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This paper analyzes the dynamics of non-Newtonian fluids, those whose viscosity is not constant. First,
the Navier-Stokes equations are modified by introducing a new parameter with units of viscosity. Then,
the energy equation and micro-scale of the model are derived. This allows the value of the parameter
to be determined in order to make the micro-scale the order of the mesh width. Finally, the Finite
Element Method with Backward Euler discretization is programmed using FreeFEM++ to simulate the
model; a problem with known exact solution is used to test convergence of the method, and the step

problem is also discussed.
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1.0 THE PROBLEM

1.1 INTRODUCTION

Consider the flow of a fluid in a region Q in R3. The Navier-Stokes equations (NSE) describe the motion
of fluids. They are based on the conservation of mass and conservation of momentum laws. For
Newtonian fluids, those with constant viscosity, that are incompressible or divergence free, the NSE are
given by the following
V-u=0 (1.1.2)

U +u-Vu—vAu+Vp = f,in 0.
Here, u(x, t) is the fluid velocity vector, v is the constant kinematic viscosity, p(x, t) is the pressure, and
f(x, t) is the body force vector. The NSE are nonlinear partial differential equations describing the
velocity of a fluid as a function of space and time. The NSE will be accompanied by L-periodic boundary
conditions on the domain 2 = (0, L)3, such that

u(x+L1&)=u(x), j=123

and u, u,, p and f all have mean value zero,

f o(x,t)dx =0, for o =u,u,,p,and f.
0

The following non-Newtonian fluid flow model will be derived and analyzed:
V-u=0
u, —athu, +u-Vu —vAu+Vp —aA(u —u) = f,



where a is a positive constant parameter with units of viscosity and tis a time scale with units of time.
After taking the inner product of the NSE with u and then integrating over the domain Q, the energy

equation for this model becomes

d 1 ., ar ) ) B
— f (—Iul +—|Vu| )dx +f w|Vul® + aV(u — u): Vu)dx =f f-udx.

This provides the kinetic energy and energy dissipation rate, allowing the energy cascade and micro-
scale of the model to be found. In order to make the micro-scale the order of the mesh width, the

parameter alpha should be chosen as

8) = U 16 5 1 [a6,656 55 — 55,206 51273
wo)="3 13 L o072 S TR |

where 6 is the length scale, T is the time step, and U and L are the velocity and length at the large scales,
respectively.

After analyzing the non-Newtonian fluid model, a program written in FreeFEM++ utilizes the
Finite Element Method with Backward Euler time discretization to approximate the solution to the NSE.
First, a problem is derived using an exact solution in order to test the first order convergence of the
method that is expected. Then the solution to the step problem is computed, and the plots are

discussed.

1.2 PHENOMENOLOGY OF THE NSE

The energy equation is derived by taking the inner product of (1.1.1) with u and then integrating over
the domain Q. The result is
d 1, 5
—f —|u] dx+f v|Vu|“dx =f f - udx,
dt ), 2 0 0
where E(t) = fﬂ %lulzdx is the kinetic energy and £(t) = fﬂ v|Vu|?dx is the energy dissipation rate.

The energy cascade over the inertial range, which will be discussed in detail later, is given by

2 5
E(k) = ce3k” 3,



Where cis the Kolmogorov constant, and k is the wave number. Two assumptions must be made in
order to determine the micro-scale of the NSE. First, the Reynolds number Re at small scales, those with
large wave numbers, is of order 1. Also, the energy in at large scales equals the energy out at small

scales. Under these two assumptions, the bottom of the inertial range is at length scale n, where

3
Nysg = O(Re %) for 3d turbulence.



2.0 NON-NEWTONIAN FLUID FLOW MODEL

2.1 DERIVATION OF THE MODEL

Non-Newtonian fluids are those whose flow properties are not described by a single constant value of
viscosity. Therefore, a change must be made to the NSE for these types of fluids. A proposed non-
Newtonian fluid flow model is
V-u=0 (2.1.1)
Uy —atAu, +u-Vu —vAu +Vp = f,
where a is a positive parameter with units of viscosity and tis a time scale with units of time.
The connection between this model and a numerical regularization arises from looking at the
standard NSE implicit discretization:
Vountt =0
n+l _
At

If we rearrange and solve for the u

n

u + um _Vun+1 _ VAun+1 + Vpn+1 — fn+1_

u

n+1

terms, we get

n

1 u
—] n.yv —vA n+l _ — _ n+1 n+1
AT +u-V—vAlu AL Vp"Tt 4 T,

where the spacial discretization has been suppressed.
Unfortunately, this system of equations is hard to solve if v is small, so we increase “v’ by a on

the left hand side (LHS) and adjust for this increase on the right hand side (RHS) as follows,
[ﬁl +u"-V—vA— aA] untl = % —Vp™t 4 1 — aAu”, (2.1.2)

Now, if we go back to the NSE, we have



n+l _ u™

At

un+1

_n
u > - Vun+1 _ VAun+1 + Vpn+1 — fn+1_

— (aAt)A( AL
In the continuum limit, this gives (2.1.1) with t =At; however, it only causes a change in the kinetic
energy and not the energy dissipation rate. Changing the model energy changes the details of the
energy cascade through the inertial range but not the model micro-scale. To do this requires changing
the energy dissipation rate. Therefore, a further modification must be made, leading to another model
for non-Newtonian fluid flow.

In order to change the energy dissipation, we can take a spacial average of the velocity at the

previous time step on the RHS of (2.1.2)

[L1+um-v—va—aa]umtt = L ypnH 4 L — g, (2.1.3)

This is precisely the method studied as a numerical approximation in [ALP]. We develop it herein as a

continuum model. To do so, we rewrite the RHS of (2.1.3) as

n

u _
yYiu Vp™tl + 1+ — gAu™ + aA(u — u).

Thus, when we go back to the continuum limit, we have the following model
V-u=0 (2.1.4)
u, —athu, +u-Vu —vAu+ Vp —aA(u —u) = f,
with the hope that the new term —aA(u — i) will cause a change in the energy dissipation and allow us
to make the micro-scale the order of the local length scale. This paper will analyze (2.1.4), along with L-

periodic boundary conditions.



3.0 THE ENERGY EQUATION

3.1 KINETIC ENERGY AND ENERGY DISSIPATION RATE

To find the energy equation, we take the inner product of (2.1.4) with u and integrate over the flow

domain Q. This gives the equation

J, werudx —at [, Au,-udx + [, u-Vu-udx (3.1.1)

—vf Au-udx+f Vp-udx—af A(u—ﬁ)-udx=f f - udx.
0 0 0 )

Again, this will be accompanied by L-periodic boundary conditions on the domain 2 = (0, L)3, such that
u(x+L&)=u(x), j=123

and u, u,, p and f all have mean value zero,

f v(x, t)dx =0, forv =u,u,,p,and f.
0

Calculations will be simplified using the summation convention that indices repeated in a multiplicative
term are summed from 1 to 2, and indices occurring after a comma denote differentiation with respect
to that variable, as in [Lay09]. For example, the vector product and tensor contraction can be written
as:

u-v=uv +uv, =u;v;,and

2 2
T:S = Z 2 TUSU = Ti'Sij'
i=1 j=1

respectively. Also,



2 ou 4 2 9%u
uu; = |u ,u,j = —,an uJ] = YL
0% j=10%

Using this notation, we can simplify the six terms on the LHS of (3.1.1) individually.

d o1
I. Jo we-udx = — Elulzdx

d d d
I. —at [, Au,udx = —at [, A—u-udx = —ar_ [, Au-udx = —ar_ [, wudx

Using integration by parts (IBP), this is equivalent to

d
—aTd_tfﬂ [(ui’jui)’j - ui’jui’j]dx.

By the Divergence Theorem, (3.1.2) equals

d d
_araf(m u; jufds + aTEL u; ju;jdx,

where 00 denotes the boundary of , and i is the outward unit normal.

Because of the periodicity of the boundary, u is the same on each boundary, and the outward unit

normals are of opposite signs. Therefore, fan u;ju;n;ds = 0. Hence,

d
—ar.[ Au; - udx = araf W ju;jdx = a‘r—f — |Vul?dx = —f — |Vul|?dx.
0 0

ijj

(3.1.2)

. J, wVu-udx = [, wwdx = [ [(wa); — ;] dx, by IBP. Sincew;; = V-u =0,

then

Jo wVu-udx = [ [(www),; —wy y ldx,

again by IBP. By the Divergence Theorem and periodicity of the boundary, (3.1.3) equals

fulu]ujnds fuiujujridx=—f u-Vu-udx.
a0 0 0

We have that [, u-Vu-udx = — |

B u-Vu-udx,sof!2 u-Vu-udx = 0.

IV. —v [, Auudx = —v [, wudx = —v [ [(ww); —u

1 ]dx

i Wi
= —v [, wjwfds +v [, wju;dx = v [ |Vul?dx,

by the same arguments used in //.

(3.1.3)



V. fn Vp - udx = fg piudx = fg [((wip); — puy,] dx, (3.1.4)

by IBP. By the Divergence Theorem and V- u = 0, (3.1.4) equals

f u;pf;ds.
20

Thus, this term is exactly zero due to the periodic boundary conditions.

VL. —af, Au—0) udx = —a [, (u—0);;udx =—a [, [(u-);ul; — W@—0);u;dx =

—a [y, (=) jufyds + [, (u—u);ju;;dx = a [, V(u—1u): Vudx

Hence, the energy equation becomes

d 1 ., a ) ) _
— j (—lul + —|Vu| )dx +f w|Vul* + aV(u — w): Vu)dx = f f - udx,

where [, G lul? + az—r IVuIZ) dx = Epoqer and [, (v|Vul® + aV(u — @): Vu)dx = &p,5qe; - Next, we

need to prove that fﬂ aV(u — %): Vudx = 0, to show that this term dissipates energy.

3.2 FOURIER SERIES ARGUMENT FOR ENERGY DISSIPATION RATE

In order to show that fn aV(u — u): Vudx = 0, Fourier series expansions will be used. The expansion

foruis

uCx,t) = Z Ak, t)e—kx
k+(0,0,0)

where k = ZTnn = (ky, ky, k3), n € Z3, x = (x1,%,,x3), and the Fourier coefficient i(k, t) =
L%fn u(x,t)e~** dx. The wave number k is defined as k = |k|,. Next, we expand & by

a(x, ) = z bk, t)e—tk*
k+(0,0,0)



and solve for the Fourier coefficient b(k, t). The differential filter in the periodic case is, given u, its
average u is the solution of

—8%Au+u=u,
where § is the length scale of the filter. We have

8T+ = (~8?8+DE= ) bk (=67 + De
k+(0,0,0)

- Z bk, )(52|k|? + 1)e~ik* = Z a(k, t)e~k* =,
k+(0,0,0) k+(0,0,0)
and hence,

b(k,t)(=6%A+ 1) = 1i(k, t),i.e.

u(x,t) = ————1i(k, t)e kX,
xt) 5%k +1 (k. ©)
k+(0,0,0)
Now, we can compute V(u — %): Vu using these Fourier series expansions. First, we calculate u — 1,

5%k?

7 = —S2A77 — 5 —ik-x
u—1u 6°Au Z 62k2+1u(k,t)e
k+(0,0,0)
and V(u — ),
§5%k? "
Vu—1) = Zmu(k) ® (—ik)e k=,
and Vu,

Vu = 2 2k) ® (—ik)e—k*,

k

with @ denoting the tensor product. Therefore,

52k? , ‘
Vu—1u),Vu) = (zma(k) ® (—ik)e_lk'x,z (k) ® (—ik)e ikx)
k

k

52k?

= ). 572y 1 L) @ (—ik) (k) ® (—ik),
k

by the property that the inner product (f, g) = Y f (k)G (k). So,

5212 2,4
_ B S V2 (Vi R |2 = M
(V(u—1u),Vu) = Zk:m [a(k)|“(=Dilk|* = zk: 52k2 + 1

lak)|? = 0,

thus showing that the new term dissipates energy.



4.0 PHENOMENOLOGY OF THE MODEL

4.1 THE ENERGY CASCADE

The energy cascade can be summarized in the following way, as in [P00]. Energy is input into the largest
scales of the flow. There is an intermediate range, called the inertial range, in which nonlinearity drives
the energy into smaller scales and conserves the global energy, since dissipation is negligible. At small

enough scales, i.e. at the Kolmogorov micro-scale n, the energy dissipation becomes non negligible, and

the energy is driven by the viscosity to zero exponentially fast. This theory is visualized in Figure 1.

10



In(E(k))
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energy
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[&—— inertial range ———» energy out
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} ; In(k)
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Figure 1. The Energy Cascade of the NSE

The K41 theory presented by Kolmogorov describing this energy cascade conjectures that the
kinetic energy depends only on the energy dissipation rate € and the wave number k. From this, we
postulate the following relation over the inertial range

E(k) = ce%kb.
If this holds, then the units, denoted by ['], of the LHS must equal the units of the RHS. The units of the
three quantities are

1 B length? d ()] = length3
~ length’ ST imes " © time?
Inserting these units into the relation gives
length® B length’* 1
time? ~ time3¢ lengthb

= lengthza‘b time 3¢,

andthus3=2a-band2=3a,0ra= % and b =— g Hence, Kolmogorov’s Law follows

11



2 _5
E(k) = ce3k™ 3,

over the inertial range, with c being the universal Kolmogorov constant whose value is generally
believed to be between 1.4 and 1.7.

Next, we time average and expand E,,.qei(k). We have
1 art 1 at
| Gur +Siver)ax =Y 2 lator + 5k 1ador
o \2 2 - 2 2

- 2(1 + arkz)%lﬁ(k)lz

k
- Zk:u + atk?) %|a(k)|2 - 2(1 + atk)E (k).

k—1<|k|<k
We know that

_ 2/3 -5/3
Emodel (k) = Chodel gmodel k / Y
over the model’s inertial range, so

2/3 -5/3
Cmodel €model k /

E(k) = 1+ atk?

Looking at two cases, if 1 > atk’, then
2/3
E(k) = Cmodel gm/odel k=573,
and if atk’ > 1, then
23 ,_ 4
E(K) = Codet €20 k™1 Ra 1771,

Figure 2 illustrates the behavior of the energy cascade.

12
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A
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Figure 2. The Energy Cascade of the Non-Newtonian NSE

4.2 THE MICRO-SCALE

In order to determine the micro-scale of the model, we will make two assumptions about the flow, as in
[LO9]. Let the Reynolds number Re be defined by %, a dimensionless parameter of the flow. The

Reynolds number represents the ratio of the inertial forces to viscous forces of the flow. If Re is close to
zero, then viscous forces dominate; for large Re, the viscous forces can be neglected. Let the reference
large scale velocity and length be denoted by U and L, respectively. Also, at the scales of the smallest

persistent eddies, i.e. the bottom of the inertial range, denote the smallest scale velocity and length by

13



Usman @and n. The smallest scales Reynolds number measures the relative size of viscosity on the smallest
persistent scales and is non negligible. Thus, we must have

Resmall = 1’

|nonlinear terms |

where Re ~ — . This gives assumption 1 (Al):
|viscous terms |
1
7 Usmall
_ [Usman * Vigman | _ n sma
|aA(usmall - asmall )l a 62 -1
n_z Usmall — n + 1 Usmall

Next, there is an assumption of statistical equilibrium; energy in at large scales equals energy

. L o
out at small scales. The large scale energy is O(U?), where U = o therefore, the rate of energy in is

u? U\ . 1 . .
0 (?) =0 (T) Since Epoder = |, (E lu? + %T IVuIZ) dx, which scales like (1 + i—Z)UZ, the energy

. . . Ul o .
input rate is approximately (1 + 'Z—;) T The small scales energy dissipation from the viscous terms
scales like

~ 2 57 .
Esmall = Vlvusmall | + alv(usmall — Usmall ) |7usmall |

We will only be concerned for length scales that are much larger than nys:e. Thus, v will be negligible,

and we have assumption 2 (A2):

at\ U3  « 52 -
(1+L2) I =n_2 Usmall — 77_2+1 Usmall | Usmall -

Solving Al for ugpmey, We get

as?
Usmall = W

Plugging this in for ug,qy in A2 and solving for n, we have

a36°
Nt (6% + 1) = — .

(+3)T

Since we cannot solve explicitly for n, we will look at the case where 6 = n (= Nmoger). We want to

find how to pick a in order to make 6 = n, so we rearrange to get
U3 art
3 _ ___ 54 —
—<8 =3 >(1+L2).
First, if ar<<L?, then ‘z—; is negligible and we pick
a= 54/3

\/_

When Z—; becomes non negligible, then we have an equation of the form

14



3 3
a’—aa—>b =O,Wherea=8lL]—3T(5‘4 andb=8UTS4. (4.2.1)
We can now linearly approximate a as a function of a in order to get a nice equation for how to pick a:

a(a) = a(0) + a (0)a

where
' a(a)
@(a)= 3a(a)? —a
4 ’
by implicit differentiation of (4.2.1). Pluggingina =0, a(0) = 2%65 and a (0) = %ﬁ Hence, we
have the approximate formula for picking o to force nyoqer = 6 in terms of a:
U 1VL UE

=2-=6*3 +—
a(a) T +6 T

Thus, after plugging in for a, we have an equation in terms of §, after some simplification:

54 3aq,witha = 8L—3164.

2U8%3  4y?%158/3

a(d) = R + 3173

We can find an exact equation for a by using the known formula for the roots of cubic functions.

If we have a cubic of the form x3 + ax + b = 0, then the real root is given by:

x = —%i/% (27b +(@7b)2 = 4(=3a)?).

3 3
Plugging ina = —812—3154 and b = —8UT54, we get

6) = 171 216U354+ 46656U658 55296(]9512 3
a( )_ 3 2 L 4 LZ ’ L9 T '

15



5.0 FINITE ELEMENT METHOD WITH BACKWARD EULER

5.1 DERIVATION OF THE CODE

In order to use the Finite Element Method (FEM) to approximate the solution to the NSE in 2d using
FreeFEM++, we must first derive the weak or variational formulation. We have the following PDE, with
nonhomogeneous Dirichlet boundary conditions:
U —athu, +u-Vu —vAu +Vp —aA(u —u) = f,in Q
V-u=0,inQ
ulpn =g
u(x, 0) = up(x).

We want to findueV = (H}(Q)? = {v € (H'(Q)?:v|yq =0}andpeP = L3(Q) = {p €

L*(Q): [, pdx = 0} such that
(us, v) — (atAug,v) + (u-Vu,v) —v(Au,v) + (Vp,v) — a(A(u — u),v) = (f,v),VvEV
(V-u,q) =0,vqeEP. (5.1.1)
Applying IBP and the Divergence Theorem on the first equation of (5.1.1) leads to the variational
formulation:

Vu, - v-nds + b(u,u,v) + v(Vu, Vv) —vf Vu-v-nds

(us, v) + at(Vu,, Vv) — arf
20

a0

—(p,V-v)+fanv-nds+a(V(u—ﬂ),Vv)—a-LQV(u—ﬁ)-v-nds=(f,v),VvEV

16



where (-, ) denotes the L? inner product, n is the outward unit normal, and b(a, b, c) = %(a Vb, c) —

3 (a - Vc,b) in order to make a linear system of equations. Discretizing in space using Backward Euler,

<un+1 —u" ) <V (un+1 _ un) v ) f V<un+1 _ un) p
—, v |t art —_— |, VU | — aT — | "V nds
At At 20 At

+b™, u™t,v) + v(Vu L, vy) — vf
20

we get:

Vurtl-v-nds — (p"*t, V- v) +f p"t1v - nds
20

+a (V™! —um),Vv) — af V't —u™)-v-nds = (f**,v),vv eV
20

(V-u"*l,q)=0,vq€PpPh
where t, = nAt, u"(x) = u(t,, x), p"(x) = p(t,,x), V" is the P2 velocity space of continuous

piecewise quadratics, and P"is the P1 pressure space of continuous piecewise linears.

5.2 CONVERGENCE TESTS

The FEM with Backward Euler discretization is a first order method. In order to test the convergence of
the code, we will develop a problem from a known true solution. We consider the NSE
u, +u-Vu—vAu+Vp =0,in ) c R?
V-u=0,in1
with u = a initially. Then, if a satisfies
Aa=—-4a, V-a=0inQ, (5.2.1)
then u = e V4 g satisfies the NSE with pressure p such that Vp = —u-Vu [W92]. If Yisan
eigenfunction of the Laplacian, with eigenvalue /4, then a = (¥, —¥,) satisfies (5.2.1). Let¥ =
cos(x) cosiffy), and thus A = 12 + 12 = 2. Then
u=e"Yq=e 2" (- cos(x) sin(y), sin(x) cosiy)).
For the first problem, a, 6, and v will be fixed in order to see what happens as the spacial step h

and time step dt go to zero. The FreeFEM code is:
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// Sara Hritz 3/10/2010

// Non-Newtonian Fluid Flow Model

// Solve u_t-alpha*tau*laplacian(u_t)+u.gradu-nu*laplacian(u)+gradp-alpha*laplacian(u-ubar)=f,
div(u)=0, in omega

// u=g on the boundary of omega

// uexact=exp(-nu*lambda*t)*a, where a=curl(psi)=(-cos(x)sin(y), sin(x)cos(y))

// psi=cos(x)cos(y), lambda=2

// ubar=(1/(lambda*delta®2+1))*u

// omega=(0,1)x(0,1)

// Fix alpha, delta, and nu; Take hand dt to 0

// time and parameter information

real dt =1.0/10.0; // time step size = tau
real TO =0.0; // initial time

real Tf = 1.0; // final time

real t;

real nu=1.0; // viscosity

real alpha = (0.1)*(4/3); // parameter

real delta=0.1; // differential filter length

// define macros

macro grad(u) [dx(u),dy(u)] //

macro div(ul,u2) (dx(ul)+dy(u2)) //

macro dot(ul,u2,v1,v2) (ul*vi+u2*v2) //

macro ugradv1(ul,u2,vl) (ul*dx(v1)+u2*dy(v1)) //

macro cc(ul,u2,vl,v2,wl,w2) (ugradvl(ul,u2,vi)*wil+ugradvi(ul,u2,v2)*w2) //

macro cch(ul,u2,v1,v2,wil,w2) (0.5*(cc(ul,u2,vl,v2,wl,w2)-cc(ul,u2,wi,w2,vi2))) //
macro contract(ul,u2,v1,v2) (dx(ul)*dx(v1)+dx(u2)*dx(v2)+dy(ul)*dy(vl)+dy(u2)*dy(v2)) //

// define the triangulated mesh
mesh Th=square(10,10); // h=1/10
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// define the called functions

funcf1=0; // RHS

funcf2 =0;

func g1 = exp(-2*nu*t)*(-cos(x)*sin(y)); // BC

func g2 = exp(-2*nu*t)*(sin(x)*cos(y));

// create the FE velocity space Vh of continuous piecewise quadratics and pressure space Ph of
continuous piecewise linears

fespace Vh(Th,P2);

fespace Ph(Th,P1);

// define the FE functions
Vh ul,u2,ulold,u2old,ulbar,u2bar,vi,v2;

Ph p,q;

// define the variational formulation of the NSE for Non-Newtonian fluids
problem NSE([ul,u2,p],[v1,v2,q]) =
int2d(Th)(
(1/dt)*dot(ul,u2,v1,v2)
+ 2*alpha*contract(ul,u2,vl,v2)
+ cch(ulold,u2old,ul,u2,v1,v2)
+ nu*contract(ul,u2,vi,v2)
- p*div(vl,v2)
+g*div(ul,u2))
+int1d(Th)(
-(2*alpha+nu)*cc(vl,v2,ul,u2,N.x,N.y)
+p*dot(vl,v2,N.x,N.y))
-int2d(Th)(
(1/dt)*dot(ulold,u20ld,v1,v2)
+ alpha*(contract(ulold,u2old,v1,v2)+contract(ulbar,u2bar,vi,v2))
+ dot(f1,f2,v1,v2))
+int1d(Th)(
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alpha*(cc(v1,v2,ulold,u2old,N.x,N.y)+cc(vl,v2,ulbar,u2bar,N.x,N.y)))
+on(1,2,3,4,ul=g1,u2=g2);

// define the variational formulation of the differential filter problem for u
problem dfiltu([ulbar,u2bar],[v1,v2]) =
int2d(Th)(
dot(ulbar,u2bar,vi,v2)
+ (delta”2)*contract(ulbar,u2bar,vi,v2))
-int2d(Th)(
ul*vi+u2*v2)

+on(1,2,3,4,ulbar=(1/(2*(delta”2)+1))*g1,u2bar=(1/(2*(deltar2)+1))*g2);

// initialize variables before time stepping loop; u=a when t=0
ul = -cos(x)*sin(y);

u2 =sin(x)*cos(y);

ulbar = (1/(2*(delta”2)+1))*ul;

u2bar = (1/(2*(delta”2)+1))*u2;

t=TO;

// begin time stepping loop
while (t < Tf)

{

ulold = ul;

u2old = u2;

t = t+dt;

// solve for [ul,u2,p]

NSE;

// solve for ubar at current time step
dfiltu;
plot([ul,u2],wait=0,value=true);

}// end while loop
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// plot the computed pressure and velocity
plot(p,fill=1,wait=1,ps="pressurefinall.eps",value=true);

plot([ul,u2],wait=1,ps="velocityfinall.eps",value=true);

// compute the errors grad(pexact)-grad(p), (uexact-u)
Ph gradperrl = abs(-ugradv1(ul,u2,ul)-dx(p));

Ph gradperr2 = abs(-ugradvl(ul,u2,u2)-dy(p));

Vh uerrl = abs(gl-ul);

Vh uerr2 = abs(g2-u2);

// print the L2-norm of the errors in grad(p) and u
cout << "gradient of pressure error=" << sqrt(int2d(Th)(gradperri”2+gradperr2/2)) << end|;

cout << "velocity error=" << sqrt(int2d(Th)(uerr1*2+uerr2/2)) << endl;

Running the code for different values of h and dt, starting with h =dt = % and then cutting them

in half, we get a table of the values of the L> norm of the errors in the gradient of the pressure and

4
velocity values. We pick @ = 63, § = 0.1, and v = 1. The errors are computed at the final time T =1.0.

Table 1. Errors for Problem 1

h, dt IVp — Vpy, ||Lz(Q) Ratio Rate lu —uy ||Lz(Q) Ratio Rate
1/10 0.0196014 0.000132747

1/20 0.011572 1.694 0.760 7.52336e-5 1.764 0.819
1/40 0.0055604 2.081 1.057 3.54803e-5 2.120 1.084
1/80 0.00253806 2.191 1.131 1.60419e-5 2.212 1.145

Both the pressure and velocity error ratios converge at the rate 2°, with p = 1. This first order

convergence is what we expected. Asthe mesh is refined, the computed solution of the model problem
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converges slightly faster to the true solution of the NSE. The plots of the computed pressure and

velocity for each value of h and dt at the final time are displayed in the following figures:

IsoValue

W-6.83673

Figure 3. Problem 1, h = dt = 1/10, Computed Pressure
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Figure 5. Problem 1, h = dt = 1/20, Computed Pressure
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Figure 6. Problem 1, h = dt = 1/20, Computed Velocity
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Figure 7. Problem 1, h = dt = 1/40, Computed Pressure
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Figure 8. Problem 1, h = dt = 1/40, Computed Velocity
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Figure 9. Problem 1, h = dt = 1/80, Computed Pressure
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Figure 10. Problem 1, h = dt = 1/80, Computed Velocity

For the second problem, & will no longer be fixed and will depend on h, and we will see what

happens as h and dt go to zero. The code for this problem is:

// Sara Hritz 3/10/2010

// Non-Newtonian Fluid Flow Model

// Solve u_t-alpha*tau*laplacian(u_t)+u.gradu-nu*laplacian(u)+gradp-alpha*laplacian(u-ubar)=f,
div(u)=0, in omega

// u=g on the boundary of omega

// uexact=exp(-nu*lambda*t)*a, where a=curl(psi)=(-cos(x)sin(y), sin(x)cos(y))
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// psi=cos(x)cos(y), lambda=2

// ubar=(1/(lambda*delta”2+1))*u

// omega=(0,1)x(0,1)

// Fix nu; Take delta=3h and h, dt to O

// time and parameter information

real h =1.0/10.0; // spacial step

real dt = h; // time step size = tau
real TO =0.0; // initial time

real Tf = 1.0; // final time

real t;

real nu=1.0; // viscosity

real delta = 3*h; // differential filter length

real alpha = (delta)*(4/3); // parameter

// define macros

macro grad(u) [dx(u),dy(u)] //

macro div(ul,u2) (dx(ul)+dy(u2)) //

macro dot(ul,u2,v1,v2) (ul*vi+u2*v2) //

macro ugradvl(ul,u2,vl) (ul*dx(vl)+u2*dy(vl)) //

macro cc(ul,u2,vi,v2,wil,w2) (ugradvi(ul,u2,vi)*wil+ugradvi(ul,u2,v2)*w2) //

macro cch(ul,u2,vi,v2,wi,w2) (0.5%(cc(ul,u2,vl,v2,wl,w2)-cc(ul,u2,wi,w2,viv2))) //
macro contract(ul,u2,v1,v2) (dx(ul)*dx(vl)+dx(u2)*dx(v2)+dy(ul)*dy(v1)+dy(u2)*dy(v2)) //

// define the triangulated mesh
mesh Th=square(1/h,1/h);

// define the called functions

funcfl=0; //RHS

func f2 =0;

func g1 = exp(-2*nu*t)*(-cos(x)*sin(y)); // BC

func g2 = exp(-2*nu*t)*(sin(x)*cos(y));
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// create the FE velocity space Vh of continuous piecewise quadratics and pressure space Ph of
continuous piecewise linears

fespace Vh(Th,P2);

fespace Ph(Th,P1);

// define the FE functions
Vh ul,u2,ulold,u2old,ulbar,u2bar,vi,v2;

Ph p,q;

// define the variational formulation of the NSE for Non-Newtonian fluids
problem NSE([ul,u2,p],[v1,v2,q]) =
int2d(Th)(
(1/dt)*dot(ul,u2,v1,v2)
+ 2*alpha*contract(ul,u2,vil,v2)
+ cch(ulold,u2o0ld,ul,u2,vi,v2)
+ nu*contract(ul,u2,vi,v2)
- p*div(vl,v2)
+qg*div(ul,u2))
+int1d(Th)(
-(2*alpha+nu)*cc(v1,v2,ul,u2,N.x,N.y)
+p*dot(vi,v2,N.x,N.y))
-int2d(Th)(
(1/dt)*dot(ulold,u20ld,v1,v2)
+ alpha*(contract(ulold,u2old,v1,v2)+contract(ulbar,u2bar,vi,v2))
+ dot(f1,f2,v1,v2))
+int1d(Th)(
alpha*(cc(v1,v2,ulold,u2old,N.x,N.y)+cc(vl,v2,ulbar,u2bar,N.x,N.y)))
+on(1,2,3,4,ul=gl,u2=g2);

// define the variational formulation of the differential filter problem for u
problem dfiltu([ulbar,u2bar],[v1,v2]) =
int2d(Th)(
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dot(ulbar,u2bar,vi,v2)

+ (delta”2)*contract(ulbar,u2bar,vi,v2))
-int2d(Th)(

ul*vi+u2*v2)

+0on(1,2,3,4,ulbar=(1/(2*(delta”r2)+1))*g1,u2bar=(1/(2*(delta?2)+1))*g2);

// initialize variables before time stepping loop
ul = -cos(x)*sin(y);

u2 = sin(x)*cos(y);

ulbar = (1/(2*(delta”2)+1))*ul;

u2bar = (1/(2*(delta”2)+1))*u2;

t=T0O;

// begin time stepping loop
while (t < Tf)

{

ulold = ul;

u2old = u2;

t = t+dt;

// solve for [ul,u2,p]

NSE;

// solve for ubar at current time step
dfiltu;
plot([ul,u2],wait=0,value=true);

}// end while loop

// plot the computed pressure and velocity
plot(p,fill=1,wait=1,ps="pressurefinall.eps",value=true);

plot([ul,u2],wait=1,ps="velocityfinall.eps",value=true);

// compute the errors grad(pexact)-grad(p), (uexact-u)

Ph gradperrl = abs(-ugradv1(ul,u2,ul)-dx(p));
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Ph gradperr2 = abs(-ugradv1(ul,u2,u2)-dy(p));
Vh uerrl = abs(g1-ul);
Vh uerr2 = abs(g2-u2);

// print the L2-norm of the errors in grad(p) and u

cout << "gradient of pressure error=" << sqrt(int2d(Th)(gradperrl”2+gradperr2/2)) << endl|;

cout << "velocity error=" << sqrt(int2d(Th)(uerrl*2+uerr2/2)) << endl;

4
As we decrease the value of h and dt, we get a table of errors. We pick @ = 63, § = 3h, and

v=1

Table 2. Errors for Problem 2
h, dt IVp — Vppll2q) | Error Ratio | Rate llu —upll2q) | Error Ratio Rate
1/10 0.0241666 0.000139179
1/20 0.0124747 1.937 0.954 7.78572e-5 1.788 0.838
1/40 0.00533242 2.339 1.226 3.45882e-5 2.251 1.171
1/80 0.00233252 2.286 1.193 1.52253e-5 2.272 1.184

Again, we see the errors converging at a rate of about 1, giving first order convergence, and the
convergence increases slightly as the mesh is refined. We look at the plots for different values of h and

dt.
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Figure 11. Problem 2, h = dt = 1/10, Computed Pressure
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Figure 13. Problem 2, h = dt = 1/20, Computed Pressure
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Figure 15. Problem 2, h = dt = 1/40, Computed Pressure
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Figure 16. Problem 2, h = dt = 1/40, Computed Velocity
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Figure 18. Problem 2, h = dt = 1/80, Computed Velocity

5.3 THE STEP PROBLEM

In order to see how the non-Newtonian fluid model handles a more realistic problem, we will look at the
step problem, which has a more complex domain. The domain will be reduced by taking x € [0, 20]. We
will take a parabolic boundary condition on the left boundary for input to the flow, homogeneous
Dirichlet boundary conditions on the top and bottom, and a “do nothing” boundary condition on the

right. We will examine the plots of the computed pressure and velocity as the final time is increased, for
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4
fixed values of a, 6, dt, and v. We picka = 63,8 = 0.05(hpq + hypin ), dt=0.1and v = ﬁ. The code

for the step problem is:

// Sara Hritz 3/10/2010

// Non-Newtonian Fluid Flow Model

// Solve u_t-alpha*tau*laplacian(u_t)+u.gradu-nu*laplacian(u)+gradp-alpha*laplacian(u-ubar)=f,
div(u)=0, in omega

// Solve the step problem on [0,20]x[0,10]

// time and parameter information

real dt=0.1; // time step size = tau
real TO =0.0; // initial time
real Tf = 10.0; // final time

real nu = 1.0/600.0; // viscosity
real alpha; // parameter

real delta; // differential filter length

// define macros

macro grad(u) [dx(u),dy(u)] //

macro div(ul,u2) (dx(ul)+dy(u2)) //

macro dot(ul,u2,v1,v2) (ul*vi+u2*v2) //

macro ugradvl(ul,u2,vl) (ul*dx(vl)+u2*dy(vl)) //

macro cc(ul,u2,vi,v2,wil,w2) (ugradvi(ul,u2,vi)*wil+ugradvi(ul,u2,v2)*w2) //

macro cch(ul,u2,vi,v2,wi,w2) (0.5%(cc(ul,u2,vl,v2,wl,w2)-cc(ul,u2,wi,w2,viv2))) //
macro contract(ul,u2,v1,v2) (dx(ul)*dx(v1)+dx(u2)*dx(v2)+dy(ul)*dy(v1)+dy(u2)*dy(v2)) //

// define the triangulated mesh

border A1(t=0,5){x=t; y=0; label=1;};
border A2(t=0,3){x=6+t; y=0; label=2;};
border A3(t=0,11){x=9+t; y=0; label=9;};
border S1(t=0,1){x=5; y=t; label=3;};
border S2(t=0,1){x=5+t; y=1; label=4;};

42



border S3(t=0,1){x=6; y=1-t; label=5;};

border B(t=0,10){x=20; y=t; label=6;};

border C(t=0,20){x=20-t; y=10; label=7;};

border D(t=0,10){x=0; y=10-t; label=8;};

mesh Th=buildmesh(A1(4)+A2(12)+A3(20)+51(2)+52(2)+S3(4)+B(24)+C(32)+D(24));

// define the called functions
funcfl=0; // RHS
funcf2 =0;

func g = y*(10-y)/25; // left BC

// create the FE velocity space Vh of continuous piecewise quadratics and pressure space Ph of
continuous piecewise linears

fespace Vh(Th,P2);

fespace Ph(Th,P1);

// define the FE functions
Vh ul,u2,ulold,u2old,ulbar,u2bar,vi,v2;
Vh h=hTriangle;

Ph p,q;

// define the variational formulation of the NSE for Non-Newtonian fluids
problem NSE([ul,u2,p],[v1,v2,q]) =
int2d(Th)(
(1/dt)*dot(ul,u2,v1,v2)
+ 2*alpha*contract(ul,u2,vl,v2)
+ cch(ulold,u2o0ld,ul,u2,vi,v2)
+ nu*contract(ul,u2,vi,v2)
- p*div(vl,v2)
+g*div(ul,u2))
+int1d(Th,6)(
-2*alpha*cc(v1,v2,ul,u2,N.x,N.y))
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-int2d(Th)(
(1/dt)*dot(ulold,u20ld,v1,v2)
+ alpha*(contract(ulold,u2old,v1,v2)+contract(ulbar,u2bar,vi,v2))
+dot(f1,f2,v1,v2))
+int1d(Th,6)(
alpha*(cc(v1,v2,ulold,u2old,N.x,N.y)+cc(vl,v2,ulbar,u2bar,N.x,N.y)))
+on(1,2,3,4,5,7,9,ul=0,u2=0)

+on(8,ul=g,u2=0);

// define the variational formulation of the differential filter problem for u
problem dfiltu([ulbar,u2bar],[v1,v2]) =
int2d(Th)(
dot(ulbar,u2bar,vi,v2)
+ (delta”2)*contract(ulbar,u2bar,vi,v2))
-int2d(Th)(
ul*vi+u2*v2)
+on(1,2,3,4,5,7,9,ulbar=0,u2bar=0)
+ on(8,ulbar=g,u2bar=0);

// initialize variables before time stepping loop

ul=0.0;

u2 =0.0;

ulbar=0.0;

u2bar =0.0;

realt=TO;

delta = 0.05*(h[].max + h[].min); //best for coarse, non-uniform meshes

alpha = delta”®(4/3);

// begin time stepping loop

while (t < Tf)
{
ulold = ul;
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u2old = u2;

t = t+dt;

// solve for [ul,u2,p]

NSE;

// solve for ubar at current time step
dfiltu;
plot([ul,u2],wait=0,value=true);

}// end while loop
// plot the computed pressure and velocity
plot(p,fill=1,wait=1,ps="pressurel.eps”, value=true);

plot([ul,u2],wait=1,ps="velocityfinall.eps”,value=true);

We obtain the plots of the computed pressure and velocity at the final times T=10, T = 20, and

T=40. A zoom of the velocity field after the step is also shown.
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Figure 19. Step Problem, T = 10, Computed Pressure
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Figure 20. Step Problem, T = 10, Computed Velocity
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Figure 21. Step Problem, T = 10, Zoom in of Velocity near Step
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Figure 22. Step Problem, T = 20, Computed Pressure
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Figure 23. Step Problem, T = 20, Computed Velocity
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Figure 24. Step Problem, T = 20, Zoom in of Velocity near Step

51



IsoValue

m-1.22528

H-0.375905

Figure 25. Step Problem, T = 40, Computed Pressure
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Figure 26. Step Problem, T = 40, Computed Velocity
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Figure 27. Step Problem, T = 40, Zoom in of Velocity near Step

When T = 10, a vortex forms on the right side of the step as expected. As time passes, more
vortices form and travel farther towards x = 20. The vortices separate and trail down the x-axis. Note
the odd behavior of the pressure and velocity at the outflow. This behavior is much worse than for the
usual “do nothing” outflow condition for the NSE. This shows that adapting “do nothing” outflow

condition to the model is a significant open problem.
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6.0 SUMMARY AND CONCLUSIONS

A modification of the NSE for Newtonian fluids was made through introducing a kinetic energy
modification and an eddy viscosity acting on the marginally resolved scales. This regularization is related
to a model for non-Newtonian fluids. By using K41 theory and similar procedures as those for the
Newtonian NSE, equations for the energy cascade and micro-scale were obtained in order to understand
the phenomenology of the model. After this, it was possible to analyze how to choose the value of the
model parameters in order to allow the micro-scale to be of the same order as the chosen mesh width.

A formula is derived which enforces the model micro-scale to equal the averaging radius (n = 6).
In computing practice, we almost always take the averaging radius equal to the mesh width. The
guestion becomes now: Does forcing n = 6 = Ax over diffuse large or transitional flow structures? We
explore this in tests of the model applied to the forward-backward step and conclude that it is

successful: separation of the trailing vortex does occur.

5
We also find the transition point between the correct k™ 3 energy spectrum and the accelerated

11 4 2
k3 energy decay. When n =6, so a ~ §3, we find the transition length scale is at approximately 0(53),

which is larger than O(6). Thus, one improvement would be to use T in the model to put this transition
pointatn =46 =Ax.

With FreeFEM++, we were able to create a program to solve the non-Newtonian flow model
with the Finite Element Method with a Backward Euler discretization. First, we observed the behavior of
an exact known solution to the NSE. We saw the first order convergence that is expected. Lastly, we
looked at the step problem and observed the behavior that we expected by examining the plots of the

computed velocity near the step.
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