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Abstract

An example is presented of a pair of time-dependent ordinary dif-
ferential equations for which an energy-based stability proof similar to
the one for the Navier-Stokes equations can be made. Two discretiza-
tions are considered: nonlinear backward Euler and a linearized back-
ward Euler with the nonlinear term computed partly at the previous
time step. It is shown that the continuous and nonlinear backward Eu-
ler discretization are stable and also that a particular steady solution
u0 is Lyapunov stable, with the same dependence on problem data.
In contrast, while the linearized backward Euler system is stable, u0

is Lyapunov stable only for small time increment.

1 Introduction

The example presented below was generated as an aid in understanding the
behavior of a common discretization of the Navier-Stokes equations. When
the Navier-Stokes equations are discretized using the “Trapezoid Rule Linear
Extrapolated” (Algorithm 9.2 in [2]) approach or the “linearized (or lagged)
Backward Euler” approach (Scheme 5.1 in [1]), it is sometimes observed that
solutions depart from the expected solution and move to one with substan-
tially larger energy. This author has observed cases where simple Poiseulle
flow at Reynolds numbers well below 100 can exhibit an excursion to an un-
expected high energy transient state. It is conjectured that the excursion is a
consequence of loss of Lyapunov stability of steady Poiseulle flow in the dis-
crete case when the time increment is large, despite provable unconditional
stability of the discrete system.

To see that it is possible for a system to be at once unconditionally stable
and to have solutions that are not Lyapunov stable, we present an example of
a system of ODEs along with a temporal discretization that has the following
properties.

1. Both the continuous and discrete systems possess energy functionals
that are bounded for all time, with the bound depending only on prob-
lem data.
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2. For some data choices, the continuous system possesses (constant) so-
lutions that are stable in the Lyapunov sense.

3. These solutions are also solutions of the system discretized with the
usual (nonlinear) backward Euler method and are stable in the Lya-
punov sense for the same problem data as the continuous case.

4. These solutions are also solutions of the system discretized with a lin-
earized backward Euler method analogous to Scheme 5.1 in [1] or Algo-
rithm 9.2 in [2]. In this case the solutions are only conditionally stable
in the Lyapunov sense, depending on the time step as well as problem
data.

2 The continuous system

Consider the following nonlinear system of ordinary differential equations.

u̇1 + c(u1, u2)u2 + νu1 = f1

u̇2 − c(u1, u2)u1 + νu2 = f2
(1)

where c(u1, u2) is a smooth (scalar) function of u = (u1, u2) and f = (f1, f2)
is a smooth function of time, t. In this note, c will generally be taken to be
an affine function of u and f a constant. In addition, ν will be assumed to
be a positive constant and the system satisfies initial conditions u(0) = u0 =
(v1, v2).

Equation (1) can be rewritten as

u̇ + c(u)Pu + νu = f
u(0) = u0

(2)

where

Pu =

(
0 1
−1 0

)
u.

Proposition 2.1. Solutions u to (2) are bounded in time.

Proof. Take the dot product of the first equation in (2) with u to get an
energy equality

1

2

d‖u‖2

dt
+ ν‖u‖2 = f · u.
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Apply the Schwartz and Young’s inequalities to get

1

2

d‖u‖2

dt
+ ν‖u‖2 ≤ 1

2ν
‖f‖2 +

ν

2
‖u‖2,

so that
d‖u‖2

dt
+ ν‖u‖2 ≤ 1

ν
‖f‖2.

Gronwall’s inequality completes the proof.

Next, we wish to discuss stability of solutions of (2). To this end, we turn
to the notion of Lyapunov stability (see, for example, [3]).

Definition Suppose the constant u0 is a solution of (2). Then the solution
u0 is termed “Lyapunov stable” if, for given ε > 0, there exists a δ > 0 so
that if y0 satisfies ‖y0 − u0‖ < δ, then a solution y(t) to (2) with initial
condition y0 satisfies ‖y(t)− u0‖ < ε.

One way of determining Lyapunov stability of a constant solution u0 of
(2) would be to linearize (2) about u0 and then check that the resulting linear
system is stable. Suppose, then that u0 is a constant solution of (2) and that
y is a solution with y(0) = u0. Then we can write

ẏ + c(y)Py + νy = f ,

c(u0)Pu0 + νu0 = f .

Subtracting, rearrainging, ignoring the higher order term (c(y)−c(u0))P (y−
u0), and taking limits yields the following linearized ODE for w = y − u0.

ẇ + (∇c0 ·w)Pu0 + c0Pw + νw = 0, (3)

where c0 denotes c0(u0) and ∇c0 denotes ∇c(u0).
Close examination of the term (∇c0 ·w)Pu0 reveals that it can be written

as Pu0(∇c0)Tw. To see why this is the case, write

(∇c0 ·w)Pu0 = Pu0(∇c0 ·w) = Pu0

(
(∇c0)Tw

)
because (∇c0 ·w) is a scalar. As a result, (3) can be written as

ẇ + Pu0(∇c0)Tw + c0Pw + νw = 0, (4)

and this equation is stable if the linear operator

A = νI + Pu0(∇c0)T + c0P (5)

has no eigenvalues with negative real part.

3



Remark If c(u) = u2, so that c0 = 0 and (∇c0)T = (0, 1), then

A =

(
ν (u0)2

0 ν − (u0)1

)
so that the solution u0 of (2) is Lyapunov stable so long as (u0)1 ≤ ν.

3 Linearized backward Euler with lagged non-

linear term (LBE)

One possible discrete form of (2) is the LBE form

un+1−un

∆t
+ c(un)Pun+1 + νun+1 = f

u0 = u0
(6)

It turns out that LBE produces solutions that are bounded, just as in the
continuous case.

Proposition 3.1. Solutions to (6) are bounded independently of n, with the
bound depending on f , ν and ∆t.

Proof. This proof follows one appearing in [1]. Take the dot product of (6)
with un+1, much as in the continuous case. The result is

1

∆t
‖un+1‖2 − 1

∆t
un+1 · un + ν‖un+1‖2 = f · un+1 (7)

Using a well-known equality

un+1 · un =
1

2
‖un+1‖2 +

1

2
‖un‖2 − 1

2
‖(un+1 − un)‖2,

and the Cauchy-Schwarz and Young’s inequalities, (7) yields

1

2∆t
‖un+1‖2 − 1

2∆t
‖un‖2 +

1

2∆t
‖(un+1 − un)‖2 +

1

2
ν‖un+1‖2 ≤ 1

2ν
‖f‖2

Dropping one term on the left yields the expression

(
1

∆t
+ ν)‖un+1‖2 − 1

∆t
‖un‖2 ≤ 1

ν
‖f‖2.
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Solutions to this inequality are bounded by a version of discrete Gronwall
inequality. It turns out that an elementary proof of boundedness for this
simple inequality is available.

Simplifying slightly and denoting ρ = 1
∆t
/( 1

∆t
+ ν) < 1 yields

‖un+1‖2 ≤ ρ‖un‖2 +
1

ν2
‖f‖2. (8)

Notice that

υn+1 = ρnυ0 + φ

n−1∑
0

ρk ≤ υ0 +
φ

1− ρ

satisifies the recursion
υn+1 = ρυn + φ, (9)

so that taking φ = ‖f‖2/ν2 and υ0 = 0, along with a simple recursive argu-
ment comparing (8) with (9) shows that ‖un‖2 ≤ φ

1−ρ .

Proposition 3.2. Solutions to (6) can be Lyapunov stable or not, depending
on f , ν and ∆t.

Proof. The calculation leading up to (4) can be repeated for LBE to yield
the following linearized discrete equation

wn+1 −wn

∆t
+ Pu0(∇c0)Twn + c0Pwn+1 + νwn+1 = 0. (10)

As a consequence, LBE is stable iff the following matrix has eigenvalues not
larger than one.

A =

(
(

1

∆t
+ ν)I + c0P

)−1(
1

∆t
I − Pu0∇cT0

)
(11)

Remark If c(u) = u2, so that c0 = 0 and (∇c0)T = (0, 1), then

A =
1

1
∆t

+ ν

(
1

∆t
−(u0)2

0 1
∆t

+ (u0)1

)
.

One of the eigenvalues of A is 1/∆t/(1/∆t+ ν) < 1, but the other is

1
∆t

+ (u0)1

1
∆t

+ ν
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so that, for example, when (u0)1 = −2ν and ∆t = 2/ν, then the smaller
eigenvalue is -1 and (10) is stable but not asymptotically stable. Larger
values of ∆t result in (10) being unstable and smaller values result in (10)
being asymptotically stable. All three of these cases satisfy the condition
(u0)1 < ν so that the solution u0 of the continuous system is Lyapunov
stable for any choice of (u0)2.

Remark If the (nonlinear) Backward Euler method (BE) were used,

un+1−un

∆t
+ c(un+1)Pun+1 + νun+1 = f

u0 = u0
(12)

then the same linearization steps would yield

wn+1 −wn

∆t
+ Pu0(∇c0)Twn+1 + c0Pwn+1 + νwn+1 = 0. (13)

with the resulting matrix

A =

(
(

1

∆t
+ ν)I + Pu0∇cT0 + c0P

)−1(
1

∆t
I

)
If c(u) = u2, so that c0 = 0 and (∇c0)T = (0, 1), then

A =
1

∆t

(
1

∆t
+ ν (u0)2

0 1
∆t

+ ν − (u0)1

)−1

.

One of the eigenvalues is smaller than 1 for all ν > 0, and the other is smaller
than 1 for (u0)1 < ν, exactly the condition for the continuous case.
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