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Abstract

We study the validity of the quasistatic approximation in the fully evolutionary
Stokes-Darcy problem for the coupling of groundwater and surface water flows,
as well as the dependence of the problem on the specific storage parameter. In
the coupled equations that describe the groundwater and surface water flows
for an incompressible fluid, the specific storage, S0, represents the volume of
water that a fully saturated porous medium will expel (or absorb) per unit
volume per unit change in hydraulic head. In confined aquifers, S0 takes values
ranging from 10−6 or smaller to 10−2. In this work we analyze the validity of
the previously studied quasistatic approximation (setting S0 = 0 in the Stokes-
Darcy equations) by proving that the weak solution of the fully evolutionary
Stokes-Darcy problem approaches the weak solution of the quasistatic problem
as S0 → 0. We also estimate the rate of convergence.

Keywords: Stokes-Darcy, Groundwater flow, Surface water flow, Specific
Storage.

1. Introduction

In the time-dependent Stokes-Darcy problem that models the coupling of
groundwater with surface water flows, given in (1.1), the term S0

∂φ
∂t , where φ

is the hydraulic head and S0 is the specific storage, arises because aquifers are
poroelastic media. This means that the space between the pores responds to
changes in the pressure of the water occupying the pores. See e.g., Bear [1]
for a clear derivation of (1.1) from basic conservation laws. There has been
considerable study of the poroelastic effect and its many consequences, see e.g.,
Biot [2] and Wang [3]. In confined aquifers the values of S0 range from 10−6 or
smaller for rock to 10−2 for plastic clay, see Domenico [4], while in unconfined
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aquifers, S0 can be larger1. In Table 1 we give a few representative values for S0

in confined aquifers, see Anderson [5], Batu [6], Domenico and Mifflin [7], and
Johnson [8]. The quasistatic approximation is obtained by setting S0 = 0 in the
Stokes-Darcy problem. It is thus equivalent to an inelastic assumption on the
aquifer and is used in e.g., Cesmelioglu and Riviére [9], and Badea, Discacciati,
and Quarteroni [10]. In this report we justify the validity of this quasistatic
approximation. We prove in Theorems 4.1 and 4.2 that the solution of the fully
evolutionary Stokes-Darcy problem, (u, φ), where u is the velocity in the fluid
region and φ is the hydraulic head in the porous media region, converges to
the solution of the quasistatic Stokes-Darcy model, denoted (uQS , φQS), as S0

converges to zero, under mild assumptions on the initial data and body forces,
and the shape of the fluid and porous media domains. We obtain one half or
first order convergence depending on the assumptions.

Table 1: Specific Storage (S0) values for different materials

Material Specific Storage S0 (m−1)

plastic clay 2.0× 10−2 − 2.6× 10−3

stiff clay 2.6× 10−3 − 1.3× 10−3

medium hard clay 1.3× 10−3 − 9.2× 10−4

loose sand 1.0× 10−3 − 4.9× 10−4

dense sand 2.0× 10−4 − 1.3× 10−4

dense sandy gravel 1.0× 10−4 − 4.9× 10−5

rock, fissured jointed 6.9× 10−5 − 3.3× 10−6

rock, sound less than 3.3× 10−6

Let the fluid and porous media domains be denoted by Ωf and Ωp respec-
tively, Ωf/p ⊂ Rd, d = 2 or 3, and assume they lie across an interface, I, from
each other as shown in Figure 1. Both domains are assumed to be bounded
and regular. Before introducing the Stokes-Darcy problem and its quasistatic
approximation, we list below the variables and parameters of the problem:

u = u(x, t) = (u1(x, t), . . . , ud(x, t)) = fluid velocity in Ωf ,

φ = φ(x, t) = hydraulic head in Ωp, x = (x1, . . . , xd) ∈ Ωf/p,

ff , fp = body forces in fluid region and sources or sinks in porous region,

K = hydraulic conductivity tensor (symmetric positive definite),

g = gravitational acceleration constant,

ν = kinematic viscosity of fluid,

n̂f/p = unit outward pointing normal on Ωf/p,

1A confined aquifer is one bounded above and below by impervious formations. In a well
penetrating such an aquifer, the water level will rise above the base of the confining formation.
An unconfined aquifer is one with a water table serving as its upper boundary, see Bear [1].
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Figure 1: Fluid and porous media domains

The specific storage2, S0, represents the volume of water that a portion of a
fully saturated porous medium releases from storage, per unit volume, per unit
change in hydraulic head, see Freeze and Cherry [12], and Hantush [13]. All
material and fluid parameters above are positive. Moreover,

0 < kmin ≤ λ ≤ kmax,

where λ ∈ λ(K), and λ(K) is the spectrum of the hydraulic conductivity tensor,
K. The fluid velocity u = u(x, t), defined on Ωf , and porous media hydraulic
head φ = φ(x, t), defined on Ωp, satisfy

ut − ν∆u+∇p = ff (x, t),∇ · u = 0, in Ωf ,

S0φt −∇ · (K∇φ) = fp(x, t), in Ωp,

u(x, 0) = u0, in Ωf , φ(x, 0) = φ0, in Ωp, (1.1)

u(x, t) = 0, in ∂Ωf\I, and φ(x, t) = 0, in ∂Ωp\I,
+ coupling conditions across I,

where the pressure in the fluid domain, p, as well as fp are rescaled by the
fluid density. We assume Dirichlet boundary conditions on the exterior bound-
aries (not including the interface I); our analysis extends to other boundary
conditions as well.

The coupling conditions are conservation of mass across the interface

u · n̂f −K∇φ · n̂p = 0, on I,

and balance of forces across the interface

p− νn̂f · ∇u · n̂f = gφ, on I.

The last condition is a condition on the tangential velocity on I. Let τ̂i, i =

2The specific storage is defined as S0 = S
b

, where S the storativity coefficient (dimension-
less) and b the height of the aquifer. For more information see Watson and Burnett [11].
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1, . . . , d−1, denote an orthonormal basis of tangent vectors on I, d = 2 or 3. We
use the Beavers-Joseph-Saffman-Jones condition, see Joseph [14] and Saffman
[15]:

−ντ̂i · ∇u · n̂f =
α√

τ̂i · K · τ̂i
u · τ̂i, for i = 1, . . . , d− 1, on I, (1.2)

which is a simplification of the original and more physically realistic Beavers-
Joseph condition, see Beavers and Joseph [16]. The latter states that the tangen-
tial component of the normal stress of the flow in the conduit at the interface
is proportional to the tangential velocity in the conduit at the interface. In
(1.2), α > 0 is a dimensionless, experimentally determined constant. For more
information on this condition see e.g., Mikelic̀ and Jäger [17], and Payne and
Straughan [18].

One common model used in e.g., Cesmelioglu and Riviére [9], and Badea,
Discacciati, and Quarteroni [10], is based on the assumption that the porous
media pressure adjusts instantly to changes in the fluid velocity, in other words,
the term S0φt is dropped in the Stokes-Darcy equations. This leads to replacing
(1.1) by the quasistatic approximation:

uQSt − ν∆uQS +∇pQS = ff (x, t),∇ · uQS = 0, in Ωf , (1.3)

−∇ ·
(
K∇φQS

)
= fp(x, t), in Ωp,

with the same interface coupling and boundary conditions for uQS , φQS , and
initial condition for uQS . We consider herein the mathematical foundation for
this simplification. Problems of the type εut + Au = 0, ε small, are treated
in Lions [19]. However, problem (1.1), with S0 small, does not fit within the
general theory in [19].

The rest of this paper is organized as follows. Section 2 presents the varia-
tional formulation for both the Stokes-Darcy and the quasistatic problems. In
Section 3 we obtain à priori bounds on the velocity and hydraulic head for both
problems. In Section 4 we justify that

u→ uQS and φ→ φQS , as S0 → 0,

through Theorems 4.1 and 4.2. We prove one half and first order convergence in
S0 of the Stokes-Darcy solution to the quasistatic solution, under assumptions on
the initial data and body forces. Convergence of the pressure is then standard.
This analysis justifies the inelastic or quasistatic approximation provided

S0 << kmin.

Finally, we present conclusions in Section 5.

2. Variational formulation

We denote the L2 norms on Ωf/p by ‖·‖f/p respectively, and the L2 norm on
the interface, I, by ‖ · ‖I ; the corresponding inner products on Ωf/p are denoted
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by (·, ·)f/p. Moreover, the H1 norm on Ωf/p is denoted by ‖ · ‖1,f/p. Define the
spaces

Xf :=
{
v ∈ (H1(Ωf ))d : v = 0 on ∂Ωf\I

}
,

Xp :=
{
ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp\I

}
,

Q := L2
0(Ωf ),

Vf := {v ∈ Xf : (∇ · v, q)f = 0 for all q ∈ Q} .

Define the norms on the dual spaces X∗f and X∗p by

‖f‖−1,f/p = sup
06=v∈Xf/p

(f, v)f/p

‖∇v‖f/p
.

In what follows, we will use the basic estimates

‖u‖L2(∂Ωf ) ≤ C(Ωf )
√
‖u‖f‖∇u‖f (2.1)

‖φ‖L2(∂Ωp) ≤ C(Ωp)
√
‖φ‖p‖∇φ‖p, (2.2)

where by a scaling argument, C(Ωf/p) = O(
√
Lf/p), Lf/p = diameter(Ωf/p).

Define the bilinear forms

af (u, v) = (ν∇u,∇v)f +

d−1∑
i=1

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)(v · τ̂i) ds,

ap(φ, ψ) = (K∇φ,∇ψ)p ,

cI(u, φ) = g

∫
I

φu · n̂f ds.

Lemma 2.1. The bilinear forms af (·, ·), ap(·, ·) satisfy

af (u, v) ≤ max {ν + 1,
C(Ωf )α

2
√
kmin

}‖u‖1,f‖v‖1,f , (2.3)

af (u, u) ≥ ν‖∇u‖2f +
α√
kmax

d−1∑
i=1

∫
I

(u · τ̂i)2 dσ =: ν‖∇u‖2f +
α√
kmax

‖u · τ̂‖2I ,

(2.4)

ap(φ, ψ) ≤ kmax‖∇φ‖p‖∇ψ‖p, (2.5)

ap(φ, φ) ≥ kmin‖∇φ‖2p, (2.6)

for all u, v ∈ Xf and all φ, ψ ∈ Xp.

Proof. Let φ, ψ ∈ Xp. Since K is positive definite, and 0 < kmin ≤ λ(K) ≤ kmax,
(2.5) and (2.6) are straightforward. For u, v ∈ Xf , and using τ̂i · K · τ̂i ≥ kmin,

5



∀i, the Cauchy-Schwarz inequality, and the trace inequality (2.1) we have

af (u, v) ≤ ν‖∇u‖f‖∇v‖f +
C(Ωf )α√
kmin

√
‖u‖f‖∇u‖f

√
‖v‖f‖∇v‖f .

Applying the arithmetic-geometric mean inequality we obtain (2.3). Finally,
using τ̂i · K · τ̂i ≤ kmax, ∀i, we get

af (u, u) ≥ ν‖∇u‖2f +
α√
kmax

d−1∑
i=1

∫
I

(u · τ̂i)2 dσ =: ν‖∇u‖2f +
α√
kmax

‖u · τ̂‖2I .

The key quantity in the analysis is the interface coupling term, cI(·, ·).

Lemma 2.2. The bilinear form cI(·, ·) satisfies

|cI(u, φ)| ≤ gC(Ωf ,Ωp)

2
‖u‖1,f‖φ‖1,p (2.7)

for all u, φ ∈ Xf , Xp.

Proof. (2.7) follows by applying the Cauchy-Schwarz inequality and the trace
inequalities (2.1)-(2.2).

The variational formulation of the Stokes-Darcy problem then is to find
u : [0,∞)→ Vf , φ : [0,∞)→ Xp satisfying

(ut, v)f + af (u, v) + cI(v, φ) = (ff , v)f , (2.8)

gS0(φt, ψ)p + gap(φ, ψ)− cI(u, ψ) = g(fp, ψ)p, (2.9)

∀v ∈ Vf , ∀ψ ∈ Xp, where u(x, 0) = u0(x), φ(x, 0) = φ0(x) are given. Existence
and uniqueness of a solution (u, φ) to problem (2.8)-(2.9) follow by the Hille -
Yosida theorem, see Brézis [20].

The variational formulation of the quasistatic approximation is obtained by
setting S0 = 0 in (2.8)-(2.9):

Find uQS : [0,∞)→ Vf , φQS : [0,∞)→ Xp satisfying

(uQSt , v)f + af (uQS , v) + cI(v, φ
QS) = (ff , v)f , (2.10)

gap(φ
QS , ψ)− cI(uQS , ψ) = g(fp, ψ)p, (2.11)

∀v ∈ Vf , ∀ψ ∈ Xp, where uQS(x, 0) = u0(x) is given. φQS(x, 0) is defined
through (2.11), by solving

gap(φ
QS(x, 0), ψ(x)) = cI(u0(x), ψ(x)) + g(fp(x, 0), ψ(x)),∀ψ ∈ Xp,

for the unknown φQS(x, 0).
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3. À priori estimates

The difference between variational formulations (2.8)-(2.9) and (2.10)-(2.11)
is the term gS0(φt, ψ)p. Thus, convergence will hinge on à priori bounds on the
hydraulic head φ.

C∗ = C∗(u0, φ0, ff/p, g,Ωp) and C∗∗ = C∗∗(u0, φ0, ff/p, ν, g, kmin, kmax)
will denote finite constants, independent of S0, and

L2(0, T ;X) = {v : [0, T ]→ X :

∫ T

0

‖v(t)‖2X dt <∞},

L∞(0, T ;X) = {v : [0, T ]→ X : sup
[0,T ]

{‖v(t)‖X} <∞}.

Theorem 3.1 Part 1, gives à priori bounds for the velocity and hydraulic
head for both problems. The second part gives bounds for the time derivatives
of the same quantities for both problems.

Theorem 3.1. 1. In the variational formulations (2.8)-(2.9) and (2.10)-(2.11)
assume the initial data and body forces satisfy

u0 ∈ L2(Ωf ), ff ∈ L2(0, T ;H−1(Ωf )), fp ∈ L2(0, T ;H−1(Ωp)).

Then for uQS given by (2.10)-(2.11)

uQS ∈ L∞(0, T ;L2(Ωf )),∇uQS ∈ L2(0, T ;L2(Ωf )),

uQS · τ̂ ∈ L2(0, T ;L2(I)),∇φQS ∈ L2(0, T ;L2(Ωp)). (3.1)

If in addition φ0 ∈ L2(Ωp), then for u, φ given by (2.8)-(2.9)

u ∈ L∞(0, T ;L2(Ωf )),
√
S0φ ∈ L∞(0, T ;L2(Ωp)),

∇u ∈ L2(0, T ;L2(Ωf )), u · τ̂ ∈ L2(0, T ;L2(I)),∇φ ∈ L2(0, T ;L2(Ωp)). (3.2)

2. Assume that the body forces satisfy

ff,t ∈ L2(0, T ;H−1(Ωf )), fp,t ∈ L2(0, T ;H−1(Ωp)),

where ff/p,t denotes differentiation with respect to time. If the initial data for
(2.8)-(2.9) satisfy ut(0) ∈ L2(Ωf ), φt(0) ∈ L2(Ωp), then

ut ∈ L∞(0, T ;L2(Ωf )),
√
S0φt ∈ L∞(0, T ;L2(Ωp)),

∇ut ∈ L2(0, T ;L2(Ωf )), ut · τ̂ ∈ L2(0, T ;L2(I)),∇φt ∈ L2(0, T ;L2(Ωp)). (3.3)

If the initial data for (2.10)-(2.11) satisfy uQSt (0) ∈ L2(Ωf ), then

uQSt ∈ L∞(0, T ;L2(Ωf )),∇uQSt ∈ L2(0, T ;L2(Ωf )),

uQSt · τ̂ ∈ L2(0, T ;L2(I)),∇φQSt ∈ L2(0, T ;L2(Ωp)). (3.4)
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Proof. The result follows from Propositions 3.1-3.4 below.

Proposition 3.1 is the first energy estimate for the Stokes-Darcy weak for-
mulation (2.8)-(2.9):

Proposition 3.1. Consider the fully evolutionary Stokes-Darcy problem (2.8)-
(2.9). Assume the initial data and body forces satisfy

u0 ∈ L2(Ωf ), φ0 ∈ L2(Ωp), ff ∈ L2(0, T ;H−1(Ωf )), fp ∈ L2(0, T ;H−1(Ωp)).

We have

sup
[0,T ]

{
‖u(t)‖2f + gS0‖φ(t)‖2p

}
+

∫ T

0

{
ν‖∇u(t)‖2f +

2α√
kmax

‖u · τ̂‖2I + gkmin‖∇φ‖2p
}
dt

≤ ‖u0‖2f + gS0‖φ0‖2p +

∫ T

0

{
1

ν
‖ff‖2−1,f +

g

kmin
‖fp‖2−1,p

}
dt ≤ C∗∗.

(3.5)

Proof. Fix t > 0. Set v = u(t), ψ = φ(t) in (2.8)-(2.9) and add. Note that
the two coupling terms exactly cancel. The remainder follows by standard
manipulations. Using coercivity of the bilinear forms and Young’s inequality we
obtain

1

2

d

dt

{
‖u(t)‖2f + gS0‖φ(t)‖2p

}
+ ν‖∇u(t)‖2f +

α√
kmax

‖u · τ̂‖2I + gkmin‖∇φ(t)‖2p

≤ ‖ff‖−1,f‖∇u‖f + g‖fp‖−1,p‖∇φ‖p ≤
ν

2
‖∇u‖2f +

1

2ν
‖ff‖2−1,f

+
gkmin

2
‖∇φ‖2p +

g

2kmin
‖fp‖2−1,p.

Rearranging and integrating over [0, t] for any t in (0, T ] and T <∞, yields

‖u(t)‖2f + gS0‖φ(t)‖2p +

∫ t

0

{
ν‖∇u(s)‖2f +

2α√
kmax

‖u · τ̂‖2I + gkmin‖∇φ(s)‖2p
}
ds

≤ ‖u(0)‖2f + gS0‖φ(0)‖2p +

∫ t

0

{
1

ν
‖ff‖2−1,f +

g

kmin
‖fp‖2−1,p

}
ds.

Finally, the result follows by taking supremum over [0, T ].

The next proposition gives the corresponding energy estimate for the qua-
sistatic weak formulation (2.10)-(2.11).

Proposition 3.2. Consider the quasistatic weak formulation (2.10)-(2.11). As-
sume the initial data and body forces satisfy

u0 ∈ L2(Ωf ), ff ∈ L2(0, T ;H−1(Ωf )), fp ∈ L2(0, T ;H−1(Ωp)).
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We have

sup
[0,T ]

‖uQS‖2f +

∫ T

0

{
ν‖∇uQS(t)‖2f +

2α

kmax
‖uQS · τ̂‖2I + gkmin‖∇φQS(t)‖2p

}
dt

≤ ‖u0‖2f +

∫ T

0

{
1

ν
‖ff‖2−1,f +

g

kmin
‖fp‖2−1,p

}
dt ≤ C∗∗.

Proof. Fix t > 0. In (2.10)-(2.11) pick v = uQS(t), ψ = φQS(t) and add. The
coupling terms cancel and the result follows by manipulations similar to the
ones in the proof of Proposition 3.1.

Propositions 3.3 and 3.4 provide à priori bounds for the time derivatives
of u and φ in the Stokes-Darcy and the quasistatic Stokes-Darcy problems,
respectively.

Proposition 3.3. Consider the fully evolutionary Stokes-Darcy problem (2.8)-
(2.9). Assume the initial data and body forces satisfy

ut(0) ∈ L2(Ωf ), φt(0) ∈ L2(Ωp),

ff,t ∈ L2(0, T ;H−1(Ωf )), fp,t ∈ L2(0, T ;H−1(Ωp)).

Then

sup
[0,T ]

{
‖ut‖2f + gS0‖φt‖2p

}
+

∫ T

0

{
ν‖∇ut‖2f +

2α√
kmax

‖ut · τ̂‖2I + gkmin‖∇φt‖2p
}
dt

≤ ‖ut(0)‖2f + gS0‖φt(0)‖2p +

∫ T

0

{
1

ν
‖ff,t‖2−1,f +

g

kmin
‖fp,t‖2−1,p

}
dt ≤ C∗∗.

Proof. Start with the weak formulation (2.8)-(2.9), and take the derivative with
respect to time

(utt, v)f + af (ut, v) + cI(v, φt) = (ff,t, v)f , (3.6)

gS0(φtt, ψ)p + gap(φt, ψ)− cI(ut, ψ) = g(fp,t, ψ)p. (3.7)

Fix t > 0. In (3.6)-(3.7) pick v = ut(t), ψ = φt(t), and add. The coupling
terms will cancel and the rest of the proof is similar to the proof of Proposition
3.1.

Proposition 3.4. Consider the quasistatic weak formulation (2.10)-(2.11). If

uQSt (0) ∈ L2(Ωf ), ff,t ∈ L2(0, T ;H−1(Ωf )), fp,t ∈ L2(0, T ;H−1(Ωp))
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then

sup
[0,T ]

‖uQSt (t)‖2f +

∫ T

0

{
ν‖∇uQSt ‖2f +

2α√
kmax

‖uQSt · τ̂‖2I + gkmin‖∇φQSt ‖2p
}
dt

≤ ‖uQSt (0)‖2f +

∫ T

0

{
1

ν
‖ff,t‖2−1,f +

g

kmin
‖fp,t‖2−1,p

}
dt ≤ C∗∗.

Proof. Starting with the weak formulation (2.10)-(2.11), take the derivative with
respect to time to get

(uQStt , v)f + af (uQSt , v) + cI(v, φ
QS
t ) = (ff,t, v)f , (3.8)

gap(φ
QS
t , ψ)− cI(uQSt , ψ) = g(fp,t, ψ)p. (3.9)

Fix t > 0. Pick v = uQSt (t), ψ = φQSt (t) in (3.8)-(3.9) and add so that the
coupling terms cancel. The remainder of the proof is similar to the one of
Proposition 3.1.

In the subsection that follows we obtain á priori bounds assuming less regu-
larity on the body forces, but introducing a constraint on the domains Ωf ,Ωp.

3.1. À priori estimates using less regular body forces

By assuming less regularity on the body forces we obtain á priori bounds on
the velocity and hydraulic head. In this case, however, we restrict the domains
Ωf and Ωp by assuming that there exists a C1−diffeomorphism from Ωf to
Ωp. We begin with a Lemma that gives a bound on the interface term, that is
essential in the analysis of the less regular case.

Lemma 3.1. Assume there exists a C1−diffeomorphism F : Ωf → Ωp. Then
there exists a constant C such that

|cI(u, φ)| ≤ gC‖u‖H(div,f)‖φ‖1,p, (3.10)

where ‖v‖2H(div,f) = ‖v‖2f + ‖∇ · v‖2f .

Proof. Define φ̃ : Ωf → Ωp by

φ̃(x) =

{
(φ ◦ F )(x) , x ∈ Ωf

φ(x) , x ∈ I.

Since F is a C1−diffeomorphism, there exist constants C1, C2 such that

1√
|det(F ′)|

≤ C1, in Ωf , (3.11)

|F ′|Hilb ≤ C2, in Ωf , (3.12)
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where F ′ is the Jacobian matrix of F , and | · |Hilb denotes the Hilbert norm.
We have∫

I

φu · n̂f ds =

∫
I

φ̃u · n̂f ds =

∫
∂Ωf

φ̃u · n̂f ds =

∫
Ωf

∇ ·
(
φ̃u
)
ds

=

∫
Ωf

φ̃∇ · u dx+

∫
Ωf

∇φ̃ · u dx,

by the divergence theorem. Thus we obtain

|cI(u, φ)| ≤ g

∣∣∣∣∣
∫

Ωf

φ̃∇ · u dx

∣∣∣∣∣+ g

∣∣∣∣∣
∫

Ωf

∇φ̃ · u dx

∣∣∣∣∣
≤ g‖u‖H(div;f)‖φ̃‖1,f , (3.13)

by the Cauchy-Schwarz inequality. The change of variables theorem yields

‖φ̃‖1,f =

(∫
Ωf

(
|φ ◦ F |2 + |∇(φ ◦ F )|2

) |det(F ′)|
|det(F ′)|

dx

) 1
2

≤

(∫
Ωf

(
|φ ◦ F |2 + |∇(φ ◦ F )|2

)
|det(F ′)|C2

1 dx

) 1
2

= C1

(∫
Ωp

(
|φ|2 + |∇xφ|2

)
dη

) 1
2

≤ C1

(∫
Ωp

(
|φ|2 + |F ′|2Hilb|∇ηφ|2

)
dη

) 1
2

≤ C1 max{1, C2}

(∫
Ωp

(
|φ|2 +∇ηφ|2

)
dη

) 1
2

= C‖φ‖1,p, (3.14)

where C := C1 max{1, C2}, ∇x = ∇(x1,...,xd), x ∈ Ωf , denotes the gradient
operator in Ωf , and ∇η = ∇(η1,...,ηd), η ∈ Ωp, denotes the gradient operator in
Ωp. The inequality now follows by combining (3.13) and (3.14).

It is worth noting that in the special case when the interface is flat and Ωf ,Ωp
are any domains (Figure 2), inequality (3.10) holds with constant C = 1.

Lemma 3.2. If the interface I is flat (i.e., I is the line x2 = 0 in 2d or the
plane x3 = 0 in 3d), then

|cI(u, φ)| ≤ g‖u‖H(div,f)‖φ‖1,p.

Proof. Embed the two domains in equal sized boxes as shown in Figure 2. Ex-
tend u by zero on B and φ by zero on −B, and denote the extended functions

11



Figure 2: Fluid and porous media domains with flat interface

by u and φ respectively. Let F (x1, x2, . . . , xd−1, xd) = (x1, x2, . . . , xd−1,−xd),
(x1, . . . , xd) ∈ B. Then |det(F ′)| = 1. Define φ̃ : B → R by

φ̃(x1, . . . , xd) =

{
(φ ◦ F )(x1, . . . , xd) = φ(x1, . . . ,−xd) , on B
φ(x1, . . . , xd) , on I.

Using the same steps as in the proof of (3.10), with B replacing Ωf , we obtain∫
I

φu · n̂f ds =

∫
I

φ̃u · n̂f ds =

∫
∂B

φ̃u · n̂f ds

=

∫
B

∇ · (φ̃u) dx =

∫
B

∇φ̃ · u dx+

∫
B

φ̃∇ · u dx

≤ ‖u‖H(div,f)

(∫
B

(|φ̃|2 + |∇xφ̃|2) dx

) 1
2

= ‖u‖H(div,f)

(∫
−B

(|φ|2 + |∇xφ|2) dη

) 1
2

= ‖u‖H(div,f)

(∫
−B

(|φ|2 + |∇ηφ|2) dη

) 1
2

= ‖u‖H(div,f)‖φ‖1,p,

where, as in the general proof of the inequality, ∇x/η denotes the gradient
operator in Ωf/p respectively. Thus, the inequality follows.

In our problem, ∇ · u = 0 in Ωf , in which case the proof of (3.10) yields the
following inequality instead

|cI(u, φ)| ≤ gC‖u‖f‖∇φ‖p. (3.15)

12



The constant C in (3.15) is given instead by C := C1C2, where C1, C2 are the
constants in (3.11)-(3.12).

Theorem 3.2. Assume the initial data and body forces satisfy

u0,∇u(0) ∈ L2(Ωf ), u · τ̂i|t=0 ∈ L2(I), i = 1, . . . , d− 1,∇φ(0) ∈ L2(Ωp),

ff ∈ L2(0, T ;L2(Ωf )), fp ∈ L2(0, T ;L2(Ωp)),

and that the domains Ωf ,Ωp are such that (3.15) holds. We have

1

2

∫ T

0

‖ut‖2f dt+ gS0

∫ T

0

‖φt‖2p dt+ sup
[0,T ]

{
ν‖∇u‖2f +

α√
kmax

‖u · τ̂‖2I

+
gkmin

2
‖∇φ‖2p

}
(t) ≤

∫ T

0

‖ff‖2f dt+
g

S0

∫ T

0

‖fp‖2p dt+ 8(gC)2
∫ T

0

‖∇φ‖2p dt

+ sup
[0,T ]

{
gC2

2kmin
‖u‖2f

}
(t) +

{
ν‖∇u‖2f +

d−1∑
i=1

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)2 ds

+ g(K∇φ,∇φ)p − 2cI(u, φ)

}
(0) ≤ C∗∗.

Then, specifically

ut ∈ L2(0, T ;L2(Ωf )),
√
S0φt ∈ L2(0, T ;L2(Ωp)),

∇u ∈ L∞(0, T ;L2(Ωf )), u · τ̂ ∈ L∞(0, T ;L2(I)),∇φ ∈ L∞(0, T ;L2(Ωp)).

Proof. Fix t > 0 and set v = ut(t), ψ = φt(t) in (2.8)-(2.9) and add:

(ut, ut)f + gS0(φt, φt)p + af (u, ut) + gap(φ, φt) + cI(ut, φ)− cI(u, φt)
= (ff , ut)f + g(fp, φt)p.

Thus,

‖ut(t)‖2f + gS0‖φt(t)‖2p + ν(∇u,∇ut)f +

d−1∑
i=1

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)(ut · τ̂i) ds

+ g(K∇φ,∇φt)p + cI(ut, φ)− cI(u, φt) = (ff , ut)f + g(fp, φt)p.

Using the Cauchy-Schwarz and Young’s inequalities we obtain

‖ut‖2f + gS0‖φt‖2p +
1

2

d

dt

{
ν‖∇u‖2f +

d−1∑
i=1

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)2 ds

+ g(K∇φ,∇φ)p

}
+ {cI(ut, φ)− cI(u, φt)}

≤ ‖ff‖f‖ut‖f + g‖fp‖p‖φt‖p ≤
1

2
‖ut‖2f +

1

2
‖ff‖2f +

gS0

2
‖φt‖2p +

g

2S0
‖fp‖2p.
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Rearranging then gives

‖ut‖2f + gS0‖φt‖2p +
d

dt

{
ν‖∇u‖2f +

d−1∑
i=1

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)2 ds

+ g(K∇φ,∇φ)p

}
+ 2 {cI(ut, φ)− cI(u, φt)} ≤ ‖ff‖2f +

g

S0
‖fp‖2p.

Using

cI(ut, φ)− cI(u, φt) = − d

dt
cI(u, φ) + 2cI(ut, φ)

we get

‖ut‖2f + gS0‖φt‖2p +
d

dt

{
ν‖∇u‖2f +

d−1∑
i=1

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)2 ds

+ g(K∇φ,∇φ)p − 2cI(u, φ)

}
≤ ‖ff‖2f +

g

S0
‖fp‖2p − 4cI(ut, φ). (3.16)

By (3.15) and Young’s inequality we obtain

−2cI(u, φ) ≥ −gC‖u‖f‖∇φ‖p ≥ −
g

2kmin
C2‖u‖2f −

gkmin
2
‖∇φ‖2p. (3.17)

Moreover, since ∇ · u = 0 in Ωf implies that ∇ · ut = 0 in Ωf , we also get

−4cI(ut, φ) ≤ 4gC‖ut‖f‖∇φ‖p ≤
1

2
‖ut‖2f + 8(gC)2‖∇φ‖2p. (3.18)

Using (3.18) in (3.16) and rearranging terms gives

1

2
‖ut‖2f + gS0‖φt‖2p +

d

dt

{
ν‖∇u‖2f +

d−1∑
i=1

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)2 ds

+ g(K∇φ,∇φ)p − 2cI(u, φ)

}
≤ ‖ff‖2f +

g

S0
‖fp‖2p + 8(gC)2‖∇φ‖2p.
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Integrating over (0, t], ∀t ≤ T , then gives

1

2

∫ t

0

‖ut‖2f dt+ gS0

∫ t

0

‖φt‖2p dt+

{
ν‖∇u‖2f +

d−1∑
i=1

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)2 ds

+ g(K∇φ,∇φ)p − 2cI(u, φ)

}
(t) ≤

∫ t

0

‖ff‖2f dt+
g

S0

∫ t

0

‖fp‖2p dt

+ 8(gC)2

∫ t

0

‖∇φ‖2p dt+

{
ν‖∇u‖2f +

d−1∑
i=1

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)2 ds

+ g(K∇φ,∇φ)p − 2cI(u, φ)

}
(0).

(3.19)

Using (3.17), we estimate{
ν‖∇u‖2f +

d−1∑
i=1

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)2 ds+ g(K∇φ,∇φ)p − 2cI(u, φ)

}
(t)

≥
{
ν‖∇u‖2f +

α√
kmax

‖u · τ̂i‖2I + gkmin‖∇φ‖2p −
gC2

2kmin
‖u‖2f −

gkmin
2
‖∇φ‖2p

}
(t).

(3.20)

With (3.20) and after rearranging, (3.19) becomes

1

2

∫ t

0

‖ut‖2f dt+ gS0

∫ t

0

‖φt‖2p dt+

{
ν‖∇u‖2f +

α√
kmax

‖u · τ̂‖2I +
gkmin

2
‖∇φ‖2p

}
(t)

≤
∫ t

0

‖ff‖2f dt+
g

S0

∫ t

0

‖fp‖2p dt+ 8(gC)2
∫ t

0

‖∇φ‖2p dt+
gC2

2kmin
‖u‖2f

+

{
ν‖∇u‖2f +

d−1∑
i=1

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)2 ds+ g(K∇φ,∇φ)p − 2cI(u, φ)

}
(0),

∀t ≤ T . Taking supremum over [0, T ] yields

1

2

∫ T

0

‖ut‖2f dt+ gS0

∫ T

0

‖φt‖2p dt+ sup
[0,T ]

{
ν‖∇u‖2f +

α√
kmax

‖u · τ̂‖2I

+
gkmin

2
‖∇φ‖2p

}
(t) ≤

∫ T

0

‖ff‖2f dt+
g

S0

∫ T

0

‖fp‖2p dt

+ 8(gC)2

∫ T

0

‖∇φ‖2p dt+
gC2

2kmin
sup
[0,T ]

‖u‖2f (t)

+

{
ν‖∇u‖2f +

d−1∑
i=1

∫
I

α√
τ̂i · K · τ̂i

(u · τ̂i)2 ds+ g(K∇φ,∇φ)p − 2cI(u, φ)

}
(0).
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Since ‖·‖−1,f/p ≤ C‖·‖f/p, by (3.2) of Theorem 3.1, we have u ∈ L∞(0, T ;L2(Ωf ))
and ∇φ ∈ L2(0, T ;L2(Ωp)). Thus, the claim of the theorem follows.

4. Convergence to the quasistatic solution

In this section we prove that the Stokes-Darcy solution, (u, φ), given by
(2.8)-(2.9), converges to the quasistatic solution, (uQS , φQS), given by (2.10)-
(2.11), as S0 approaches zero. We use the à priori estimates from the previous
section to obtain estimates for the errors in the velocity and hydraulic head
between the two problems. For the less regular body forces case we obtain one
half order convergence in S0. For the more regular case, we obtain first order
convergence.

Let

eu(x, t) := u(x, t)− uQS(x, t),

eφ(x, t) := φ(x, t)− φQS(x, t),

denote the errors in u and φ respectively. Then we have eu(x, 0) = 0 and
eφ = φ0(x)− φQS(x, 0). Subtracting (2.10) from (2.8) and (2.11) from (2.9) we
find that the errors satisfy the quasistatic weak formulation (2.10)-(2.11):

(eut, v)f + af (eu, v) + cI(v, eφ) = 0, (4.1)

gap(eφ, ψ)− cI(eu, ψ) = −gS0(φt, ψ)p. (4.2)

This can also be written in the form of the Stokes-Darcy weak formulation
(2.8)-(2.9):

(eut, v)f + af (eu, v) + cI(v, eφ) = 0, (4.3)

gS0(eφt, ψ)p + gap(eφ, ψ)− cI(eu, ψ) = −gS0(φQSt , ψ)p. (4.4)

Theorem 4.1 gives a result of first order convergence of the solution (u, φ) to
the quasistatic solution (uQS , φQS), as S0 converges to zero.

Theorem 4.1. Consider the weak formulation (4.3)-(4.4). Assume the initial
data and body forces satisfy

uQSt (0) ∈ L2(Ωf ), ‖φt(0)‖−1,p <∞,

ff,t ∈ L2(0, T ;H−1(Ωf )), fp,t ∈ L2(0, T ;H−1(Ωp)).

Then

sup
[0,T ]

{
‖eu(t)‖2f + gS0‖eφ(t)‖2p

}
+

∫ T

0

{
ν‖∇eu(t)‖2f +

2α√
kmax

‖eu · τ̂‖2I

+ gkmin‖∇eφ(t)‖2p

}
dt ≤ gS0‖φ0 − φQS(0)‖2p +

S2
0

kmin
C∗ ≤ C∗

kmin
(
S0

kmin
+ 1)S2

0 .
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Proof. We apply the energy estimate obtained in Proposition 3.1 to the weak
formulation (4.3)-(4.4) for the error, with ff ≡ 0, fp = −S0φ

QS
t , eu replacing u

and eφ replacing φ. Using the Poincarè-Friedrichs inequality we have

‖φQSt ‖2−1,p ≤ C(Ωp)‖∇φQSt ‖2p.

By (3.4) of Theorem 3.1 we have ∇φQSt ∈ L2(0, T ;L2(Ωp)). The above inequal-

ity then implies that φQSt ∈ L2(0, T ;H−1(Ωp)). Therefore,

sup
[0,T ]

{
‖eu(t)‖2f + gS0‖eφ(t)‖2p

}
+

∫ T

0

(
ν‖∇eu(t)‖2f +

2α‖eu · τ̂‖2I√
kmax

+ gkmin‖∇eφ(t)‖2p

)
dt

≤ gS0‖φ0 − φQS(0)‖2p +
gS2

0

kmin

∫ T

0
‖φQSt ‖

2
−1,p dt ≤ gS0‖φ0 − φQS(0)‖2p +

C∗

kmin
S2
0 ,

(4.5)

which proves the first part of the theorem. For the last inequality, set t = 0 in
(2.9) and (2.11) and subtract the second from the first equation to obtain

gS0(φt(0), ψ)p + gap(φ0 − φQS(0), ψ) = 0,∀ψ ∈ Xp, (4.6)

where we used that uQS(x, 0) = u0(x). Take ψ = φ0 − φQS(0) in (4.6) to get

gap(φ0 − φQS(0), φ0 − φQS(0)) = gS0(φt(0), φQS(0)− φ0)p.

Using coercivity of the bilinear form ap(·, ·) and the definition of the ‖·‖−1 norm
we have

kmin‖∇(φ0 − φQS(0))‖2p ≤ S0‖φt(0)‖−1,p‖∇(φ0 − φQS(0))‖p,

so that

‖∇(φ0 − φQS(0))‖p ≤
S0

kmin
‖φt(0)‖−1,p. (4.7)

Finally, using the Poincarè-Friedrichs inequality on the left hand side of (4.7)
yields

‖φ0 − φQS(0)‖p ≤
C(Ωp)S0

kmin
‖φt(0)‖−1,p. (4.8)

The last inequality of the theorem now follows by combining inequalities (4.5)
and (4.8).

In Theorem 4.2 we assume less regularity on the body forces and prove one
half order convergence of the Stokes-Darcy solution to the quasistatic solution
as S0 → 0.

Theorem 4.2. Consider the weak formulation (4.1)-(4.2). Assume the initial
data and body forces satisfy

u0,∇u(0) ∈ L2(Ωf ), u · τ̂i|t=0 ∈ L2(I), i = 1, . . . , d− 1, φ0 ∈ L2(Ωp),
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ff ∈ L2(0, T ;L2(Ωf )), fp ∈ L2(0, T ;L2(Ωp)),

and that the domains Ωf and Ωp are such that inequality (3.15) holds. We have

sup
[0,T ]

‖eu‖2f +

∫ T

0

{
ν‖∇eu‖2f +

2α

kmax
‖eu · τ̂‖2I + gkmin‖∇eφ‖2p

}
dt

≤ gS0

kmin

∫ T

0

(√
S0‖φt‖p

)2

dt ≤ C∗

kmin
S0.

Proof. We will use the energy estimate obtained in Proposition 3.2 and apply
it to the weak formulation (4.1)-(4.2) for the error, with ff ≡ 0, fp = −S0φt,
eu in place of uQS and eφ in place of φQS . By Theorem 3.2 we have in addition
that

√
S0φt ∈ L2(0, T ;L2(Ωp)). Thus, we conclude

sup
[0,T ]

‖eu‖2f +

∫ T

0

{
ν‖∇eu‖2f +

2α

kmax
‖eu · τ̂‖2I + gkmin‖∇eφ‖2p

}
dt

≤ gS0

kmin

∫ T

0

(√
S0‖φt‖p

)2

dt ≤ C∗

kmin
S0.

Theorem 4.2 is important because it proves convergence of the Stokes-Darcy
solution to the quasistatic solution as S0 converges to zero assuming less reg-
ular body forces. Notice that the assumption on the body forces in The-
orem 4.1 is that the time derivatives of the body forces in Ωf,p belong to
L2(0, T ;H−1(Ωf,p)) respectively, while the requirement in Theorem 4.2 is that
ff/p ∈ L2(0, T ;L2(Ωf/p)). Less regular body forces occur, for instance, in set-
tings involving wells. One half order convergence is obtained in Theorem 4.2
by making a few more assumptions on the initial data for the Stokes-Darcy
solution (u, φ) given by (2.8)-(2.9) and assuming in addition that there exists a
C1-diffeomorphism between the domains Ωf and Ωp.

Remark 4.1. From the results in Theorems 4.1 and 4.2 it is clear that dropping
the term S0φt from the fully evolutionary Stokes-Darcy equations, if S0 is small,
is justified provided S0 << kmin.

5. Conclusions

The solution of the fully evolutionary Stokes-Darcy problem converges to
the quasistatic solution, as S0 approaches zero, under mild assumptions on the
initial data and body forces. First order convergence is obtained. Provided
that S0 is small and S0 << kmin, the term S0φt can be dropped from the
Stokes-Darcy equations.
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