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Abstract

This work extends the results of [L07] by presenting a defect correction method
with increased time accuracy. The desired time accuracy is attained with no extra
computational cost. The method is applied to the evolutionary transport problem,
and is proven to be unconditionally stable. In the defect step, the artificial viscosity
parameter is added to the Peclet number as a stability factor, and the system is an-
tidiffused in the correction step. The time accuracy is also increased in the correction
step by modifying the right hand side. Hence, we solve the transport problem twice,
using the Crank-Nicolson scheme (with the artificial viscosity parameter added), and
obtain the accuracy of O(h2 +k4). The computational results are provided, that verify
the claimed space and time accuracy of the approximate solution.
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1 Introduction

Consider the evolutionary convection diffusion problem: find u : Ω× [0, T ] → Rd (d = 2, 3)
such that

ut − ε∆u + b · ∇u + gu = f , for x ∈ Ω, 0 < t ≤ T (1)

u = 0, on ∂Ω, for 0 < t ≤ T,

where u is the velocity field, ε is a diffusion coefficient, g is an absorbtion/reaction coefficient,
and f is a forcing function.

In the problems with high Peclet number (i.e. ε ¿ 1) some iterative solvers fail to
converge to a solution of (1). We propose a certain Defect Correction Method (DCM), that
is stable, computes a solution to (1) for any ε with high space and time accuracy, and is
computationally attractive.

The general theory of Defect Correction Methods is presented, e.g., in Bohmer, Hemker,
Stetter [BHS]. In the late 1970’s Hemker (Bohmer, Stetter, Heinrichs and others) discov-
ered that DCM, properly interpreted, is good also for nearly singular problems. Examples
for which this has been successful include equilibrium Euler equations (Koren, Lallemand
[LK93]), high Reynolds number problems (Layton, Lee, Peterson [LLP02]), viscoelastic prob-
lems (Ervin, Lee [EL06]).

There has been an extensive study and development of the DC methods for equilib-
rium flow problems, see e.g. Hemker[Hem82], Koren[K91], Heinrichs[Hei96], Layton, Lee,
Peterson[LLP02], Ervin, Lee[EL06]. On the other hand, there is a parallel development of
DCM’s, for initial value problems in which no spacial stabilization is used, but DCM is
used to increase the accuracy of the time discretization. This work contains no reports of
instabilities: see, e.g., Heywood, Rannacher[HR90], Hemker, Shishkin[HSS], Minion[M04],
Bourlioux, Layton, Minion [BLM03].

It was shown in [L07] that the natural idea of time stepping combined with the DCM in
space for the associated quasi-equilibrium problem gives an oscillatory computed solution of
poor quality. Another DC method was introduced for an evolutionary PDE, that was proven
to be stable and accurate.

The method, presented in this paper, is the modification (aiming at higher accuracy in
time) of the DCM for the evolutionary PDEs, presented in [L07]. Compared to the method
in [L07], the right hand side of the system is modified in the correction step, resulting in
higher time accuracy with no extra computational cost.

The method proceeds as follows: first we compute the AV approximation uh
1 ∈ Xh via

Lh
ε+h(u

h
1) = f ,

where

Lh
ε+h(u

h) = uh
t − (h + ε)∆uh + b · ∇uh + guh.
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The accuracy of the approximation is then increased by the correction step: compute uh
2 ∈

Xh, satisfying

Lh
ε+h(u

h
2)− Lh

ε+h(u
h
1) = f − Lh

ε (u
h
1) + B(uh

1).

Here B(·) is the time difference operator, that increases the accuracy of the discrete time
difference for ut.

The Crank-Nicolson time discretization, combined with the two-step defect correction
method in space leads to the following system of equations for uh,n+1

1 ,uh,n+1
2 ∈ Xh,∀vh ∈ Xh

at t = tn+1, n ≥ 0, with k := ∆t = ti+1 − ti

(
uh,n+1

1 − uh,n
1

k
,vh) + (h + ε)(∇(

uh,n+1
1 + uh,n

1

2
),∇vh) + (b · ∇(

uh,n+1
1 + uh,n

1

2
),vh)

(2a)

+g(
uh,n+1

1 + uh,n
1

2
,vh) = (f(tn+1/2),v

h),

(
uh,n+1

2 − uh,n
2

k
,vh) + (h + ε)(∇(

uh,n+1
2 + uh,n

2

2
),∇vh) + (b · ∇(

uh,n+1
2 + uh,n

2

2
),vh)

(2b)

+g(
uh,n+1

2 + uh,n
2

2
,vh) = (f(tn+1/2),v

h) + h(∇(
uh,n+1

1 + uh,n
1

2
),∇vh) + Bn(uh

1 ,v
h),

where

B0(u, v) =
1

12
k2

(
u4 − 5u3 + 9u2 − 7u1 + 2u0

k3
, v

)
(3a)

− 1

16
k2

(
f(t3)− 5f(t2) + 7f(t1)− 3f(t0)

k2
, v

)
,

Bn(u, v) = − 1

12
k2

(
un+2 − 3un+1 + 3un − un−1

k3
, v

)
(3b)

+
1

16
k2

(
f(tn+2)− f(tn+1)− f(tn) + f(tn−1)

k2
, v

)
, for n = 1, ..., N − 2,

BN−1(u, v) = − 1

12
k2

(
2uN − 7uN−1 + 9uN−2 − 5uN−3 + uN−4

k3
, v

)
(3c)

+
1

16
k2

(
3f(tN)− 7f(tN−1) + 5f(tN−2)− f(tN−3)

k2
, v

)
.

Depending on the current time level, we vary the templates - this demonstrates the
resilience of the method. However, the condition N ≥ 4 needs to be satisfied, where N = T/k
is the number of time levels.
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Note that the operator B is chosen so that for any n the true solution u satisfies

(
u(tn+1)− u(tn)

k
,vh) + (h + ε)(∇(

u(tn+1) + u(tn)

2
),∇vh) + (b · ∇(

u(tn+1) + u(tn)

2
),vh)

+g(
u(tn+1) + u(tn)

2
,vh) = (f(tn+1/2),v

h) + h(∇(
u(tn+1) + u(tn)

2
),∇vh) + Bn(u,vh)

+k4(u(5)(tn+θ),v
h),

for some θ ∈]0, 1[.
Also, the only extra computational cost for the correction step is due to the storage of a

few vectors uh,i
1 . The Crank-Nicolson scheme is used for computing both uh

1 and uh
2 , but the

time accuracy of the approximate solution uh
2 is increased to be O(k4).

The method is proven to be unconditionally stable over the finite time; it is also stable
over all time under the assumption g − 1

2
∇ · b ≥ β > 0.

In section 2 we briefly describe notation used and a few established results. Stability of
the method is proven in Section 3. We conclude with the numerical results, proving the error
estimates for the method - this is presented in Section 4.

2 Notation and preliminaries

We begin with a few definitions, assumptions, and forms used, and conclude the section with
a statement of the method to be studied. The variational formulation of (1) is naturally
stated in

X := H1
0 (Ω)d = {v : Ω → Rd,v ∈ L2(Ω)d,∇v ∈ L2(Ω)d,v = 0 on ∂Ω}.

We use the standard L2 norm, ‖·‖, and the usual norm on the Sobolev space Hk, namely
‖·‖k.

We make several common assumptions.

Assumption 2.1 There exists a constant β such that

g − 1

2
∇ · b ≥ β > 0.

The method is proven to be stable over a finite time even if the Assumption 2.1 doesn’t
hold. If it does, the method is stable over all time.

We shall assume that the velocity finite element spaces Xh ⊂ X are conforming and have
typical approximation properties of finite element spaces commonly in use. Namely, we take
Xh to be spaces of continuous piecewise polynomials of degree k, with k ≥ 1.

The interpolating properties of Xh are given by the following assumption.
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Assumption 2.2 For any function u ∈ X

inf
χ∈Xh

{‖u− χ‖+ h‖∇(u− χ)‖} ≤ chr+1‖u‖r+1, 1 ≤ r ≤ k.

We conclude the preliminaries by formulating the discrete Gronwall’s lemma, see, e.g.
[HR90]

Lemma 2.1 Let k, B, and aµ, bµ, cµ, γµ, for integers µ ≥ 0, be nonnegative numbers such
that:

an + k

n∑
µ=0

bµ ≤ k

n∑
µ=0

γµaµ + k

n∑
µ=0

cµ + B for n ≥ 0.

Suppose that kγµ < 1 for all µ, and set σµ = (1− kγµ)−1. Then

an + k

n∑
µ=0

bµ ≤ ek
∑n

µ=0 σµγµ · [k
n∑

µ=0

cµ + B].

3 Stability of the method

In this section we prove the unconditional stability of the discrete artificial viscosity approx-
imation uh

1 and use this result to prove stability of the higher order approximation uh
2 . The

approximations uh
1 and uh

2 are shown to be bounded uniformly in ε.

Theorem 3.1 Let f ∈ L2(0, T ; L2(Ω)). Let g − 1
2
∇ · b ≥ β > −∞. If β < 0, let the length

of the time step satisfy k|β| < 1/4. Then the approximation uh
1 , satisfying (2a), is stable

over the finite time T < ∞. Specifically, there exist positive constants C1, C2 such that for
any n ≤ N − 1

‖uh,n+1
1 ‖2 + k

n∑
i=0

(h + ε)‖∇(
uh,i+1

1 + uh,i
1

2
)‖2 (4)

≤ eC1T

(
‖uh,0

1 ‖2 +
1

C2

k

n∑
i=0

‖f(ti+1/2)‖2

)
.

If Assumption 2.1 is satisfied, then uh
1 is stable over all time and

‖uh,n+1
1 ‖2 + βk

n∑
i=0

‖u
h,i+1
1 + uh,i

1

2
‖2 + k

n∑
i=0

(h + ε)‖∇(
uh,i+1

1 + uh,i
1

2
)‖2 (5)

≤ ‖uh,0
1 ‖2 +

1

β
k

n∑
i=0

‖f(ti+1/2)‖2.

5



Proof: Take vh =
uh,n+1

1 +uh,n
1

2
∈ Xh in (2a). Apply Green’s theorem to the last two terms

on the left hand side (with uh
1 = 0 on ∂Ω) and use the assumption g − 1

2
∇ · b ≥ β. The

Cauchy-Schwartz and Young’s inequalities, applied to the left hand side, yield

‖uh,n+1
1 ‖2 − ‖uh,n

1 ‖2

2k
+ (h + ε)‖∇(

uh,n+1
1 + uh,n

1

2
)‖2 (6)

+β‖u
h,n+1
1 + uh,n

1

2
‖2 ≤ (f(tn+1/2),

uh,n+1
1 + uh,n

1

2
).

If Assumption 2.1 is satisfied, we bound the right hand side of (6) by

|(f(tn+1/2),
uh,n+1

1 + uh,n
1

2
)| ≤ 1

2β
‖f(tn+1/2)‖2 +

β

2
‖u

h,n+1
1 + uh,n

1

2
‖2. (7)

Multiply (6) by 2k and sum over the time levels i = 0, .., n + 1. Using (7), we obtain

‖uh,n+1
1 ‖2 + k

n∑
i=0

2(h + ε)‖∇(
uh,i+1

1 + uh,i
1

2
)‖2 (8)

+k

n∑
i=0

β‖u
h,i+1
1 + uh,i

1

2
‖2 ≤ ‖uh,0

1 ‖2 + k

n∑
i=0

1

β
‖f(ti+1/2)‖2,

which proves stability over all time (provided that Assumption 2.1 is satisfied).
If g − 1

2
∇ · b ≥ β with −∞ < β < 0, then we bound the right hand side of (6) by

|(f(tn+1/2),
uh,n+1

1 + uh,n
1

2
)| ≤ 1

4|β|‖f(tn+1/2)‖2 + |β|‖u
h,n+1
1 + uh,n

1

2
‖2. (9)

It follows from (6),(9) and the triangle inequality that

‖uh,n+1
1 ‖2 − ‖uh,n

1 ‖2

2k
+ (h + ε)‖∇(

uh,n+1
1 + uh,n

1

2
)‖2 (10)

≤ 1

4|β|‖f(tn+1/2)‖2 + |β|(‖uh,n+1
1 ‖2 + ‖uh,n

1 ‖2).

Multiply (10) by 2k and sum over the time levels i = 0, .., n + 1. Under the condition
k|β| < 1/4 the discrete Gronwall’s lemma yields

‖uh,n+1
1 ‖2 + k

n∑
i=0

2(h + ε)‖∇(
uh,i+1

1 + uh,i
1

2
)‖2

≤ ecT

(
‖uh,0

1 ‖2 + k

n∑
i=0

1

2|β|‖f(ti+1/2)‖2

)
,

with c > 0.
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We now proceed to the proof of stability of uh
2 . It follows from (3) that |Bi(u

h
1 ,v

h)| ≤
C‖vh‖ for any vh ∈ Xh, provided that the time difference

uh,i+1
1 −uh,i

1

k
is bounded for any

i = 0, ..., N − 1. Hence, we begin by establishing the bound for
uh,i+1

1 −uh,i
1

k
.

Lemma 3.1 Let uh,0
1 ∈ H2(Ω), ft ∈ L2(0, T ; L2(Ω)). Let g − 1

2
∇ · b ≥ β > −∞. If β < 0,

let the length of the time step satisfy k|β| < 1/4. Then
uh,n+1

1 −uh,n
1

k
is bounded for the finite

time T < ∞. Specifically, there exist positive constants c, C = C(b, g, f ,uh,0
1 ) such that

‖u
h,n+1
1 − uh,n

1

k
‖2 + k

n∑
i=1

1

2
(h + ε)‖∇(

uh,i+1
1 − uh,i−1

1

k
)‖2

≤ ecT

(
C + k

n∑
i=1

1

2β
‖f(ti+1/2)− f(ti−1/2)

k
‖2

)
.

If Assumption 2.1 is satisfied, then
uh,n+1

1 −uh,n
1

k
is bounded over all time: there exists

C = C(b, g, f ,uh,0
1 ) such that

‖u
h,n+1
1 − uh,n

1

k
‖2 + k

n∑
i=1

1

2
(h + ε)‖∇(

uh,i+1
1 − uh,i−1

1

k
)‖2

+k

n∑
i=1

1

4
β‖u

h,i+1
1 − uh,i−1

1

k
‖2 ≤ C + k

n∑
i=1

1

β
‖f(ti+1/2)− f(ti−1/2)

k
‖2.

Proof: Consider (2a) at any time level n ≥ 1. Take vh =
uh,n+1

1 −uh,n−1
1

k
and make the same

choice for vh in (2a) at the previous time level. Subtracting the resulting equations leads to

(
uh,n+1

1 − 2uh,n
1 + uh,n−1

1

k
,
uh,n+1

1 − uh,n−1
1

k
) +

1

2
(h + ε)k‖∇(

uh,n+1
1 − uh,n−1

1

k
)‖2

+
1

2
k(b · ∇(

uh,n+1
1 − uh,n−1

1

k
),

uh,n+1
1 − uh,n−1

1

k
) +

1

2
kg‖u

h,n+1
1 − uh,n−1

1

k
‖2

= k(
f(tn+1/2)− f(tn−1/2)

k
,
uh,n+1

1 − uh,n−1
1

k
).

Apply Green’s theorem to the last two terms on the left hand side (with
uh,n+1

1 −uh,n−1
1

k
= 0

on ∂Ω) and use the assumption g− 1
2
∇ · b ≥ β. Rewrite the first term on the left hand side,

using the identity

(
uh,n+1

1 − 2uh,n
1 + uh,n−1

1

k
,
uh,n+1

1 − uh,n−1
1

k
) = ‖u

h,n+1
1 − uh,n

1

k
‖2 − ‖u

h,n
1 − uh,n−1

1

k
‖2.
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This yields

‖u
h,n+1
1 − uh,n

1

k
‖2 − ‖u

h,n
1 − uh,n−1

1

k
‖2 +

1

2
(h + ε)k‖∇(

uh,n+1
1 − uh,n−1

1

k
)‖2 (11)

+
1

2
kβ‖u

h,n+1
1 − uh,n−1

1

k
‖2 ≤ k(

f(tn+1/2)− f(tn−1/2)

k
,
uh,n+1

1 − uh,n−1
1

k
).

Sum (11) over all time levels i = 1, .., n and consider the cases β > 0 and −∞ < β < 0
separately, as in the proof of Theorem 3.1. If the Assumption 2.1 holds, this yields

‖u
h,n+1
1 − uh,n

1

k
‖2 + k

n∑
i=1

1

2
(h + ε)‖∇(

uh,i+1
1 − uh,i−1

1

k
)‖2 (12)

+k

n∑
i=1

1

4
β‖u

h,i+1
1 − uh,i−1

1

k
‖2 ≤ ‖u

h,1
1 − uh,0

1

k
‖2 + k

n∑
i=1

1

β
‖f(ti+1/2)− f(ti−1/2)

k
‖2.

If −∞ < β < 0 and k|β| < 1/4, it follows from the discrete Gronwall’s lemma that

‖u
h,n+1
1 − uh,n

1

k
‖2 + k

n∑
i=1

1

2
(h + ε)‖∇(

uh,i+1
1 − uh,i−1

1

k
)‖2 (13)

≤ ecT

(
‖u

h,1
1 − uh,0

1

k
‖2 + k

n∑
i=1

1

2β
‖f(ti+1/2)− f(ti−1/2)

k
‖2

)
.

To complete the proof, we need a bound on ‖uh,1
1 −uh,0

1

k
‖2. Consider (2a) at n = 0 and take

vh =
uh,1

1 −uh,0
1

k
. This gives

‖u
h,1
1 − uh,0

1

k
‖2 + (h + ε)(∇(

uh,1
1 + uh,0

1

2
),∇(

uh,1
1 − uh,0

1

k
)) (14)

+(b · ∇(
uh,1

1 + uh,0
1

2
),

uh,1
1 − uh,0

1

k
) + g(

uh,1
1 + uh,0

1

2
,
uh,1

1 − uh,0
1

k
)

= (f(t1/2),
uh,1

1 − uh,0
1

k
).

Using the identity
uh,1

1 +uh,0
1

2
=

uh,1
1 −uh,0

1

2
+ uh,0

1 , we can rewrite the last three terms in the
left hand side of (14). Applying Green’s theorem as in the proofs above, yields

‖u
h,1
1 − uh,0

1

k
‖2 + (h + ε)‖∇(

uh,1
1 − uh,0

1

k
)‖2 + (h + ε)(∆uh,0

1 ,
uh,1

1 − uh,0
1

k
)

+
1

2
kβ‖u

h,1
1 − uh,0

1

k
‖2 + (b · ∇uh,0

1 ,
uh,1

1 − uh,0
1

k
) + g(uh,0

1 ,
uh,1

1 − uh,0
1

k
)

≤ (f(t1/2),
uh,1

1 − uh,0
1

k
).
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The Cauchy-Schwartz and Young’s inequalities give

1

2
‖u

h,1
1 − uh,0

1

k
‖2 + (h + ε)‖∇(

uh,1
1 − uh,0

1

k
)‖2 +

1

2
kβ‖u

h,1
1 − uh,0

1

k
‖2

≤ C,

where C = ‖b · ∇uh,0
1 ‖2 + 2g2‖uh,0

1 ‖2 + 2(h + ε)2‖∆uh,0
1 ‖2 + ‖f(t1/2)‖2 < ∞. Hence, if

Assumption 2.1 is satisfied, or if −∞ < β < 0 and k|β| < 1/4, we obtain the bound

‖u
h,1
1 − uh,0

1

k
‖2 + (h + ε)‖∇(

uh,1
1 − uh,0

1

k
)‖2 ≤ C < ∞. (15)

Inserting the bound on ‖uh,1
1 −uh,0

1

k
‖2 into (12) and (13) completes the proof.

The unconditional stability of uh
2 (uniform in ε) follows from Theorem 3.1 and Lemma

3.1. The last term in the right hand side of (2b) is bounded by means of Lemma 3.1.

Theorem 3.2 Let the assumptions of Theorem 3.1 and Lemma 3.1 be satisfied.
Let g − 1

2
∇ · b ≥ β > −∞. If β < 0, let the length of the time step satisfy k|β| < 1/4.

Then the approximation uh
2 , satisfying (2b), is stable over the finite time T < ∞. Specifically,

there exist positive constants c1, C2, C3 such that for any n ≤ N − 1

‖uh,n+1
2 ‖2 + k

n∑
i=0

(h + ε)‖∇(
uh,i+1

2 + uh,i
2

2
)‖2

≤ ec1T

(
C3 + ‖uh,0

2 ‖2 + ‖uh,0
1 ‖2 +

1

C2

k

n∑
i=0

‖f(ti+1/2)‖2

)
.

If Assumption 2.1 is satisfied, then uh
1 is stable over all time and

‖uh,n+1
2 ‖2 + βk

n∑
i=0

‖u
h,i+1
2 + uh,i

2

2
‖2 + k

n∑
i=0

(h + ε)‖∇(
uh,i+1

2 + uh,i
2

2
)‖2

≤ C + ‖uh,0
2 ‖2 + ‖uh,0

1 ‖2 +
1

β
k

n∑
i=0

‖f(ti+1/2)‖2,

with C = C(b, g, f ,uh,0
1 ).
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Proof: The proof resembles the proof of Theorem 3.1. Take vh =
uh,n+1

2 +uh,n
2

2
∈ Xh in

(2b). Apply Green’s theorem to the last two terms on the left hand side. This gives

‖uh,n+1
2 ‖2 − ‖uh,n

2 ‖2

2k
+ (h + ε)‖∇(

uh,n+1
2 + uh,n

2

2
)‖2 + β‖u

h,n+1
2 + uh,n

2

2
‖2 (16)

≤ (f(tn+1/2),
uh,n+1

2 + uh,n
2

2
) + h(∇(

uh,n+1
1 + uh,n

1

2
),∇(

uh,n+1
2 + uh,n

2

2
))

+Bn(uh
1 ,

uh,n+1
2 + uh,n

2

2
).

It is easy to verify that for any n

|Bn(uh
1 ,

uh,n+1
2 + uh,n

2

2
)| ≤ C +

1

2
|β|‖u

h,n+1
2 + uh,n

2

2
‖2, (17)

where C =
1

|β| max
0≤i≤N−1

‖u
h,i+1
1 − uh,i

1

k
‖2 +

1

|β|k
2 max

0≤i≤N−1
‖f(ti+1)− f(ti)

k
‖2.

It also follows from Lemma 3.1 that this constant is finite, C < ∞.
Using Cauchy-Schwartz and Young’s inequalities gives

h|(∇(
uh,n+1

1 + uh,n
1

2
),∇(

uh,n+1
2 + uh,n

2

2
))| ≤ 1

2
(h + ε)‖∇(

uh,n+1
2 + uh,n

2

2
)‖2 (18)

+
h2

2(h + ε)2
(h + ε)‖∇(

uh,n+1
1 + uh,n

1

2
)‖2.

Multiply (16) by 2k, sum over the time levels and use (17),(18). Theorem 3.1 gives the

bound on k
∑n

i=0(h + ε)‖∇(
uh,i+1

1 +uh,i
1

2
)‖2. The cases when Assumption 2.1 holds and when

−∞ < β < 0, k|β| < 1/4 are treated as in the proof of Theorem 3.1.

Thus, the method is unconditionally stable for all time, provided that the Assumption
2.1 is satisfied. The approximate solutions uh

1 and uh
2 are bounded uniformly in h and ε. If

the condition g− 1
2
∇ · b ≥ β is satisfied with −∞ < β < 0, then the assumption k|β| < 1/4

is needed to conclude stability and uniform boundedness of the approximate solutions over
a finite time.
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4 Computational results

Based on the results of [L07] (and the general theory of Defect Correction Methods), we are
expecting to obtain the following error estimates:

‖u− uh
1‖L2(0,T ;L2(Ω)) ≤ C(h + k2),

‖u− uh
2‖L2(0,T ;L2(Ω)) ≤ C(h‖u− uh

1‖L2(0,T ;L2(Ω)) + k4)

≤ C(h2 + hk2 + k4).

Consider the following transport problem in Ω = [0, 1]× [0, 1]: find u satisfying (1) with
ε = 10−5, b = (1, 1)T , g = 1 and f = [(2 + 2επ2) sin(πx) sin(πy) + π sin(πx + πy)]et. This
problem has a solution u = sin(πx) sin(πy)et.

The results presented in the following tables are obtained by using the software FreeFEM+
+. In order to draw conclusions about the convergence rate, we take k = h and k =

√
h.

Note that the method needs the number of time steps N ≥ 4.

Table 1: Error estimates, ε = 10−5, T = 1, k = h

h ‖u− uh
1‖L2(0,T ;L2(Ω)) rate ‖u− uh

2‖L2(0,T ;L2(Ω)) rate
1/4 0.648482 0.36992
1/8 0.406708 0.6731 0.159371 1.2148
1/16 0.233742 0.7991 0.0590029 1.4335
1/32 0.126373 0.8872 0.0202292 1.5443

Table 2: Error estimates, ε = 10−5, T = 1, k =
√

h

h ‖u− uh
1‖L2(0,T ;L2(Ω)) rate ‖u− uh

2‖L2(0,T ;L2(Ω)) rate
1/16 0.267117 0.059804
1/64 0.0717964 0.9477 0.00712605 1.5345
1/256 0.0179559 0.9997 0.00076384 1.6109

The method doesn’t resolve the problem of oscillations in the boundary layer, but the
oscillations do not spread beyond the boundary layer. This is verified by the figure plots of
the computed solution uh

2 , as the mesh size and the time step are decreased.
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Figure 1: Computed solution uh
2 , k = h = 1/8

Figure 2: Computed solution uh
2 , k = h = 1/16

Figure 3: Computed solution uh
2 , k = h = 1/32

Finally, we compute the approximation error away from the boundary layer, namely in
(0, 0.75)× (0, 0.75).

Table 3: Error estimates in (0, 0.75)× (0, 0.75), ε = 10−5, k = h

h ‖u− uh
1‖L2(0,T ;L2(Ω)) rate ‖u− uh

2‖L2(0,T ;L2(Ω)) rate
1/4 0.545619 0.26598
1/8 0.32111 0.7648 0.0844715 1.6548
1/16 0.172327 0.8979 0.02094 2.0122
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Table 4: Error estimates in (0, 0.75)× (0, 0.75), ε = 10−5, k =
√

h

h ‖u− uh
1‖L2(0,T ;L2(Ω)) rate ‖u− uh

2‖L2(0,T ;L2(Ω)) rate
1/16 0.197961 0.0186758
1/64 0.0491873 1.0044 0.0016107 1.7677
1/256 0.0120236 1.0162 0.000112279 1.9213

Hence, the computational results verify the claimed accuracy of the method away from
boundaries. Also, the oscillations of the computed solution do not spread outside of the
boundary layer.
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