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Abstract

The aim of this paper is to quantify uncertainty of flow in porous media through
stochastic modeling and computation of statistical moments. The governing equa-
tions are based on Darcy’s law with stochastic permeability. Starting from a spec-
ified covariance relationship, the log permeability is decomposed using a truncated
Karhunen-Loève expansion. Mixed finite element approximations are used in the
spatial domain and collocation at the zeros of tensor product Hermite polynomials
is used in the stochastic dimensions. Error analysis is performed and experimentally
verified with numerical simulations. Computational results include incompressible
and slightly compressible single and two-phase flow.

Key words: stochastic collocation, mixed finite element, stochastic partial
differential equations, flow in porous media.

1 Introduction

In groundwater flow problems, it is physically impossible to know the exact
permeability at every point in the domain. This is due to the prohibitively
large scope of realistic domains, inhomogeneity in the media, and also the
natural randomness occurring at very small scales. One way to cope with
this difficulty is to model permeability (or porosity) as a stochastic function,
determined by an underlying random field with an experimentally determined
covariance structure.
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The development of efficient stochastic methods that are applicable to a wide
range of subsurface flow models could substantially reduce the computational
costs associated with uncertainty quantification (in terms of both time and
resources required). Such methods could facilitate the uncertainty analysis
of complex, computationally demanding models, where traditional methods
may not be feasible due to computational and time constraints. Interest in
developing these methods for flow in porous media has been significant in the
last years [8,25,43].

Stochastic modeling methods can be classified in three major groups: (1) sam-
pling methods [13,22], (2) moment/ perturbation methods [19,24,43,17,18]
and, (3) non-perturbative methods, either based on polynomial chaos expan-
sions [15,14,40–42,16] or stochastic finite element methods [15,12,3]. In such
order, we can say that these methods range from being non-intrusive to very
intrusive in terms of modifying the original simulation model. The best known
sampling method is Monte Carlo simulation (MCS), which involves repeated
generation of random samplings (realizations) of input parameters followed by
the application of the simulation model in a “black box” fashion to generate
the corresponding set of stochastic responses. These responses are further an-
alyzed to yield statistical moments or distributions. The major drawback of
MCS is the high computational cost due to the need to generate valid rep-
resentative statistics from a large number of realizations at a high resolution
level.

Moment/perturbation and finite element stochastic methods fall into the cat-
egory of non-sampling methods. These methods are suitable for systems with
relatively small random inputs and outputs. However, despite the apparent ac-
curacy and mild cost with respect to MCS, these methods also present some
limitations that have prevented them from being widely used. The problem
is that their semi-intrusive or fully intrusive character may greatly compli-
cate the formulation, discretization and solution of the model equations, even
in the case of linear and stationary input distributions. There is also a high
computational cost associated with these methods since the number of terms
needed to accurately represent the propagation of uncertainties grows signif-
icantly with respect to the degree of variability of the system. It is still not
clear how these methods may be formulated in the event of high nonlinearities
due to complex flow and chemical reactions over arbitrary geometries.

On the other hand, stochastic finite elements exhibit fast convergence through
the use of generalized polynomial chaos representations of random processes
(i.e., generalizations of the Wiener-Hermite polynomial chaos expansion to
include a wider class of random processes by means of global polynomial ex-
pansions, piecewise polynomial expansions and wavelet basis expansions; see
e.g. [3,36]. However, besides their very intrusive feature, the dimensionality of
the discretized stochastic finite element equations can be dramatically larger
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than the dimensionality of the base case deterministic model.

A very promising approach for improving the efficiency of non-sampling meth-
ods is the stochastic collocation method [2,39,38]. It combines a finite element
discretization in physical space with a collocation at specially chosen points
in probability space. As a result a sequence of uncoupled deterministic prob-
lems need to be solved, just like in MCS. However, the stochastic collocation
method shares the approximation properties of the stochastic finite element
method, making it more efficient than MCS. Choices of collocation points
include tensor product of zeros of orthogonal polynomials [2,39], sparse grid
approximations [39,27,28], and probabilistic collocation [23]. The last two pro-
vide approaches to reduce the number of collocation points needed to obtain
a given level of approximation, leading to very efficient algorithms.

In this paper we combine mixed finite element (MFE) discretizations in physi-
cal space with stochastic collocation methods. The choice of spatial discretiza-
tion is suitable for flow in porous media since it provides the solution such
desired physical properties as local element-wise conservation of mass and a
velocity field with continuous normal components. We study incompressible
and slightly compressible single phase flow as well as two-phase flow. The
paper focuses on tensor product collocation methods. Convergence analysis
for the pressure and the velocity is presented for single phase incompressible
and slightly compressible flow. The analysis follows the approach in [2] where
standard Galerkin discretizations are studied. We show that the total error
can be decomposed into the sum of deterministic and stochastic errors. Opti-
mal convergence rates and superconvergence for the pressure are established
for the deterministic error. The stochastic error converges exponentially with
respect to the number of the collocation points. Numerical experiments for
incompressible single phase flow as well as slightly compressible single phase
and two phase flow confirm the theoretical convergence rates and demonstrate
the efficiency to our approach compared to MCS. In addition, we find topo-
logical similarities between single and two-phase flow pressure trends that
could be key for improving the performance of uncertainty quantification and
management in complex flow systems.

The rest of the paper is organized as follows. The model problem for in-
compressible single phase flow is presented in Section 2. The MFE stochastic
collocation method is developed in Section 3 and analyzed in Section 4. Exten-
sions to slightly compressible single phase and two phase flow are developed in
Section 5. Sections 6 and 7 contain numerical experiments for incompressible
and compressible flow, respectively. Some conclusions and future directions
are presented in Section 8.
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2 Model Problem: Single Phase Incompressible Flow

We begin with the mixed formulation of Darcy flow. Let D ⊂ Rd, d = 2, 3 be
a bounded Lipschitz domain and Ω be a stochastic event space with proba-
bility measure P . The Darcy velocity u and the pressure p satisfy P -almost
everywhere in Ω

u = −K(x, ω)∇p, in D, (2.1)

∇ · u = q, in D , (2.2)

p = pb, on ∂D. (2.3)

For simplicity we assume Dirichlet boundary conditions. More general bound-
ary conditions can also be considered via standard techniques. The permeabil-
ity K is a diagonal tensor with uniformly positive and bounded in D elements.
To simplify the presentation, we will assume that K is a scalar function. Since
the permeability K is a stochastic function, p and u are also stochastic.

Throughout this paper the expected value of a random variable ξ(ω) with
probability density function (p.d.f) ρ(y) will be denoted

E[ξ] =
∫

Ω
ξ(ω)dP (ω) =

∫

R
yρ(y)dy.

2.1 The Karhunen-Loève (KL) Expansion

In order to guarantee positive permeability almost surely in Ω, we consider
its logarithm Y = ln(K). Let the mean removed log permeability be de-
noted by Y ′, so that Y = E[Y ] + Y ′. Its covariance function CY (x, x̄) =
E[Y ′(x, ω)Y ′(x̄, ω)] is symmetric and positive definite, and hence can be de-
composed into the series expansion

CY (x, x̄) =
∞∑

i=1

λifi(x). (2.4)

The eigenvalues λi and eigenfunctions fi of this series are computed using CY

as the kernel of the Type II Fredholm integral equation

∫

D
CY (x, x̄)f(x)dx = λf(x̄). (2.5)

The symmetry and positive definiteness of CY cause its eigenfunctions to be
mutually orthogonal, i.e. (fm, fn)L2(D) = δmn, and form a complete spanning
set. Using this fact the Karhunen-Loève expansion of the log permeability can
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now be written as

Y (x, ω) = E[Y ](x) +
∞∑

i=1

ξi(ω)
√

λifi(x), (2.6)

where, if Y ′ is given by a Gaussian process, the ξi are mutually uncorrelated
random variables with zero mean and unit variance [15].

At this point, the KL expansion is truncated after N terms, which is feasi-
ble to do as typically the λi decay rapidly [44]. If the expansion is truncated
prematurely, the permeability may appear too smooth, so if more hetero-
geneity is desired then N should be increased. This truncation allows us to
write Y (x, ω) = Y (x, ξ1(ω), . . . , ξN(ω)). The images of the random variables
Γi = ξi(Ω) make up a finite dimensional vector space Γ =

∏N
i=1 Γi ⊂ RN . If ρi

corresponds to the p.d.f. of each ξi, then the joint p.d.f. for the random vector
(ξ1, . . . , ξN) is defined to be ρ =

∏N
i=1 ρi. Then we can write Y (x, ω) = Y (x,y),

where y = (y1, . . . , yN) and yi = ξi(ω).

The numerical experiments described herein listed in Sections 6 and 7 will use
the following specific covariance function (in 2-D) originally taken from [44],
in which λi and fi(x) can be found analytically.

CY (x, x̄) = σ2
Y exp[

−|x1 − x̄1|
η1

− |x2 − x̄2|
η2

]. (2.7)

Here σY and ηi denote variance and correlation length in the i-th spatial di-
mension, respectively. This covariance kernel is separable, so equation (2.5) can
be solved in each dimension individually, and then its eigenvalues and eigen-
functions can be assembled by multiplication. These eigenvalues will decay at
a rate asymptotic to O(1/N2) and for this particular case can be computed
analytically.

When the exact eigenvalues and eigenfunctions of the covariance function CY

can be found, the KL expansion is the most efficient method for representing
a random field. However, in most cases, closed-form eigenfunctions and eigen-
values are not readily available and numerical procedures need be performed
for solving the integral equation (2.5). Efficient methods for numerically com-
puting the KL expansion are reported in [35].

2.2 Variational Formulation

Appealing to the Doob-Dynkn Lemma [29], the p.d.f. for the permeability K
carries through to the solution of (2.1)-(2.3), so that (u, p) has the form

u(x, ω) = u(x, ξ1(ω), . . . , ξN(ω)) = u(x, y1, . . . , yN) and
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p(x, ω) = p(x, ξ1(ω), . . . , ξN(ω)) = p(x, y1, . . . , yN).

Since we will be computing statistical moments of the stochastic solution to
the mixed formulation of Darcy’s Law, this naturally leads to introduce the
spaces V = H(div; D)⊗ L2(Γ) and W = L2(D)⊗ L2(Γ) with norms

‖v‖2
V =

∫

Γ
ρ(y)

∫

D

(
v · v + (∇ · v)2

)
dxdy = E[‖v‖2

H(div;D)] and

‖w‖2
W =

∫

Γ
ρ(y)

∫

D
w2dxdy = E[‖w‖2

L2(D)].

The usual multiplication by a test function v ∈ V and w ∈ W and subsequent
application of Green’s Theorem in the system (2.1)-(2.3) leads to the weak
formulation. That is, to find u(x, ω) ∈ V, p(x, ω) ∈ W such that

∫

Γ
(K−1u,v)L2(D)ρ(y)dy

=
∫

Γ

(
(p,∇ · v)L2(D) − 〈pb,v · n〉L2(∂D)

)
ρ(y)dy, ∀v ∈ V, (2.8)

∫

Γ
(∇ · u, w)L2(D)ρ(y)dy =

∫

Γ
(q, w)L2(D)ρ(y)dy, ∀w ∈ W, (2.9)

where n is the outward normal to ∂D.

3 Stochastic Collocation for Mixed Finite Element Methods

After expressing the log permeability as a truncated KL expansion, the prob-
lem has now been reformulated in the finite dimensional space D⊗Γ ∈ Rd+N .
At this point, there are several ways in which to discretize the problem. The
Stochastic Finite Element Method (SFEM) [12] considers solving the problem
using full d+N dimensional finite elements. This method essentially attempts
to tackle a single and coupled high dimensional problem at one fell swoop.
The resulting system is significantly large, difficult to set up, and the solution
algorithm does not easily lend itself to parallelization.

A less intrusive approach is to use d-dimensional finite elements in the spatial
domain D, and to sample the stochastic space Γ only at certain points. By a
simple Monte Carlo approach for instance, we may choose M random stochas-
tic points, and a deterministic FEM problem may then be solved in physical
space at each realization. Finally, these solutions may then be averaged to-
gether in order to compute the various statistical moments of the stochastic so-
lution. The advantage of this method is that the deterministic FEM problems
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are completely uncoupled, and may be solved in parallel. The disadvantage of
this method is that the convergence rate is slow, e.g. ‖p−pM

MC‖W = O(1/
√

M).

The Stochastic Collocation Method improves upon the Monte Carlo approach
by sampling at specially chosen collocation points in order to form a poly-
nomial interpolant in the stochastic space. Different varieties of stochastic
collocation arise by considering different sets of collocation points. The sim-
plest approach is a full tensor product grid of collocation points. This will be
the method that is considered henceforth.

It should be noted that full tensor product grids of collocation points suffer
from the so-called ”curse of dimensionality”. Increasing the number of terms
in the truncated KL expansion (2.6) increases the number of stochastic di-
mensions in Γ which exponentially increases the number of points in a full
tensor product grid. To cope with this problem, more advanced collocation
techniques are possible such as the so called probabilistic collocation method
(see e.g. [23]) and the Smolyak sparse grids (see e.g. [27,28]) but will not be
considered in this paper.

3.1 Mixed Finite Element Semidiscrete Formulation

Let Th be a shape-regular affine finite element partition of the spatial domain
D [10]. A mixed finite element discretization Vh(D)×Wh(D) ⊂ H(div, D)×
L2(D) is chosen to satisfy a discrete inf-sup condition. The semidiscrete for-
mulation will be to find uh : Γ → Vh(D) and ph : Γ → Wh(D) such that for
a.e. y ∈ Γ,

(K−1uh,vh)L2(D) = (ph,∇ · vh)L2(D)

−〈pb,vh · n〉L2(∂D), ∀vh ∈ Vh(D), (3.1)

(∇ · uh, wh)L2(D) = (q, wh)L2(D), ∀wh ∈ Wh(D). (3.2)

By the general saddle point problem theory [7], a solution to this problem
exists and it is unique.

Any of the usual mixed finite element spaces may be considered, including
the RTN spaces [34,26], BDM spaces [6], BDFM spaces [5], BDDF spaces [4],
or CD spaces [9]. On each element E in the mesh, assume that the velocity
space Vh(E) contains (Pr(E))d, r ≥ 0, with normal components on each edge
(face) in Pr(γ), and that the pressure space Wh(E) contains Ps(E). In all of
the above mixed FEM spaces, s = r or s = r−1 when r ≥ 1. In the numerical
experiments in Section 6, the lowest order Raviart-Thomas RT0 spaces will be
used on a uniform mesh of rectangular elements in 2-D.
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3.2 Stochastic Collocation and Fully Discrete Formulation

Let {yk}, k = 1, . . . , Mm be a collection of points which form a Haar set
in Γ. Then these points will generate a unique N dimensional polynomial
interpolant Im of total degree m across the stochastic space. The fully discrete
solution is define to be

uh,m(x,y) = Imuh(x,y), ph,m(x,y) = Imph(x,y).

Let (uh(x,yk), ph(x,yk)) solve (3.1)-(3.2) for k = 1, . . . , Mm. Then the fully
discrete solution has the Lagrange representation:

uh,m(x,y) =
Mm∑

k=1

uh(x,yk)lk(y), (3.3)

ph,m(x,y) =
Mm∑

k=1

ph(x,yk)lk(y), (3.4)

where {lk} is the Lagrange basis lk(yj) = δkj. As previously described, to com-
pute each uh,m and ph,m it is necessary to solve Mm uncoupled deterministic
problems.

In practice, this Lagrange representation is not actually assembled, since the
end goal will be the computation of the stochastic solution’s statistical mo-
ments such as expectation and variance. After solving each deterministic prob-
lem at a collocation point, a running total is tabulated in a weighted sum, e.g.

E[ph,m](x) =
∫

Γ
ph,m(x,y)ρ(y)dy =

∫

Γ
Imph(x,y)ρ(y)dy

=
∫

Γ

Mm∑

k=1

ph(x,yk)lk(y)ρ(y)dy =
Mm∑

k=1

wkph(x,yk),

where the weights wk =
∫
Γ lk(y)ρ(y)dy.

3.3 Tensor Product Collocation

For stochastic collocation using a full tensor product grid, assume that we wish
to obtain accuracy up to polynomial of degree mi in the i-th component of Γ.
This will require mi+1 points in the i-th direction. Let m = (m1, . . . , mN) and
define the space Pm(Γ) = Pm1(Γ1) ⊗ . . . ⊗ PmN

(ΓN). Then the total number
of collocation points needed will be M = dim Pm(Γ) =

∏N
i=1(mi + 1).
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The one dimensional collocation points on the component Γi will be the mi+1
zeros of the orthogonal polynomial qmi+1 with respect to the inner-product
(u, v)ρi

=
∫
Γi

u(y)v(y)ρi(y)dy. Let I i
mi
∈ Pmi

(Γi) be the one-dimensional inter-
polant:

I i
mi

u(·, yi,k) = u(·, yi,k), k = 1, . . . ,mi + 1.

Since the choice was made in Section 2.1 to use the particular covariance func-
tion (2.7), with its KL expansion consisting of N(0, 1) Gaussian distributed
random variables, we have ρi = 1√

2π
e−y2

i /2 and Γi = R. The corresponding
orthogonal polynomials under this inner product will be the global Hermite
polynomials

Hmi
(y) = mi!

[mi/2]∑

j=0

(−1)j (2y)mi−2j

j!(mi − 2j)!
,

and their roots can be found tabulated in [1] or computed with a symbolic
manipulation software package.

4 Error Analysis for Single Phase Incompressible Flow

The error between the true stochastic velocity u and the approximate fully
discrete velocity uh,m may be decomposed by adding and subtracting the
semidiscrete velocity uh

‖u− uh,m‖V ≤ ‖u− uh‖V + ‖uh − uh,m‖V = ‖u− uh‖V + ‖uh − Imuh‖V .

A similar decomposition holds for ‖p − ph,m‖W . An a priori bound on the
first term follows, assuming enough smoothness of the solution, from standard
deterministic mixed FEM error analysis [7]

‖u− uh‖2
V + ‖p− ph‖2

W

=
∫

Γ

(
‖u− uh‖2

H(div;D) + ‖p− ph‖2
L2(D)

)
ρ(y)dy

≤ C
∫

Γ

(
h2r+2‖u‖2

Hr+1(D) + h2s+2‖∇ · u‖2
Hs+1(D) + h2s+2‖p‖2

Hs+1(D)

)
ρ(y)dy

= C
(
h2r+2‖u‖2

Hr+1(D)⊗L2(Γ) + h2s+2‖∇ · u‖2
Hs+1(D)⊗L2(Γ)

+h2s+2‖p‖2
Hs+1(D)⊗L2(Γ)

)
.

For the second term, an interpolation bound on Γ has recently been found in
[2] to be

‖uh − Imuh‖V + ‖ph − Imph‖W ≤ C
N∑

i=1

e−ci
√

mi ,
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where ci > 0 are defined in [2]. In particular, it is shown in [2] that if K is
smooth enough in Γ, then the solution admits an analytic extension in a region
of the complex plane containing Γi for i = 1, . . . , N , and that ci depends on
the distance between Γi and the nearest singularity in the complex plane. The
KL expansion (2.6) satisfies the smoothness assumption in [2]. As a result we
have the following theorem.

Theorem 4.1 Assume that u ∈ Hr+1(D)⊗L2(Γ), ∇ ·u ∈ Hs+1(D)⊗L2(Γ),
and p ∈ Hs+1(D) ⊗ L2(Γ). Then there exists a constant C independent of h
and M such that

‖u− uh,m‖V + ‖p− ph,m‖W ≤ C

(
hr+1 + hs+1 +

N∑

i=1

e−ci
√

mi

)
.

We next establish a superconvergence bound for the pressure. For ϕ ∈ L2(D),
denote with ϕ̂ its L2-projection in Wh satisfying

(ϕ− ϕ̂, wh)L2(D) = 0 ∀wh ∈ Wh, (4.1)

‖ϕ− ϕ̂‖L2(D) ≤ Chl‖ϕ‖Hl(D), 0 ≤ l ≤ s + 1. (4.2)

Let Π : (H1(D))d → Vh be the mixed finite element projection operator
satisfying

(∇ · (u− Πu), wh)L2(D) = 0 ∀wh ∈ Wh, (4.3)

‖u− Πu‖(L2(D))d ≤ Chl‖u‖(Hl(D))d , 1 ≤ l ≤ r + 1. (4.4)

Theorem 4.2 Assume that problem (2.1)–(2.3) is H2-elliptic regular. Under
the assumptions of Theorem 4.1, there exists a constant C independent of h
and M such that

‖p̂− ph,m‖W ≤ C(h‖u− uh‖V + ‖ph − Imph‖W ).

Proof. The proof is based on a duality argument. Taking v = vh and w = wh

in the weak formulation (2.8)-(2.9) and subtracting the semidiscrete formula-
tion (3.1)-(3.2) gives the error equations for a.e. y ∈ Γ

(K−1(u− uh),vh)L2(D) = (p̂− ph,∇ · vh)L2(D), ∀vh ∈ Vh(D), (4.5)

(∇ · (u− uh), wh)L2(D) = 0, ∀wh ∈ Wh(D). (4.6)

Now consider the following auxiliary problem in mixed form:
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ψ(·,y) = −K(·,y)∇ϕ(·,y) in D,

∇ ·ψ(·,y) = p̂− ph,m in D,

ϕ(·,y) = 0 on ∂D.

The elliptic regularity implies

‖ϕ(·,y)‖H2(D) ≤ C‖p̂− ph,m‖L2(D). (4.7)

Therefore,

‖p̂− ph,m‖2
W =

∫

Γ
(p̂− ph,m, p̂− ph,m)L2(D)ρ(y)dy

=
∫

Γ
(∇ ·ψ, p̂− ph,m)L2(D)ρ(y)dy

=
∫

Γ

(
(∇ ·ψ, p̂− ph)L2(D) + (∇ ·ψ, ph − Imph)L2(D)

)
ρ(y)dy

= I + II.

Applying the Cauchy-Schwarz inequality, we have

|II| ≤
(∫

Γ
‖∇ ·ψ‖2

L2(D)ρ(y)dy
)1/2 (∫

Γ
‖ph − Imph‖2

L2(D)ρ(y)dy
)1/2

=
(∫

Γ
‖p̂− ph,m‖2

L2(D)ρ(y)dy
)1/2

‖ph − Imph‖W

= ‖p̂− ph,m‖W‖ph − Imph‖W .

Using (4.3) and (4.5) with vh = Πψ,

I =
∫

Γ
(K−1(u− uh), Πψ)L2(D)ρ(y)dy

=
∫

Γ

(
(K−1(u− uh), Πψ −ψ)L2(D) − (u− uh,∇ϕ)L2(D)

)
ρ(y)dy

= I1 + I2.

The Cauchy-Schwarz inequality, (4.4), and (4.7) imply

|I1| ≤C
(∫

Γ
‖u− uh‖2

L2(D)ρ(y)dy
)1/2 (∫

Γ
‖Πψ −ψ‖2

L2(D)ρ(y)dy
)1/2

≤C‖u− uh‖V h
(∫

Γ
‖ψ‖2

(H1(D))dρ(y)dy
)1/2

≤Ch‖u− uh‖V ‖p̂− ph,m‖W .

Using (4.6), (4.2), and (4.7), we have
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|I2|=
∣∣∣∣
∫

Γ
(∇ · (u− uh), ϕ− wh)L2(D)ρ(y)dy

∣∣∣∣
≤C‖u− uh‖V h‖p̂− ph,m‖W .

A combination of the above estimates completes the proof of the theorem. 2

Corollary 4.3 Under the assumptions of Theorem 4.2, there exists a constant
C independent of h and M such that

‖p̂− ph,m‖W ≤ C

(
hr+2 + hs+2 +

N∑

i=1

e−ci
√

mi

)
.

5 Slightly Compressible Single and Two-Phase Flow

In this section, we describe the extension of the stochastic methods discussed
in previous sections to the nonlinear conservation equations governing mul-
tiphase flow in porous media. Previous theoretical results are extended to
slightly compressible flows. For the the two-phase case only numerical results
are reported since few a priori estimates are known.

5.1 Two-Phase Flow

In the case of slightly compressible flow, the porosity φ and permeability ten-
sor K are spatially varying and constant in time reservoir data. We remark
that in the general case, both porosity and permeability may be stochastic ran-
dom variables in space and mutually correlated. For simplicity, we consider
only the permeability to be stochastic. Other rock properties involve relative
permeability and capillary pressure relationships which are given functions of
saturations and possible also of position in the case of different rock types.
The well injection and production rates are defined using the Peaceman well
model [32] extended to multiphase and multicomponent flow, and they de-
scribe typical well conditions for pressure or rate specified wells.

Let the lower case scripts w and o denote the water and oil phase respectively.
The corresponding phase saturations are denoted by Sw and So, the phase
pressures by pw and po, and the well injection/production rates by qw and qo.

Consider the two-phase immiscible slightly compressible oil-water flow model
in which the densities of oil and water are given by the equation of state,

ρn = ρref
n ecn(pn−pref

n , (5.1)
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where ρref
n is the reference density, pref

n is the reference pressure, and cn is the
compressibility for n = w, o. The mass conservation equation and Darcy’s law
are

un = −K(x, ω)

µn

ρnkn (∇p− ρnG∇D) in D × J, (5.2)

∂

∂t
(φSnρn) +∇ · un = qn in D × J, (5.3)

pn = pn,b on ∂D × J, (5.4)

pn = pn,0 in D × {0}, (5.5)

subject to the constitutive constraints

So + Sw = 1,
pc(Sw) = po − pw,

where µn is the density, G the magnitude of the gravitational acceleration, D
the depth, and J = [0, T ].

5.2 Error Analysis for Single Phase Slightly Compressible Flow

In the case So = 0, equations (5.2)-(5.5) reduce to

u = −K(x, ω)

µ
ρw (∇p− ρwG∇D) in D × J, (5.6)

∂

∂t
(φρw) +∇ · u = q in D × J, (5.7)

p = pb on ∂D × J (5.8)

p = p0 in D × {0}. (5.9)

We retain the subscript w on the density to distinguish this quantity from the
probability density function. We make the following assumptions on the data.
There is a positive constant α such that

(A1) φ ∈ L∞(D) and 1
α
≤ φ(x) ≤ α,

(A2) ρw ∈ W 2,∞(R) and 1
α
≤ ρw, ρ′w, ρ′′w ≤ α.

The semidiscrete weak formulation seeks uh : Γ×J → Vh(D) and ph : Γ×J →
Wh(D) such that for a.e. y ∈ Γ,
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


(
Kρw,h

µ

)−1

uh,vh




L2(D)

= (ph,∇ · vh)L2(D)

− (ρw,hG∇D,vh)L2(D) − 〈pb,vh · n〉L2(∂D) , (5.10)
(

∂

∂t
(φρw,h), wh

)

L2(D)

+ (∇ · uh, wh)L2(D) = (q, wh)L2(D) , (5.11)

for all vh ∈ Vh and wh ∈ Wh with the initial condition ph(0) = p̂0, the
L2(D) projection of p0 onto Wh. To discretize in stochastic space, we select
a tensor product set of collocation points based on the roots of orthogonal
Hermite polynomials, and use the Lagrange representations (3.3) and (3.4)
for the velocity and pressure respectively.

Define VJ = L2(Γ)⊗ Lp(J)⊗H(div; D), and WJ = L2(Γ)⊗ Lp(J)⊗ L2(D),
with the norms

‖v‖2
VJ

=
∫

Γ
ρ(y)

(∫

J
‖v‖p

H(div;D)dt
)1/p

dy,

‖w‖2
WJ

=
∫

Γ
ρ(y)

(∫

J
‖w‖p

L2(D)dt
)1/p

dy,

where if p = ∞, the integral is replaced by the essential supremum.

As before, we add and subtract the semidiscrete velocity, splitting the error
into

‖u− uh,m‖VJ
= ‖u− uh‖VJ

+ ‖u− Imuh‖VJ
,

which represents a deterministic discretization error and a stochastic error.
Similar decomposition holds for ‖p − ph,m‖WJ

. Using the deterministic error
bounds [20,21,31]

‖u− uh‖H(div;D)⊗Lp(J) + ‖p− ph‖L2(D)⊗Lp(J) ≤ C(hr+1‖u‖Hr+1(D)⊗Lp(J)

+ hs+1‖∇ · u‖Hs+1(D)⊗Lp(J) + hs+1‖p‖Hs+1(D)⊗Lp(J)),

and the argument for the proof of Theorem 4.1, we obtain the following result.

Theorem 5.1 Assume that u ∈ Hr+1(D)⊗Lp(J)⊗L2(Γ), ∇·u ∈ Hs+1(D)⊗
Lp(J)⊗L2(Γ), and p ∈ Hs+1(D)⊗Lp(J)⊗L2(Γ). Then there exists a constant
C independent of h and M such that

‖u− uh,m‖VJ
+ ‖p− ph,m‖WJ

≤ C

(
hr+1 + hs+1 +

N∑

i=1

e−ci
√

mi

)
.
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6 Numerical Experiments for Single Phase Incompressible Flow

The numerical experiments in this section were programmed using the parallel
mixed finite element software package PARCEL [11], which is written in FOR-
TRAN and parallelized using the Message Passing Interface (MPI) Library.
The MFE space is taken to be the lowest order Raviart-Thomas RT0 space
on a uniform mesh of rectangular 2-D elements, which is also equivalent to
a cell-centered finite difference approximation. This code divides the problem
into 4 non-overlapping subdomains and the problem is reformulated in terms
of new variables along the subdomain interfaces. This reduced interface prob-
lem is solved using a conjugate gradient iteration with a balancing domain
decomposition preconditioner.

The covariance function (2.7) was used to generate the KL expansion of an
isotropic permeability field, as given in [44]. The algorithm starts by pre-
computing and storing the eigenvalues and cell-centered eigenfunction values
for the KL expansion. Implementation of the stochastic collocation method
was achieved by adding a loop around the deterministic solver and supplying
it with permeability realizations at each stochastic collocation point. The so-
lutions for both stochastic pressure and velocity are then averaged together
using the collocation weights in order to compute their expectation and vari-
ance.

All numerical experiments are solved on the square domain [0, 1]× [0, 1]. Each
use the same KL expansion for mean removed log permeability Y ′ with vari-
ance σY = 1, correlation lengths η1 = 0.20, η2 = 0.125, and are truncated after
N = 6 terms.

In the numerical error studies, the reported pressure error is the discrete L2

error computed at the cell centers. The velocity error is the discrete L2 error
computed at the midpoints of the edges. The flux error is the discrete L2 error
of the flux through the subdomain interfaces computed at the midpoints of
the edges. The stochastic convergence is computed on a fixed 80× 80 spatial
mesh. The expected solutions on stochastic tensor product grids made up of
2, 3, 4 collocation points in 6 stochastic dimensions are compared to the mean
solution using 5 collocation points. The deterministic convergence is computed
using a fixed stochastic tensor product grid of with 4 collocation points in 6
stochastic dimensions. The spatial mesh is refined from a 10 × 10 grid to
an 80 × 80 grid, and error is computed against the numerical solution on a
160× 160 grid.

We consider 3 cases:

• Problem A: Flow from left to right,
• Problem B: Quarter five-spot well distribution, and
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• Problem C: Discontinuous permeability field.

6.1 Problem A: Flow From Left To Right Test

Problem A has Dirichlet boundary conditions p = 1 on {x1 = 0}, p = 0 on
{x1 = 1} and Neumann boundary conditions u · n = 0 specified on both
{x2 = 0}, {x2 = 1}. The source function is q = 0. The log permeability Y has
zero mean.

Figure 1 shows a typical Monte-Carlo realization of the isotropic permeability
field, and its corresponding solution. Figures 2 and 3 show the expectation and
variance of the stochastic solution. The pressure variance is largest in a vertical
strip in the middle of the domain, away from the Dirichlet boundary edges.
The velocity variance is smallest along the Neumann edges and it is affected
by the direction of the flow. Table 1 shows the stochastic convergence. We
note that exponential convergence is observed for the stochastic error. Table 2
shows the deterministic convergence. The numbers in parenthesis are the ratios
between the errors on successive levels of refinement. Superconvergence of
the deterministic error is observed for both the pressure and the velocity,
confirming the theory.

permX

2.262
2.167
2.072
1.977
1.883
1.788
1.693
1.598
1.503
1.409
1.314
1.219
1.124
1.030
0.935
0.840
0.745
0.650

P

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Fig. 1. A Monte-Carlo realization of the permeability field (left) and its correspond-
ing solution (right) to problem A with 6 terms in KL expansion.

Table 1
Stochastic convergence results for problem A.

Coll. Points Flux L2 Error Pressure L2 Error Velocity L2 Error

26 2.34725998E-03 1.88268447E-05 1.63386987E-03

36 5.62408269E-05 1.20132144E-06 3.86677083E-05

46 3.85038674E-06 1.00645052E-07 2.62419902E-06
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0.15
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0.0065
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0.0055
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Fig. 2. Expectation of solution (left), and variance of the pressure (right) to problem
A with 46 collocation points.
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varV
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0.035
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0.025
0.02
0.015
0.01
0.005

Fig. 3. Variance of the x-velocity component (left), and variance of the y-velocity
component (right) to problem A with 46 collocation points.

Table 2
Deterministic convergence results for problem A.

Grid Flux L2 Error Pressure L2 Error Velocity L2 Error

10x10 9.22149E-04 1.11495E-04 9.26733E-04

20x20 2.33581E-04 (3.9479) 2.73432E-05 (4.0776) 2.46538E-04 (3.7590)

40x40 5.59873E-05 (4.1720) 6.50603E-06 (4.2028) 5.99880E-05 (4.1098)

80x80 1.17766E-05 (4.7541) 1.30309E-06 (4.9927) 1.21597E-05 (4.9333)

6.2 Problem B: Quarter Five-Spot Test

Problem B has no-flow boundary conditions u ·n = 0 on ∂D. The spatial mesh
is made up of 80 × 80 elements. The source function has a source q = 100 in
the upper left element and a sink q = −100 in the lower right element, and is
everywhere else q = 0. The log permeability Y has zero mean.

Figures 4 and 5 show the expectation and variance of the stochastic solution
to problem B. The pressure variance is is largest at the wells and so is the
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velocity variance. However, the velocity variance is also affected by the no
flow boundary conditions. Table 3 shows the stochastic convergence. We again
observe exponential convergence.

P
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0.0004
0.0002

Fig. 4. Expectation of solution (left), and variance of the pressure (right) to problem
B with 56 collocation points.
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Fig. 5. Variance of the x-velocity component (left), and variance of the y-velocity
component (right) to problem B with 56 collocation points.

Table 3
Stochastic convergence results for problem B.

Coll. Points Flux L2 Error Pressure L2 Error Velocity L2 Error

26 6.30703527E-05 6.41445607E-05 3.15266692E-05

36 2.39755565E-06 4.77299042E-07 1.14009004E-06

46 1.35972699E-07 3.45271568E-08 6.41590640E-08

6.3 Problem C: Discontinuous Permeability Test

Problem C has the same boundary conditions and source function as problem
A. The log permeability Y has a mean of 4.6 in lower-left and upper-right
subdomains, and zero mean in upper-left and lower-right subdomains.
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Figures 6 and 7 show the expectation and variance of the stochastic solution to
problem C. The pressure variance is largest in the regions where the pressure
changes the most. The velocity variance is largest at the cross-point, where
the solution is singular and the true velocity is infinite. Table 4 shows the
stochastic convergence. Despite the singularity in physical space, the solution
preserves it smoothness in stochastic space, and exponential convergence is
observed. Table 5 shows the deterministic convergence. Due to the singularity
at the cross-point, the convergence rates have deteriorated, but appear to be
approaching first order for both the pressure and velocity.
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Fig. 6. Expectation of solution (left), and variance of the pressure (right) to problem
C with 56 collocation points.
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Fig. 7. Variance of the x-velocity component (left), and variance of the y-velocity
component (right) to problem C with 56 collocation points.

Table 4
Stochastic convergence results for problem C.

Coll. Points Flux L2 Error Pressure L2 Error Velocity L2 Error

26 4.14095348E-02 1.63919311E-05 1.60948620E-02

36 5.04580970E-04 9.51941306E-07 2.58074051E-04

46 1.92383136E-05 1.25671461E-08 6.86101244E-06
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Table 5
Deterministic Convergence results for problem C.

Grid Flux L2 Error Pressure L2 Error Velocity L2 Error

10x10 12.2307702 0.0116301201 5.50891085

20x20 12.7644499 (0.9582) 0.00879426323 (1.3225) 4.34814306 (1.2670)

40x40 11.9079145 (1.0719) 0.00573525999 (1.5334) 2.99591277 (1.4514)

80x80 8.28362644 (1.4375) 0.00274973298 (2.0858) 1.52456248 (1.9651)

7 Numerical Results for Slightly Compressible Flow

In this section, we model single phase slightly compressible flow using the
IPARS framework [33,37,30]. To compare the stochastic collocation approaches
with Monte Carlo, we consider a two dimensional reservoir 1280 × 1280 [ft2]
with a mean permeability field upscaled from the SPE10 Comparative Solution
Upscaling Project data set as shown in Figure 8.

Fig. 8. Mean log-permeability field based on the SPE10 case.

The initial pressure is set at 3550 [psi]. Injection wells are placed in each corner
with a pressure of 3600 [psi], and a production well in placed in the center
with a pressure of 3000 [psi]. The numerical grid is 64×64 and the simulations
run for 50 days with variable time stepping. We assume a correlation length
of 0.78 in each direction to enable the KL expansion to be truncated at four
terms. The collocation points are taken to be tensor products of the roots of
Hermite polynomials as described in Section 3.3.

In Figure 9 we plot the mean pressure fields at t = 50 for the Monte Carlo
and stochastic collocation simulations respectively. We include streamlines to
indicate the direction of the flow. In Figure 10 we plot the standard deviation
of the pressure fields at t = 50 for the Monte Carlo and stochastic collocation
simulations, respectively. In each case, we see that the stochastic collocation
provides results comparable to the Monte Carlo while requiring fewer simula-
tions.
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(a) Using mean permeability (b) Monte Carlo 100

(c) 24 Collocation Points (d) 34 Collocation Points

Fig. 9. Mean pressure field and streamlines using the mean permeability (a), 100
Monte Carlo simulations (b), 24 collocation points (c), and 34 collocation points
(d).

(a) Monte Carlo 100 (b) 34 Collocation Points

Fig. 10. Standard deviation of the pressure field using 100 Monte Carlo simulations
and 34 collocation points (b).

Next, we compare some numerical results for two phase (oil and water) slightly
compressible flow to the numerical results for single phase slightly compress-
ible flow computed above. The mean permeability, the porosity, and the well
models are same as the previous example. We also use the same Karhunen-
Loeve expansion and collocation points. The initial oil pressure is set at 3550
[psi] and the initial water saturation is 0.2763.
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In Figures 11, 12 and 13, we plot the mean and the standard deviation of the oil
pressure, the water saturation, and the cumulative oil production respectively
using 100 Monte Carlo simulations and 24 collocation points. The statistics
computed using collocation are comparable to the Monte Carlo simulations
while requiring less computational effort. Comparing Figures 9 and 11, we see

(a) Monte Carlo 100 (b) 24 Collocation Points

(c) Monte Carlo 100 (d) 24 Collocation Points

Fig. 11. Mean of the oil pressure using 100 Monte Carlo simulations (a), the mean
of the oil pressure using 24 collocation points (b), the standard deviation of the oil
pressure using 100 Monte Carlo simulations (c), and the standard deviation of the
oil pressure using 24 collocation points (d).

that the mean and the standard deviation of the pressure fields have similar
topological features. This indicates that we may be able to use the single phase
solver, which is less expensive, to determine the appropriate number of terms
in the Karhunen-Loeve expansion, to select the number of collocation points,
or to design effective preconditioners.

8 Conclusions

The present paper has focused on analyzing the combined use of stochastic
collocation methods and mixed finite elements for quantifying the uncertainty
of flow quantities for a given log-normal distributed permeability field. We have
considered both incompressible and slightly compressible single phase flow as
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(a) Monte Carlo 100 (b) 24 Collocation Points

(c) Monte Carlo 100 (d) 24 Collocation Points

Fig. 12. Mean of the water saturation using 100 Monte Carlo simulations (a), the
mean of the water saturation using 24 collocation points (b), the standard deviation
of the water saturation using 100 Monte Carlo simulations (c), and the standard
deviation of the water saturation using 24 collocation points (d).
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Fig. 13. Mean (a) and standard deviation (b) of the cumulative oil production using
100 Monte Carlo simulations and 24 collocation points.

well as two-phase flow in a porous media. From a theoretical standpoint, we
have established convergence bounds for both the pressure and the velocity.
These results also hold for nonlinear diffusion coefficients as occurring in the
event of slight compressibility.
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From a numerical standpoint, we were able to confirm numerically the theo-
retical convergence rates for the stochastic and the deterministic errors. We
also observed that the stochastic collocation converges much faster (to the
mean and variance) than the standard MCS approach with a significantly re-
duced number of simulations. This observation also holds for the two-phase
case where phase saturations follow a hyperbolic trend. The same stochastic
numerical convergence was also verified for the well production curves.

The present work should set the basis for addressing a set of more challenging
issues. These issues include: (1) extension of results on non-stationary dis-
tributions in a domain decomposition fashion (i.e., different subdomains fol-
lowing different random permeability distributions); (2) design of specialized
solvers and timestepping strategies capable of taking advantage of solution
trends displayed by the closeness of multiple simulations; (3) experiences with
probabilistic collocation methods and other stochastic interpolation methods
seeking to reduce the computational burden due to the sampling and order
of stochastic polynomial approximations; and (4) define the order of stochas-
tic approximations for KL and Hermite polynomials for highly complex flow
simulation models (e.g., compositional EOS flow) based on the stochastic of
simpler flow models such as single-phase flow and streamlines, as well as in-
corporation of a priori information using Bayesian inference.
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[4] F. Brezzi, J. Douglas, Jr., R. Duràn, and M. Fortin. Mixed finite elements for
second order elliptic problems in three variables. Numer. Math., 51:237–250,
1987.

[5] F. Brezzi, J. Douglas, Jr., M. Fortin, and L. D. Marini. Efficient rectangular
mixed finite elements in two and three space variables. RAIRO Modèl. Math.
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