosses the spinodal value more than once. This implies that no traveling wave
solutions of the form assumed in [13, 16] exist below the threshold value. The same non-
existence result has been observed for the Frenkel-Kontorova model [11, 17]. Meanwhile,
the results obtained for the models with a non-degenerate spinodal region, both the one
studied here and its FK counterpart in [23], suggest that at velocities below V0 the time
interval during which a transforming bond remains in the spinodal region approaches a
nonzero value as the spinodal region shrinks to a point. This motivated the work [27] for
the FK model, where a new type of solutions below the threshold velocity was recently
constructed by extending the approach developed in [15] to this limiting case and allowing
the transforming bonds to stay at the spinodal value for a finite time before switching
into another well. Here we apply this idea to the present model and show that the same
result holds. The new solutions fill in the low-velocity gap in the kinetic relation left by
the analysis in [13,16], although, as in [27], they are likely unstable.

Finally, we investigate the solution breakdown at sufficiently high velocities when the
amplitude of the lattice waves emitted by a moving step becomes sufficiently large and
leads to cascade nucleation, growth and coalescence of islands on top of the existing step.
The boundaries of the new islands and the initial step eventually propagate with the
same velocity. These results extend the analysis in [9] to the case with a non-degenerate
spinodal region, where the island nucleation is no longer instantaneous, and support the
dynamic twin nucleation and growth mechanism that was predicted in [28] and studied
numerically in [29,30].

The paper is organized as follows. Section 2 introduces the model, and the solution
procedure is summarized in Section 3. In Section 4 we discuss the admissibility of solu-
tions, obtain the kinetic relation and analyze its dependence on the width of the spinodal
region and the material anisotropy parameter. The new solutions for the case of the
degenerate spinodal region are obtained and discussed in Section 5. In Section 6 we
numerically investigate stability of the obtained solutions, and some concluding remarks
can be found in Section 7. Some additional technical results are contained in the two
Appendices.
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2 The model

Consider a three-dimensional cubic lattice undergoing an antiplane shear deformation,
which means that the atomic rows parallel to the z-direction are rigid and can only
move along their length. Let um,n(t) denote the displacement of (m,n)th row at time
t. We assume that each row interacts with its four nearest neighbors. The interaction
potentials between the neighboring rows in the horizontal and vertical directions are given
by Ψ(e) and Φ(v), where e and v denote the strains in the horizontal (m) and vertical (n)
directions, respectively. The equations of motion are then given by the infinite system of
ordinary differential equations:

d2

dt2
um,n(t) = Ψ′(um+1,n(t)− um,n(t))−Ψ′(um,n(t)− um−1,n(t))

+ Φ′(um,n+1(t)− um,n(t))− Φ′(um,n(t)− um,n−1(t)).
(1)

Here all variables are dimensionless after an appropriate rescaling [8].
To model twinning, we assume that the bonds in the vertical direction are governed

by a double-well potential, with a continuous trilinear derivative:

Φ′(v) =


v + 1, v < −δ/2 (variant I)

(1− 2/δ)v, |v| ≤ δ/2 (spinodal region)

v − 1, v > δ/2 (variant II)

(2)

The two symmetric quadratic wells of Φ(v) correspond to two different twin variants I
and II and are connected by a downward parabola that represents the spinodal region
of width δ such that 0 < δ < 2 (see Figure 1). In what follows, we will also separately
consider the limiting case δ = 0 when the spinodal region degenerates to a single point,
and Φ′(v) becomes bilinear, Φ′(v) = v ± 1, v ≶ 0. We further assume that the elastic
interactions between the nearest neighbors in the horizontal bonds are linear:

Ψ′(e) = χe. (3)

Here χ > 0 is the dimensionless parameter measuring the anisotropy of the lattice. We
note that while in general the interaction potentials are periodic, with alternating slip and
twinning energy barriers, here we assume that the energy barrier for twinning is much
lower than the one for slip, as is the case, for example, in Cu-Al-Ni alloy [6], so it suffices
to consider only two wells. On the continuum level, constitutive laws similar to the one
assumed here were used to model twinning in [31,32].

Suppose now that a twin boundary containing a single step divides the lattice into
two regions, as shown in Figure 2. The vertical bonds in the blue region are in variant II,
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Figure 1: The double-well quadratic potential Φ(v) and its derivative (2).

the bonds in the red region are in variant I, and there are possibly also some bonds near
the step front that have spinodal strain values (the green region). As the step propagates
from left to right along the twin boundary, the spinodal (green) bonds switch to variant
II (blue), and the variant I (red) bonds switch to the spinodal region (green) and later to
variant II. In what follows, we will consider traveling wave solutions describing a steady
step propagation and obtain the corresponding kinetic relations between the applied stress
and the velocity of the step.

m

n

Figure 2: A twin boundary with a single step. Vertical bonds inside the blue region are in variant II,
bonds in the red region are in variant I, and the strains of the vertical bonds inside the green region have
spinodal values.
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3 Traveling wave solution

To model a steadily moving step front along the twin boundary, we seek solutions of (1)
in the form of a traveling wave with (constant) velocity V > 0:

um,n(t) = u(ξ, n), ξ = m− V t. (4)

The vertical strains vm,n(t) = um,n(t)− um,n−1(t) are then given by

vm,n(t) = v(ξ, n) = u(ξ, n)− u(ξ, n− 1).

We assume that at infinity the vertical strain tends to constant values v+ < 0 and v− > 0
in variant I and variant II, respectively:

v(ξ, n) → v±, as n → ±∞

v(ξ, n) →


v+, n ≥ 2

v±, n = 1

v−, n ≤ 0,

, as ξ → ±∞
(5)

Furthermore, we assume the horizontal strains vanish at infinity

em,n(t) = um,n(t)− um−1,n(t) → 0, as m2 + n2 → ∞.

Note that under these assumptions and in view of (2), the applied stress is σ = v+ + 1 =
v− − 1, so that

v± = σ ∓ 1. (6)

Observe also that the displacement um,n(t) is determined up to an additive constant which
can be fixed by specifying displacement of a lattice point. As illustrated in Figure 2, we
assume that the vertical bonds at n ≥ 2 and n ≤ 0 remain in their respective variants:

v(ξ, n) < −δ/2, n ≥ 2 (variant I), v(ξ, n) > δ/2, n ≤ 0 (variant II). (7)

Meanwhile, the vertical bonds at n = 1 can switch from the first to second variant as the
step propagates to the right by going through the spinodal region. Following the approach
used in [15], we assume that v(ξ, 1) takes values inside the spinodal region when |ξ| < z,
for some z > 0 to be determined, and is in the corresponding variant outside this interval:

v(ξ, 1) < −δ

2
, ξ > z (variant I)

|v(ξ, 1)| < δ

2
, |ξ| < z (spinodal region)

v(ξ, 1) >
δ

2
, ξ < −z (variant II),

(8)
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and the switch between variant I (II) and the spinodal region takes place at ξ = ±z:

v(z, 1) = −δ

2
, v(−z, 1) =

δ

2
. (9)

Under the above assumptions we can write

Φ′(v(ξ, 1)) = v(ξ, 1) + 1− 2

∫ z

−z

θ(s− ξ)h(s)ds, (10)

where θ(s) is a unit step function: θ(s) = 1 for s > 0, θ(s) = 0 for s < 0. Here we have
introduced an unknown shape function h(s), which is zero outside the interval [−z, z] and
is normalized so that ∫ z

−z

h(s)ds = 1 (11)

Using (4), (10) and the assumed inequalities (7) and (8), we rewrite the equations of
motion (1) as

V 2 ∂2

∂ξ2
u(ξ, n) =χ (u(ξ + 1, n) + u(ξ − 1, n)− 2u(ξ, n)) + u(ξ, n+ 1) + u(ξ, n− 1)

−2u(ξ, n) + 2

[
δn,0 + (δn,1 − δn,0)

∫ z

−z

h(s)θ(s− ξ)ds

] (12)

The solution of (12) can be represented as the sum of the solution of the static problem
with a flat twin boundary along n = 0 at zero stress and a solution of the dynamic problem
for a screw dislocation located at the step front and moving steadily under the applied
stress. More precisely, we write

u(ξ, n) = uF
n + w(ξ, n), (13)

where

uF
n =

{
0, n ≥ 0

2n, n ≤ −1
(14)

satisfies the static flat-boundary problem

uF
n+1 + uF

n−1 − 2uF
n + 2δn,0 = 0, (15)

and the screw dislocation solution is given, up to an additive constant, by [15]

w(ξ, n) = n(σ − 1) +
1

2π2

∫ ∞

−∞

e−ikξξH(kξ)J (kξ, n)

i(kξ − i0)
dkξ. (16)
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Here kξ − i0 = limε→0+(kξ − iε), H(kξ) is the Fourier transform of h(x) and

J (kξ, n) =

∫ π

−π

(1− eiky)e−inky

V 2k2
ξ − 4(χ sin2 kξ

2
+ sin2 ky

2
)
dky (17)

is defined for integer n. The integral in (17) can be explicitly calculated using the residue
theorem, yielding (41) in the Appendix A. Using (13), (14), (16) and the convolution
properties of the Fourier transform, we obtain the vertical strains in the lattice as

v(ξ, n) =

∫ z

−z

g|n−1|(ξ − s)h(s)ds+

{
σ − 1, n ≥ 1

σ + 1, n ≤ 0.
(18)

Here we defined

gj(ξ) =
1

π

∫ ∞

−∞

e−ikξξ

i(kξ − i0)
S(kξ, j)dkξ, j = 0, 1, 2, . . . , (19)

where

S(kξ, j) =


(λ−

√
λ2 − 1)−|j|(δj,0 −

√
λ−1
λ+1

), λ < −1

(λ∓ i
√
1− λ2)−|j|(δj,0 ± i

√
1−λ
1+λ

), |λ| < 1, kξ ≶ 0

(λ+
√
λ2 − 1)−|j|(δj,0 −

√
λ−1
λ+1

), λ > 1

(20)

and

λ(kξ) = 1 + 2χ sin2 kξ
2

− 1

2
V 2k2

ξ . (21)

Observe now that on one hand, we have

∂

∂ξ
v(ξ, 1) = −

∫ z

−z

q(ξ − s)h(s)ds, (22)

where, by (18) and (19),

q(ξ) = −g′0(ξ) =
1

π

∫ ∞

−∞
e−ikξξS(kξ, 0)dkξ. (23)

On the other hand, (2) and (10) imply that for |ξ| < z

v(ξ, 1) = δ

(∫ z

ξ

h(s)ds− 1

2

)
,

and thus
∂

∂ξ
v(ξ, 1) = −δh(ξ). (24)
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Together, (22) and (24) yield a Fredholm integral equation of the second kind [15]:∫ z

−z

q(ξ − s)h(s)ds = δh(ξ), |ξ| < z, (25)

where the shape function h(ξ) is an eigenfunction of the integral operator in the left hand
side of (25) with kernel (23) associated with the eigenvalue δ. The problem thus reduces
to solving the integral equation (25) for z and h(ξ).

Once h(ξ) and z are known, the vertical strains for the traveling wave solution can
be computed from (18). Substituting (18) into the switch conditions (9) and subtracting
the first condition from the second, we obtain

∫ z

−z
(g0(−z − s) − g0(z − s))h(s)ds = δ,

which is automatically satisfied, as can be verified by integrating (25) and recalling (11)
and the first equality in (23). Meanwhile, adding the two conditions yields the following
expression for the applied stress:

σ = 1− 1

2

∫ z

−z

h(s)[g0(z − s) + g0(−z − s)]ds. (26)

Since g0 depends on V , this defined the kinetic relation σ = Σ(V ) between the applied
stress σ and the step moving velocity V . The relation also depends on δ and χ.

We remark that the real wave numbers kξ such that |λ(kξ)| ≤ 1, with λ given by
(21), correspond to the lattice waves emitted by the moving step because this inequality
implies the existence of real wave numbers ky such that the velocity of the moving step
equals the horizontal component of the phase velocity of some plane waves: V = ω/kξ,
where ω2 = 4(χ sin2(kξ/2) + sin2(ky/2)) is the dispersion relation [13]. One can show [15]
that only these waves, which carry energy away from the step, contribute to the stress
in (26). The transfer of energy from long (continuum level) to short (lattice-scale) waves
associated with this nonlinearity-induced radiation is known in the physics literature as
the radiative damping phenomenon (e.g. [17]).

It should be emphasized that the solutions of (12) satisfy the original nonlinear equa-
tion (1) if and only if the admissibility conditions (7) and (8) hold. Solutions of (12) that
violate any of the admissibility conditions will be called inadmissible.

4 Admissible solutions and kinetic relations

We first review the limiting case z = 0 that reduces to the screw dislocation problem
studied in [15, 16]. One can see that in this limit we must have δ = 0, i.e. spinodal
region degenerates to a single point and Φ′(v) becomes bilinear, while the shape function
becomes a Dirac delta function: h(s) = δD(s). Thus, (18) reduces to

v0(ξ, n) = u0(ξ, n)− u0(ξ, n− 1) = g|n−1|(ξ) +

{
σ − 1, n ≥ 1

σ + 1, n ≤ 0
, (27)
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where u0(ξ, n) satisfies

V 2 ∂2

∂ξ2
u0(ξ, n) = χ(u0(ξ + 1, n) + u0(ξ − 1, n)− 2u0(ξ, n)) + u0(ξ, n+ 1) + u0(ξ, n− 1)

−2u0(ξ, n) + 2 [δn,0 + (δn,1 − δn,0)θ(−ξ)] .

(28)

We observe that the first equality in (23) and (27) imply that

q(ξ) = −∂v0(ξ, 1)

∂ξ
. (29)

Note that the vertical strain v0(ξ, n) should also satisfy the corresponding admissibility
conditions (7) and (8) at z = 0 and δ = 0, which reduce to (with v = v0)

v(ξ, n) < 0, n ≥ 2 (variant I), v(ξ, n) > 0, n ≤ 0 (variant II). (30)

and
v(ξ, 1) < 0, ξ > 0 (variant I), v(ξ, 1) > 0, ξ < 0 (variant II), (31)

respectively. The kinetic relation (26) can be shown in this case to yield σ = Σ0(V )
defined by

σ = 1− g0(0) =
2

π

∫ ∞

0

1

kξ

√
1− λ(kξ)

1 + λ(kξ)
θ(1− |λ(kξ)|)dkξ, (32)

where we recall that λ(kξ) is given by (21). The reader is referred to [8, 13, 16] for more
details.

The resulting kinetic relation, shown in Figure 3a, consists of disjoint segments sep-
arated by resonance velocities, i.e. values of V such that λ(kξ) = −1 and λ′(kξ) = 0 for
some real kξ (see Figure 3b). At these velocities the kinetic relation has either a loga-
rithmic singularity (at the resonance velocities that correspond to the local minima of
V (kξ) such that λ = −1) or a jump discontinuity (at the local maxima) [16]. A typical
admissible solution (V = 0.5) above the first resonance V1 ≈ 0.3158 is shown in Fig-
ure 4a. One can see that the moving step generates lattice waves behind it. As velocity
decreases below the first resonance, solution develops oscillations at ξ > 0 as well; see, for
example, the vertical strain profile at V = 0.17 in Figure 4b, where two modes of emitted
lattice waves propagate behind and one mode ahead of the step. However, a closer in-
spection reveals that this solution is in fact inadmissible and should be removed because
it violates the first inequality in both (30) and (31). At χ = 1, our calculations show
that the large-velocity segment contains admissible solutions above a certain threshold,
V ≥ V0 ≈ 0.4649, while in several segments of the kinetic relation below the threshold,
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we only found inadmissible traveling waves that violate (31) and sometimes also (30), and
thus need to be removed. This suggests non-existence of traveling wave solutions with ve-
locity lower than the threshold value in the z = 0 case, in agreement with the conjectures
made in [13, 16]. Meanwhile, solutions at sufficiently high velocities (V ≥ Vh ≈ 0.9908 at
χ = 1) are also inadmissible, because the large amplitude of waves propagating behind
the step front causes the n = 2 bonds directly above the step to switch from variant I to
variant II, which violates the first inequality in (30) (see also [8]).
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s

V kx
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(a) (b)

Figure 3: (a) Kinetic relation σ = Σ0(V ) at z = 0, δ = 0. Only the first twenty segments are
shown. Admissible solutions correspond to the dark portion of the first segment. (b) Velocities V such
that λ = −1 for positive real kξ. The dashed lines indicate the first five resonance velocities at which
λ(kξ) = −1 and λ′(kξ) = 0. Here χ = 1.

Consider now the trilinear problem with δ > 0. To find h(s) and z for given non-
resonant V > 0 and δ > 0, we approximate the integral equation (25) by a trapezoidal
rule with an uniform mesh, obtaining a homogeneous linear system (Q(z) − δI)h = 0,
where Q(z) is the matrix approximating the integral operator, I is the identity matrix,
and h is the vector approximating the unknown shape function. To find z, we solve the
nonlinear algebraic equation det(Q(z) − δI) = 0, which ensures that δ is an eigenvalue
of Q(z), and then find the corresponding eigenvector h, normalized by (11). In general,
there may be more than one value of z but our calculations suggest that at most one
value yields admissible solutions. Once z and h are found, the trapezoidal approximation
of the integrals in (18) and (26) is used to compute the solution v(ξ, n) and the applied
stress σ.

The resulting vertical strains of n = 1 and n = 2 bonds at V = 0.17 are shown by
Figure 5 for δ = 0.8 (which yields z = 0.424 and σ = 0.0409) and δ = 1.2 (z = 0.875
and σ = 0.0039). As in [15], we observe that the main effect of increasing δ, which leads
to larger z, is the decreased amplitude of the oscillations due to wave modulation that
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Figure 4: Vertical strain v0(ξ, n) profiles at n = 1, 2 formally computed from (27) and (32) at z = 0,
δ = 0, χ = 1 and velocities (a) V = 0.5 (σ = 0.2096) and (b) V = 0.17 (σ = 0.5736). Solution in
(a) satisfies the constraints (30) and (31) but the one in (b) violates both constraints at ξ > 0. Here
and in the pictures below n = 0 strains are not shown because by the symmetry of g|n−1|(ξ) and (18),
v(ξ, 0) = v(ξ, 2) + 2.

takes place over the larger time interval. As a result, the solutions at V = 0.17 become
admissible at δ = 0.8 and δ = 1.2, while the corresponding solution of the bilinear problem
at z = 0 is not. Note also that the stress decreases as δ is increased due to the smaller
contribution of the lattice waves, although it may oscillate at larger values of δ [25, 26].

Figure 6 shows the half-width z of the transition region as a function of V for different
δ at χ = 1, and the corresponding kinetic relations are shown in Figure 7. Due the pile-up
of resonance velocities as V approaches zero, which makes the computation progressively
more difficult, only V ≥ 0.1 were considered. A detailed inspection suggests that all
solutions shown except the ones along the grey portions of the curves are admissible. This
includes solutions in the immediate vicinity of the resonance velocities, which correspond
to the cusps in Figure 6 and Figure 7. Note that the kinetic relations are highly non-
monotone, with larger stress variations at lower δ. Observe also that at δ = 1.2 the
low-velocity motion requires very little applied stress, due to the small amplitude of the
emitted waves and thus small amount of radiative damping. This “solitonlike” dislocation
behavior is discussed in [25,26].

Interestingly, as in [23], our numerical calculations reveal that as δ approaches zero
at velocities below the threshold value V0 ≈ 0.4649, the value of z approaches a positive
value rather than zero, contrary to the assumption of z = 0 in [13,16] for the bilinear case.
This motivates us to construct a new type of traveling wave solutions for the limiting case
δ = 0 that has z > 0 below the threshold value. We postpone the discussion of these
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Figure 5: Vertical strain v(ξ, n) (n = 1, 2) profiles at V = 0.17, with (a) δ = 0.8 (z = 0.424, σ = 0.0409)
and (b) δ = 1.2 (z = 0.875, σ = 0.0039). Both solutions are admissible. Here χ = 1.
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Figure 6: (a) The half-width z(V ) of the transition region for different δ calculated for V ≥ 0.1. (b)
Zoom-in of the small-velocity region inside the rectangle. Here χ = 1. The thicker black segments contain
admissible solutions, while the gray segments correspond to inadmissible solutions.
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Figure 7: (a) Kinetic relations σ = Σ(V ) for different δ and V ≥ 0.1. (b) Zoom-in of the small-velocity
region inside the rectangle. Here χ = 1. The thicker black segments contain admissible solutions, while
the gray segments correspond to inadmissible solutions.

new solutions until Section 5, while here we simply show the corresponding curves for
comparison.

We now consider the dependence of the kinetic relation σ = Σ(V ) on χ, the dimension-
less anisotropy parameter measuring the shear strength of the linearly elastic horizontal
bonds relative to the vertical ones. Let c =

√
χ be the sound speed of elastic shear waves

in the horizontal direction of the step motion. At δ = 0.8, typical kinetic relations at
different χ are shown in Figure 8b, and the corresponding z(V ) graphs in Figure 8a. Note
that the resonance velocities take different values for different χ, so the locations of the
cusps in the kinetic relation changes. One can see that a higher χ results in a lower
applied stress at the same normalized velocity V/c because it means a stronger coupling
of the vertical bonds.

At sufficiently large velocities above a threshold Vh (for example, V > Vh ≈ 0.9389
at δ = 0.8 and χ = 1), the amplitude of the waves propagating behind the step front
becomes so large that strain in some n ≥ 2 bonds above the step enters the spinodal region
from variant I, violating the first constraint in (7) and thus rendering the corresponding
solutions inadmissible (see the gray large-velocity segments in Figures 6a, 7a and 8). One
can observe that at χ = 1 the upper threshold Vh increases as δ decreases. Meanwhile,
at the same δ = 0.8, the normalized upper threshold Vh/c increases as χ is increased. As
we will see in Section 6, this solution failure at σ > σh = Σ(Vh) corresponds to a cascade
nucleation of new steps.

In addition to the traveling wave solutions, there are equilibrium states (V = 0) that
exist when the applied stress is in the trapping region |σ| ≤ σP , where σP is the Peierls
stress (51). One can show [33] that at 0 < δ < 2 there are two equilibrium states with the
assumed single-step configuration for |σ| < σP , a stable state with ms spinodal vertical
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χ. The thicker black segments contain admissible solutions, while the gray segments corresponding to
inadmissible solutions. Here δ = 0.8, and the velocities are normalized by c =
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bonds near the step front and an unstable state with ms + 1 spinodal bonds, where ms

and σP determined by δ and χ (see Appendix B for more details). These solutions are
given by (46) for ms = 0 and (49), (50) for ms ≥ 1.

5 New traveling wave solutions

We now revisit the bilinear problem (δ = 0) with degenerate spinodal region, where, as
we recall, no admissible solutions were found for V < V0 at z = 0. However, as we already
mentioned above, our results for small δ in this velocity region suggest that z tends to a
nonzero value as δ approaches zero. This suggests that following the approach recently
pursued for the one-dimensional problem [27], we should seek solutions with z > 0 and
replace the admissibility conditions (31) by the more general conditions

v(ξ, 1) < 0, ξ > z (variant I),

v(ξ, 1) = 0, |ξ| ≤ z (degenerate spinodal region),

v(ξ, 1) > 0, ξ < −z (variant II),

(33)

while leaving (30) (or, equivalently, (7) at δ = 0) the same. Note that (9) at δ = 0 is
included in (33), so we seek solutions of (12) subject to (30) and (33).

Observe now that (22) still holds. At the same time, our assumption that v(ξ, 1) ≡ 0
at |ξ| ≤ z implies ∂

∂ξ
v(ξ, 1) ≡ 0 in the interval (−z, z). Together with (22), this yields a

Fredholm integral equation of the first kind:∫ z

−z

h(s)q(ξ − s)ds = 0 |ξ| < z. (34)
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Thus the shape function h(s) is an eigenfunction of the integral operator in the left hand
side of (34) with kernel (23) associated with the zero eigenvalue. As before, we solve this
problem numerically using the trapezoidal approximation, which now involves finding the
roots of detQ(z) = 0, and find that at most one of these roots yields admissible solutions
that satisfy (30) and (33). For example, Figure 9 shows v(ξ, 1) and v(ξ, 2) obtained at
V = 0.17, which yields z = 0.322. One can see that unlike the z = 0 solution (the
gray curves), which is inadmissible since it violates (30) and (31), the new solution (black
curves) satisfies the more general admissibility condition (33) within the numerical error.
We verified that it also satisfies (30) and thus is admissible. Note that like its counterparts
at δ > 0 at the same velocity, it involves lattice waves propagating both behind and ahead
of the step.
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Figure 9: (a) New traveling wave solution v(ξ, n) at n = 1, 2 and V = 0.17 with z = 0.322 (black
curves), shown together with the inadmissible z = 0 solution v0(ξ, n) (gray curves). (b) Zoom-in of the
z = 0.322 solution at n = 1. Here δ = 0, χ = 1 and σ = 0.2139 for the new solution.

Repeating this procedure for a range of velocities, we obtain the relation z(V ) between
z and V at χ = 1 shown in Figure 6. Note that z(V ) tends to zero as the velocity
approaches the value V = V0 ≈ 0.4649. Recall that this is the threshold above which
(and below Vh ≈ 0.9908) z = 0 solutions of the bilinear problem become admissible. This
suggests that as in [27], the new solutions with z > 0 bifurcate from z = 0 solutions at V0.
To see this, we follow the argument in [27] and consider the piecewise linear approximation
of the kernel (23) in (34), as in [15]. Note that q(ξ) is continuous, while q′(ξ) has a jump
discontinuity at ξ = 0, as can be shown from (29) and (28). Thus the kernel can be
approximated by

q̂(ξ) =

{
q0 + q+ξ, ξ > 0

q0 + q−ξ, ξ < 0,
(35)
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where
q0 = q(0), q± = q′(0±), q+ − q− = 4/V 2, (36)

with the last relation is implied by (28) and (29). Solving the approximate version of
(34), i.e.

∫ z

−z
h(s)q̂(ξ − s)ds = 0, |ξ| < z, one obtains [27]

z =
q0(q+ − q−)

2q+q−
(37)

and
h(ξ) =

q−
q− − q+

δD(ξ + z)− q+
q− − q+

δD(ξ − z), (38)

in the sense of distributions. Numerical evaluation of (23) and the last of (36) show that
(q+ − q−)/(2q+q−) < 0 when V is near the threshold V0. Thus the positive solution z
given by (37) exists provided that −q0 = ∂

∂ξ
v0(0, 1) > 0. Meanwhile, the admissibility

conditions (31) imply that ∂
∂ξ
v0(0, 1) ≤ 0. This indicates that bifurcation of the new

type of traveling wave with z > 0 occurs precisely at the threshold velocity V0, at which
q0(V0) = 0, and below which the z = 0 solution are inadmissible because (31) is violated.
As shown in Figure 10, the values of z(V ) obtained from the numerical solution of (34)
with the original kernel (23) near the threshold velocity V0 approach the values (37)
resulting from the linear approximation near the threshold velocity.
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Figure 10: Comparison of the function zN (V ) computed numerically using the kernel (23) (solid line)
and zL(V ) obtained from (37) using the linear approximation (35) of the kernel (dashed line) near the
bifurcation point V0 ≈ 0.4649.

The corresponding kinetic relation σ = Σ(V ) is shown in Figure 7. It coincides with
the z = 0 relation Σ0(V ) above the velocity V0, while below this threshold, where z > 0,
it provides lower values of the applied stress and replaces the singularities in Σ0(V ) at
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Figure 11: Comparision of the kinetic relation σ = Σ(V ) generated by the new solutions with z > 0
with the relation Σ0(V ) obtained from the formal z = 0 solutions of the bilinear (δ = 0) problem. The
two curves coincide above the threshold velocity V0 ≈ 0.4649. The gray curves correspond to inadmissible
z = 0 solutions below V0.

the resonance velocities by cusps; see Figure 11 for comparison. This result thus extends
the kinetic relation obtained in [13,16] for δ = 0 case into the region of velocities V < V0,
where the new solutions with z > 0 “fill the gap” left by the non-existence of admissible
solutions with z = 0.

6 Stability of the traveling waves: numerical simula-

tions

To investigate stability of the obtained traveling waves solutions and obtain an indepen-
dent verification of our results, we solve the equations (1) numerically without assuming
any particular motion pattern and then compare the numerical results with the traveling
wave solutions. We use the velocity Verlet algorithm in the computational domain Ω
given by a truncated 400 × 8 lattice. The initial configuration has a flat twin boundary
with a single step in the center of the domain, as in Figure 2. To avoid reflection of lattice
waves from the boundary of Ω, we use the non-reflective boundary conditions (NRBC)
developed in [9]. Assuming that the initial condition outside the computational domain
satisfies the equilibrium equations with zero initial velocity and that the problem there
remains linear (i.e. the vertical bonds remain in their respective variants), the NRBC
conditions prescribe the displacement on ∂Ω+, a set of lattice points outside the compu-
tational domain Ω that have at least one nearest neighbor belonging to ∂Ω, the boundary
of Ω.

18



To construct the initial condition for given δ and applied stress below the Peierls
threshold, 0 < σ < σP , we start with an equilibrium state (stable or unstable), given by
(46) if there are no spinodal bonds and (49), (50) if there is at least one such bond. To
trigger step propagation, we perturb this state by changing the vertical strain in front of
the step. Above the Peierls threshold, no equilibrium state exists but we use the same
formulas to ensure that the initial state satisfies the equilibrium equations outside Ω, as
required by the NRBC conditions we use. Inside the computational domain, this yields a
non-equilibrium displacement. If it does not satisfy the assumed initial phase distribution,
we modify the initial displacement in Ω by prescribing strains in some vertical bonds and
solving a constrained equilibrium problem that ensures the assumed inequalities hold.
Initial velocities are set to zero.

We find that for sufficiently small σ below the Peierls threshold the numerical solution
gets trapped in a stable equilibrium state. For higher applied stress, the step propagates,
and after some transient time its motion becomes steady, which means that the time
period during which the front moved from one vertical bond in the lattice to the next
approaches a constant value T . The velocity is then obtained by computing V = 1/T as
the average over the last ten periods.

Figures 12 and 13 compare (V , σ) obtained from the numerical results (circles) for
δ = 1.2 and δ = 0.8 (at χ = 1) with the corresponding semi-analytical kinetic relation
curves. One can see that the numerical results are in very good agreement with some
increasing portions of the kinetic curves, which suggests stability of the traveling wave
solutions with the corresponding velocities. The fact that the numerical results only fall
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Figure 12: (a) Results of the numerical simulations for δ = 1.2 (circles), shown together with the kinetic
curve. (b) Zoom-in of the small-velocity region inside the rectangle in (a).

on the increasing portions of the curves supports the conjecture in [23] that Σ′(V ) > 0
is necessary but not sufficient for stability. Note, in particular, that the results indicate
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Figure 13: (a) Results of the numerical simulations for δ = 0.8 (circles), shown together with the kinetic
curve. (b) Zoom-in of the small-velocity region inside the rectangle in (a) (below the Peierls stress).

stability of an entire range of low-velocity motion (0.139 ≤ V ≤ 0.21) at δ = 1.2 at
very small values of the applied stress where the solutions coexist with stable equilibrium
states. Observe also that stable solutions with different velocities may coexist at the
same value of σ. For example, at δ = 1.2, numerical simulations at σ = 0.006 yield steady
motion at either V = 0.193 or V = 0.488, depending on the perturbation introduced in the
initial conditions. Low-velocity solutions appear to be stable only when δ is sufficiently
high. Meanwhile, at small δ our results indicate stability of only relatively fast traveling
waves. In particular, we did not find any numerical evidence that the new traveling wave
solutions constructed in Section 5 for δ = 0 are stable.

As discussed in Section 4, when the applied stress is above a certain critical value
σh = Σ(Vh), which depends on δ and χ, the traveling wave solutions become inadmissible
because the large-amplitude lattice waves emitted by the moving step force some vertical
bonds above the step (n ≥ 2) to have strain values outside variant I and hence violate
the first inequality in (7). Our numerical simulations reveal that at the applied stress
σ > σh, nucleation of new islands of variant II takes place on top of the existing step
configuration. For example, at δ = 0.8 and χ = 1 we have σh ≈ 0.309, and at σ = 0.45
above this threshold, after some transient time, an initial single step propagates steadily
with velocity V ≈ 1.01. This can be seen in Figure 14a, which shows the evolution
in time of the step front positions xn(t), defined by xn(t) = m, where m is such that
vm,n(t) > δ/2 and vm+1,n(t) ≤ δ/2 for the initial step, n = 1. Eventually, however, a
vertical bond above the step enters the spinodal region, nucleating a new island that
starts propagating on top of the initial step. For example, at t = 12 in Figure 15 one
can see six vertical bonds that have strains in either spinodal region (green) or variant II
(blue). As this island grows, its boundaries soon attain the same velocity as the initial
step, as can be seen in Figure 14a (n = 2). Later on, more islands nucleate, grow and
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Figure 14: Evolution of step front positions xn(t) during island nucleation, propagation and coalescence
at different values of the applied stress above the threshold value σh. Here δ = 0.8 and χ = 1.

coalesce, and all the fronts eventually propagate with the same velocity; see Figure 14a
and Figure 15. At higher applied stress, σ = 0.55, island nucleation occurs sooner, and
new islands nucleate and merge more frequently. While these observations are similar
to the results obtained in [9] for a potential with a degenerate spinodal region, the new
feature here is that island nucleation no longer occurs instanteneously but requires some
time to develop. For example, the right island at n = 3 in Figure 15 starts forming already
around t = 29, where one can see a bond inside the spinodal region, but it does not fully
develop and start growing until a much later time, as can be seen from t = 42 snapshot,
where the island has only grown by a few bonds (see also Figure 14). The cascade island
nucleation observed here is in agreement with the dynamic twin nucleation and growth
due to lattice waves emitted by a sufficiently fast motion of a screw dislocation that was
predicted in [28] and studied numerically in [29] and [30].

7 Concluding Remarks

In this work, we used a simple antiplane shear lattice model with piecewise linear inter-
actions to study the motion of a step propagating along a twin boundary. Following the
approach developed in [15], we constructed semi-analytical traveling wave solutions for
a wide range of the velocities and showed that the width of the spinodal region and the
material anisotropy have a significant effect on the resulting kinetic relation between the
applied stress and the velocity of the step. Our results extend and complement the work

21



t = 0 

t = 12 

t = 29 

t = 42 

t = 50 

t = 54 

Figure 15: Time snapshots of island nucleation and growth at σ = 0.45, δ = 0.8 and χ = 1. The
corresponding evolution of step fronts is shown in Figure 14a. Here the blue points represent vertical
bonds that have strain in variant II, the red ones are in variant I, and the green ones are in the spinodal
region.
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in [15, 25, 26] by considering slow step propagation that was not previously investigated.
Our semi-analytical results and numerical simulations strongly suggest that such motion
does not only exist but may become stable if the spinodal region is sufficiently wide.
The slow step motion requires very small applied stress and involves emitted lattice wave
that may propagate both behind and ahead of the moving step. This is in contrast to
the previously studied high-velocity motion that feature waves only behind the step and
requires a larger stress. We also numerically investigated the solution breakdown when
the applied stress is above a certain critical value. In this case the lattice waves emitted
by the moving step and propagating behind it enter the spinodal region and lead to a
cascade nucleation, growth and coalescence of multiple islands on top of the moving step.
Compared to the similar results in [9], where the spinodal region was degenerate, in our
case the island nucleation does not happen instantaneously.

The solution procedure was also used to find new admissible traveling wave solutions at
low velocities in the case when the spinodal region degenerates to a single point. Applying
the method in [27], we showed that these new solutions, in which the transforming bonds
stay at the spinodal value before switching to the new twin variant, bifurcate from the
solutions where the transition is instantaneous precisely at the threshold velocity where
the latter become inadmissible. This allowed us to extend the kinetic relation in [13, 16]
to lower velocities, where no admissible solutions were previously found.

We remark that the kinetic relations obtained here are in general quantitatively dif-
ferent from the ones obtained in [23, 27] for the closely related one-dimensional Frenkel-
Kontorova model due to the different kernel (23) in the integral equation (25). In par-
ticular, the amplitude of the oscillations in our kernel decays at infinity [8], while in the
one-dimensional case it remains constant. Note also that the one-dimensional problem
has stronger singularities at the resonance velocities in the z = 0 case [16]. Nevertheless,
qualitatively many of the results are similar, suggesting that the one-dimensional model,
which is technically much less involved, captures the basic features of the kinetics of a
single step. One important exception is the solution breakdown at high velocities in the
present model, which is an essentially higher-dimensional phenomenon, since it involves
step nucleation at n ≥ 2.

This work can be extended to the case of multiple steps as in [8,9] and to other lattice
geometries. The ultimate challenge is the multiscale problem of obtaining the kinetic
relation for a twin boundary from the step kinetics that takes into account the interaction
between the steps.
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A Appendix: analytical expression for J
Recall that the integral form of J (kξ, n) is given by (17). Note that J (kξ, n) has the
symmetry property that for any integer n

J (kξ,−n) + J (kξ, n+ 1) = 0, (39)

and hence only the case n ≥ 1 needs to be considered. Following [13], we rewrite (17) as
an integral over the unit circle in the complex plane:

J (kξ, n) =

∮
|ζ|=1

(1− ζ)ζ−n

i(ζ2 − 2λζ + 1)
dζ, (40)
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where ζ = eiky and λ(kξ) is given by (21). Applying residue theorem to the integration in
(40), we obtain an analytic expression:

J (kξ, n) =


π(1 +

√
λ−1
λ+1

)(λ−
√
λ2 − 1)−n, λ < −1,

π(1∓ i
√

1−λ
1+λ

)(λ∓ i
√
1− λ2)−n, |λ| < 1, kξ ≶ 0.

π(1 +
√

λ−1
λ+1

)(λ+
√
λ2 − 1)−n, λ > 1

(41)

We remark that the derivation of (41) for |λ| < 1 involves the poles ζ = λ ± i
√
1− λ2

located on the unit circle |ζ| = 1 (the path of integration in (40)), which correspond to
the lattice waves emitted by the moving step. To resolve these singularities in a way that
selects physically relevant solutions, we follow the approach in [13] and introduce a small
damping contribution, which corresponds to replacing λ in (21) by λ = λ0 + iγV kξ/2,
where λ0 is given by the right hand side of (21), γ > 0 is a small damping coefficient,
and we recall that V > 0. Then for |λ0| < 1 one of the poles shifts slightly outside the
unit circle, while the other one shifts slightly inside the circle, depending on the sign of
kξ. In the limit when γ → 0 and thus λ → λ0, this means that the unit circle should
be indented inward around ζ = λ − i

√
1− λ2 and outward around ζ = λ + i

√
1− λ2

when kξ < 0. Meanwhile, for kξ > 0 the opposite is true: the path of integration is
indented inward around ζ = λ + i

√
1− λ2 and outward around ζ = λ − i

√
1− λ2. This

ensures the selection of the relevant pole in the residue theorem calculation and results
in a physically meaningful distribution of lattice waves in the final solution, in the sense
that it is not destroyed in the presence of small damping. We observe that in [8], the
expression corresponding to (41) has λ′(kξ) ≷ 0 instead of kξ ≶ 0, which is equivalent in
the region V > V1 above the first resonance velocity that is studied in [8]. However, a
formal extension of the formula in [8] to V < V1 does not satisfy the above zero-damping
limit criterion.

Using

S(kξ, n) =
J (kξ, n+ 1)− J (kξ, n)

2π
, (42)

(39) and (41), we then obtain an analytic expression (20) for S(kξ, j).

B Equilibrium states and the Peierls stress

In this Appendix, we consider the equilibrium states (V = 0), which are governed by the
system of difference equations

χ(um+1,n − 2um,n + um−1,n) + Φ′(um,n+1 − um,n)− Φ′(um,n − um,n−1) = 0 (43)
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and correspond to the configuration like the one shown in Figure 2, i.e. satisfy

vm,n < −δ/2, n ≥ 2, vm,n > δ/2, n ≤ 0,

vm,1 ≥ δ/2, m ≤ 0, vm,1 ≤ −δ/2, m ≥ ms + 1, (44)

and
|vm,1| ≤ δ/2, m = 1, . . . ,ms, if ms ≥ 1,

where ms is the number of n = 1 vertical bonds in the spinodal region. Under these
assumptions, (43) become

χ(um+1,n + um−1,n − 2um,n) + um,n+1 + um,n−1 − 2um,n

= −2δn,0 + (δn,0 − δn,1)

{
2θ(−m) +

(
1 +

2

δ
(um,1 − um,0)

)
[θ(ms −m)− θ(−m)]

}
,

(45)

where the unit function satisfies θ(0) = 1.
If ms = 0, the displacement field can be obtained using the lattice Green’s function

as in [9, 34], yielding

um,n =
1

πχ

∫ π

0

J(m)
cos (n− 1)ky − cosnky

sinh s
dky,+

{
n(σ − 1), n ≥ 0

n(σ + 1), n ≤ −1.
(46)

where s ≥ 0 satisfies cosh s = (χ+ 1− cos ky)/χ and

J(m) =

{
es+1−ems

es−1
, m < 0

e(1−m)s

es−1
, m ≥ 0.

(47)

One can show that the solution (46) exists if and only if the applied stress is within the
trapping region |σ| ≤ σP , where

σP = 1− δ

2
− 2

π

∫ π

0

J(1)
cosh s− 1

sinh s
dky.

is the Peierls stress at which v1,1 ≡ u1,1 − u1,0 = −δ/2. For example, at χ = 1 we obtain
σP = (1− δ)/2.

Since the Peierls stress must be non-negative, the equilibrium solutions with no spin-
odal bonds exist only for sufficiently narrow spinodal regions, e.g. 0 ≤ δ ≤ 1 for χ = 1.
In particular, at δ = 0 (46) yields the single stable equilibrium state with the assumed
configuration for σ inside the trapping region. For 0 < δ < 2 there are solutions with
at least one spinodal bond. In general, this problem can be reduced to the one analyzed
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in [33] for a screw dislocation. Here we simply summarize the results. Let α(N) be the
largest eigenvalue of the N ×N matrix A with the entries ai,j = A(i− j), where

A(k) =
1

π

∫ π

0

e−|k|s cosh s− 1

sinh s
dky

and we set α(0) = 0. Then for 0 < δ < 2 and |σ| < σP , there are two equilibrium states,
a stable state with ms spinodal bonds and an unstable state with ms +1 spinodal bonds,
where ms is uniquely determined from the inequality

α(ms) <
δ

2
< α(ms + 1). (48)

The two equilibria merge into a saddle point at σ = σP . For ms ≥ 1 the displacement
field is then given by

um,n =
ms∑
j=1

(
1 +

2

δ
yj

)
1

πχ

∫ π

0

e−|m−j|s cos (n− 1)ky − cosnky
2 sinh s

dky

+
1

πχ

∫ π

0

J(m)
cos (n− 1)ky − cosnky

sinh s
dky +

{
n(σ − 1), n ≥ 0

n(σ + 1), n ≤ −1.

(49)

where yj ≡ vj,1, j = 1, ...,ms are the strains in the spinodal bonds found by solving the
linear system

yi =
2

δ

ms∑
j=1

A(i−j)yj+
2

π

∫ π

0

[
J(i) +

1

2

ms∑
j=1

e−|i−j|s

]
cosh s− 1

sinh s
dky+σ−1, i = 1, . . . ,ms.

(50)
To determine the Peierls stress, which corresponds to vms+1,1 = −δ/2 in a stable equilib-
rium, define

NS =

{
N/2 if mod (N, 2) = 0

(N + 1)/2 if mod (N, 2) = 1,

NA = N −NS,

β(N, j) =

{
1/2 if mod (N, 2) = 0 and j = NS

1 otherwise,

and let BS(N) be the NS ×NS matrix with the entries

(bS)i,j =
δ

2
δi,j − [A(i− j) +A(N + 1− i− j)]β(N, j),
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while BA(N) is the NA ×NA matrix with the entries

(bA)i,j =
δ

2
δi,j − [A(i− j)−A(N + 1− i− j)].

We then obtain [33]

σP = −detBS(ms)

detBA(ms)
· detBS(ms + 1)

detBA(ms + 1)
, (51)

where for ms = 1 and ms = 0 the zero-size determinants equal 1. Figure 16 shows the
dependence of Peierls stress on the width δ of the spinodal region at different χ. Note
that the dependence on δ is no longer linear when spinodal bonds exist (ms ≥ 1). At
δ = 2α(ms), ms = 1, 2, . . . , there is no trapping region, i.e. σP = 0. This is an artifact
of the trilinear model and is not generic. Similar results were obtained for the Frenkel-
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Figure 16: (a) Dependence of the Peierls σP stress on the width δ of the spinodal region at χ = 1.
Here ms is the number of spinodal n = 1 vertical bonds in a stable equilibrium configuration, while an
unstable equilibrium has ms + 1 such bonds. (b) σP (δ) at χ = 2 (dashed curve), χ = 1 (solid curve) and
χ = 0.5 (dotted curve). Insets show the Peierls stress at smaller δ.

Kontorova model in [35,36].
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