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Abstract. A numerical approach to estimating solutions to coupled systems of equations is partitioned time
stepping methods, an alternative to monolithic solution methods, recently studied in the context of fluid-fluid and
fluid-structure interaction problems. Few analytical results of stability and convergence are available, and typically
such methods have been limited to first order accuracy in terms of discretization parameters. A brief overview of
results is given in [11], and the computational evidence suggest that many proposed higher-order schemes are unstable,
or their stability is yet to be proven analytically. This report considers two heat equations in Ω1, Ω2 ⊂ R2 adjoined
by an interface I = Ω1 ∩ Ω2 ⊂ R - as a simplified model for the fluid-fluid or fluid-structure interactions. The family
of semi-implicit spectral deferred correction (SISDC) methods for the partial differential equations is presented. The
two-step SISDC method (one simpler method from this family) is then thoroughly discussed. The stability and the
desired second-order accuracy are proven, and computations are provided verifying second-order time accuracy of the
two-step method.
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1. Introduction. Numerical approximations are necessary for the numerous problems featur-
ing multiple parameter regimes or coupled physical processes, where preexisting codes are considered
the benchmark for solving the corresponding subproblems. Often such problems require coupling
conditions to be satisfied on subdomain interfaces arising, for example, from conditions imposed to
represent the interaction of physical processes. Solving the monolithic, coupled problem numerically
via global discretizations may preclude usage of highly optimized black box subdomain solvers and
limit accuracy and efficiency of computations. Iteratively solving the monolithic equations at each
time step, decoupling is possible in the preconditioning and residual calculations and provide an
attractive approach to some problems. Alternatively, partitioned time stepping methods provide
a convenient decoupling strategy for large problems, allowing easy implementation of subdomain
solvers. At each time step data is explicitly passed across the interface and the (decoupled) subdo-
main equations are then solved in parallel.

In this work, partitioned time stepping is applied to a simplified model of diffusion through
two adjacent materials coupled across their shared interface I through a jump condition. This
problem captures some of the time stepping difficulties in one candidate application, atmosphere-
ocean interaction. The domain consists of two subdomains Ω1 and Ω2 coupled across an interface I
(example in Figure 1.1 below). The problem is: given νi > 0, fi : [0, T ] → H1(Ωi), ui(0) ∈ H1(Ωi)
and κ ∈ R, find (for i = 1, 2) ui : Ωi × [0, T ] → R satisfying

ui,t − νi∆ui = fi, in Ωi, (1.1)
−νi∇ui · n̂i = κ(ui − uj), on I, i, j = 1, 2 , i 6= j , (1.2)

ui(x, 0) = u0
i (x), in Ωi, (1.3)

ui = gi, on Γi = ∂Ωi \ I. (1.4)

Let

Xi := {vi ∈ H1(Ωi) : vi = 0 on Γi}.

For ui ∈ Xi we denote u = (u1, u2) and X := {v = (v1, v2) : vi ∈ H1(Ωi) : vi = 0 on Γi, i = 1, 2}.
A natural subdomain variational formulation for (1.1)-(1.4), obtained by multiplying (1.1) by vi,
integrating and applying the divergence theorem, is to find (for i, j = 1, 2, i 6= j) ui : [0, T ] → Xi

satisfying

(ui,t, vi)Ωi + (νi∇ui,∇vi)Ωi +
∫

I

κ(ui − uj)vids = (fi, vi)Ωi , for all vi ∈ Xi. (1.5)
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The natural monolithic variational formulation for (1.1)-(1.4) is found by summing (1.5) over i, j =
1, 2 and i 6= j and is to find u : [0, T ] → X satisfying

(ut,v) + (ν∇u,∇v) +
∫

I

κ[u][v]ds = (f,v),∀v ∈ X, (1.6)

where [·] denotes the jump of the indicated quantity across the interface I , (·, ·) is the L2(Ω1 ∪Ω2)
inner product and ν = νi and f = fi in Ωi.

n̂2

n̂1

I

Ω1

Ω2

Fig. 1.1. Example subdomains, coupled across an interface I.

Figure 1.1 illustrates the subdomains considered here, representative of commonly studied mod-
els in fluid-fluid and fluid-structure interaction, [7, 8, 11]. Comparing (1.6) and (1.5) we see that the
monolithic problem (1.6) has a global energy that is exactly conserved, (in the appropriate sense),
(set v = u in (1.6)). The subdomain sub-problems (1.5) do not posses a subdomain energy which
behaves similarly due to energy transfer back and forth across the interface I. It is possible for
decoupling strategies to become unstable due to the input of non-physical energy as a numerical
artifact.

Fluid-structure interaction problems, in particular blood flow models, are a typical application
of partitioned methods. In these models the equations of elastic deformation of an arterial wall
are coupled to equations of fluid flow through the vessel. Recently, it has been shown partitioned
methods may be employed for this problem with the addition of a stabilization term on the fluid-
structure interface. A defect correction step is implemented to recover optimal time accuracy, (see
[8]).

Another application is atmosphere-ocean interaction, [3, 10, 7, 19]. This was a motivation for
the work of Connors, Howell and Layton, [11], in developing partitioned schemes for (1.1)-(1.4), as a
model capturing some of the technical difficulties of the coupled fluid-fluid problem. Two first order
in time algorithms were analyzed, one an implicit-explicit (IMEX) approach where the interface term
in the variational formulation is treated explicitly. The problem can also be discretized using the
second and higher order IMEX schemes, [2]. However, stability results for the second order IMEX
algorithm are not available. A brief overview of other approaches is given in [11], (see also [4, 9, 12]).

In this report, a second order in time, non-overlapping uncoupling method for (1.1)-(1.4) is
presented: the two-step Semi-Implicit Spectral Deferred Correction (SISDC) method. At each step
of the method the interface term in (1.5) is advanced in time to give one step black box decoupling
of the subdomain problems in Ω1 and Ω2.

The main advantage of the deferred correction approach is that a simple low-order method can
be employed, and the recovered solution is of high-order accuracy, due to a sequence of deferred
correction equations. The general idea of defect correction and deferred correction methods for
solving partial differential equations has been known for a long time, see the survey article [5]. The
classical deferred correction approach could be seen, e.g., in [14]. However, in 2000 a modification
of the classical deferred correction approach was introduced by Dutt, Greengard and Rokhlin, [13].
This allowed the construction of stable and high-order accurate spectral deferred correction methods.
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In [20] M.L. Minion discusses these spectral deferred correction (SDC) methods in application to an
initial value ODE

φ′(t) = F (t, φ(t)), t ∈ [a, b] (1.7)
φ(a) = φa.

The solution is written in terms of the Picard integral equation; a polynomial is used to interpolate
the subintegrand function and the obtained integral term is replaced by its quadrature approxima-
tion. In the case when the right hand side of the ODE can be decomposed into a sum of the stiff
and non-stiff terms, a Semi-Implicit SDC method (SISDC) is introduces, which allows to treat the
non-stiff terms explicitly and the stiff terms implicitly. These SISDC methods for solving ordinary
differential equations are further discussed in [21].

The remainder of this work is organized as follows: in Section 2, notation and mathematical
time-stepping algorithms are described: the family of the higher-order semi-implicit spectral deferred
correction methods. Results regarding the stability of the two-step method are presented in Section
3. Convergence results are presented in Section 4, and computations are performed to investigate
stability and accuracy of a two-step SISDC algorithm in section 5.

2. Method Description, Notation and Preliminaries. This section presents the numerical
schemes for (1.1)-(1.4), and provides the necessary definitions and lemmas for the stability and
convergence analysis. For D ⊂ Ω, the Sobolev space Hk(D) = W k,2(D) is equipped with the usual
norm ‖·‖Hk(D), and semi-norm |·|Hk(D), for 1 ≤ k < ∞, e.g. Adams [1]. The L2 norm is denoted by
‖·‖D. For functions v(x, t) defined for almost every t ∈ (0, T ) on a function space V (D), we define
the norms (1 ≤ p ≤ ∞)

‖v‖L∞(0,T ;V ) = ess sup
0<t<T

‖v(·, t)‖V and ‖v‖Lp(0,T ;V ) =

(∫ T

0

‖v‖p
V dt

)1/p

.

The dual space of the Banach space V is denoted V ′.
Let the domain Ω ⊂ Rd (typically d = 2, 3) have convex, polygonal subdomains Ωi for i = 1, 2

with ∂Ω1 ∩ ∂Ω2 = Ω1 ∩Ω2 = I. Let Γi denote the portion of ∂Ωi that is not on I, i.e. Γi = ∂Ωi \ I.
For i = 1, 2, let Xi =

{
v ∈ H1(Ωi) | v|Γi = gi

}
, let (·, ·)Ωi denote the standard L2 inner product

on Ωi, and let (·, ·)Xi denote the standard H1 inner product on Ωi. Define X = X1 × X2 and
L2(Ω) = L2(Ω1) × L2(Ω2) for u,v ∈ X with u = [u1, u2]T and v = [v1, v2]T , define the L2 inner
product

(u,v) =
∑

i=1,2

∫
Ωi

uivi dx ,

and H1 inner product

(u,v)X =
∑

i=1,2

(∫
Ωi

uivi dx +
∫

Ωi

∇ui · ∇vi dx

)
,

and the induced norms ‖v‖ = (v,v)1/2 and ‖v‖X = (v,v)X
1/2, respectively. The case where

gi = 0, i = 1, 2 will be considered here, and can be easily extended to the case of nonhomogeneous
Dirichlet conditions on ∂Ωi \ I.

Lemma 2.1. (X, ‖·‖X) is a Hilbert space.
Proof. The choice of boundary conditions for X1 and X2 will ensure Xi ⊂ H1(Ωi), i = 1, 2 are

closed subspaces. Hence by the definitions of (·, ·)X and ‖·‖X , (X, ‖·‖X) is a Hilbert space.

2.1. Discrete Formulation. Let Ti be a triangulation of Ωi and Th = T1∪T2. Take Xi,h ⊂ Xi

to be conforming finite element spaces for i = 1, 2, and define Xh = X1,h × X2,h ⊂ X. It follows
3



that Xh ⊂ X is a Hilbert space with corresponding inner product and induced norm. For u ∈ X,
define the operators A,B : X → (X)′ via the Riesz Representation Theorem as(

Au,v
)

=
∑

i=1,2

νi

∫
Ωi

∇ui : ∇vi dx, ∀v ∈ X and (2.1)

(
Bu,v

)
= κ

∫
I

[u] [v] ds, ∀v ∈ X . (2.2)

The discrete operators Ah, Bh : Xh → (Xh)′ = Xh are defined analogously by restricting (2.1)
and (2.2) to vh ∈ Xh. With this notation the coupled problem can be written

∂u
∂t

+ Au + Bu = f , u(x, 0) = u0. (2.3)

For tk ∈ [0, T ], uk will denote the discrete approximation to u(tk).
A standard partitioned time stepping approach for solving (2.3) is an IMEX scheme, see Connors,

Howell, Layton, [11].
Algorithm 2.1 (First-order IMEX Scheme). Let ∆t > 0, f ∈ L2(Ω). For each M ∈ N,M ≤

T
∆t , given un ∈ Xh, n = 0, 1, 2, · · · ,M − 1, find un+1 ∈ Xh satisfying

un+1 − un

∆t
+ Ahun+1 + Bhun = f(tn+1), (2.4)

or, in variational form,(
un+1 − un

∆t
,v
)

+
(
Ahun+1,v

)
+ (Bhun,v) =

(
f(tn+1),v

)
, ∀v ∈ Xh . (2.5)

This scheme was extensively studied in [11] and was proven to be stable (provided ∆t ≤
C min{ν1, ν2}κ−2) and first order accurate. It will be shown in Section 3 that the SISDC method
is also stable under these conditions (and higher order accurate).

The SISDC method constructs a sequence of approximations to the sought solution u. The
algorithm for the general family of SISDC applied to the model problem (2.3) is as follows.

Algorithm 2.2 (General SISDC). Calculate u0,u1, ...,um - approximations to u via

un+1
0 − un

0

∆t
+ Ahun+1

0 + Bhun
0 = fn+1, (2.6a)

un+1
k+1 − un

k+1

∆t
+ Ahrn+1

k+1 + Bhrn
k+1 =

1
∆t

In+1
n (uk), for k = 0, 1, ...,m− 1. (2.6b)

Here ri
k+1 = ui

k+1 − ui
k, k = 0, 1, ...,m− 1, i = 0, 1, ..., N .

In+1
n (uk) is a numerical quadrature approximation to

∫ tn+1

tn
F (τ,uk(τ))dτ , where F (t,u) =

f(t)−Ahu(t)−Bhu(t).
Remark 2.1. Provided the integral terms In+1

n (uk) are computed with the accuracy of order
O((∆t)k+1), after k iterations the above procedure will produce an approximate solution with global
accuracy O((∆t)k+1). If the points tm ∈ [tn, tn+1] are chosen to be Gaussian quadrature nodes,
then the integral is being computed with a spectral integration rule, which is the reason for the name
spectral deferred corrections.

In this paper we will consider the two-step SISDC method and prove its stability and second
order temporal accuracy. The method computes an approximation to the solution u of (2.3). At
the first step the initial approximation u0 is computed via (2.6a). Thus, at the first step we use the
Implicit Explicit scheme (Connors, Howell, Layton, [11]). For the second step we consider (2.6b)
with k = 0. The second step approximation u1 satisfies
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un+1
1 − un

1

∆t
+ Ahun+1

1 + Bhun
1 = Ahun+1

0 + Bhun
0 +

1
∆t

In+1
n (u0). (2.7)

It follows from Remark 2.1 that we need the numerical quadrature approximation of the integral
term in (2.7) to be of the second order accuracy. We use Gaussian quadrature with one point -
midpoint of the interval. Thus, the integral term in (2.7) is replaced by

F (tn,u0) + F (tn+1,u0)
2

=
fn+1 + fn

2
− Ahun+1

0 + Ahun
0

2
− Bhun+1

0 + Bhun
0

2
. (2.8)

Therefore, in the case when the second order accuracy is sought and we only make two steps of
the SISDC procedure, the second step equation could be written as:

un+1
1 − un

1

∆t
+ Ahun+1

1 + Bhun
1 =

fn+1 + fn

2
+

∆t

2
Ah(

un+1
0 − un

0

∆t
)− ∆t

2
Bh(

un+1
0 − un

0

∆t
). (2.9)

The variational formulation of the two-step Semi-Implicit Spectral Deferred Correction method
is:

Algorithm 2.3 (Two-Step SISDC Method). Let ∆t > 0, f ∈ L2(Ω). For each M ∈ N,M ≤
T
∆t , given un

0 ,un
1 ∈ Xh, n = 0, 1, 2, · · · ,M − 1, find un+1

0 ,un+1
1 ∈ Xh satisfying(

un+1
0 − un

0

∆t
,v
)

+
(
Ahun+1

0 ,v
)

+ (Bhun
0 ,v) =

(
fn+1,v

)
, ∀v ∈ Xh (2.10)

(
un+1

1 − un
1

∆t
,v
)

+
(
Ahun+1

1 ,v
)

+ (Bhun
1 ,v) =

(
fn+1 + fn

2
,v
)

(2.11)

+
∆t

2

(
Ah(

un+1
0 − un

0

∆t
),v
)
− ∆t

2

(
Bh(

un+1
0 − un

0

∆t
),v
)

, ∀v ∈ Xh.

2.2. Analytical Tools. In this section results that will be utilized in the stability and conver-
gence analysis are presented. It is necessary to work with norms induced by the operators A and B,
and relate these norms back to ‖·‖ and ‖·‖X . The next lemma serves to introduce useful norms for
the numerical analysis and prove equivalence with the ‖·‖X -norm. Originally presented in [11], the
proof is included here to clarify subsequent arguments.

Lemma 2.2. Let v = (v1, v2) ∈ X and α ≥ 0. The following is a norm on X:

‖v‖A+αI =

∑
i=1,2

νi

∫
Ωi

|∇vi|2 dx + α
∑

i=1,2

∫
Ωi

|vi|2 dx


1/2

. (2.12)

This norm is equivalent to ‖·‖X . For α ≥ C κ2 max{ν−1
1 , ν−1

2 },

κ

∫
I

[v]2 ds ≤
∑

i=1,2

νi

∫
Ωi

|∇vi|2 dx + α
∑

i=1,2

∫
Ωi

|vi|2 dx, and thus

‖v‖A+αI−B =

∑
i=1,2

νi

∫
Ωi

|∇vi|2 dx + α
∑

i=1,2

∫
Ωi

|vi|2 dx− κ

∫
I

|v1 − v2|2 ds


1/2
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is a norm on X equivalent to ‖·‖X .
Proof. The first assertion follows from noting the Poincaré–Friedrichs inequality holds on X1

and X2 under the boundary conditions, and thus that the norm is derived from an inner product
on X. Then equivalence to the norm ‖·‖X is clear. It can also be shown that ‖v‖A+αI−B is derived
from an inner product by defining

(u,v)A+αI−B =
∑

i=1,2

νi

∫
Ωi

∇ui : ∇vi dx + α
∑

i=1,2

∫
Ωi

ui · vi dx− κ

∫
I

(u1 − u2)(v1 − v2) ds .

Linearity and symmetry are clear. It remains to prove definiteness and equivalence to ‖·‖A. Note
that

κ

∫
I

|v1 − v2|2 ds ≤ κ
{
‖v1‖2L2(I) + 2‖v1‖L2(I)‖v2‖L2(I) + ‖v2‖2L2(I)

}
≤ 2κ

{
‖v1‖2L2(I) + ‖v2‖2L2(I)

}
= 2κ

{
‖v1‖2L2(∂Ω1)

+ ‖v2‖2L2(∂Ω2)

}
.

Application of the trace inequality [6] followed by Young’s inequality yields

κ

∫
I

|v1 − v2|2 ds ≤ C(κ, Ω1,Ω2)
{
‖v1‖L2(Ω1)‖∇v1‖L2(Ω1) + ‖v2‖L2(Ω2)‖∇v2‖L2(Ω2)

}
≤ C(κ, Ω1,Ω2)

{
1

2γ1
‖v1‖2L2(Ω1)

+
γ1

2
‖∇v1‖2L2(Ω1)

+
1

2γ2
‖v2‖2L2(Ω2)

+
γ2

2
‖∇v2‖2L2(Ω2)

}
.

Choose γi =
νi

C(κ, Ω1,Ω2)
for i = 1, 2 and α =

C(κ, Ω1,Ω2)2

2
max{ν−1

1 , ν−1
2 }. Then

κ

∫
I

|v1 − v2|2 ds ≤ α‖v1‖2L2(Ω1)
+

ν1

2
‖∇v1‖2L2(Ω1)

+ α‖v2‖2L2(Ω2)
+

ν2

2
‖∇v2‖2L2(Ω2)

⇒1
2

{
ν1‖∇v1‖2L2(Ω1)

+ ν2‖∇v2‖2L2(Ω2)

}
≤
∑

i=1,2

νi

∫
Ωi

|∇vi|2 dx + α
∑

i=1,2

∫
Ωi

|vi|2 dx− κ

∫
I

|v1 − v2|2 ds

⇒1
2
‖v‖2A ≤ ‖v‖2A+αI−B .

holds for this choice of α > 0. This proves (u,u)A+αI−B = 0 ⇔ u = 0 for any u ∈ X, and hence
‖·‖A+αI−B is a norm on X. Last, to prove equivalence with ‖·‖A, note that

‖v‖2A+αI−B ≤ ‖v‖2A+αI =
∑

i=1,2

{
α‖vi‖2L2(Ωi)

+ νi‖∇vi‖2L2(Ωi)

}
≤
{

1 + α max
{

C2
PF (Ω1)

ν1
,
C2

PF (Ω2)
ν2

}}
‖v‖2A .

holds by applying the Poincaré - Friedrichs inequality.
The following discrete Gronwall lemma from [16] will also be utilized in the subsequent analysis.
Lemma 2.3. Let k, M , and aµ, bµ, cµ, γµ, for integers µ > 0, be nonnegative numbers such that

an + k
n∑

µ=0

bµ ≤ k
n∑

µ=0

γµaµ + k
n∑

µ=0

cµ + M for n ≥ 0. (2.13)

Suppose that kγµ < 1, for all µ, and set σµ ≡ (1− kγµ)−1. Then,

an + k
n∑

µ=0

bµ ≤ exp

(
k

n∑
µ=0

σµγµ

){
k

n∑
µ=0

cµ + M

}
for n ≥ 0. (2.14)
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Throughout the paper we use the following Modified H1 Projection.
Definition 2.4 (Modified H1 Projection). The Modified H1 Projection operator P : X → Xh,

P (u) = ũ, satisfies

((I + A + B)(u− ũ),vh) = 0, (2.15)

for any vh ∈ Xh.
Proposition 2.5 (Stability of the Modified H1 Projection). Let u, ũ satisfy (2.15). Then

there exists a constant C = C(κ, Ω1,Ω2) such that

‖ũ‖2 + ‖∇ũ‖2 + (Bũ, ũ) ≤ C‖u‖2X . (2.16)

Proof. Take vh = ũ ∈ Xh in (2.15). Use Cauchy-Schwarz and Young’s inequalities to obtain

‖ũ‖2 + ‖∇ũ‖2 + (Bũ, ũ) ≤ 1
2
‖ũ‖2 +

1
2
‖u‖2

+
1
2
‖∇ũ‖2 +

1
2
‖∇u‖2 + (Bu, ũ).

Using the trace inequality as in the proof of Lemma 2.2 one can show that

(Bu, ũ) ≤ 1
4
‖ũ‖2 +

1
4
‖∇ũ‖2 + C(κ, Ω1,Ω2)‖u‖2X ,

which concludes the proof.
In the error analysis we shall use the error estimate of the Modified H1 Projection (2.15).
Proposition 2.6 (Error estimate for the Modified H1 Projection). The error in the Modified

H1 Projection satisfies

‖u− ũ‖2 + ‖∇(u− ũ)‖2 + (B(u− ũ),u− ũ) ≤ C inf
vh∈Xh

‖(u− vh)‖2X , (2.17)

where C = C(κ, Ω1,Ω2).
Proof. Decompose the projection error u−ũ = u−I(u)+(I(u)−ũ) = η+φ, where η = u−I(u),

φ = I(u)− ũ, and I(u) approximates u in Xh. Take vh = φ ∈ Xh in (2.15). This gives

‖φ‖2 + ‖∇φ‖2 + (Bφ,φ) = −(η,φ)− (∇η,∇φ)− (Bη,φ). (2.18)

Using the trace inequality as in the proof of Lemma 2.2 and applying the Cauchy-Schwarz and
Young’s inequalities leads to

‖φ‖2 + ‖∇φ‖2 + (Bφ,φ) ≤ C‖η‖2X . (2.19)

Since I(u) is an approximation of u in Xh, we can take infimum over Xh. The proof is concluded
by applying the triangle inequality.

3. Stability. Stability of the IMEX scheme (Algorithm 2.1) was established in [11], see the
lemma below.

Lemma 3.1. (IMEX Stability) Let un+1
0 ∈ Xh satisfy (2.10) for each n ∈

{
0, 1, 2, · · · , T

∆t − 1
}
,

and 0 < ∆t < (2α + 1)−1. Then ∃C1, C2 > 0 independent of h, ∆t such that un+1
0 satisfies:

∥∥un+1
0

∥∥2
+ ∆t

n+1∑
k=0

‖uk
0‖

2

X ≤ C1(α)eC2(α)T

{
‖u0

0‖2 + ∆t‖u0
0‖

2

X + ∆t
n∑

k=0

‖f(tk+1)‖2
}

.

Hence, the initial approximation u0 which satisfies (2.10) is stable. We conclude the proof of
stability of the SISDC approximations by considering the second step approximation u1 satisfying
(2.11).
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Theorem 3.2 (Stability of SISDC). Let un+1
1 ∈ Xh satisfy (2.11) for each n ∈

{
0, 1, 2, · · · , T

∆t − 1
}
,

and 0 < ∆t < (2α + 1)−1. Then ∃C1, C2 > 0 independent of h, ∆t such that un+1
1 satisfies:

∥∥un+1
1

∥∥2
+ ∆t

n+1∑
k=0

‖uk
1‖

2

X ≤ C1(α)eC2(α)T

{
‖u0

1‖2 + ∆t‖u0
1‖

2

X + ∆t
n∑

k=0

‖f(tk+1)‖2
}

.

Proof. Choose v = un+1
1 in (2.11). Then it follows:(

un+1
1 − un

1

∆t
,un+1

1

)
+
(
Ahun+1

1 ,un+1
1

)
+
(
Bhun

1 ,un+1
1

)
=
(

fn+1 + fn

2
,un+1

1

)
+

∆t

2

(
Ah(

un+1
0 − un

0

∆t
),un+1

1

)
− ∆t

2

(
Bh(

un+1
0 − un

0

∆t
),un+1

1

)
.

Add α(un+1
1 ,un+1

1 ) to both sides and apply (2.12). Then apply Young’s inequality using the
fact that (

Bhun
1 ,un+1

1

)
≥ −1

2
(
Bhun+1

1 ,un+1
1

)
− 1

2
(Bhun

1 ,un
1 ) .

Then split the term

‖un+1
1 ‖2A+αI =

1
2
‖un+1

1 ‖2A+αI +
1
2
(
‖un+1

1 ‖2A+αI − ‖un
1‖2A+αI

)
+

1
2
‖un

1‖2A+αI .

These results together with Lemma 2.2 imply the new estimate

1
2∆t

(
‖un+1

1 ‖2 − ‖un
1‖2
)

+
1
2
‖un+1

1 ‖2A+αI−B +
1
2
(
‖un+1

1 ‖2A+αI − ‖un
1‖2A+αI

)
+

1
2
‖un

1‖2A+αI−B

≤
(

fn+1 + fn

2
,un+1

1

)
+ α‖un+1

1 ‖2 +
1
4
‖un+1

1 ‖2A+αI−B + C(‖un+1
0 ‖2X + ‖un

0‖2X).

Rearranging terms,

‖un+1
1 ‖2 + ∆t‖un+1

1 ‖2A+αI + ∆t

n∑
k=0

{
‖uk+1

1 ‖2A+αI−B + ‖uk
1‖2A+αI−B

}
≤ ‖u0

1‖2 + ∆t‖u0
1‖2A+αI + ∆t

n∑
k=0

(‖uk+1
0 ‖2X + ‖ f

k+1 + fk

2
‖2) + ∆t(2α + 1)

n∑
k=0

‖uk+1
1 ‖2.

Take γn ≡ 2α + 1 in Lemma 2.3. Choose C2(α) = 2(2α + 1)(1−∆t(2α + 1)−1). Applying Lemma
3.1 and Lemma 2.2 concludes the proof.

4. Convergence analysis. The convergence analysis for Algorithm 2.1 was performed in [11],
see the theorem below.

Theorem 4.1. (Convergence of the IMEX scheme) Let u(t;x) ∈ X for all t ∈ (0, T ) solve
(1.1)–(1.4), such that ut ∈ L2(0, T ;X) and utt ∈ L2(0, T ;L2(Ω)). Then ∃C1, C2 > 0 independent
of h, ∆t such that for any n ∈ {0, 1, 2, · · · ,M − 1 = T

∆t − 1} and 0 < ∆t < (2 + 2α)−1, the solution
un+1

0 ∈ Xh of (2.10) satisfies:

‖u(tn+1)− un+1
0 ‖2 + ∆t‖u(tn+1)− un+1

0 ‖2X +
3∆t

4

n∑
k=0

‖u(tk+1)− uk+1
0 ‖2X

≤ C1(α)eC2(α)T
{
‖u(0)− u0

0‖2 + ∆t‖u(0)− u0
0‖2X + ∆t2‖ut‖2L2(0,T ;X)

+ ∆t2‖utt‖2L2(0,T ;L2(Ω))

+ inf
v0∈Xh

{
‖u(0)− v0‖2 + ∆t‖u(0)− v0‖2X

}
+ inf

v∈Xh

‖(u(0)− v)t‖2

+ T max
k=1,2,··· ,n+1

inf
vk∈Xh

‖u(tk)− vk‖2X
}

.
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Corollary 4.2. Let Xh ⊂ X be a finite element space corresponding to continuous piece-wise
polynomials of degree k. If u(·, t) is a solution of (1.1)–(1.4) satisfying the assumptions of Theorem
4.1, and u0

0 approximates u(·, 0) such that

‖u(·, 0)− u0
0‖ = O(hq),

then the approximation (2.10) converges at the rate O(∆t + hq) in the norm{
∆t

M∑
k=0

‖u(tk)− uk
0‖2X

}1/2

.

The rest of this section will be devoted to deriving a bound on the error in the second step
approximation u − u1. Let ei

j = u(ti) − ui
j , ∀i = 0, 1, ..., N , j = 1, 2. The bounds on ei

0 have been

derived in Theorem 4.1. We now need the bounds on ei+1
0 −ei

0
∆t .

Theorem 4.3 (IMEX time derivative). Let u(t;x) ∈ X for all t ∈ (0, T ) solve (1.1)–(1.4), such
that ut ∈ L2(0, T ;X), utt ∈ L2(0, T ;L2(Ω)) and uttt ∈ L2(0, T ;L2(Ω)). Then ∃C > 0 independent
of h, ∆t such that for any n ∈ {0, 1, 2, · · · ,M − 1 = T

∆t − 1} and 0 < ∆t < (2 + 2α)−1, the discrete

time derivative of the error ei+1
0 −ei

0
∆t satisfies:

‖e
n+1
0 − en

0

∆t
‖2 + ∆t

n∑
i=0

‖e
i+1
0 − ei

0

∆t
‖2X

≤ C[‖en+1
0 ‖2 + ∆t

n∑
i=0

‖ei+1
0 ‖2X ].

Proof. Restricting test functions to Xh, subtract (2.10) from (2.3) to get the error equation. Let
en
0 = ηn + φn, where ηn = u(tn)− vh, φn = vh − un

0 , for some vh ∈ Xh. Then for ∀n ≥ 0:

(φn+1 − φn

∆t
,v
)

+
(
Aφn+1,v

)
+
(
B(u(tn+1)− un

0 ),v
)

(4.1)

= −
(

ηn+1 − ηn

∆t
,v
)
−
(
rn+1,v

)
−
(
Aηn+1,v

)
, ∀v ∈ Xh,

where rn+1 = ut(tn+1)− u(tn+1)−u(tn)
∆t .

In order to treat the B-term, add and subtract Bu(tk); it follows that

Bu(tn+1)−Bun
0 = B(u(tn+1)− u(tn)) + Bηn + Bφn.

Consider (4.1) at the current time level n + 1 and the previous time level n. Subtract the latter
from the current time level, making the same choice v = φn+1−φn

∆t in both equations. Denoting

sn+1 = φn+1−φn

∆t for ∀n ≥ 0, we obtain, after dividing by ∆t:

(
sn+1 − sn

∆t
, sn+1) + (Asn+1, sn+1) + ∆t(B(

un+1 − 2un + un−1

(∆t)2
), sn+1) (4.2)

+(B(
ηn − ηn−1

∆t
), sn+1) + (Bsn, sn+1) = −(

ηn+1 − 2ηn + ηn−1

(∆t)2
, sn+1)

−(A(
ηn+1 − ηn

∆t
), sn+1)− (

rn+1 − rn

∆t
, sn+1).

Replacing φ by s in the IMEX error equation (4.1) results exactly in (4.2), but the regularity
assumptions are now needed for uttt instead of utt. Hence, the result analogous to Theorem 4.1 can
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be obtained by an argument similar to the proof of Theorem 4.1. However, the summation is now
possible only up to s = 1, leaving two extra terms in the right hand side:

‖e
n+1
0 − en

0

∆t
‖2 + ∆t

n∑
i=0

‖e
i+1
0 − ei

0

∆t
‖2X ≤ C[‖φ1 − φ0

∆t
‖2 (4.3)

+∆t‖∇(
φ1 − φ0

∆t
)‖2 + (∆t)2‖uttt‖2L2(0,T ;L2(Ω)) + ‖en+1

0 ‖2 + ∆t
n∑

i=0

‖ei+1
0 ‖2X ].

Consider (4.1) at the initial time level n = 0. Take v = φ1−φ0

∆t ∈ Xh. Choose the initial time
level approximation u0

0 ∈ Xh to be the Modified H1 Projection of u(x, 0) ∈ X: P (u(x, 0)) = u0
0. It

follows from (2.15) that

(A(η0 + φ0) + B(η0 + φ0),
φ1 − φ0

∆t
) = −(η0 + φ0,

φ1 − φ0

∆t
).

Thus, we obtain from (4.1) that

‖φ1 − φ0

∆t
‖2 + ∆t‖∇(

φ1 − φ0

∆t
)‖2 (4.4)

+∆t(B(
u1 − u0

∆t
),

φ1 − φ0

∆t
) + ∆t(A(

η1 − η0

∆t
),

φ1 − φ0

∆t
) = 0.

Therefore, using Cauchy-Schwarz and Young’s inequalities, we get

‖φ1 − φ0

∆t
‖2 + ∆t‖∇(

φ1 − φ0

∆t
)‖2 ≤ C(∆t)2‖ut‖2X .

This result combined with (4.3) concludes the proof.
Finally, we have derived all the intermediate results necessary for the proof of the main theorem

of this section.
Theorem 4.4 (SISDC error estimate). Let the conditions of the Theorem 4.3 be satisfied. Let

also utt ∈ L2(0, T ;X). Then ∃C > 0 independent of h, ∆t such that for any n ∈ {0, 1, 2, · · · ,M−1 =
T
∆t − 1} and 0 < ∆t < (2 + 2α)−1, the second step approximation error ei+1

1 satisfies:

‖u(tn+1)− un+1
1 ‖2 + ∆t‖u(tn+1)− un+1

1 ‖2X + ∆t
n∑

k=0

‖u(tk+1)− uk+1
1 ‖2X

≤ C
{
‖u(0)− u0

1‖2 + ∆t‖u(0)− u0
1‖2X + ∆t4‖ut‖2L2(0,T ;X)

+ ∆t4‖utt‖2L2(0,T ;L2(Ω)) + ∆t4‖uttt‖2L2(0,T ;L2(Ω))

+ inf
v0∈Xh

{
‖u(0)− v0‖2 + ∆t‖u(0)− v0‖2X

}
+ inf

v∈Xh

‖(u(0)− v)t‖2

+ T max
k=1,2,··· ,n+1

inf
vk∈Xh

‖u(tk)− vk‖2X
}

.

Corollary 4.5. Let Xh ⊂ X be a finite element space corresponding to continuous piece-wise
polynomials of degree k. If u(·, t) is a solution of (1.1)–(1.4) satisfying the assumptions of Theorem
4.1, and u0

0,u
0
1 approximates u(·, 0) such that

‖u(·, 0)− u0
0‖ = O(hq),

‖u(·, 0)− u0
1‖ = O(hq),

then the approximation (2.11) converges at the rate O((∆t)2 + hq + hk) in the norm{
∆t

M∑
k=0

‖u(tk)− uk
1‖2X

}1/2

.
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Proof. The equation for the true solution (2.3) could be written as

(
un+1 − un

∆t
,v) + (Aun+1,v) + (Bun,v) =

1
∆t

∫ tn+1

tn

F (τ,u)dτ (4.5)

+(Aun+1,v) + (Bun,v),∀v ∈ X.

The Gaussian quadrature rule with one point (midpoint of [tn, tn+1]) gives

1
∆t

∫ tn+1

tn

F (τ,u)dτ =
F (tn,u) + F (tn+1,u)

2
+ C(∆t)2Ftt(ξ,u) (4.6)

=
fn+1 + fn

2
−A(

un+1 + un

2
)−B(

un+1 + un

2
) + C(∆t)2Ftt(ξ,u),

for some ξ ∈ [tn, tn+1]. Hence, it follows from (4.5)-(4.6) that the equation for the true solution u
can be written as:

(
un+1 − un

∆t
,v) + (Aun+1,v) + (Bun,v) = (

fn+1 + fn

2
,v) (4.7)

+
∆t

2
(A(

un+1 − un

∆t
),v)− ∆t

2
(B(

un+1 − un

∆t
),v) + C(∆t)2(Ftt(ξ,u),v),∀v ∈ X.

Subtracting (2.11) from (4.7) gives

(
en+1
1 − en

1

∆t
,v) + (Aen+1

1 ,v) + (Ben
1 ,v) =

∆t

2
(A(

en+1
0 − en

0

∆t
),v) (4.8)

−∆t

2
(B(

en+1
0 − en

0

∆t
),v) + C(∆t)2(Ftt(ξ,u),v),∀v ∈ Xh.

Take v = en+1
1 . The Cauchy-Schwarz and Young inequalities, together with the results of

Lemma 2.2 and Theorem 4.3 complete the proof.

5. Computational Testing. The convergence properties of the two-step SISDC method (Al-
gorithm 2.3) are investigated here in the case of a test problem previously discussed in [11] using the
first-order in time IMEX method. Emphasis is placed on understanding time accuracy and errors
related to the interface. Each iteration of Algorithm 2.3 performs a first order in time IMEX half-
step followed by a correction half-step to obtain second order in time accuracy. Thus the output of
the algorithm is compared between the uncorrected and corrected steps. Comparison of Algorithm
2.3 with the classical (coupled) Crank-Nicholson discretization is also provided.

Assume Ω1 = [0, 1]× [0, 1] and Ω2 = [0, 1]× [−1, 0], so I is the portion of the x-axis from 0 to 1.
Then n1 = [0, −1]T and n2 = [0, 1]T . For ν1, ν2, and κ all arbitrary positive constants, the right
hand side function f from (1.1) is calculated by differentiating

u1(t, x, y) = x(1− x)(1− y)e−t

u2(t, x, y) = x(1− x)(1 +
ν1

κ
− ν1

ν2
y − (1 +

ν1

ν2
+

ν1

k
)y2)e−t .

This choice of u satisfies the interface conditions (1.2) and the boundary conditions (1.4) with
g1 = g2 = 0. Choosing κ to be no larger than ν1, ν2 the IMEX scheme will be stable. Computations
were performed using finite element spaces consisting of continuous piece-wise polynomials of degree
2. The code was implemented using the software package FreeFEM++ [15].

5.1. Convergence rate study. Computational results are provided choosing parameters ν1 =
ν2 = 1, κ = 0.01, 0.1, 1, 2, 4. In the following tables, the norm ‖u‖ is the discrete L2(0, T ;H1(Ω))
norm, given by

‖u‖ =

(
N∑

n=1

∆t|u(tn)|2H1(Ω)

)1/2

, (5.1)
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and ‖u‖I is the discrete L2(0, T ;L2(I)) norm, given by

‖u‖I =

(
N∑

n=1

∆t‖u(tn)‖2L2(I)

)1/2

, (5.2)

where N = T/∆t and | · |H1(Ω) is the H1(Ω) spatial seminorm.
Tables 5.1 - 5.5 give the errors produced using Algorithm 2.3 with κ = 0.01, 0.1, 1, 2, 4, re-

spectively. The errors are calculated in the norms (5.1),(5.2) in all cases, for both uncorrected and
corrected substeps. For each spatial mesh size h the time step size is chosen to be ∆t = h. The errors
should then scale proportional to ∆t+h2 = O(h) for the uncorrected substeps and ∆t2+h2 = O(h2)
for the corrected substeps. Convergence of the IMEX scheme (uncorrected substeps) and Algorithm
2.3 is clear for κ = 0.1, 1, 2, consistent with the analysis. The uncorrected substeps show first order
convergence in h, while the corrected substeps show very nearly second order convergence in the
norm (5.1), consistent with the theory. When κ = 4 the theory predicts a time step restriction
∆t ≤ C

κ2 = C
16 , explaining the lack of convergence at larger mesh sizes choosing h = ∆t.

FIRST SUBSTEP

h ∆t ‖u(tn) − un‖ rate ‖u(tn) − un‖I rate

1/2 1/2 2.39459e+0 1.89181e-1

1/4 1/4 7.95856e-1 1.59 1.01190e-1 0.90

1/8 1/8 2.47129e-1 1.69 5.21486e-2 0.96

1/16 1/16 8.79092e-2 1.49 2.65604e-2 0.97

1/32 1/32 3.78155e-2 1.23 1.34294e-2 0.98

1/64 1/64 1.80809e-2 1.06 6.75763e-3 0.99

SECOND SUBSTEP

h ∆t ‖u(tn) − un‖ rate ‖u(tn) − un‖I rate

1/2 1/2 2.36605e+0 1.30618e-1

1/4 1/4 7.54202e-1 1.65 2.25005e-2 2.54

1/8 1/8 2.06455e-1 1.87 6.22376e-3 1.85

1/16 1/16 5.36284e-2 1.94 1.74183e-3 1.84

1/32 1/32 1.36432e-2 1.97 4.73823e-4 1.88

1/64 1/64 3.43948e-3 1.99 1.25325e-4 1.92

Table 5.1
Errors for computed approximations, κ = 0.01

FIRST SUBSTEP

h ∆t ‖u(tn) − un‖ rate ‖u(tn) − un‖I rate

1/2 1/2 2.66562e-1 2.01643e-2

1/4 1/4 8.91492e-2 1.58 1.02745e-2 0.97

1/8 1/8 2.74780e-2 1.70 5.23346e-3 0.97

1/16 1/16 9.61081e-3 1.52 2.64604e-3 0.98

1/32 1/32 4.07539e-3 1.24 1.33245e-3 0.99

1/64 1/64 1.93633e-3 1.07 6.69085e-4 0.99

SECOND SUBSTEP

h ∆t ‖u(tn) − un‖ rate ‖u(tn) − un‖I rate

1/2 1/2 2.63516e-1 1.40851e-2

1/4 1/4 8.48811e-2 1.63 2.66683e-3 2.40

1/8 1/8 2.33046e-2 1.86 8.17461e-4 1.71

1/16 1/16 6.06538e-3 1.94 2.46901e-4 1.73

1/32 1/32 1.54660e-3 1.97 7.14203e-5 1.79

1/64 1/64 3.91180e-4 1.98 1.98645e-5 1.85

Table 5.2
Errors for computed approximations, κ = 0.1
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FIRST SUBSTEP

h ∆t ‖u(tn) − un‖ rate ‖u(tn) − un‖I rate

1/2 1/2 6.66799e-2 1.87087e-2

1/4 1/4 2.49435e-2 1.42 8.73540e-3 1.10

1/8 1/8 9.28931e-3 1.43 4.07453e-3 1.10

1/16 1/16 3.98260e-3 1.22 1.97159e-3 1.05

1/32 1/32 1.88625e-3 1.08 9.73713e-4 1.02

1/64 1/64 9.28461e-4 1.02 4.84781e-4 1.01

SECOND SUBSTEP

h ∆t ‖u(tn) − un‖ rate ‖u(tn) − un‖I rate

1/2 1/2 5.74386e-2 5.78786e-3

1/4 1/4 1.92132e-2 1.58 1.92903e-3 1.59

1/8 1/8 5.33777e-3 1.85 5.18933e-4 1.89

1/16 1/16 1.40746e-3 1.92 1.38139e-4 1.91

1/32 1/32 3.66342e-4 1.94 3.75883e-5 1.88

1/64 1/64 9.57063e-5 1.94 1.03896e-5 1.86

Table 5.3
Errors for computed approximations, κ = 1

FIRST SUBSTEP

h ∆t ‖u(tn) − un‖ rate ‖u(tn) − un‖I rate

1/2 1/2 5.97678e-2 2.05628e-2

1/4 1/4 2.33065e-2 1.36 9.46651e-3 1.12

1/8 1/8 7.91217e-3 1.56 3.52150e-3 1.43

1/16 1/16 3.15609e-3 1.33 1.54336e-3 1.19

1/32 1/32 1.45880e-3 1.11 7.45606e-4 1.05

1/64 1/64 7.12773e-4 1.03 3.69198e-4 1.01

SECOND SUBSTEP

h ∆t ‖u(tn) − un‖ rate ‖u(tn) − un‖I rate

1/2 1/2 4.73283e-2 6.29809e-3

1/4 1/4 1.68062e-2 1.49 3.73213e-3 0.75

1/8 1/8 4.42209e-3 1.93 5.94709e-4 2.65

1/16 1/16 1.13583e-3 1.96 4.90307e-5 3.60

1/32 1/32 2.96786e-4 1.94 1.98341e-5 1.31

1/64 1/64 7.80296e-5 1.93 6.89075e-6 1.53

Table 5.4
Errors for computed approximations, κ = 2

Application of trace theory suggests asymptotic convergence behavior in L2(0, T ;L2(I)) should
mimic that of the global approximations in L2(0, T ;H1(Ω)). However, this leaves the possibility of
approximation errors concentrating near the interface and possibly causing a drop in accuracy of
the correction substep of Algorithm 2.3, particularly when κ is much larger than min{ν1, ν2} and
the true solution will have a large gradient near I. In this case the basic IMEX scheme has a small
time step restriction, requiring expensive computations to investigate. The results in Tables 5.1-5.5
show an agreement in convergence behavior between L2(0, T ;L2(I)) and L2(0, T ;H1(Ω)). Table 5.4
presents an interesting case, as second order convergence is approached quickly in L2(0, T ;H1(Ω))
as h, ∆t → 0, whereas in L2(0, T ;L2(I)) smaller mesh sizes and time steps would be required to
verify even that convergence on the interface does not plateau below the optimal rate. The data
for κ = 4 reflects the time step restriction inherent in the method, and at mesh sizes larger than
h = 1/64 the correction substep fails to improve accuracy.

The impact of errors on the interface on accuracy of Algorithm 2.3 may be better understood
comparing the results above to plots of the error, (interpolated into the finite element space with
h = 1/16) in Figure 5.1. The errors are globally distributed for κ = 1, 2 and concentrated more
toward the interface for κ = 4, both in corrected and uncorrected steps. Since errors are not
concentrated at the interface for κ = 2, the reason for the seemingly anomolous convergence behavior
in the correction step in L2(0, T ;L2(I)) in Table 5.4 is an open question. The concentration of
errors near I for κ = 4 does not help to answer this question, as convergence behavior in this case
is dominated by the underlying IMEX scheme. Evidence herein suggests convergence and stability
properties of Algorithm 2.3 are dominated by the corresponding properties of the IMEX scheme.
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FIRST SUBSTEP

h ∆t ‖u(tn) − un‖ rate ‖u(tn) − un‖I rate

1/2 1/2 8.94746e-2 4.43531e-2

1/4 1/4 1.79106e-1 —- 9.93188e-2 —-

1/8 1/8 7.73654e-1 —- 4.20286e-1 —-

1/16 1/16 2.80587e+0 —- 1.43856e+0 —-

1/32 1/32 1.63780e-1 4.10 7.53047e-2 4.26

1/64 1/64 4.73818e-4 8.43 2.28790e-4 8.36

SECOND SUBSTEP

h ∆t ‖u(tn) − un‖ rate ‖u(tn) − un‖I rate

1/2 1/2 1.98918e-1 1.07760e-1

1/4 1/4 8.57831e-1 —- 4.78724e-1 —-

1/8 1/8 6.78714e+0 —- 3.70902e+0 —-

1/16 1/16 41.47450e+0 —- 21.42870e+0 —-

1/32 1/32 3.52984e+0 3.55 1.63776e+0 3.71

1/64 1/64 1.75157e-4 14.30 7.14602e-5 14.48

Table 5.5
Errors for computed approximations, κ = 4

Extension to problems with boundary layers may present a way to further understand SISDC type
methods, emphasizing the difference between interface and global errors. For example, SISDC
methods may be tenable for the coupled fluid-fluid problem, (see [17, 18] showing application of
defect correction methods to the Navier-Stokes equations).

Fig. 5.1. Interpolated SISDC errors at T=1, h = 1/16.
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(Eds.),Defect Correction Methods. Theory and Applications, Springer Verlag, 1984, pp. 1–32.

[6] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, 2002.
[7] D. Bresch and J. Koko, Operator-Splitting and Lagrange Multiplier Domain Decomposition Methods for Nu-

merical Simulation of Two Coupled Navier-Stokes Fluids, Int. J. Appl. Math. Comput. Sci., Vol. 16, No. 4,
2006, pp. 419-429.

[8] E. Burman, Miguel A. Fernández, Stabilization of explicit coupling in fluid-structure interaction involving fluid
incompressibility, INRIA Research Rept. RR-6455, Feb. 2008.

[9] E. Burman, P. Hansbo, Interior penalty stabilized Lagrange multiplier for the finite element solution of elliptic
interface problems, to appear in IMA Journal of Numerical Analysis. 2007

[10] P. Causin, J.-F. Gerbeau and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-
structure problems, INRIA Rept. 5084, 2004.

[11] J. Connors, J. Howell and W. Layton, Partitioned timestepping for a parabolic two domain problem, Technical
report, University of Pittsburgh, 2008.

[12] C. N. Dawson and Q. Du, A Finite Element Domain Decomposition Method for Parabolic Equations, Fourth
International Symposium on Domain Decomposition Methods for PDEs, edited by R. Glowinski et al,
pp255-263, SIAM, Philadelphia, 1991.

[13] A. Dutt, L. Greengard, V. Rokhlin, Spectral Deferred Correction Methods for Ordinary Differential Equations,
BIT 40 (2), 2000, pp241-266.

[14] R. Frank, W. Ueberhuber, Iterated Defect Correction for the Efficient Solution of Stiff Systems of Ordinary
Differential Equations, BIT 17, 1977, pp146-159.

[15] F. Hecht, A. LeHyaric and O. Pironneau. Freefem++ version 2.24-1, 2008. http://www.freefem.org/ff++.
[16] J. G. Heywood and R. Rannacher, Finite-elements approximation of the nonstationary Navier-Stokes problem

part IV: Error analysis for second-order discretization. SIAM J. Numer. Anal. 1990, vol. 27(2), pp. 353-384.
[17] A. Labovschii, A Defect Correction Method for the Evolutionary Convection Diffusion Problem with Increased

Time Accuracy, (to apear in Computational Methods in Applied Mathematics), 2007.
[18] A. Labovschii, A Defect Correction Method for the Time-Dependent Navier-Stokes Equations, (to appear in

Numerical Methods for Partial Differential Equations) 2007.
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