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Abstract

If the Navier-Stokes equations are averaged with a local, spacial convolution type
filter, φ = gδ∗φ, the resulting system is not closed due to the filtered nonlinear term uu.
An approximate deconvolution operator D is a bounded linear operator which satisfies

u = D(u) + O(δα),

where δ is the filter width and α ≥ 2. Using a deconvolution operator as an approximate
filter inverse, yields the closure

uu = D(u)D(u) + O(δα).

The residual stress of this model (and related models) depends directly on the decon-
volution error, u − D(u). This report derives deconvolution operators satisfying the
necessary conditions of [24] yielding an effective turbulence model, which minimize the
deconvolution error for velocity fields with finite kinetic energy. We also give a conver-
gence theory of deconvolution as δ → 0, an ergodic theorem as the deconvolution order
N → ∞, and estimate the increase in accuracy obtained by parameter optimization.
The report concludes with numerical illustrations.

1 Introduction

Various turbulence models are used for simulations seeking to predict flow statistics or
averages. In large eddy simulation (LES) the evolution of local, spatial averages is sought.
The accuracy of a model measured in a chosen norm, || · ||, i.e.

||averaged NSE solution− LES solution||,

can be assessed in several experimental and analytical ways. One important analytical
approach is to optimize the model’s consistency error/residual stress as a function of the
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averaging radius δ and the Reynolds number Re and, most importantly, model parameters.
One approach is to optimize model parameters for special flows, such as boundary layers
or homogeneous, isotropic turbulence. The complement (considered herein) is to optimize
over general velocity fields with finite kinetic energy. We analyze the residual stress in the
model and give an analytic and numerical comparison of the deconvolution error of two
different optimization strategies: for special vs. general velocities.

Numerical simulation of complex flows present many challenges. Often, simulations are
based on various regularizations of the Navier-Stokes equations (NSE) rather than the NSE
themselves, [10], [12], [22]. The oldest example was proposed by Leray in 1934, [19]:

vt + v · ∇v − ν4v +∇p = f , and ∇ · v = 0, (1.1)

where v = Gv is a smoothed/averaged velocity. Herein, we select the differential filter of
v, introduced by Germano, [9], and given by G = (−δ24+ I)−1, i.e.

−δ24v + v = v. (1.2)

This combination is sometimes called the Leray-alpha regularization, [4], [5], [11]. The Leray
regularization’s solution is smoother, more stable, and possesses (marginally) fewer scales
than the NSE’s solution. Still, the resulting error, even with a high accuracy numerical
method, cannot be better than the error committed in the first step, replacing v by v in
(1.1). From (1.2) the error is v − v = O(δ2) at best. Experiments in [15] have also shown
that, due to its low accuracy, (1.1) with the filter (1.2) can have catastrophic error growth
and not adequately conserve physically important integral invariants. The experiments in
[15] also indicate that the increase in accuracy resulting from using deconvolution models
(replacing (1.1) with (1.3)) decreases error growth and improves conservation properties.

Approximate deconvolution operators, D : L2(Ω)→ L2(Ω), have the property that

D(v) = higher order approximation of v.

The van Cittert deconvolution procedure (studied herein and defined precisely in Section
2) gives a family (D = DN , where N=0,1,2,...) of deconvolution operators with accuracy

e(u) := u−DN (u) = O(δ2N+2), for smooth u.

More accurate regularization of the NSE, which surpass (1.1) and related models for
numerical simulations include:

1. The Leray deconvolution family [14], [15]:

vt + D(v) · ∇v − ν4v +∇p = f and ∇ · v = 0. (1.3)

2. The time relaxation regularization of Stolz, Adam, and Kleiser [23], [21], [16]:

vt + v · ∇v − ν4v +∇p + χ(I −DG)2v = f and ∇ · v = 0. (1.4)
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3. The deconvolution α-regularization [20] (enhancing NS-α accuracy, e.g [4], [5], [11]):

vt + (∇× v)×D(v)− ν4v +∇P = f and ∇ · v = 0. (1.5)

4. The Approximate Deconvolution LES Models [21], [3], [13], [7]:

vt + D(v) · ∇D(v)− ν4v +∇p + χ(I −DG)v = f and ∇ · v = 0. (1.6)

5. The NS-omega deconvolution models [18]:

vt + v ×∇D(v)− ν4v +∇P = f and ∇ · v = 0. (1.7)

For all these (and others as well) the modelling error is dominated by the deconvolution
error

e(u) := u−D(u).

This report considers minimizations of the deconvolution error for general (non-smooth)
velocity fields u. Since these (and other) models exist only to be used on a basis for numerical
simulations of under-resolved flows, we minimize the deconvolution error over the resolved
scales (i.e. over the scales that can be represented on a computational mesh). We begin by
reviewing the van Cittert deconvolution operator, in Section 2, and give, for completeness,
a convergent result as δ → 0 for fixed N (standard). Section 2 also considers convergence
as N →∞ for fixed δ, a highly singular limit since van Cittert is an asymptotic rather than
convergent approximation. We prove an ergodic theorem for the deconvolution iterates for
a general filter: the large scales of the averages of iterates converge as N →∞. In Sections
3 and 4, we show how to optimize the van Cittert procedure to substantially increase
its accuracy with no increase in computational cost. Section 3 reduces optimization to a
Chebychev optimization problem. From this reduction we recover the optimal van Cittert
parameters and show that the model’s error is O(δ2/3e−1.24N ), Section 4. Section 1.2 below
considers, as an example, one of the above regularizations and gives the analysis of the
model error in terms of the deconvolution error (addressed in Section 3). Finally, Section 5
closes with a few illustrations of the optimized method.

1.1 The formulation

Underlying all regularizations (1.3) - (1.7) are the true Navier-Stokes equations

ut + u · ∇u− ν4u +∇p = f and ∇ · u = 0 in Ω, (1.8)

where ν = µ/ρ is the kinematic viscosity, f is the body force, and Ω = (0, L)n (n = 2 or 3)
is the flow domain. We consider the case of L-periodic boundary conditions

u(x + Lej , t) = u(x, t), j = 1, ..., n.
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The Navier-Stokes equations are supplemented by the initial condition, the usual normaliza-
tion condition in the periodic case of zero mean velocity and pressure, and the assumption
that all data are square integrable with zero mean

u(x, 0) = u0(x) and
∫

Q
u dx =

∫
Q

p dx = 0,∫
Q
|u0(x, t)|2dx <∞,

∫
Q

|f(x, t)|2dx <∞, and
∫
Q

f(x, t)dx = 0, for 0 ≤ t. (1.9)

1.2 The connection between deconvolution error and model error

Consider, as an example, the time relaxation regularization (1.4). The true NSE can be
rewritten as ∇ · u = 0 and

ut + u · ∇u− ν4u +∇p + χ(I −DG)2u = f + χ(I −DG)2u. (1.10)

An equation for the model error,

emodel = uNSE − vmodel, (1.11)

is driven by the deconvolution error, χ(I−DG)2u and is obtained by subtracting the model
(1.4) from (1.10)

∂

∂t
emodel + u · ∇u− v · ∇v − ν4emodel

+∇(p− pmodel) + χ(I −DG)2emodel = χ(I −DG)2u (1.12)
emodel(0) = 0.

From (1.12) it is clear that zero deconvolution error trivially implies zero model error. It is
thus reasonable to hope that small deconvolution error (i.e. small

∥∥χ(I −DG)2u
∥∥ on the

RHS) translates to small model error. For strong solutions this is indeed the case.

Proposition 1.1. Consider the NSE with periodic boundary conditions. If ∇u ∈ L4(0, T ; L2(Ω)),
then the error in the Time Relaxation Regularization Model (1.4) satisfies

sup
[0,T ]
‖emodel‖2 +

∫ T

0

(
ν ‖∇emodel‖2 + χ

∥∥(I −DG)2emodel

∥∥2
)

dt

≤ eC(u)ν−3T

∫ T

0
χ

∥∥(I −DG)2u
∥∥2

dt.

Proof. Taking the inner product of (1.12) with emodel gives

1
2

d

dt
‖emodel‖2 + (u · ∇u− v · ∇v, emodel) + ν ‖∇emodel‖2 + χ ‖emodel −D(emodel)‖2

= χ(u−D(u), emodel −D(emodel)). (1.13)
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The standard splitting

(u · ∇u− v · ∇v, emodel) = (emodel · ∇u, emodel) + (v · ∇emodel, emodel)
= (emodel · ∇u, emodel) (1.14)

and the Cauchy Schwarz inequality give

1
2

d

dt
‖emodel‖2 + ν ‖∇emodel‖2 +

χ

2
‖emodel −D(emodel)‖2

≤ −(emodel · ∇u, emodel) +
χ

2
‖u−D(u)‖2 . (1.15)

We have

|(emodel · ∇u, emodel)| ≤ ‖emodel‖1/2 ‖∇emodel‖3/2 ||∇u||

≤ ν

2
‖∇emodel‖2 + Cν−3 ‖∇u‖4 ‖emodel‖2 .

Using this in the RHS of (1.15) and then applying Gronwall’s inequality we deduce

sup
[0,T ]
‖emodel‖2 +

∫ T

0

(
ν ‖∇emodel‖2 + χ

∥∥(I −DG)2emodel

∥∥2
)

dt

≤ eC(‖∇u‖)ν−3T

∫ T

0
χ

∥∥(I −DG)2u
∥∥2

dt.

The model’s error is bounded by the deconvolution error e = u−D(u) evaluated at the
true solution of the NSE. Since analogous bounds can be proven for the regularizations and
models (1.3) through (1.7) we consider, we turn to minimizing the deconvolution error.

2 Approximate Deconvolution Methods.

The basic problem in deconvolution is to find u from u, in other words:

given u ( + noise) solve Gu = u, for u. (2.1)

If the averaging operator is smoothing, the deconvolution problem will be not stably invert-
ible due to small divisor problems.

Definition 2.1. An approximate deconvolution operator, D : L2(Ω)→ L2(Ω) is an approx-
imate inverse of G satisfying:

(i) D : L2(Ω)→ L2(Ω) is a bounded linear operator and
(ii)D(φ) = φ + O(δα), for some α ≥ 2 and sufficiently smooth φ.

5



This section considers the van Cittert approximate deconvolution algorithm, [2]. The
approximation DN (u), for the operator equation (2.1), is computed by N steps of first order
Richardson iteration. Each step of van Cittert requires only one filtering step.

Algorithm 2.1. [The van Cittert Algorithm]: Choose

u0 = u.

For n = 0, 1, 2, ..., N − 1, perform

un+1 = un + {u−Gun}.

Set DN (u) := uN .

For example, for N=0, 1, and 2 the deconvolution operator DN is

D0(u) = u, u ' D0(u) + O(δ2),
D1(u) = 2u− u, u ' D1(u) + O(δ4),

D2(u) = 3u− 3u + u, u ' D2(u) + O(δ6).

For the Cauchy problem, Ω = Rn, the transfer function of DN (for N = 0, 1, 2) is

D̂0(k) = 1, D̂1(k) = 2− 1
k2 + 1

=
2k2 + 1
k2 + 1

and D̂2(k) = 1 +
1

k2 + 1
+

(
k2

k2 + 1

)2

.

These three and the transfer function of exact deconvolution (k2 + 1) are plotted in Figure
1. The graphs of the transfer functions have high order contact near 0. Thus DN leads to
a very accurate solution of the deconvolution problem.

There are two convergence issues that arise immediately:
1. Convergence as δ → 0 for fixed N and general u ∈ L2(Ω) (see Theorem 2.2).

2. Convergence as N → ∞ for δ fixed (possibly true for some specific filters, but likely
not true in general, see Theorem 2.3 and [13]).

Theorem 2.2. [Convergence as δ → 0 for general velocities ] Suppose that u→ u in L2(Ω)
as δ → 0, for all u ∈ L2(Ω). Then, for N fixed we have DN (u)→ u in L2(Ω) as δ → 0.

Proof. As δ → 0, we have u0 = u→ u and thus

u1 = u0 + {u− u0} → u + {u− u} = u.

Similarly, each un → u and DN (u)→ u.

Since the deconvolution problem is ill posed, convergence of DN (u) to u as N → ∞ is
not expected. Nevertheless, it is possible to prove a type of ergodic theorem for averages
predicted by the van Cittert algorithm for very general operators G. Sharper convergence
theorems depend upon specific choices of the averaging operator G, see [14] for an example.
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Figure 1: Exact and van Cittert Approximate Deconvolution Operators (N=0,1,2)

Theorem 2.3. [Convergence as N → ∞] Let X be a Hilbert space and suppose that the
averaging operator G : X → X is a bounded linear operator with ‖I −G‖L(X→X) ≤ 1. For
u ∈ X, consider the van Cittert iteration

u0 = Gu, un+1 = un + {Gu−Gun}.

Let
vN =

u0 + u1 + ... + uN

N + 1
.

Then G2(u− vN )→ 0 in X as N →∞, specifically,

sup
u∈X

||G2(u− vN )||
||Gu||

≤ 2
N + 1

.

Proof. Let B = I −G. Then,

GuN = Gu−BN+1Gu or GeN = BN+1Gu,

where eN = u − uN = u −DN (u). Consider G(u − vN ) . A similar algebraic calculation
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gives

G2(u− vN ) =
1

N + 1
G2(e0 + e1 + · · ·+ eN ) =

=
1

N + 1
G

N∑
n=0

Bn+1Gu =

=
1

N + 1
{BGu−BN+2Gu} → 0.

as N →∞, since ‖B‖ ≤ 1. Taking norms of both sides completes the proof.

For LES, convergence of the van Cittert approximation DN (u) to u as N → ∞ is not
as significant as convergence of DN (u) to u as δ → 0 and the asymptotic order of accuracy
as δ → 0 for fixed N . When the averaging is given by a differential filter, the accuracy of
DN (u) as an approximation to u for smooth functions was addressed by Stolz and Adams
[21], Dunca [6], Dunca and Epshteyn [7].

Lemma 2.1. Let the averaging operator be given by the differential filter Gv := (−δ24 +
I)−1v. For any v ∈ L2(Ω),

v −DN (v) = (−1)N+1δ2N+24N+1GN+1v.

Thus, if 42N+2v ∈ L2(Ω) we have

‖v −DN (v)‖ ≤ δ2N+2
∥∥42N+2v

∥∥ .

Proof. For the proof, see for example [7].

The use of van Cittert as an asymptotic, rather than iterative, approximation of an ill-
posed, rather than non-singular, linear problem as well as the associated convergence theory
is very different than that of first order Richardson. However, the form of the iteration is
the same. Exploiting this algorithmic similarity, relaxation parameters can be introduced
at no additional computational cost. We shall optimize these parameters, for deconvolution
of fluid velocities, in Section 3. In Algorithm 2.1 it is also clear that, at no extra cost,
the parameters can be chosen to have different values in different regions. In fact, we
expect different optimal values near walls (still an open problem), away from walls in free
turbulence (in [17]), and for general velocities (considered herein).

Algorithm 2.4. [Accelerated van Cittert Algorithm]: Given relaxation parameters ωn, choose

u0 = u.

For n = 0, 1, 2, ..., N − 1 perform

un+1 = un + ωn{u−Gun}.

Set Dω
N (u) := uN .
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The operator Dω
N is the Accelerated van Cittert deconvolution operator. The key to opti-

mization is the following recursion formula for the operator Dω
N .

Lemma 2.2. For N=0, 1, 2, ... , we have:

Dω
N+1 = Dω

N + ωN (I −Dω
NG). (2.2)

Proof. First, we note that Dω
0 = I on L2(Ω) and Dω

1 is a linear combination of the identity
and G. It follows that Dω

1 commutes with differentiation, since both I and G do. Using an
induction argument we deduce that Dω

N commutes with G for N=0,1,2,... . Furthermore,
for any positive integer N we have

Dω
N+1(u) = uN+1 = uN + ωN{u−GuN}

= Dω
N (u) + ωN { u−GDω

N (u) }
= ( Dω

N + ωN (I −Dω
NG) ) u.

Thus, Dω
N+1 = Dω

N + ωN (I −Dω
NG) for every positive integer N.

Next, we analyze in more detail properties of the Accelerated van Cittert deconvolution
operator, Dω

N .

Lemma 2.3. Let the averaging operator be the differential filter Gv := (−δ24+ I)−1v. If
the relaxation parameters ωi, i = 0, 1, ..., N , are positive, then the Accelerated van Cittert
deconvolution operator Dω

N : L2(Ω)→ L2(Ω) is symmetric positive definite.

Proof. The operator G is bounded, compact and self adjoint. Indeed, multiplying (1.2) by
v and integrating over Ω we get

0 ≤ ‖Gv‖2 ≤ ‖v‖2 .

This shows that G is bounded and ‖G‖ ≤ 1. To show G is self-adjoint and positive definite,
note that for every v ∈  L2(Ω) we have

0 ≤ δ2 ‖∇v‖2 + ‖v‖2 = (v,v) = (v, Gv).

Both Dω
0 and Dω

1 are symmetric, as linear combinations of I and G. Proceeding by mathe-
matical induction, assume Dω

n is symmetric, for a positive integer n. From Lemma 2.2, we
know

Dω
n+1 = Dω

n + ωn(I −Dω
nG).

Thus Dω
n+1 is symmetric as linear combination of symmetric operators I, G, and Dω

n . To
show Dω

1 is bounded, we apply the Spectral Mapping Theorem. We have

‖Dω
1 ‖ = λ(Dω

1 ) = λ( Dω
0 + ω0(I −Dω

0 G) ) = 1 + ω0(1− λ(G)).
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Since ‖G‖ ≤ 1, we deduce that

1 ≤ ‖Dω
1 ‖ ≤ 1 + ω0.

Proceeding by induction, it is easy to see that for every positive integer n we have

1 ≤ ‖Dω
n‖ ≤ 1 +

n−1∑
i=0

ωi.

This concludes the proof.

3 Chebychev Optimized Deconvolution

This section calculates relaxation parameters ωi which minimize the deconvolution error

eN = u−Dω
N (u),

for general (non-smooth) velocity fields u. To begin, we give a recursion formula for the
deconvolution error eN .

Lemma 3.1. The deconvolution error eN , satisfies e0 = u−u and for all positive integers
N we have

u−Dω
Nu =

N−1∏
i=0

(I − ωiG)e0. (3.1)

Proof. We will use mathematical induction. Note that the conclusion holds true for N = 1:

e1 = (I − ω0G)u− (I − ω0G)u = (I − ω0G)e0,

since u = Gu. Assuming en =
∏n−1

i=0 (I − ωiG)e0 for any integer n ≥ 1, let us prove

en+1 =
n∏

i=0

(I − ωiG)e0.

Since en+1 can be rewritten as en+1 = (I − ωnG)u− (I − ωnG)un, applying the induction
hypothesis we obtain

en+1 =
n∏

i=0

(I − ωiG)e0, for all integers n ≥ 1. (3.2)

Therefore (3.1) holds true.
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Expand the velocity field u(x, t) in Fourier series

u(x, t) =
∑

k

∑
|k|=k

û(k, t)eik·x, where û(k, t) =
1
L3

∫
Ω

u(x, t)e−ik·xdx (3.3)

and k = 2π
L n (n ∈ Z3) is the wave number.

Definition 3.1. Let δ be the filter’s averaging radius. The resolved scales are span{eik·x | |k| ≤
π/δ}. If u is given by (3.3), its projection onto the resolved scales, PRSu, is

PRSu =
∑

k≤π/δ

∑
|k|=k

û(k, t)eik·x. (3.4)

We denote by kmin, and kmax the smallest and the largest wave number of PRSu

0 < kmin ≤ k ≤ kmax = π/δ < ∞.

The total kinetic energy at point x in space and at time t is E(u)(t). Using Parceval’s
equality, we deduce Ê(k, t), the kinetic energy at wave number k, and also

E(PRSu)(t) =
2π

L

∑
k≤π/δ

Ê(k, t), where Ê(k, t) =
L

2π

∑
|k|=k

1
2
|û(k, t)|2. (3.5)

Lemma 3.2. Let u ∈ L2(Ω). For any positive integer N , the deconvolution error eN =
u−Dω

Nu satisfies

‖PRS(u−Dω
Nu)‖2 =

∑
k≤π/δ

∑
|k|=k

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2(1− 1

δ2k2 + 1
)2|û(k, t)|2. (3.6)

Proof. From (1.2) and (3.3) we deduce

û(k, t) =
1

1 + δ2k2
û(k, t). (3.7)

With this, using Parceval’s equality and Lemma 3.1, we have

‖PRS(u−Dω
1 u)‖2 =

∑
k≤π/δ

∑
|k|=k

(1− ωi
1

δ2k2 + 1
)2(1− 1

δ2k2 + 1
)2|û(k, t)|2 .

Using mathematical induction, we prove (3.6), for any positive integer N .
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Using Lemma 3.2, the optimization problem reduces to minimizing the expression:

∑
kmin≤k≤π/δ

∑
|k|=k

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2(1− 1

δ2k2 + 1
)2|û(k, t)|2. (3.8)

Consider thus the function FN : RN
+ → R+, where

FN (ω0, ..., ωN−1) =
∑

kmin≤k≤π/δ

∑
|k|=k

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2(1− 1

δ2k2 + 1
)2|û(k, t)|2. (3.9)

We are seeking for relaxation parameters ωi to minimize the error in deconvolution. In
another words, we want to find minωi FN (ω0, ..., ωN−1). We have

min
ωi

FN (ω0, ..., ωN−1) ≤ min
ωi

max
kmin≤k≤kmax

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2

∑
kmin≤k≤π/δ

∑
|k|=k

(1− 1
δ2k2 + 1

)2|û(k, t)|2.

Thus, minimizing the deconvolution error for a general velocity field leads to the problem
of minimizing, with respect to ωi, the expression

min
ωi

max
kmin≤k≤kmax

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
). (3.10)

The change of variable, x← 1
δ2k2+1

gives that for kmin ≤ k ≤ kmax we have

0 < a :=
1

δ2k2
max + 1

=
1

π2 + 1
≤ x ≤ 1

δ2k2
min + 1

=: b < 1.

Then, (3.10) leads to

min
ωi

max
kmin≤k≤kmax

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
) ≤ min

ωi

max
a≤x≤b

N−1∏
i=0

(1− ωix). (3.11)

To proceed, we denote by Π1
N , the set of all polynomial functions of degree less than or

equal to N , which are 1 at the origin, i.e.

Π1
N = {p(x)|p(0) = 1} .

Note that
∏N−1

i=0 (1− ωix) ∈ Π1
N and thus

min
ωi

max
a≤x≤b

|
N−1∏
i=0

(1− ωix)| ≤ min
Π1

N

max
x1≤x≤x2

|
N−1∏
i=0

(1− ωix)|. (3.12)
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It is well known, see for example Axelsson, [1] (page 180), that the least maximum is
achieved by the Chebychev polynomials, namely

min
Π1

N

max
a≤x≤b

|
N−1∏
i=0

(1− ωix)| = max
a≤x≤b

TN

(
b+a−2x

b−a

)
TN

(
b+a
b−a

) =
1

TN

(
b+a
b−a

) , (3.13)

where TN (x) = cosh
(
N cosh−1(x)

)
is the N th Chebychev polynomial, for all x ≥ 1.

Remark 3.1. Following [1], further calculations in (3.13) show that

min
Π1

N

max
a≤x≤b

|
N−1∏
i=0

(1− ωix)| = 2
σN

1 + σ2N
, where σ =

1−
√

a/ b

1 +
√

a/ b
. (3.14)

Corollary 3.1. For u ∈ L2(Ω) we have

‖PRS(u−Dω
1 u)‖2 ≤ 1

T 2
N

(
b+a
b−a

) ∑
kmin≤k≤π/δ

∑
|k|=k

(1− 1
δ2k2 + 1

)2|û(k, t)|2. (3.15)

Proof. This follows easily from Lemma 3.2 and (3.13).

Proposition 3.1. The parameters ωj solving the min-max (3.10) problem are given by

ωj =
1

b−a
2 cos

(
2j+1
2N π

)
+ b+a

2

, (3.16)

for all positive integers N and j = 0, 1, ..., N − 1.

Proof. From (3.13), the optimal parameters for the optimization problem are given by the
inverses of the zeros of TN . So, (3.16) holds true.

Further useful progress depends on a > 0, i.e. on either kmax < ∞ or on restricting to
the error in the resolved scales (for which kmax = π/δ).

3.1 Expected accuracy increase for turbulent flows

The ωi in (3.15) optimize deconvolution models over general velocities fields. It is useful
to compare the resulting errors to the case when ωi are optimized over special velocities
with a k−5/3 energy spectrum. If the comparison is done for velocities with a k−5/3 energy
spectrum, it can be done exactly analytically (and will be most favorable for latter case).
Indeed, let < · > denote time averaging

< φ > (x) := lim sup
T→∞

1
T

∫ T

0
φ(x, t)dt. (3.17)
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Let Ê(k) =< Ê(k, t) >. For homogeneous, isotropic turbulence the Kolmogorov K-41
theory predicts that over

0 < kmin := Uν−1 ≤ k ≤ ε1/4ν−3/4 =: kmax < ∞,

we have
Ê(k) ' αε2/3k5/3, (3.18)

where α (in the range 1.4 to 1.7) is the universal Kolmogorov constant, U and L are,
respectively, a global reference velocity and and length scales and ε denotes the energy
dissipation rate of the particular flow

ε :=<
ν

L3

∫
R3

|∇u|2dx > . (3.19)

The K-41 theory predicts that outside the inertial range, we still have Ê(k) ' αε
2
3 k−

5
3 ,

since Ê(k) ' 0 for k ≥ kmax and since Ê(k) ' Ê(kmin) for k ≤ kmin.
Consider Chebychev optimized deconvolution. Time averaging (3.6) and using Parce-

val’s equality, we obtain

<
1
L3
‖PRS(u−Dω

Nu)‖2 >= 2
2π

L

∑
kmin<k<π/δ

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2(1− 1

δ2k2 + 1
)2Ê(k).

In [17], the authors considered

<
1
L3
‖PRS(u−Dω

Nu)‖2 >, subject to Ê(k) ' αε2/3k−5/3. (3.20)

We compare (3.15) to this case. For (3.15) we calculate the deconvolution error as

<
1
L3
‖PRS(u−Dω

Nu)‖2 >≤ 4π

L

∑
0<k≤π/δ

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
)2(

δ2k2

δ2k2 + 1
)2Ê(k).(3.21)

Additionally, using (3.13), for Chebychev optimized deconvolution, we obtain

<
1
L3
‖PRS(u−Dω

Nu)‖2 > ≤ ( min
ωi

max
0≤ k≤π

δ

N−1∏
i=0

(1− ωi
1

δ2k2 + 1
) )2

α ε2/3 4π

L

∑
0<k≤π/δ

(
δ2k2

δ2k2 + 1
)2k−5/3

≤ 1
cosh2(0.62 N)

α ε2/3 4π

L

∫ π
δ

0
(

δ2k2

δ2k2 + 1
)2k−5/3dk

=
1

cosh2(0.62 N)
α ε2/3 δ2/3 4π

L
0.54. (3.22)
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Since 1
cosh(x) ≤ e−x, for x ≥ 0, we obtain the bound for the time average deconvolution

error

<
1
L3
‖PRS(u−Dω

Nu)‖2 > ≤ 2.16 α ε2/3 δ2/3 π

L
e−1.24N . (3.23)

Remark 3.2. The unoptimized case of ωi ≡ 1 was studied in [13] with result

<
1
L3
||u−DNu||2 >≤ (

3
2

+
1

4N + 10
3

) α ε2/3 δ2/3. (3.24)

4 Comparison of Attained Accuracy

There are three versions of van Cittert to be compared: unoptimized, Chebychev-optimized
for a general flow field (herein), and previous work [17] in which the optimality problem
was formulated for special velocity fields with the exact energy spectrum Ê(k) ∼ k−5/3. We
will refer to this last possibility as “K-41 optimization”.

To compare the three, we consider the case of velocity fields with energy spectrum of
k−5/3. Using (3.16), we first compute the values of the Chebychev parameters. These and
K-41 optimized relaxation parameters (from [17]) are in Tables 1 and 2 respectively.

N ω0 ω1 ω2 ω3 ω4

1 1.83 - - - -
2 1.15 4.44 - - -
3 1.06 1.83 6.54 - -
4 1.03 1.38 2.68 7.90 -
5 1.02 1.23 1.83 3.58 8.75

Table 1: Chebychev optimized parameters

N ω0 ω1 ω2 ω3 ω4

1 2.10 - - - -
2 2.02 2.02 - - -
3 1.44 4.91 1.44 - -
4 1.49 1.49 5.83 1.49 -
5 1.53 1.53 6.52 1.53 1.53

Table 2: K-41 optimized parameters

Because of the form of the RHS of estimates (3.23) and (3.24), we normalize the errors
calculated by α ε2/3 δ2/3. Thus, using Lemma 3.2, we give in Table 3

< 1
L3 ‖PRS(u−Dω

Nu)‖2 >

α ε2/3 δ2/3
, when N = 0, 1, 2, 3, 4, 5
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for the three cases ωi ≡ 1, ωi from Table 1, and ωi from Table 2. Table 3 shows that
both optimizations reduce the error over standard van Cittert significantly. Figure 2 gives
a plot of (normalized) deconvolution error vs. wave number, for N = 2 for all three cases of
standard van Cittert, K-41 optimized and Chebychev optimized van Cittert. Figure 2 shows
that both optimized van Citter improve the error in deconvolution for irregular velocities,
while the unoptimized van Cittert is more accurate for very smooth velocity fields.

N K-41 optimized ωi Chebychev optimized ωi ωi = 1
1 0.150 0.157 0.258
2 0.068 0.066 0.155
3 0.017 0.022 0.101
4 0.007 0.006 0.070
5 0.003 0.002 0.049

Table 3: Normalized deconvolution error

Figure 2: Deconvolution Error (N=2)
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5 An Illustration

To begin, we test the deconvolution error when both filtering and deconvolution are done
discretely using a finite element approximation of the Laplace operator in (1.2). The
computations were performed with the software FreeFem++, see [8]. We choose u =
(sin(ky), sin(kx)) a known, divergence free velocity and calculate[

1
|Ω|

∫
Ω
|u−DNu|2dx

] 1
2

,

where Ω = (0, 2π)2. P2 elements were used in the discretization, i.e. the velocity is ap-
proximated by continuous piecewise quadratics. For each value of N deconvolution involves
the solution of N+1 discrete Poisson problems. We solve the resulting linear system with
GMRES. For these calculations, we consider the meshwidth h = 1/10, 1/20, 1/30, 1/40 and
N=1, 2, 3. We fix δ = 0.1 and k = 1 and 8. The case k = 1 is very smooth and the theory
predicts regular van Cittert to be more accurate. The case k = 8 oscillates faster and the
theory predicts both Accelerated van Cittert to be more competitive.

Comparing tables 5, 6, and 7 we see that for a very smooth u (the case k=1) unoptimized
van Cittert (ωi = 1) is indeed more accurate, as expected. In this case, Chebychev optimized
is superior to K-41 optimized. This result is not expected since the Chebychev is for a general
L2 field while K-41 optimized is for fields that are slightly more regular. Next we consider

h ‖(I −D1G)u‖ ‖(I −D2G)u‖ ‖(I −D3G)u‖
1/10 0.000385707 0.000157297 0.000067544
1/20 0.000454801 0.000238021 0.000129238
1/30 0.000469269 0.000265614 0.000153671
1/40 0.000471633 0.000273757 0.000163838

Table 4: Unoptimized Deconvolution Error: k = 1, δ = 0.1

h ‖(I −D1G)u‖ ‖(I −D2G)u‖ ‖(I −D3G)u‖
1/10 0.0102168 0.00862918 0.00590472
1/20 0.0102158 0.00862688 0.00590488
1/30 0.0102158 0.00862691 0.00590513
1/40 0.0102158 0.00862699 0.00590512

Table 5: K-41 Optimized Deconvolution Error: k = 1, δ = 0.1

the case a velocity field which is highly oscillatory with respect to the chosen filter radius,
k = 8 and δ = 0.1. We see in tables 8, 9, 10 that, for rougher velocity fields, both optimized
van Cittert are superior to unoptimized van Cittert, in accord with the predictions of the
theory.
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h ‖(I −D1G)u‖ ‖(I −D2G)u‖ ‖(I −D3G)u‖
1/10 0.00757131 0.00426287 0.00190707
1/20 0.00757049 0.0042709 0.00191
1/30 0.00757075 0.00427072 0.00191063
1/40 0.00757091 0.0042705 0.00191061

Table 6: Chebychev Optimized Deconvolution Error: k = 1, δ = 0.1

h ‖(I −D1G)u‖ ‖(I −D2G)u‖ ‖(I −D3G)u‖
1/10 0.166844 0.0797244 0.040896
1/20 0.154312 0.0200043 0.028794
1/30 0.152509 0.0191031 0.027441
1/40 0.15215 0.0186714 0.027323

Table 7: Unoptimize Deconvolution Error: k = 8, δ = 0.1

h ‖(I −D1G)u‖ ‖(I −D2G)u‖ ‖(I −D3G)u‖
1/10 0.026368 0.027578 0.0372458
1/20 0.095817 0.028730 0.0200043
1/30 0.102346 0.027441 0.0191031
1/40 0.103715 0.027323 0.0186714

Table 8: K-41 Optimized Deconvolution Error: k = 8, δ = 0.1

h ‖(I −D1G)u‖ ‖(I −D2G)u‖ ‖(I −D3G)u‖
1/10 0.0359071 0.170887 0.0331716
1/20 0.0357505 0.195504 0.0383042
1/30 0.0398032 0.195824 0.0435825
1/40 0.0408305 0.195785 0.0446767

Table 9: Chebychev Optimized Deconvolution Error: k = 8, δ = 0.1

6 Conclusions

For a LES with deconvolution model to be feasible, the model’s consistency error must
be small for large radii δ, which are large with respect to the problems inherent length
scales (which correspond to computationally attainable meshwidths). Thus, selection of
parameters to minimize model’s consistency error increases the problems for which LES is
feasible and increases the reduction in computational effort obtainable when using LES.

The use of optimal parameters requires no extra computational effort. Two main results
of this work are:

(i) the values of the optimal parameters (in Section 4) and
(ii) the reduction in the model consistency error that results in their use is is at least
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50%, i.e ( with FN given by (3.9) )

accuracy increase ratio :=
minω0,ω1,...,ωN−1 FN (ω0, ω1, · · ·, ωN−1)

FN (1, 1, ..., 1)
� e−1.64N

3
2 + 1

4N+ 10
3

.

This is also reflected by Table 3. Interestingly, in all cases (N= 1,2,3,4,5) the Chebychev
optimized parameters resulted in comparable or better errors to K-41 optimization. Since
Chebychev optimization give parameter values good for all flow fields and the latter only
for special ones, this suggests that Chebychev optimized deconvolution is to be strongly
preferred. It is important to note that the relative increase in accuracy obtained using
optimal parameters itself increases with the order of the model.

References

[1] O. Axelsson, Iterative Solution Methods, Cambridge Univeristy Press, 1994.

[2] M. Bertero and B. Boccacci, Introduction to Inverse Problems in Imaging,
IOP Publishing Ltd., Bristol, 1998.

[3] L. C. Berselli, T. Iliescu, and W. Layton, Mathematics of Large Eddy Sim-
ulation, Springer, Berlin, 2005.

[4] A. Cheskidov, D.D. Holm, E. Olson and E.S. Titi, On a Leray- model of
turbulence, Royal Society London, Proceedings, Series A, Mathematical, Physical
and Engineering Sciences, 461, 2005, 629-649.

[5] V.V.Chepyzhov, E.S. Titi, and M.I. Vishik, On the convergence of the Leray-
alpha model to the trajectory attractor of the 3d Navier-Stokes system, to appear:
Journal of Discrete and Continuous Dynamical Systems, 2007.

[6] A. Dunca, Space avereged Navier-Stokes equations in the presence of walls , Ph.d
Thesis, University of Pittsburgh. 2004.

[7] A. Dunca and Y. Epshteyn, On the Stolz-Adams Deconvolution Model for the
Large-Eddy Simulation of Turbulent Flows, SIAM J. Math. Anal. (2006), 1890-
1902.

[8] F. Hecht, O. Pironneau, and K. Ohtsuka, FreeFem++, webpage:
http://www.freefem.org.

[9] M. Germano, Differential filters of elliptic type, Phys. Fluids, 29(1986), 1757-
1758.

[10] B.J. Geurts, Elements of Direct and Large-Eddy Simulation, Edwards Publishing,
2003.

19



[11] B.J. Geurts and D.D. Holm, Leray and LANS-alpha modeling of turbulent
mixing, J. of Turbulence, 00 (2005), 1-42.

[12] V. John, Large eddy simulation of turbulent incompressible flows, Springer, Berlin,
2004.

[13] W. Layton and R. Lewandowski, Residual stress of approximate deconvolution
models of turbulence, Journal of Turbulence, Vol 7, No 46 (2006), 1-21.

[14] W. Layton and R Lewandowski,A high accuracy Leray-deconvolution model of
turbulence and its limiting behavior, to appear: Analysis and Applications, 2007.

[15] W. Layton, C. Manica, M. Neda and L. Rebholz, Numerical Analysis
of a high accuracy Leray-deconvolution model of turbulence, to apear: Numerical
Methods for Partial Diferential Equations, 2007.

[16] W. Layton and M. Neda, Truncation of scales by time relaxation, JMAA 325
(2006), 788-807.

[17] W. Layton and I. Stanculescu, K-41 optimized approximate deconvolution
models, to appear: IJCSM, 2007.

[18] W. Layton, I. Stanculescu, and C. Trenchea, Theory of the NS-omega
model, submitted, 2007.

[19] J. Leray, Sun le movement d’un fluide visqueux emplissant l’espace , Acta Math,
63: 193-248, 1934, Kluwer Academic Publishers, 1997.

[20] L. Rebholz, A family of new, high order NS-α models arising from helicity cor-
rection in Leray turbulence models, submitted, 2007.

[21] S. Stolz and N.A. Adams, An approximate deconvolution procedure for large-
eddy simulation, Physics of Fluids, 11 (1999), 1699-1701.

[22] P. Sagaut, Large eddy simulation for Incompressible flows, Springer, Berlin, 2001.

[23] S. Stolz and N.A. Adams, and L.Kleiser, The approximate deconvolution
model for large-eddy simulations of compressible flows and its application to shock-
turbulent-boundary-layer interaction Physics of Fluids, 13 (2001), 997-1015.

[24] I. Stanculescu, Existence Theory of Abstract Approximate Deconvolution Models
of Turbulence, submitted: Annali dell’Universita’ di Ferrara, 2007.

20


