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Abstract

We consider a one-dimensional chain of phase-transforming springs with harmonic
long-range interactions. The nearest-neighbor interactions are assumed to be trilin-
ear, with a spinodal region separating two material phases. We derive the traveling
wave solutions governing the motion of an isolated phase boundary through the
chain and obtain the functional relation between the driving force and the velocity
of a phase boundary which can be used as the closing kinetic relation for the classi-
cal continuum theory. We show that a sufficiently wide spinodal region substantially
alters the phase boundary kinetics at low velocities and results in a richer solution
structure, with phase boundaries emitting short-length lattice waves in both direc-
tion. Numerical simulations suggest that solutions of the Riemann problem for the
discrete system converge to the obtained traveling waves near the phase boundary.

1 Introduction

A remarkable property of materials undergoing martensitic phase transitions is
the hysteresis they exhibit under cyclic loading as a result of energy dissipation
by propagating phase boundaries. Kinetics of phase boundaries is thus a key to
understanding the main features of the hysteretic behavior. On the continuum
level martensitic phase transitions are modeled by a mixed-type hyperbolic-
elliptic partial differential equation, and phase boundaries are represented as
moving discontinuities of the deformation gradient. Since martensitic phase
boundaries are typically subsonic, the resulting initial-value problem is ill-
posed unless a closing kinetic relation (Slemrod, 1983; Truskinovsky, 1985)
is specified in addition to the usual Rankine-Hugoniot jump conditions and
dissipation inequality. Classical continuum elasticity provides no information
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about this relation due to its failure to describe the internal structure of a
phase boundary.

A recently proposed approach is to extract the kinetic relation from the un-
derlying lattice model (Truskinovsky and Vainchtein, 2005a,b; Slepyan et al.,
2005; Truskinovsky and Vainchtein, 2008; Purohit, 2002). The idea follows
the earlier work in dislocation theory (Atkinson and Cabrera, 1965; Celli and
Flytzanis, 1970; Ishioka, 1971; Kresse and Truskinovsky, 2004) and fracture
(Slepyan and Troyankina, 1984; Slepyan, 1981; Marder and Gross, 1995). The
discrete model provides the fine structure of the transition front that was
eliminated in the continuum theory and thus resolves the ambiguity at the
macroscale. To account for the macroscopic dissipation, one considers the trav-
eling wave solutions that describe the motion of an isolated phase boundary.
These solutions show that a moving interface emits short-length lattice waves
which carry energy away from the propagating front. This radiative damping
is perceived on the macroscopic level as energy dissipation. Accounting for the
energy fluxes carried by the lattice waves, one can obtain the kinetic relation
which can be used to supplement the continuum theory (Truskinovsky and
Vainchtein, 2005b). The kinetic relation is commonly represented as the func-
tional relation between the driving (configurational) force on a phase boundary
and its velocity.

As shown by Truskinovsky and Vainchtein (2005b) and Slepyan et al. (2005),
explicit solutions of the discrete problem can be found if one considers a
one-dimensional lattice with bilinear interaction force between nearest neigh-
bors (NN), which can be supplemented by harmonic long-range interactions
(Truskinovsky and Vainchtein, 2005b). In this model, the NN force is linear
in each phase and discontinuous at some critical strain which separates the
two phases. The piecewise linearity allows one to construct traveling wave so-
lutions using Fourier transform techniques and leads to a simple analytical
expression for the kinetic relation. However, it neglects the spinodal region,
the set of strains where the macroscopic elastic energy is nonconvex, which is
represented by a single point of force discontinuity in the bilinear model.

In this paper we investigate the role of spinodal region in the kinetics of phase
transitions. To do this, we consider a trilinear up-down-up NN interaction
force, with spinodal region represented by the decreasing segment that can
vary in width. Following Truskinovsky and Vainchtein (2005b, 2008), we also
consider harmonic long-range interactions with an arbitary number of neigh-
bors. To solve the problem with trilinear interactions, we adopt the approach
of Flytzanis et al. (1977) which was proposed in the context of a screw disloca-
tion motion but can be applied to other discrete problems that have a similar
structure. Specifically, we express the strain in each NN spring in terms of an
unknown shape function whose support determines the number of springs in
the spinodal region. The shape function is then shown to be an eigenfunction



of a certain integral operator, and the corresponding eigenvalue is the width
of the spinodal region. The kernel of the integral operator is determined by
the solution of the bilinear problem, which is already explicitly known. Once
the shape function is determined from the numerical solution of the eigenvalue
problem, one can find the traveling wave solutions and the corresponding ki-
netic relation.

As in the work of Flytzanis et al. (1977), we find that the main effects of spin-
odal region are the phase shift and decreased amplitude of the emitted lattice
waves and the lower value of the driving force. The differences are small at
near-sonic velocities, suggesting that the bilinear model is adequate in that
regime. However, a sufficiently wide spinodal region results in striking differ-
ences at small velocities which were not considered by Flytzanis et al. (1977).
In particular, in the bilinear model and in the trilinear model with a narrow
spinodal region there are no traveling wave solutions in some small-velocity in-
tervals (velocity gaps). Meanwhile, a sufficiently wide spinodal region results
in existence of traveling waves at many of these velocities and significantly
narrows the velocity gaps. As a consequence, we obtain a richer solution struc-
ture, with phase boundaries emitting lattice waves of different frequencies in
both directions, and a more complex kinetic relation that consists of several
segments separated by the velocity gaps.

To verify the obtained solutions and check their stability, we conducted a se-
ries of numerical simulations of the Riemann problem for the discrete problem
with an piecewise constant initial condition that has a single phase boundary.
The strain in front of the phase boundary is fixed while the strain behind is
varied and serves as a loading parameter. At small values of the applied strain
the phase boundary is trapped. Once the strain exceeds a certain threshold,
the phase boundary starts moving with some nonzero speed, and the solution
around the phase boundary approaches the traveling wave solution with the
corresponding velocity and driving force. As we continue increasing the ap-
plied strain, the numerical kinetic relation follows the one obtained from the
traveling wave solutions and only involves phase boundary velocities for which
there exists a traveling wave. Thus the numerically generated kinetic relation
also has velocity gaps, suggesting that a phase boundary cannot move with
certain velocities. Such velocity gaps are easy to miss in a numerical simula-
tion, and a continuous kinetic curve interpolating the numerically computed
points is assumed instead (Purohit, 2002).

This paper is organized as follows. In Section 2 we introduce the lattice model
and derive the governing equations. Traveling wave solutions that model the
motion of an isolated phase boundary are obtained in Section 3, and the kinetic
relation is derived in Section 4. The results are presented in Section 5 and are
compared to the numerical simulations in Section 6. Concluding remarks can
be found in Section 7.



2 Lattice model

Consider a chain of particles, each interacting with its g neighbors on each
side. Let u,(t) be the displacement of the nth particle. Then the total energy
of the chain can be written as

S [’"2‘ +zp¢<u)] 1)
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where ¢ is the reference interparticle distance, p is the mass density per unit
length, and ¢,(w) is the energy density of the interaction between pth nearest
neighbors. The dynamics of the chain with energy (1) is governed by an infinite
system of ordinary differential equations:
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These equations are the discrete analog of the partial differential equation
PUy = (O(Uw))w (3)

governing the displacement u(x,t) of a one-dimensional elastic bar with the
macroscopic stress-strain relation

o(w) = z o 4)

To obtain analytical results, we consider the simplest potentials that allow for
a possibility of a phase transitions while capturing the essential features of the
material behavior. We assume that the nearest-neighbor (NN) interactions are
governed by a trilinear up-down-up interaction force:

piw, w < we—0/2
— 1
P (w) = au1<%—§>, we—0/2<w<w+d6/2 (5
pi(w — a), w > w, + /2,

where we assume that 0 < § < a. See Fig. 1. The two linear segments w < w,—
d/2 and w > w, + 6/2 represent two different material phases; for simplicity,
we assume that the elastic modulus gy > 0 is the same in both phases. The
two phase regions are connected by the spinodal region |w —w.| < §/2, where
¢} (w) < 0 when ¢ < a, as assumed. Parameter § thus measures the width of
the spinodal region. When 6 = 0, we recover the bilinear interaction force with
degenerate spinodal region studied by Truskinovsky and Vainchtein (2005b).
In this case the phase switch occurs at w = w,.. The transformation strain
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Fig. 1. The trilinear interaction force ¢} (w) between the nearest neighbors

a > 0 is independent of w, and § and measures the distance between the two
linearly increasing segments of ¢/ (w).

We further assume that the long-range interaction forces are linear:

¢p(w) = puyw, p=2,..,q. (6)
It is convenient to reformulate the problem using dimensionless variables:

t=t(u/p)? /e, fin = uy/(ag), W, =w./a, f_T d/a, 7)
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Dropping the bars on the new variables and introducing the strain variables
Wy, = Up — Up_1, We can rewrite the governing equations (2) in the form

Wy = Z tp(Wntp — 2Wn + Wn—p) + ¢11 (Wny1) — 2¢,1 (wn) + ¢Il (wn—1).  (8)

p=2

The macroscopic stress-strain relation (4) is the trilinear function

cw, w < w,—0/2
26 —1 1
o(w) = { (€0 (;“’“"C—E, we—6/2 < w < w, +6/2 (9)
Acw — 1, w > we+6/2.

where
q 1/2
.= (zpmp) (10)
p=1

is the dimensionless macroscopic sound speed in each phase. The microscopic
elastic moduli , must be chosen to ensure stability of the uniform deformation
w, = w in each phase. For this it is necessary and sufficient that

g Dk
w?(k) :4Zupsin2? >0 (11)
p=1



for k € (0, ). This implies, in particular, that the square ¢? of the macroscopic
sound speed (10) must be positive. We will also assume that the long-range
interactions, when included, have negative moduli (u, < 0 for p = 2,...,q),
which is consistent with the linearization of the potentials of the Lennard-
Jones type (Truskinovsky and Vainchtein, 2003, 2004) and penalizes formation
of multiple phase boundaries. Note that the stability condition is satisfied,
provided that the moduli are sufficiently small. The limits on the rescaled
parameter ¢ ensuring the negative slope in the spinodal region for NN springs
are now

0<d<1. (12)

3 Traveling waves

Consider an isolated phase boundary moving with a constant velocity V' > 0.
It can be represented by a traveling wave solution of (8) with

We assume the existence of a transition region (—z,z) around the phase
boundary, so that in the moving coordinate system all NN springs in the
transition region (|| < z) have strains in the spinodal part of the interaction
potential: |w(&) — w.| < 6/2. Meanwhile, the NN springs behind and in front
of the transition region are in high-strain and low-strain phases, respectively:
w(&) > w, + 6/2 for £ < —z (phase II) and w(§) > w, — 6/2 for £ > z (phase
I). Following Flytzanis et al. (1977), we write

z

Bh(w(©) = w(§) = [ hls)0(s - €)ds, (14)
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where 6(z) is the unit step function, and we introduced an unknown shape
function h(s) which is zero outside the interval [—z, z] and is normalized so
that

/z h(s)ds =1 (15)

—Z

One can see that the normalization ensures that the NN springs belong to the
proper phases outside the transition region. Note also that in the case 6 = 0
we have z = 0 and the shape function reduces to the Dirac delta function:

h(z) = do(x).

Using (13) and (14), we can replace the system (8) by a single nonlinear



advance-delay differential equation:

V" Zup (€ +p) —2w(&) +w(§ —p)) =
i (16)
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The equation involves two unknown functions, w(§) and h(£), and the un-

known half-width z of the transition region. Below we will follow the procedure

outlined by Flytzanis et al. (1977) to derive an eigenvalue problem that will

yield h(€) and z. The configurations at & = +oo must correspond to stable

homogeneous equilibria plus superimposed short-wave oscillations with zero
average:

(w(€)) = wy, asé&— too. (17)

For consistency, we also need to require that
w(—z) =w,—6/2, w(z)=w.+6/2 (18)
and that the strains w(£) remain in their respective phases, as assumed above.

Applying Fourier transform to the equation (16) (see Truskinovsky and Vainchtein
(2005b) for details), we obtain

2 sin®(k/2)H (k)e*¢dk

w§) =w-—2 I KL(E,V) (19)
where B
H(k) = [ h(e)e e (20)
is the Fourier transform of (&) (recall that h(§) = 0 for |£| > 2),
1 pk
L(k,V)=4) p,sin® 7 V2E?, (21)

p=1

and the contour of integration I is chosen to properly resolve the singularities
along the real axis. Specifically, the contour I' coincides with the real axis
everywhere except near the real roots of L(k,V). It passes below the pole
k = 0 and below the nonzero real roots of L(k,V) if kLi(k,V) > 0 and above
if kLy(k,V) < 0. As explained by Truskinovsky and Vainchtein (2005b), this
ensures that our solution complies with the radiation condition that requires
that oscillatory modes with group velocity V, = V + Ly (k,V)/(2Vk) larger
than V' can appear only in front, while the modes with V;, < V' can appear
only behind the phase boundary (Slepyan, 2002).

In the case z = 0 (6 = 0), we have H(k) = 1, and (19) reduces to the



corresponding expression for the strain w°(¢) in the bilinear case:

0er o 2 rsin®(k/2)e*edk
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Applying the residue theorem along with Jordan’s lemma to (22) and enforcing
the phase switch condition (18), which in this case reduces to w(0) = w,, we
obtain (Truskinovsky and Vainchtein, 2005b)

Wy 4sin2(k/2)e“°§’ <0
0/ kem—(v) kLg(k,V)
w"(§) = ) Asin?(k /2) e . (23)
w - T T /1 1\ > bl
* kel\%(v) kLk(k,V) ¢
where the average strains at infinity are determined by V via
1 4sin®(k/2)
Wl = we F = + T 24
* 2(c? — V2) kENE(V) kL. (k, V)| (24)
note that .
Here
M*=(V)={k:L(k,V) =0, Imk 2 0} | JN=(V) (26)

are all roots of the dispersion relation contributing to the solution on either
side of the front, with

NE*(V)={k:L(k,V)=0, Imk =0, kLy(k,V) = 0} (27)
denoting the sets of real roots distributed according to the radiation condition,
and in (24) the sum is over the set Npos(V) = {k: L(k,V) =0, Imk =0,k >

0} of all positive real roots of the dispersion relation.

To obtain z and h(€) in the case of nonzero §, observe that on one hand, (19)
and (20) yield

d z
= | heale=s)ds (28)
where
2 qsin®(k/2)e*dk  duw®
a(¢) _E/r Lk V)
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kerri(v) Li(k, V) 7



On the other hand, (14) and the rescaled version of (5) imply that for |£] < z

d , B 6 —1dw . d_w
so that
dw
d_g = _5h(£)a |£| <z

Combining this with (28), we obtain the integral equation

| hs)ale = s)ds = on(e), Jél < = (30)

—Zz

Thus the shape function h(§) is the eigenfunction of the integral operator in
the left hand side of (30) with the kernel (29) associated with the eigenvalue
0. The eigenvalue problem is similar to the the one obtained by Flytzanis
et al. (1977) for the uniform motion of a screw dislocation (where the kernel
is different) and was derived in the same way. For given 6 > 0 we can find 2
for which 0 is the eigenvalue of the integral operator, with the corresponding
eigenfunction.

Once z and h(§) are known, we can find w(£). Using (19) and (22), one can
write the solution for the trilinear case as the convolution of the shape function
and the solution (23) for § = 0 (bilinear NN interactions) which has already
been found above in an explicit form. We obtain

w(e)=w —u® + [ h(s)uw'(€ = s)ds, (31)

—z

where we have also used (15). Applying the conditions (18), we can find the
constant w_:

w_ = we+w’ — % /z h(s)(w’(z — s) + w’(—z — s))ds. (32)

Note that (31) along with (15) and (25) imply that

1

CQ_VQ’

wy =w_ — (33)

which coincides with one of the Rankine-Hugoniot jump conditions. One can
recover the second jump condition by computing particle velocities as in
Truskinovsky and Vainchtein (2005b).

After the solution is constructed for given V' and 4, we still need to verify that
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Fig. 2. The trilinear macroscopic stress-strain law and the Rayleigh line connecting
the states at infinity for a traveling wave solution describing an isolated phase
boundary. The difference between the shaded areas As — A; equals the driving
force.

it satisfies the assumed inequalities

w(§)>wc+g, £E< -2
we— g <wl®) <wety, < (59
w(§)<wc—§, &> 2.

Formally constructed solutions that violate these constraints are considered
inadmissible and need to be discarded. This leads to non-existence of traveling
wave solutions in certain intervals of low velocities. As we shall see, these
intervals of non-existence become smaller as ¢ is increased.

4 Kinetic relation

The driving force on the phase boundary equals the difference between the
shaded areas shown in Fig. 2. For the trilinear material at hand, it reduces to
Wy +we

G =" (35)

Substituting (32), (33) and recalling (24), we obtain the kinetic relation

G(V:6) = GO(V) + w, — % " W)@z — ) + w2 — ))ds,  (36)

where Lsin®(k/2)
GOV = sin

KENpos(V) |kLk(ka V)‘

is the kinetic relation obtained by Truskinovsky and Vainchtein (2005b) for

d = 0. As § tends to zero in (36), the integral in the last term tends to w,

so that G(V) — G(V;0) = G°(V). Taking advantage of the explicit formula

(37)

10



(23) for w®(€), we can rewrite (36) in terms of residues of the integrand of
(19) evaluated at the roots of the dispersion relation, obtaining

G(V;é)z%( T

keM+(V)

4sin?(k/2)
kLi(k,V)

4sin*(k/2) —ikz
KLk, V) H(k)e )

(38)
where we recall that H (k) is the Fourier transform of A(&) defined in (20). For
given V and 0, the roots of (21) (which are independent of §), z and H (k) can
be found, and the right hand side of (38) thus furnishes a function of V' and
d. At 6 =0 we have H(k) =1 and z = 0, so that due to the symmetry of the
non-real roots (if £ € MT(V)\NT(V), then —k € M~ (V)\N~(V)) and the
fact that the expression under the sum is even in this case, the summations
over the non-real roots cancel out, and we recover (37).

H(k)eikz _

keM— (V)

5 Results

To keep things simple, we now consider the case ¢ = 2: nearest and next-to-
nearest neighbor (NNN) interactions only. In this case it is convenient to use
the parameter 8 = 4uy/p measuring the relative strength of NNN interac-
tions, and our assumptions on the elastic moduli reduce to

-1<pB8<0,

with ¢ = 1+ . The structure of the roots of the dispersion relation (21)
for this case and its effect on the traveling wave solutions (23) and kinetic
relation (37) for bilinear NN interactions have been extensively studied by
Truskinovsky and Vainchtein (2005b), where the role of 5 was analyzed (see
also Truskinovsky and Vainchtein, 2008). NNN interactions with negative
serve as a discrete analog of the interfacial energy term in continuum models,
penalizing the formation of new interfaces and providing an internal structure
of a phase boundary even in the static case (Truskinovsky and Vainchtein,
2004). In this paper we fix 8 and focus our attention on the role of the pa-
rameter ¢ which measures the width of the spinodal region.

We first review some basic features of the solutions in the bilinear case § = 0.
There exist infinitely many resonance velocities V;, Vi1 < V; < Vi = ¢, where
Ly (k,V;) = 0 and thus the solution (23) blows up. For V' between the resonance
values, the traveling wave solution exhibits oscillations which correspond to
phonons emitted by a moving phase boundary. According to the radiation
condition, the oscillation modes with ¥ € N (V) appear in front (£ > 0),
and the modes with £ € N~ (V) are behind the moving front (¢ < 0). It can
be shown that the number of modes appearing behind is always larger by
one. For velocities V such that V; <V < ¢ we have only a single oscillation

11
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Fig. 3. Strain profiles at various velocities of the phase boundary. The grey curves
are solutions for the bilinear case (§ = 0), and the black curves are solutions at
0 = 0.8. Other parameters: w, =1, § = —0.2.

mode behind and no oscillations in front. For V' € (V5,1]) and lower velocity
intervals there are oscillations both behind and in front. See the grey curves
in Fig. 3. However, as discussed in Truskinovsky and Vainchtein (2005b), not
all of the solutions constructed using (23) are actually admissible, i.e. satisfy
the constraints w(€) > w, for £ < 0 and w() < w, for & > 0. Sufficiently
large amplitude of oscillations results in the constraints being violated. At
small enough S this means that no traveling wave solutions actually exist
in the entire low-velocity region (Truskinovsky and Vainchtein, 2005b). For
example, solutions in Fig. 3 at § = 0 (grey lines) are not admissible when
V/e=10.1 and 0.2.

To find solutions at nonzero d, we first computed the solution (23) for the
bilinear case along with the kernel (29). We then used the trapesoidal approx-
imation of the integral in (30) for a finite 2z, so that the eigenvalue problem
reduces to finding z and h such that the given ¢ is an eigenvalue of the resulting
matrix in the numerical approximation, and the vector h is the corresponding
eigenvector that approximates the eigenfunction h(£). In some cases, there
were two values of z but at most one value yielded admissible solutions that
satisfied the constraints (34). Once z and h were found, we used the trape-
soidal approximation of the integrals in (31) and (32) to compute the solution
w(€). For small values of § (and hence z), it is possible to approximate the

12



kernel (29) by a linear or quadratic polynomial (Flytzanis et al., 1977) in the
interval (—z, z), and this yields analytical expressions for z and h(§) which we
used to verify numerically computed solutions and obtain the initial guess for
the numerical root-finding procedure.

The main effects of 6 > 0 are the phase shift and decreased amplitude of
the oscillations, as well as the lower value of the driving force, which means
lower w_ (see Fig. 3). This was also observed and explained by Flytzanis et al.
(1977) in the context of dislocation motion. The phase shift occurs due to the
continuous particle acceleration at 6 > 0 (as opposed to the discontinuity at
t = n/V when d = 0), which results in lower velocities and thus longer time
needed to reach the maxima of oscillations. Meanwhile, the decrease in both
the amplitude of the oscillations and the driving force is due to the finite time
interval [(n — 2)/V, (n+ z)/V] during which the force-strain law in the phase-
transforming nth spring has the negative slope, resulting in an interference
of the emitted waves and leading to the smaller contribution of the short-
wave oscillations to the energy radiation. These effects of nonzero § are very
pronounced at low velocities (V/c < 0.5), when z is larger.

As the consequence of this, non-resonance velocities for which there are no
admissible traveling wave solutions in the bilinear case result in admissible
solutions for sufficiently large 6. Consider, for example, solutions at V/c = 0.1
and V/c = 0.2 shown in Fig. 3. The strain profiles at 6 = 0 (grey curves) are
clearly not admissible but both solutions become admissible at § = 0.8 (black
curves). Indeed, due to the decreased amplitude of oscillations these solutions
satisfy the constraints (34). Thus, as ¢ increases, the velocity intervals where
traveling wave solutions exist become larger. Of course, due to the presence of
resonances, there are still “velocity gaps” around the resonance speeds where
there are no traveling wave solutions even at large § but these gaps become
narrower as ¢ increases. This implies that uniform phase boundary motion
may occur at least at some low velocities in the trilinear case, while in the
degenerate bilinear model this was only possible at unrealistically high values
of B (Truskinovsky and Vainchtein, 2005b).

As V increases, z becomes smaller, as shown in Fig. 4b, and the difference from
the bilinear case becomes less pronounced (see Fig. 3), so that at near-sonic
speeds the solutions are very close. Thus the bilinear model provides an ade-
quate approximation for the trilinear case at medium to high velocities, with
the lower limit becoming higher at wider spinodal region. We remark, however,
that at high velocities solutions are also well approximated by quasicontinuum
models (Truskinovsky and Vainchtein, 2006, 2008), so the discrete model is
primarily needed at lower velocities where the quasicontinuum models are no
longer adequate.

Kinetic relations for § = 0 and § = 0.8 cases formally constructed from (36)

13
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Fig. 4. (a) The kinetic relations at 6 = 0 (grey) and § = 0.8 (black). Ouly the first
four segments are shown. In the bilinear case (the grey curves), the lower-velocity
segments (V' < V1) do not contain admissible solutions and need to be excluded. In
the trilinear model, the corresponding segments contain admissible solutions away
from the resonance velocities (see the text for discussion). (b) The corresponding
graph z versus V for the trilinear model. Other parameters: § = —0.2.

and (37) are shown in Fig. 4a. As discussed above, it consists of segments
separated by the resonance velocities (only the first four segments are shown).
In the bilinear case (the grey curves), all segments except the first (higher-
velocity) one need to be removed because they do not contain admissible
solutions, while in the case § = 0.8 low-velocity solutions away from the reso-
nance velocities can become admissible, as shown in the above examples.

Lattice trapping and the Peierls threshold. In addition to the traveling
wave solution with nonzero V, there are equilibrium solutions of (8) that
correspond to a phase boundary trapped in the lattice. In particular, consider
equilibria that have all NN springs behind the phase boundary in phase II
and all springs in front in phase I, with no springs in the spinodal region. For
a phase boundary located at n = 0 and ¢ = 2 this yields (Truskinovsky and
Vainchtein, 2003)

1 e)\(n—l/Z)
2(1 T o1 nogy st
IR E e R e -
0,

21+ 8) T2t Beoshnz) "7

where A = 2arccosh(1/4/—f) and the strains must satisfy

1)
Wy < We— =, n>1, wn2w6+§, n < 0.

This means that the driving force G compatible with such an equilibrium state
must be inside the trapping region

|G| < G, (40)
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where Gp is the Peierls threshold given by

1
Gp = ——— —
21+ B
In general, the equilibrium states can have one or more springs in the spinodal
region, and the expression for the corresponding Peierls stress depends on ¢
in a more complicated way (Weiner and Sanders, 1964).

N S,

(41)

6 Numerical solution of the Riemann problem and comparison
with the semi-analytical results

To determine stability of the traveling wave solutions obtained above and ex-
plore the possible existence of other solutions that are not of traveling wave
type, we performed numerical simulations of the Riemann problem. Specifi-
cally, we used the Verlet algorithm to solve the system (8) for the case ¢ = 2 on
a sufficiently large lattice (600 particles) with the following initial conditions
for the NN strains wy,:

wg, n < Mg
wn(O) = We, =Ty (42)
0, n > ng,

where s > w, + §/2 and we assume that w. — §/2 > 0, so that NN springs
in front of and behind n = ngy (the center of the chain) are initially in phase
I and II, respectively. The particle velocity is initially zero throughout the
chain. The analysis of the corresponding continuum problem for the equation
(3) suggests the propagation of a phase boundary with shocks in front and
behind it (e.g. Ngan and Truskinovsky, 2002). This is indeed what we see in
Fig. 5 showing a typical numerical solution of the Riemann problem. One can
see that after an initial transient period the phase boundary propagates with
a uniform velocity. To facilitate comparison with the analytical traveling wave
solution that has V/c = 0.2, we applied the strain wy = 2.37472 which yields
the same driving force, assuming that the kinetic relation we derived from
the traveling wave solution holds for the phase boundary in the numerical
calculations. More specifically, using the Rankine-Hugoniot jump conditions
with the initial conditions (42) and recalling that the initial particle velocity
is zero, we obtain

wy, = 2G + w, + (43)

c(ez = V2)’
where we also used (35). For given V', we can use either (36) or (38) to compute
the driving force G and thus determine the corresponding wy,. If the numerical
solution obtained with this initial condition agrees with the traveling wave
solution near the phase boundary, it should generate the same velocity of the
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Fig. 5. Positions z,(t) of every fifth particle in the interval 280 < n < 380 in
numerical solution of the Riemann problem with the left strain w; = 2.37472 in the
initial data and the parameters 8 = —0.2, § = 0.8, w. = 1. The phase boundary is
initially placed at ng = 300, and the problem is solved on the interval 1 < n < 600.
The initial data was chosen to be compatible with the traveling wave solution with
velocity V' = 0.2¢, and the numerical solution generates the same velocity of the
phase boundary.

(a) (b)
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05¢

0.0F 300 320 n

Fig. 6. (a) Strain profile w,(200) for the numerical solution shown in Fig. 5. (b)
The same solution (black curve) zoomed in around the phase boundary (inside
the rectangle in (a)) and compared to the analytical traveling wave solution (grey
curve).

phase boundary propagation. This turns out to be the case for V/c¢ = 0.2,
as illustrated in Fig. 6. Part (a) of the figure shows the strain profile for the
numerical solution at ¢ = 200. In part (b) the same profile is zoomed around
the phase boundary (the black curve) and compared to the appropriately
shifted traveling wave solution (the grey curve). The agreement between the
two solutions is remarkably good, suggesting stability of the traveling wave
solution in this example.

To compare the numerical and analytical solutions across a wide range of
velocities, we conducted the numerical simulations at different values of the
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Fig. 7. (a) The first four segments of the kinetic relation G(V') (solid lines) and
the values obtained from the numerical simulation of the Riemann problem (dots).
(b) Zoom-in of the rectangle in part (a). (c) Velocity V' of the steady interface
propagation as the function of the left strain wy. (d) Zoom-in of the rectangle in
part (c). Thick solid segments along V' = 0 indicate the regions where the phase
boundary in the numerical solution is trapped. Parameters: § = 0.8, § = —0.2.

left strain wy, and computed the resulting velocity V' at large time (averaged
over the last five periods) and the corresponding driving force

wr, 1%
¢ = 2 e c(e> = V?)

(recall (43)) for each initial condition. The results are shown in Fig. 7. Part
(a) compares the numerical kinetic relation (dots) to the semi-analytical one
(solid curves). Note that in this figure the portions of the semi-analytical
kinetic relation where the traveling solutions are not admissible (around the
resonances and at small enough velocities) have not been removed. Part (b)
shows the small-velocity region in more detail. The graph of phase boundary
velocity as the function of the left strain wy, is presented in part (c), and part
(d) is the zoom-in of the same graph at small velocities. One can see that
at sufficiently small wy, corresponding to G below the Peierls threshold (41),
the velocity of the phase boundary is zero. At w;, = 2.2925 (and G = 0.1462,
which is still below the Peierls value Gp = 0.159) the velocity jumps from zero
to the value V = 0.1175¢, with the driving force value on the third segment
(counting from larger to smaller velocities) of kinetic curve we obtained using
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Fig. 8. Strain profiles of the numerical solution w,(200) zoomed around the
phase boundary (black curve) and the traveling wave solution (grey curve) at (a)
V/e = 0.1255 (wy, = 2.2975) and (b) V/c = 0.5 (wr = 3.20606). In both cases
the two solutions are very close, suggesting stability of the traveling wave solution.
Parameters: § = 0.8, 5 = —0.2.

the traveling wave solution. As wy, increases, the velocity continues to increase,
while the numerical kinetic relation follows this segment until the velocity
reaches the value V = 0.131¢, below the second resonance, at w; = 2.3. At
wy, = 2.3025, the velocity jumps to the value V = 0.1463¢, which is above the
second resonance, with the driving force close to the second segment of the
semi-analytical kinetic relation. This segment is followed until V' = 0.2339¢
(wr, = 2.4125), below the first resonance, whereupon the velocity jumps again,
to the value V' = 0.2438¢ (wy, = 2.415), and the numerical kinetic relation
follows the first segment of the kinetic curve we obtained earlier. See parts (b)
and (d) of Fig. 7 for details.

The simulation shows that at large time the numerical solutions converge to
the corresponding admissible traveling wave solutions in the region around
the phase boundary. In addition to the above example of V/c = 0.2 (Fig. 6)
along the second kinetic segment, this is illustrated in Fig. 8 that depicts both
solutions at V//¢ = 0.1255 (the third kinetic segment) and V/c = 0.5 (the first
kinetic segment). This suggests stability of the admissible low-velocity trav-
eling wave solutions with V/c > 0.1175, which have oscillations both behind
and in front of the moving boundary. Recall that in the case 6 = 0 there are
no admissible traveling wave solutions of this type.

An important feature of the numerical simulation is the presence of the velocity
gaps, or discontinuities in the V' = V/(s) graph. The first gap is between V = 0
and V/c = 0.1175. As described above, the phase boundary remains trapped
at n = ng until the left strain reaches the value w; = 2.2925. Each numerical
solution with a trapped boundary is a superposition of the equilibrium state
(39) around the phase boundary and the two shock waves moving away from
it. Fig. 9 shows the solution at wy = 2.29, just before the velocity jumps to a
nonzero value. Note that the NN spring just in front of the phase boundary has
not reached the spinodal region yet, so that the driving force, G = 0.145 is still
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Fig. 9. (a) Strain profiles of the numerical solution w,(150) (black curve) and
wp(200) (grey curve) at wy, = 2.29.(b) Zoom-in of the rectangle in part (a). The
dashed lines indicate the boundaries of the spinodal region. Parameters: § = 0.8,
g =-0.2.
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below the Peierls threshold Gp = 0.159. Observe, however, the characteristic
“overshoot” oscillatory structure (Chin, 1975) behind the shock fronts. As
one can see in Fig. 9b, at w; = 2.29 the peak value of this structure behind
the shock moving ahead of the phase boundary is already inside the spinodal
region (although just barely). Equilibrium phase boundary at higher G' (and
thus higher wy,) results in higher average strain w, behind the shock (in front
of the phase boundary), thus pushing the oscillation peak further inside the
spinodal region and making the solution unstable. Instead, as we increase the
left strain to wy, = 2.2925, the system approaches a state with nonzero velocity
(V' =0.1175¢) that has NN springs ahead and behind the phase boundary in
their respective phases, including the springs behind the shock fronts.

The other two velocity gaps, V/c between 0.131 and 0.1463 and between 0.2339
and 0.2438, are around the resonance velocities. Interestingly, these gaps are
the velocity intervals where there are no admissible traveling waves. Thus,
the numerical solution only selects velocities for which there are admissible
traveling waves and approaches the corresponding traveling wave solution in
the region around the phase boundary.

To study the effect of §, we also conducted the same numerical simulation at
d = 0.4 and 6 = 0 (the bilinear case). The results are shown in Figs. 10 and
11. One can see that as ¢ decreases, the first nonzero velocity becomes higher,
equal to V = 0.2641c at 6 = 0.4 and V = 0.3816¢ at § = 0. In both cases the
numerical solution jumps to the first (highest velocities) segment, whereas at
0 = 0.8 we saw it jumping to V = 0.1175¢ and following the third segment. As
a result, a narrow spinodal region results in phase boundaries with oscillations
behind and no waves emitted in front, while a sufficiently wide spinodal region
(e.g. 0 = 0.8) yields a richer solution structure, with waves propagating both
behind and in front of a phase boundary at smaller velocities, and a more
complicated kinetic relation with two or more velocity gaps. One can also see
that the bilinear model grossly overestimates the lowest nonzero speed of a
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Fig. 10. (a) The first segment of the kinetic relation G(V') (solid line) and the values
obtained from the numerical simulation of the Riemann problem (dots). (b) Velocity
V of the steady interface propagation as the function of the left strain wj,. Thick
solid segments along V' = 0 indicate the regions where the phase boundary in the

numerical solution is trapped. Parameters: § = 0.4, § = —0.2.
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Fig. 11. (a) The first segment of the kinetic relation G(V') (solid line) and the values
obtained from the numerical simulation of the Riemann problem (dots). (b) Velocity
V of the steady interface propagation as the function of the left strain wy. Thick
solid segments along V' = 0 indicate the regions where the phase boundary in the
numerical solution is trapped. Parameters: 6 = 0, g = —0.2.

phase boundary.

7 Conclusions

In this work we considered the effect of the spinodal region on the kinetics
of martensitic phase transitions. Our results use and expand the previously
obtained explicit solution for the bilinear model to solve the problem with
trilinear NN interactions. This extension is nontrivial, as the problem can no
longer be solved using only simple transform techniques and requires finding
an eigenfunction of an integral operator, a method proposed by Flytzanis
et al. (1977) for a discrete model of a screw dislocation. It also provides a
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more realitic model of the actual material behavior by considering stress-
strain curves with a non-degenerate spinodal region. We show that the effect
of spinodal region is particularly important at small velocities where some
traveling wave solutions that were inadmissible in the bilinear problem become
admissible when the spinodal region is sufficiently wide due to the decreased
amplitude of oscillations that in the bilinear case pushed the solution outside
the assumed phase distribution. Interestingly, the inadmissible solutions of the
bilinear problem still play an important role, as they provide the kernel for
the integral equation which is used to obtain solutions for the trilinear case
that may be admissible.

We show that a sufficiently wide spinodal region thus results in a richer struc-
ture of solutions, including low-velocity phase boundaries that emit lattice
waves in both directions. Our numerical simulations suggest stability of these
solutions starting with a certain minimum velocity that decreases as the spin-
odal region becomes wider. They also show that a phase boundary in the
solution of the Riemann problem cannot move with velocities for which there
is no traveling wave solution. This suggests that the kinetic relation obtained
in this work, with inadmissible solutions removed, accurately describes the
phase boundary kinetics for velocities above the minimum nonzero speed. As
the spinodal region becomes wider, the kinetic relation includes more segments
separated by the velocity gaps. The bilinear model provides a good approxi-
mation of phase boundary kinetics at near-sonic velocities but overestimates
the minumum speed and the driving force at all velocities.

By providing an insight into the effects of an essential nonlinearity, our analysis
contributes to the understanding of the complex dynamics of a phase bound-
ary in a nonlinear chain. Clearly, the fully nonlinear problem also presents
substantial additional challenges, such as mode mixing and subsequent ther-
malization. The work in this direction is currently under way.
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