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Abstract

The aim of this paper is to introduce a new approach to efficiently perform un-
certainty quantification for flow in porous media through stochastic modeling. The
governing equations are based on Darcy’s law with stochastic permeability. Starting
from a specified covariance relationship, the log permeability is decomposed using
a truncated Karhunen-Loève expansion. Multiscale mortar mixed finite element ap-
proximations are used in the spatial domain and a nonintrusive sampling method is
used in the stochastic dimensions. A multiscale mortar basis is computed for a sin-
gle permeability that captures the main characteristics of the porous media, called
a training permeability, and used as a preconditioner for each stochastic realiza-
tion. We prove that the condition number of the preconditioned interface operator
is independent of the subdomain mesh size and the mortar mesh size. Computa-
tional results confirm that our approach provides an efficient means to quantify the
uncertainty for stochastic flow in porous media.

Key words: stochastic collocation, mixed finite element, stochastic partial
differential equations, flow in porous media, interface preconditioner

1 Introduction

In groundwater flow problems, it is physically impossible to know the exact
permeability at every point in the domain. This is due to the prohibitively
large scope of realistic domains, inhomogeneity in the media, and also the
natural randomness occurring at very small scales. One way to cope with
this difficulty is to model permeability (or porosity) as a stochastic function,
determined by an underlying random field with an experimentally determined
covariance structure.
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The development of efficient stochastic methods that are applicable for flow in
porous media has drawn significant interest in the last years [12,42]. Stochastic
sampling methods have grown in popularity due to their nonintrusive nature
in terms of modifying a legacy simulation code. The best known sampling
method is Monte Carlo simulation (MCS), which involves repeated genera-
tion of random samplings (realizations) of input parameters followed by the
application of the simulation model in a “black box” fashion to generate the
corresponding set of stochastic responses. These responses are further analyzed
to yield statistical moments or distributions. The major drawback of MCS is
the high computational cost due to the need to generate valid representative
statistics from a large number of realizations at a high resolution level.

One approach for improving the efficiency of non-sampling methods is the
stochastic collocation method [4,40,39]. It combines a finite element discretiza-
tion in physical space with a collocation at specially chosen points in proba-
bility space. As a result a sequence of uncoupled deterministic problems need
to be solved, just like in MCS. However, the stochastic collocation method
shares the approximation properties of the stochastic finite element method
[5,37], making it more efficient than MCS. Choices of collocation points in-
clude tensor product of zeros of orthogonal polynomials [4,40], sparse grid
approximations [15,27,36,40], and probabilistic collocation [22].

A tremendous amount of research over the past thirty years has been devoted
to the efficient parallel solution of deterministic subsurface flow problems. Non-
overlapping domain decomposition methods are popular due to their ease of
parallel implementation, physically meaningful interface conditions, and abil-
ity to handle different physical models in different subdomains. The mortar
finite element method is a generalization of these methods which allows for
nonconforming discretizations on the subdomain interfaces and greater flexi-
bility in the choice of interface approximation spaces. This approach can also
be interpreted as a nonstandard multiscale method [3] with the subdomain
problems serving as the fine scale and the interface problem representing the
coarse scale. This interpretation allows for a posteriori error estimates and
adaptive mesh refinement for both the subdomain and mortar scales. The
coarse scale interface problem is usually solved via an iterative method such
as the conjugate gradient or GMRES [21], which relies on the availability of an
efficient and robust preconditioner, e.g., Neumann-Neumann [24], balancing
[23,13,29], or multigrid [38].

Recently, an alternative algorithm, based on the multiscale interpretation, has
been developed for the mortar multiscale method [19]. In this approach, a set of
multiscale basis functions are computed for the coarse scale interface problem,
which is then solved efficiently in parallel. The cost of computing a multiscale
basis function is solving a subdomain problem. The number of multiscale basis
functions per subdomain is equal to the number of coarse scale mortar degrees
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of freedom for this subdomain. In [19], this was shown to outperform the
original algorithm with the balancing preconditioner in certain scenarios. The
multiscale basis approach has been applied to stochastic problems in [18].
There, a multiscale basis is computed for each stochastic realization, which
may lead to substantial computational cost if many realizations are needed.

In this paper, we develop a multiscale preconditioner that alleviates the need
to recompute the multiscale basis for each realization. A multiscale mortar
basis is computed for a single permeability that captures the main character-
istics of the porous media, called a training permeability. The resulting training
operator is used as a preconditioner for each stochastic realization. We prove
that the condition number of the preconditioned system is bounded by a con-
stant independent of the subdomain mesh size, the number of subdomains, and
the mortar mesh size. The cost of the preconditioner is solving an interface
problem for the training operator. This is done by an iterative procedure that
requires computing the action of the training operator on each iteration. This
action is computed via a linear combination of the multiscale basis functions.
Since the basis is precomputed, no additional subdomain solves are required
for the preconditioner, resulting in a very efficient algorithm.

The rest of the paper is organized as follows. In §2, we introduce the model
problem and the Karhunen-Loéve expansion. The nonintrusive stochastic meth-
ods are defined in §3. In §4, we define the mortar mixed finite element method.
A multiscale domain decomposition formulation of the method is given in §5.
The multiscale basis preconditioner is introduced and analyzed in §6. Finally,
in §7 numerical results are provided to confirm the theory and illustrate the
efficiency of the method for flow in porous media.

2 Model Problem

We begin with the mixed formulation of Darcy flow. Let D ⊂ Rd, d = 2, 3 be
a bounded Lipschitz domain and Ω be a stochastic event space with proba-
bility measure P . The Darcy velocity u and the pressure p satisfy P -almost
everywhere in Ω 

u = −K(x, ω)∇p, in D,

∇ · u = f, in D,

p = pb, on ∂D.

(2.1)

For simplicity we assume Dirichlet boundary conditions in the analysis. More
general boundary conditions can also be considered via standard techniques.
The permeability K is a diagonal tensor with uniformly positive and bounded
elements in D. To simplify the presentation, we will assume that K is a scalar
function. Since the permeability K is a stochastic function, p and u are also
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stochastic.

Throughout this paper the expected value of a random variable ξ(ω) with
probability density function (p.d.f) ρ(y) will be denoted

E[ξ] =
∫

Ω
ξ(ω)dP (ω) =

∫
R
yρ(y)dy.

2.1 The Karhunen-Loève (KL) Expansion

In order to guarantee positive permeability almost surely in Ω, we consider
the log transformed permeability Y = ln(K). Let the mean removed log per-
meability be denoted by Y ′, so that Y = E[Y ] + Y ′. Its covariance function
CY (x, x̄) = E[Y ′(x, ω)Y ′(x̄, ω)] is symmetric and positive definite, and hence
can be decomposed into the series expansion

CY (x, x̄) =
∞∑
i=1

λifi(x)fi(x̄). (2.2)

The eigenvalues λi and eigenfunctions fi of this series are computed using CY
as the kernel of the Type II Fredholm integral equation∫

D
CY (x, x̄)f(x)dx = λf(x̄). (2.3)

The Karhunen-Loève expansion of the log permeability can be written as

Y (x, ω) = E[Y ](x) +
∞∑
i=1

ξi(ω)
√
λifi(x), (2.4)

where, if Y ′ is given by a Gaussian process, ξi are mutually uncorrelated
random variables with zero mean and unit variance [20].

At this point, the KL expansion is truncated after N terms, which is rea-
sonable to do as typically the λi decay rapidly [43]. If the expansion is trun-
cated prematurely, the permeability may appear too smooth. Increasing N
introduces more heterogeneity into the permeability realizations. This trun-
cation allows us to write Y (x, ω) = Y (x, ξ1(ω), . . . , ξN(ω)). The images of
the random variables Ωi = ξi(Ω) make up a finite dimensional vector space
ΩN =

∏N
i=1 Ωi ⊂ RN . If ρi corresponds to the p.d.f. of each ξi, then the joint

p.d.f. for the random vector (ξ1, . . . , ξN) is defined to be ρ =
∏N
i=1 ρi. Then we

can write Y (x, ω) = Y (x,y), where y = (y1, . . . , yN) and yi = ξi(ω).

We use the following specific covariance function (in 2-D) originally taken from
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[43], in which λi and fi(x) can be found analytically.

CY (x, x̄) = σ2
Y exp[

−|x1 − x̄1|
η1

− |x2 − x̄2|
η2

]. (2.5)

Here σY and ηi denote variance and correlation length in the i-th spatial
dimension, respectively. These eigenvalues will decay at a rate asymptotic to
O(1/N2) and for this particular case can be computed analytically.

When the exact eigenvalues and eigenfunctions of the covariance function CY
can be found, the KL expansion is the most efficient method for representing
a random field. However, in most cases, closed-form eigenfunctions and eigen-
values are not readily available and numerical procedures need be performed
for solving the integral equation (2.3). Efficient methods for numerically com-
puting the KL expansion are reported in [34].

2.2 Variational Formulation

Appealing to the Doob-Dynkn Lemma [28], the p.d.f. for the permeability K
carries through to the solution of (2.1), so that (u, p) has the form

u(x, ω) = u(x, ξ1(ω), . . . , ξN(ω)) = u(x, y1, . . . , yN) and

p(x, ω) = p(x, ξ1(ω), . . . , ξN(ω)) = p(x, y1, . . . , yN).

Let D be decomposed into nonoverlapping subdomain blocks Di, so that D =
∪ni=1Di, and Di ∩ Dj = ∅ for i 6= j. The blocks need not share complete
faces, i.e., they need not form a conforming partition. Let Γi,j = ∂Di ∩ ∂Dj,
Γ = ∪1≤i<j≤nΓi,j, and Γi = ∂Di∩Γ = ∂Di\∂D denote interior block interfaces.
Let

Vi = H(div;Di), V =
n⊕
i=1

Vi,

Wi = L2(Di), W =
n⊕
i=1

Wi = L2(D),

M = {µ ∈ H1/2(Γ) : µ|Γi
∈ (Vi · νi)∗, i = 1, . . . , n},

where where νi is the outer unit normal to ∂Di and (·)∗ denotes the dual space.

Let (·, ·)S, S ⊂ Rd, denote the L2(S) inner product, and let 〈·, ·〉G, G ⊂ Rd−1,
denote the L2(G) inner product or duality pairing. Following [2,16,18], a weak
form of (2.1) seeks u(x, ω) ∈ V⊗L2(ΩN), p(x, ω) ∈ W⊗L2(ΩN) and λ(x, ω) ∈
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M ⊗ L2(ΩN) such that, for each i,∫
ΩN

(K−1u,v)Di
ρ(y) dy =

∫
ΩN

(
(p,∇ · v)Di

− 〈λ,v · νi〉Γi
− 〈g,v · νi〉∂Di\Γ

)
ρ(y) dy, (2.6)

∫
ΩN

(∇ · u, w)Di
ρ(y) dy =

∫
ΩN

(f, w)Di
ρ(y) dy, (2.7)

n∑
i=1

∫
ΩN
〈u · νi, µ〉Γi

ρ(y) dy = 0, (2.8)

for all v ∈ Vi ⊗ L2(ΩN), w ∈ Wi ⊗ L2(ΩN), and µ ∈ M ⊗ L2(ΩN). Note
that λ is the pressure on the block interfaces Γ and that (2.8) enforces weak
continuity of u · ν on each Γi,j.

3 Nonintrusive Stochastic Methods

After expressing the log permeability as a truncated KL expansion, the prob-
lem has now been reformulated in the finite dimensional space D⊗ΩN ∈ Rd+N .
At this point, there are several ways in which to discretize the problem. The
Stochastic Finite Element Method (SFEM) [14] considers solving the problem
using full d + N dimensional finite elements. The resulting system is signifi-
cantly large, may be difficult to set up, and the solution algorithm does not
easily lend itself to parallelization.

A less intrusive approach is to use d-dimensional finite elements in the spatial
domain D, and to sample the stochastic space ΩN only at certain points. The
Monte Carlo method is the most popular of these sampling techniques. The
advantage of this approach is that the resulting deterministic FEM problems
are completely uncoupled, and may be solved in parallel. The disadvantage
of the Monte Carlo method is that the convergence rate with respect to the

stochastic space is slow, O(1/
√
M̃), where M̃ is the number of realizations.

The Stochastic Collocation Method improves upon the Monte Carlo approach
by sampling at specially chosen collocation points in order to form a poly-
nomial interpolant in the stochastic space. Different varieties of stochastic
collocation arise by considering different sets of collocation points. The sim-
plest approach is a full tensor product grid of collocation points. For rela-
tively small stochastic dimension N , the tensor product stochastic collocation
method converges much faster than Monte Carlo when combined with finite
element spatial approximation [16,4,40,39].

It should be noted that full tensor product grids of collocation points suffer
from the so-called “curse of dimensionality”. Increasing the number of terms
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in the truncated KL expansion (2.4) increases the number of stochastic di-
mensions, which exponentially increases the number of points in a full tensor
product grid. For example, if k collocation points are used in each stochastic
dimension, M̃ = kN . To cope with this problem, more advanced collocation
techniques are possible such as the so called probabilistic collocation method
(see e.g. [22]) and the Smolyak sparse grids (see e.g. [39,27,26]) but will not
be considered in this paper.

Regardless of the choice of nonintrusive stochastic method, we assume hence-
forth that the goal is to find, for 1 ≤ m ≤ M̃ , u{m} ∈ V, p{m} ∈ W and
λ{m} ∈M such that for each i

((K{m})−1u{m},v)Di
= (p{m},∇ · v)Di

−
〈
λ{m},v · νi

〉
Di

− 〈g,v · νi〉∂Di\Γ ,

(∇ · u{m}, w)Di
= (f, w)Di

,∑n
i=1

〈
u{m} · νi, µ

〉
Γi

= 0,

(3.1)
for all v ∈ Vi, w ∈ Wi, and µ ∈ M , where {y1,y2, . . .yM̃} are the chosen
sample points in ΩN , and

K{m} = K(x,ym).

4 The finite element approximation

Let Th,i be a conforming quasi-uniform affine finite element partition of Di, 1 ≤
i ≤ n, of maximal element diameter hi. Note that we need quasi-uniformity
and conformity only on each subdomain. Our method allows for spatially
varying hi, but to simplify the discussion, we let h = max1≤i≤n hi and analyze
the method in terms of this single value h. We allow for the possibility that
Th,i and Th,j do not align on Γi,j. Define Th = ∪ni=1Th,i, and let Eh be the union
of all interior edges (or faces in three dimensions) not including the subdomain
interfaces and the outer boundaries. Let

Vh,i ×Wh,i ⊂ Vi ×Wi

be any of the usual mixed finite element spaces (e.g., those of [8,9,25,10,31]),
and let Vh or, equivalently, Vh · ν contain the polynomials of degree k. Then
let

Vh =
n⊕
i=1

Vh,i, Wh =
n⊕
i=1

Wh,i.

Note that the normal components of vectors in Vh are continuous between
elements within each block Di, but not across Γ.

Let the mortar interface mesh TH,i,j be a quasi-uniform finite element partition
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of Γi,j with maximal element diameter Hi,j. Let H = max1≤i,j≤nHi,j. Define
T Γ,H = ∪1≤i<j≤nTH,i,j. For any τ ∈ TH,i,j, let

Eτ = {E ∈ T : ∂E ∩ τ 6= ∅} .

Denote by MH,i,j ⊂ L2(Γi,j) the mortar space on Γi,j containing either the
continuous or discontinuous piecewise polynomials of degree q on TH,i,j, where
q is at least k + 1. We remark that TH,i,j need not be conforming if MH,i,j is
discontinuous. Now let,

MH =
⊕

1≤i<j≤n
MH,i,j

be the mortar finite element space on Γ. For each subdomain Di, define a
projection Qh,i : L2(Γi)→ Vh,i · νi|Γi

such that, for any φ ∈ L2(Γi),

〈φ−Qh,iφ,v · νi〉Γi
= 0, v ∈ Vh,i. (4.1)

We require that the following condition be satisfied [2], where in this paper
‖ · ‖r,S is the usual Sobolev norm of Hr(S) (we may drop r if r = 0 and S if
S = D).

Assumption 4.1 Assume that there exists a constant C, independent of h
and H, such that

‖µ‖Γi,j
≤ C

(
‖Qh,iµ‖Γi,j

+ ‖Qh,jµ‖Γi,j

)
, µ ∈MH , 1 ≤ i < j ≤ n. (4.2)

Condition (4.2) says that the mortar space cannot be too rich compared to the
normal traces of the subdomain velocity spaces. Therefore, in what follows,
we tacitly assume that h ≤ H ≤ 1. Condition (4.2) is not very restrictive, and
is easily satisfied in practice (see, e.g., [29,41]). In the following, we treat any
function µ ∈MH as extended by zero on ∂D.

In the mixed finite element approximation of (3.1), we seek, for 1 ≤ m ≤ M̃ ,

u
{m}
h ∈ Vh, p

{m}
h ∈ Wh and λ

{m}
H ∈MH such that, for 1 ≤ i ≤ n,


((K{m})−1u

{m}
h ,v)Di

= (p
{m}
h ,∇ · v)Di

−
〈
λ
{m}
H ,v · νi

〉
Γi

− 〈g,v · νi〉∂Di\Γ ,

(∇ · u{m}h , w)Di
= (f, w)Di

,∑n
i=1

〈
u
{m}
h · νi, µ

〉
Γi

= 0,

(4.3)
for all v ∈ Vh,i, w ∈ Wh,i, and µ ∈MH . Strictly within each block Di, we have
a standard mixed finite element method with local conservation over each grid
cell. Moreover, u

{m}
h · ν is continuous on any element edge (or face) with weak

continuity of the flux across the interfaces with respect to the mortar space
MH .
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5 A multiscale domain decomposition formulation

For each 1 ≤ m ≤ M̃ , define a bilinear form d
{m}
H : L2(Γ)× L2(Γ)→ R by

d
{m}
H (λ, µ) =

n∑
i=1

d
{m}
H,i (λ, µ) = −

n∑
i=1

〈
u
∗,{m}
h (λ) · νi

〉
Γi

,

where the pair (u
∗,{m}
h (λ), p

∗,{m}
h (λ)) ∈ Vh ×Wh solves((K{m})−1u

∗,{m}
h (λ),v)Di

= (p
∗,{m}
h (λ),∇ · v)Di

− 〈λ,v · νi〉Γi
, v ∈ Vh,i,

(∇ · u∗,{m}h (λ), w)Di
= 0, w ∈ Wh,i,

(5.1)

for each 1 ≤ i ≤ n. Also define a linear functional g
{m}
H : L2(Γ)→ R by

g
{m}
H (µ) =

n∑
i=1

g
{m}
h,i (µ) =

n∑
i=1

〈
ū
{m}
h · νi, µ

〉
Γi

,

where the pair (ū
{m}
h , p̄

{m}
h ) ∈ Vh ×Wh solves, for 1 ≤ i ≤ n,((K{m})−1ū

{m}
h ,v)Di

= (p̄
{m}
h ,∇ · v)Di

− 〈g,v · νi〉∂Di\Γ , v ∈ Vh,i,

(∇ · ū{m}h , w)Di
= (f, w)Di

, w ∈ Wh,i.
(5.2)

It is straightforward to show (see [2,21]) that the solution of

d
{m}
H (λH , µ) = g

{m}
H (µ), µ ∈MH , (5.3)

generates a solution of (4.3) via

u
{m}
h = u

∗,{m}
h (λH) + ū

{m}
h , p

{m}
h = p

∗,{m}
h (λH) + p̄

{m}
h . (5.4)

The following result has been shown in [2].

Lemma 5.1 For 1 ≤ m ≤ M̃ , the interface bilinear form d
{m}
H (·, ·) is sym-

metric and positive definite on L2(D). If (4.2) holds, then d
{m}
H (·, ·) is positive

definite on MH . Moreover,

d
{m}
H,i (µ, µ) = ((K{m})−1u

∗,{m}
h (µ),u

∗,{m}
h (µ))Di

≥ 0. (5.5)

For each 1 ≤ m ≤ M̃ we define a real NH ×NH matrix D{m}H satisfying[
D{m}H λ,µ

]
:= d

{m}
H (λ, µ) ∀λ, µ ∈MH ,

where NH denote the number of degrees of freedom associated with MH , and
[·, ·] is the Euclidean scalar product in RNH . For each µ ∈MH , µ denotes the
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vector of its values at the NH nodes. We note that D{m}H =
∑n
i=1D

{m}
H,i , where

D{m}H,i satisfy [
D{m}H,i λ,µ

]
= d

{m}
H,i (λ, µ) ∀λ, µ ∈MH .

Note that the interface problem (5.3) can be written as

D{m}H λ
{m}
H = g

{m}
H .

The operator D{m}H is the mortar version of the Steklov-Poincaré operator [30].

We assume that there exist positive constants ĉ{m}, Ĉ{m}, and αi such that

ĉ{m}αiξ
T ξ ≤ ξTK{m}(x)ξ ≤ Ĉ{m}αiξ

T ξ, ∀ξ ∈ Rd, ∀x ∈ Di, i = 1, . . . , n.
(5.6)

It is shown in [41], see also [13,29], that there exist positive constants c{m} and
C{m} such that

c{m}
n∑
i=1

αi|I∂DiQh,iµ|1/2,∂Di
≤
[
D{m}H µ,µ

]
≤ C{m}

n∑
i=1

αi|I∂DiQh,iµ|1/2,∂Di
,

(5.7)
for all µ ∈MH , where I∂Di is a continuous piecewise linear interpolant defined
in [13,41,29]. The constants C{m} and c{m} do not depend on h or H. They
depend only mildly on K{m}, since the dependence on the characteristic values
αi is given explicitly.

6 A multiscale preconditioner

In the original implementation of the mortar mixed finite element method
[41,2], a substructuring domain decomposition algorithm based on the algo-
rithm of Glowinski and Wheeler [21] is used to solve each linear system of
equations resulting from (4.3) using the conjugate gradient (CG) algorithm.
In that approach, the action of the interface operator requires the solution of
subdomain problems for each iteration. In [3], the mortar mixed finite element
method was shown to be equivalent to a nonstandard multiscale method with
the subdomain problems corresponding to the fine scale and the mortar in-
terface problem corresponding to the coarse scale. This relationship has been
explored in [19], where a mortar multiscale flux basis is precomputed. The
action of the interface is then computed by taking a linear combination of
the multiscale basis functions, which is much faster than solving subdomain
problems.

Following [19], we let
{
φ
{k}
H,i

}NH,i

k=1
denote a basis for the mortar spaceMH,i where

NH,i is the number of degrees of freedom associated with MH,i. A mortar
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multiscale flux basis is computed by calculating the flux response for each
mortar basis function. This process is summarized in Algorithm 1.

Algorithm 1 Construction of the Multiscale Basis

for i = 1, 2, . . . , n do
for k = 1, 2, , . . . , NH,i do

(a) Project φ
{k}
H,i onto the subdomain boundary,

Qh,iφ{k}H,i = γ
{k}
i .

(b) Solve the subdomain problem((K{m})−1u
∗,{m}
h (γ

{k}
i ),v)Di

= (p
∗,{m}
h (γ

{k}
i ),∇ · v)Di

−
〈
γ
{k}
i ,v · νi

〉
Γi

,

(∇ · u∗,{m}h (γ
{k}
i ), w)Di

= 0.

(6.1)
(c) Project the flux into the mortar space,

ψ
{m},{k}
H,i = −QTh,iu

∗,{m}
h (γ

{k}
i ) · νi.

(d) Store the multiscale basis function ψ
{m},{k}
H,i .

end for
end for

In the above QTh,i : Vh,i · νi → MH,i is the L2-orthogonal projection from the
normal trace of the velocity space into the mortar space.

Note that the number of solves (6.1) depends only on the number of mor-
tar degrees of freedom associated with a particular subdomain and may be
different for each subdomain.

Once the multiscale basis is computed, the computation of the action of the
interface operator on every CG interface iteration is reduced to a linear com-
bination of the basis functions. More precisely, if λH,i =

∑NH,i

k=1 λ
{k}
H,iφ

{k}
H,i ,

D{m}H,i λH,i =
NH,i∑
k=1

λ
{k}
H,iψ

{m},{k}
H,i ,

where, by abuse of notation, D{m}H,i is the operator corresponding to the matrix
with the same name introduced earlier. In [19], this approach is applied to
deterministic problems and it is shown to reduce the total number of subdo-
main solves in the case of a large number of subdomains with relatively few
mortar degrees of freedom on each interface, or if the permeability is highly
heterogeneous.
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Remark 6.1 This approach is closely related (but more general) than the sub-
structuring methods developed in e.g., [7,6,1]. If the basis functions for MH,i

are chosen to be the Lagrange basis, then this procedure is similar to the con-
struction of the local contribution to the Schur complement [35,30].

In [18], the multiscale basis method is combined with stochastic collocation to
model flow in non-stationary random porous media. In that approach, how-
ever, Algorithm 1 must be repeated for each 1 ≤ m ≤ M̃ . To avoid recomput-
ing the multiscale flux basis for each realization, we only implement Algorithm
1 for a carefully chosen training operator. This multiscale flux basis is then
used to compute a preconditioner for each of the realizations.

Let K denote a uniformly positive and bounded training permeability. We
use Algorithm 1 to compute a multiscale flux basis for the interface training
operator DH . Then, for each 1 ≤ m ≤ M̃ , we solve the preconditioned system

D−1
H D

{m}
H λ

{m}
H = D−1

H g
{m}
H (6.2)

using an iterative algorithm such as CG or GMRES. Note that in this ap-
proach, the action of D{m}H is computed by solving subdomain problems with

the true permeability Km, while the action of D−1
H is computed using the

multiscale flux basis.

The preconditioner D−1
H is not explicitly constructed. Instead, we use an it-

erative algorithm such as CG to compute the action of the preconditioner
as needed. On each CG iteration, the action of the interface operator DH is
computed using the linear combination of multiscale basis functions

DH,iλH,i =
NH,i∑
k=1

λ
{k}
H,iψ

{k}
H,i ,

thus avoiding the need to solve any additional subdomain problems.

Remark 6.2 In general, the preconditioned system (6.2) is not symmetric,
so GMRES is usually used. In fact, since the action of the preconditioner is
computed another iterative method, we should use an algorithm that allows dif-
ferent preconditioners, e.g., FGMRES [33], to solve (6.2). This could substan-
tially decrease the cost in applying the preconditioner and will be investigated
in a future paper.

The following result on the preconditioning of symmetric positive definite
operators can be found in [30] Theorem 4.1.5.

Theorem 6.3 Let D1 and D2 be two symmetric and positive definite N ×N
real matrices. Assume that there exists constant C1 > 0 and C2 > 0 such that

C1 [D1µ,µ] ≤ [D2µ,µ] ≤ C2 [D1µ,µ] ,
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for all µ ∈ RN where [·, ·] is the Euclidean scalar product in RN . Then the
eigenvalues of the preconditioned matrix D−1

1 D2 satisfy

C1 ≤ νmin ≤ νmax ≤ C2,

and the spectral condition number cond
(
D−1

1 D2

)
:= νmax

νmin
satisfies

cond
(
D−1

1 D2

)
≤ C2

C1

.

We are ready to present the main theoretical result in this paper.

Theorem 6.4 Assume that (4.2) holds and that the training operator DH
satisfies a bound similar to (5.7),

c
n∑
i=1

αi|I∂DiQh,iµ|1/2,∂Di
≤
[
DHµ,µ

]
≤ C

n∑
i=1

αi|I∂DiQh,iµ|1/2,∂Di
(6.3)

for all µ ∈MH , where C and c are positive continuity and coercivity constants.
Then, for 1 ≤ m ≤M ,

cond
(
D−1

H D
{m}
H

)
≤ CC{m}

cc{m}
, (6.4)

i.e., DH and D{m}H are uniformly spectrally equivalent.

Proof. From (5.7) and (6.3) we easily derive

c{m}

C

[
DHµ,µ

]
≤
[
D{m}H µ,µ

]
≤ C{m}

c

[
DHµ,µ

]
.

The result (6.4) follows from Theorem 6.3. 2

Remark 6.5 Although the condition number (6.4) does not depend on h or
H, it does depend through (6.3) and (5.7) on how closely the training per-
meability, K, represents the permeability for each of the realizations, K{m}.
Thus, K should be chosen based on the physical or the stochastic properties of
the permeability in (2.1).

We conclude this section with a comment on the scalability of this approach.
Although the multiscale basis preconditioner bounds the number of subdo-
main solves for each realization, the cost of applying the preconditioner may
grow as the number of subdomains increases or as the subdomain mesh size
decreases. The dominant cost of the preconditioner, computing the multiscale
basis, is proportional to the number of mortar degrees of freedom per subdo-
main and thus it doesn’t grow with the number of subdomains. On the other

13



hand, the number of interface iterations for applying the action of the precon-
ditioner may increase with the number of subdomains or when the subdomain
grids are refined. Even though the local computations are very inexpensive
(linear combinations of the multiscale basis), there is some communication
overhead that may affect the scalability of the algorithm. In a related paper
[17], we address the theoretical complexity in solving the interface problem

for the preconditioner D−1

H using the multiscale basis and investigate the use
of preconditioners for this iteration, such as balancing or block Jacobi with a
coarse scale correction, and multilevel acceleration methods, such as interface
multigrid, to efficiently solve the interface problem. For the numerical results
in §7, the wall clock time to apply the multiscale basis preconditioner is always
substantially less than the time to perform one solve per subdomain.

7 Numerical Results

In this section, we present numerical results supporting the theoretical results
in §6. All results are computed in 2D using the lowest order Raviart-Thomas
RT0 spaces [32,11] on uniform rectangular subdomain grids that do not nec-
essarily match on the interface.

First, we use a deterministic problem to demonstrate that the condition num-
ber of the preconditioned system is independent of the subdomain mesh size
h, the mortar mesh size H, and the degree of the mortar approximation q.
Then we show that the choice of the training permeability has a significant
impact on the condition number of the preconditioned system. Finally, we ap-
ply the multiscale basis preconditioner to several problems with a truncated
Karhunen-Loéve expansion of a stochastic permeability field using a nonintru-
sive stochastic collocation approximation.

7.1 Optimality of the preconditioner

Define D = [0, 1] × [0, 1] and consider problem (2.1) with a deterministic
coefficient K(x) = 1−0.5 sin(πx1) sin(πx2), f(x) = 1, and pb = 0. We compute
the multiscale basis functions based associated with a relatively simple training
permeability: K(x) = 1.

First, we divide D into 16 equal sized subdomains in a 4×4 pattern and choose
continuous piecewise linear mortars with H = 2h. In this, and the other two
cases in this subsection, the outer iterative method is GMRES (unrestarted)
with a tolerance of 10−8 and the preconditioning system is solved using CG
with a tolerance of 10−10. In Table 1, we see that refining the subdomain mesh
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size has no effect on the number of interface iterations.

h Subdomains m Iterations

1/64 16 1 10

1/128 16 1 10

1/256 16 1 10

1/512 16 1 10
Table 1
Number of interface iterations for Example 7.1 as the subdomain mesh size, h,
decreases and the number of subdomains and the mortar degree, m, remain fixed.

Next, we set h = 1/128 and use continuous piecewise linear mortars with
H = 2h. We vary the number of subdomains from 4 (2× 2) to 256 (16× 16).
In Table 2, we observe that increasing the number of subdomains does not
affect the number of interface iterations.

h Subdomains m Iterations

1/128 4 1 10

1/128 16 1 10

1/128 64 1 10

1/128 256 1 10
Table 2
Number of interface iterations for Example 7.1 as the number of subdomains in-
creases and the subdomain mesh size, h, and the mortar degree, m, remain fixed.

Finally, we set h = 1/128 and fix the number of subdomains at 16 (4 × 4).
We choose H = 4h and vary the degree of the mortar approximation from
one to three and investigate both continuous and discontinuous mortars. In
Table 3, we see that the mortar degree does not affect the number of interface
iterations.

7.2 Choice of training permeability

Define D = [0, 1]× [0, 1] and consider problem (2.1) with a deterministic cef-
ficient K(x) as shown in Figure 1(a) and f(x) = 0. The boundary conditions
are chosen to induce flow from left to right: p = 1 on the left boundary, p = 0
on the right boundary, and no flow u·ν = 0 on the top and bottom boundaries.
Also in Figure 1, we show the three different training permeabilities for this
problem. The first permeability is very simple and reflects none of the physics.
The second is somewhat closer, but still does not reflect the discontinuities in
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h Subdomains m Iterations

1/128 16 1 10

1/128 16 2 10

1/128 16 3 10

1/128 16 1(d) 10

1/128 16 2(d) 10

1/128 16 3(d) 10
Table 3
Number of interface iterations for Example 7.1 as the mortar degree, m, increases
and the subdomain mesh size and the number of subdomains remain fixed. Here,
(d) denotes discontinuous polynomials.

the true permeability. The third training permeability matches only the order
of magnitude in each subdomain. For this example, we use nonmatching grids
as shown in Figure 2(a) and continuous linear mortars. The outer iterative
method is GMRES (unrestarted) with a tolerance of 10−6 and the precondi-
tioned system is solved using conjugate gradients with a tolerance of 10−8.
The computed pressure is shown in Figure 2(b).

(a) True permeability (b) Training permeability 1

(c) Training permeability 2 (d) Training permeability 3

Fig. 1. True and training permeabilities for Example 7.2.
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(a) Subdomain and mortar mesh. (b) Calculated pressure

Fig. 2. Discretizations and mixed finite element solution for Example 7.2.

In Figure 3, we plot the norm of the relative residual using multiscale basis
preconditioner from each of the training permeabilites. We observe that choos-
ing a training permeability that captures as much of the physics as possible
significantly reduces the number of interface iterations.

Fig. 3. Norm of the relative residual using the multiscale basis preconditioner cor-
responding to each of the training permeabilities for Example 7.2.

In this example we could have chosen the training permeability to match the
true permeability and obtained convergence in one step. However, recall that
our true interest is in solving a sequence of problems where the permeability
is different for each realization.

7.3 Uncertainty quantification

Define D = [0, 1]× [0, 1] and consider problem (2.1) with stochastic permeabil-
ity K(x, ω) that has an expected value shown in Figure 4(a). The boundary
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conditions are chosen to induce flow from left to right as in the previous ex-
ample. We discretize D into 25 subdomains in a 5 × 5 pattern, each with
h = 1/360 giving 5184 equal sized elements per subdomain. The total number
of elements in the mesh is 129600. We choose continuous quadratic mortars
and set H ≈

√
h, giving 17 mortar degrees of freedom per subdomain bound-

ary. The maximum number of mortar degrees of freedom associated with a
subdomain is 68, but some of the subdomains do not have mortars on all
boundaries and therefore have fewer mortar degrees of freedom. In the tables
below we report that each subdomain performs 68 solves because if the mul-
tiscale basis is computed in a parallel environment, those subdomains with
less than 68 mortar degrees of freedom will be waiting for the others to finish.
In Figure 4(b), we plot the pressure field corresponding to the mean of the
permeability.

(a) Mean of the permeability field. (b) Calculated pressure correspond-
ing to the mean permeability.

Fig. 4. Mean permeability and corresponding pressure solution for Example 7.3.

Our goal is to compare the performance of the following strategies for the
solution of the series of interface problems:

• Method 1: standard iterative approach without preconditioning,
• Method 2: multiscale approach with the multiscale basis recomputed for

each realization,
• Method 3: multiscale basis preconditioner with the multiscale basis com-

puted using the mean permeability.

In Method 1, a subdomain solve is required on each outer interface iteration.
In Method 2, instead of solving subdomain problems on each outer iteration,
the action of the interface operator is computed via a linear combination of a
precomputed multiscale basis. A new basis is computed for each realization.
In Method 3, the outer iterative procedure requires one subdomain solve per
iteration. The preconditioner uses the multiscale basis for the training perme-
ability. Each inner preconditioning iteration involves a linear combination of
the training multiscale basis.
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The performance of the multiscale basis preconditioner for each permeabil-
ity realization depends on the perturbation from the mean permeability as
determined by the assumed variance σY and the number of terms in the trun-
cated Karhunen-Loéve expansion. We assume correlation lengths η1 = 0.2 and
η2 = 0.125 in the xi−directions. All of the following numerical experiments
use GMRES for the outer iterations with a tolerance of 10−6. The action of
the preconditioner is computed using a block Jacobi preconditioned GMRES
algorithm with a coarse scale correction (see [1,17]) with a tolerance of 10−8.

In the tables below we report some statistics for the number of solves per
subdomain: the total number of solves for all realizations, the average number
of solves per realization, as well as the minimum and maximum number of
solves across the realizations. In the numbers for Method 3 we do not report
the number of solves needed to construct the preconditioner, which in this case
is 68. Therefore, for a fair comparison, the number 68 should be added to the
total number of solves for Method 3. In all cases, the resulting number is still
significantly smaller than those for Method 1 and Method 2. Furthermore, the
relative cost of the preconditioner decreases when the number of realizations
is increased.

In the first experiment we take 4 terms in the KL expansion and 16 collocation
points (2 per stochastic dimension) corresponding to the roots of the Hermite
polynomials for second order stochastic collocation. In Table 4, we give the
results for σY = 0.25, i.e., the perturbation of the permeability field in each
realization is relatively small.

For Method 1 and Method 3, the number of solves equals the number of
outer interface iterations. The multiscale basis preconditioner performs very
well and reduces significantly the number of outer iterations. For Method 2,
the number of solves is the cost for computing the multiscale basis for each
realization; hence the number of solves does not depend on the number of
outer iterations and stays constant over all realizations. The multiscale basis
preconditioner outperforms the other methods by factors of approximately 16
and 40. In Tables 5 and 6, we give the results for σY = 1 and σY = 10. As

Method Total Average Minimum Maximum

1 2825 176.6 165 186

2 1088 68 68 68

3 64 4 4 4
Table 4
Number of solves per subdomain for Example 7.3 with σY = 0.25, 4 terms in the
KL expansion, and 16 stochastic realizations.

we increase σY the average performance of the multiscale basis preconditioner
degrades slightly, but it is still significantly more efficient than the other two

19



methods.

Method Total Average Minimum Maximum

1 2960 185 169 195

2 1088 68 68 68

3 84 5.25 4 6
Table 5
Number of solves per subdomain for Example 7.3 with σY = 1.0, 4 terms in the KL
expansion, and 16 stochastic realizations.

Method Total Average Minimum Maximum

1 3827 239.2 195 285

2 1088 68 68 68

3 216 13.3 7 19
Table 6
Number of solves per subdomain for Example 7.3 with σY = 10.0, 4 terms in the
KL expansion, and 16 stochastic realizations.

In the second set of experiments, we set σY = 1.0 and increase the number of
terms in the KL expansion. In Figure 5, we plot four random realizations with
100 terms in the KL expansion. First, we compare the number of subdomain

Fig. 5. Four stochastic realizations for Example 7.2 with 100 terms in the KL ex-
pansion.

solves for each of the three methods using 9 terms in the KL expansion. As
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in the previous cases, two stochastic collocation points were chosen in each
stochastic dimension, giving 512 realizations. In Table 7, we see that reusing
the multiscale basis as a preconditioner results in an order of magnitude fewer
solves per subdomains than recomputing the multiscale basis for each realiza-
tion, and in even larger savings compared to the standard iterative approach.
Note also that the cost of constructing the preconditioner, 68 solves per sub-
domain, is less significant in this case, compared to the previous cases with 16
realizations.

Method Total Average Minimum Maximum

1 98544 192.5 160 225

2 34816 68 68 68

3 3463 6.8 5 10
Table 7
Number of solves per subdomain for the model problem in Section 7.3 with σY = 1.0,
9 terms in the KL expansion, and 512 realizations corresponding to the samples
points for second order stochastic collocation.

Next, we increase the number of terms in the KL expansion to 100. Since the
tensor product stochastic collocation suffers from the curse of dimensional-
ity, requiring 2100 realizations, we use a Monte Carlo sampling technique to
generate 1000 realizations. The results are reported in Table 8. Despite the

Method Total Average Minimum Maximum

1 203587 203.6 144 283

2 68000 68 68 68

3 11262 11.3 6 33
Table 8
Number of solves per subdomain for Example 7.3 with σY = 1.0, 100 terms in the
KL expansion, and 1000 Monte Carlo realizations.

fact that we have introduced more variability into the permeability realiza-
tions, the multiscale basis preconditioner based on the expected permeability
still performs quite well and is easily the most efficient of the three methods.
We emphasize that while decreasing the subdomain mesh size, increasing the
number of subdomains, or refining the mortar mesh would increase the num-
ber of solves per subdomain for methods 1 and 2, the number of solves per
subdomain for method 3 would remain fixed.

In summary, the numerical results confirm that, for a suitable training perme-
ability, the condition number of the multiscale basis preconditioned interface
problem is independent of the subdomain mesh size h and the mortar mesh
size H. Furthermore, for stochastic flow in porous media, the preconditioner
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reuses the multiscale basis, leading to a very efficient algorithm. The perfor-
mance of the preconditioner is very robust with respect to the variance of the
stochastic permeability and the dimension of the stochastic space.
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