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Abstract

We consider dynamics of phase boundaries in a bistable one-dimensional lattice
with harmonic long-range interactions. Using Fourier transform and Wiener-Hopf
technique, we construct traveling wave solutions that represent both subsonic phase
boundaries (kinks) and intersonic ones (shocks). We derive the kinetic relation for
kinks that provides a needed closure for the continuum theory. We show that the
different structure of the roots of the dispersion relation in the case of shocks intro-
duces an additional free parameter in these solutions, which thus do not require a
kinetic relation on the macroscopic level. The case of ferromagnetic second-neighbor
interactions is analyzed in detail. We show that the model parameters have a signif-
icant effect on the existence, structure and stability of the traveling waves, as well
as their behavior near the sonic limit.

1 Introduction

Many materials are capable of undergoing displacive phase transitions which change the
symmetry of the crystal lattice through a diffusionless coordinated motion of atoms. The
best known example of such transitions is the martensitic transformation in shape memory
alloys. A signature feature of these materials is the hysteresis they exhibit in response to
cyclic loading due to the energy dissipated by moving phase boundaries [21].

In continuum elasticity theory displacive phase transitions are typically modeled via
a nonconvex elastic energy density, where each convex region corresponds to a different
material phase, and the phase boundaries are described as moving discontinuities of the
deformation gradient. This approach has been quite successful in predicting the com-
plex equilibrium microstructures observed in martensites [3]. However, extending it to
dynamics is problematic due to the failure of the classical theory to describe the dissi-
pative phenomena inside a phase transition front. Although the theory shows that the
rate of dissipation must be nonzero, it provides no information about either the origin of
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dissipation or its dependence on the interface dynamics. To illustrate this fundamental
problem, it suffices to consider longitudinal deformation of a homogeneous bar with a
unit cross-section and initial density p > 0. Let u(z,t) be the displacement of a reference
point z at time ¢, and introduce the strain field w(z,t) = ug(x,t) and the velocity field
v(x,t) = uy(x,t), where uy = Ou/0t and u, = Ou/dx. The total energy of the bar is

e~ [ |5 +otw)]as 1)

where ¢(w) is the elastic energy density. To model phase transitions, we follow [8] and
assume that ¢(w) is nonconvex, so that the stress-strain relation o(w) = ¢'(w) is non-
monotone, as shown in Fig. 1. The regions where ¢'(w) > 0 correspond to two material
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Figure 1: The macroscopic stress-strain law and the Rayleigh line connecting the strains ahead and
behind a phase boundary. (a) An interphase shock. The driving force equals the shaded area A and
depends on w4 and V. (b) A kink, or a subsonic phase boundary. The driving force equals the difference
Ay — A; between the shaded areas and is determined only by the phase boundary velocity V', which needs
to be specified. Inserts: schematic representation of incoming and outgoing characteritics in each case.

phases, phase I and phase II. The balances of mass and linear momentum yield the p-
system
Wy = vz, pvy = (o(w)),. (2)

Due to the non-monotonicity of o(u;), this is a mixed-type hyperbolic-elliptic system.
Initial value problems associated with such equations are known to be ill-posed whenever
they lead to the appearance of discontinuities that violate the Lax condition [5, 12, 16, 27].

To see this, consider a strain discontinuity propagating along the bar with a constant
velocity V' > 0. Let [f] = f+— f- denote the difference between the limiting values f, and
f- of afunction f(z) to the right and to the left of the discontinuity and {f} = (f++f-)/2



denote their average value. On the discontinuity the balance laws reduce to the Rankine-
Hugoniot jump conditions

[v]l +VIwl =0, pV[v]+[o(w)] =0. (3)

In addition, the entropy condition requires that the rate of energy dissipated by the
discontonuity is nonnegative:
R=GV >0, (4)

where
G = [o(w)] — {o(w)}[w] (5)
is the driving (configurational) force.

Two types of discontinuities need to be considered separately. The first one is a
classical shock whose velocity satisfies the inequality ¢y < V < c¢_, where ¢, and c_
denote the sound speeds in front and behind the shock: ¢y = /o (wy)/p.

If the strains w, and w_ are in two different phases, this discontinuity represents an
intersonic phase boundary (see Fig. 1a). If they are in the same phase, the shock is a
sound wave. In either case, a shock satisfies the Lax condition, and its parameters can
be uniquely found from the above conditions. Indeed, the five parameters - the velocities
vy and strains wy in front and behind the shock and its speed V' - can be found from the
two jump conditions (3) on the shock and the conservation laws along the three incom-
ing characteristics (see the insert in Fig. 1a). A kink, or a subsonic discontinuity (also
known in the literature as an undercompressed shock), is a different type of discontinuity
that represents phase boundaries observed in martensites (see Fig. 1b). The kinks satisfy
V < ¢y and V < ¢, meaning that they violate the Lax condition. One can see that
this type of discontinuities are the ones leading to a one-parameter family of solutions
of the initial value problem. Indeed, since there are now only two incoming characteris-
tics (Fig. 1b), the classical theory provides only four conditions, while we still have five
unknowns [27]. To close the system, one thus needs to supplement the theory with an
additional kinetic relation specifying the dependence of the driving force on the velocity
of the phase boundary [2, 26]:

G=G(V)

Once such relation is specified, it determines the strains wy in front and behind the
kink for given V' and thus fixes the location of the Rayleigh line in Fig. 1b. Since the
continuum theory provides no information about the kinetic relation, and the few available
experimental data are scattered [15] and mostly rely on indirect measurements [6, 7], it
is usually obtained from a regularized theory that introduces an internal structure of the
discontinuity, e.g. [17, 25, 29, 31].

In this paper we follow the approach of [29] and regularize the continuum model by
replacing it with its natural discrete analog, a chain of point masses, each interacting
with several neighbors via elastic springs. To model phase transitions, we assume that



the interactions between the nearest neighbors are governed by a nonconvex potential,
with two convex regions representing two different material phases. The dynamics of the
chain is governed by a nonlinear conservative system of ordinary differential-difference
equations that replaces the p-system (2) of the classical theory. In the discrete model an
isolated phase boundary is represented by a traveling wave front. As the front propagates
through the one-dimensional lattice, the nearest-neighbor (NN) springs switch from the
low-strain phase I to the high-strain phase II. To derive the kinetic relation, one needs to
find the traveling wave solution describing an isolated phase boundary traveling with a
given subsonic velocity and use this solution to compute the corresponding driving force.
In the discrete model, a propagating phase boundary emits short-length lattice waves
that carry energy away from the front [22, 29]. On the macroscopic level, these waves
are invisible, and the energy radiation is perceived as dissipation. This radiative damping
phenomenon is commonly observed when a defect (whether it is a dislocation, a crack or
a phase boundary) propagates through a lattice, e.g. [1, 4, 9, 10, 11, 13, 19].

An exact solution can be obtained using Fourier transform if one considers a bi-
quadratic NN interaction potential, and all other (long-range) interactions are assumed
to be governed by quadratic potentials. This was done in [29] for the special case when
the elastic moduli k; and k;; in the two phases are equal. When the elastic moduli are
different, v = k;;/k; # 1, the problem becomes technically more difficult and requires the
use of Wiener-Hopf factorization technique. In the absence of long-range interactions it
was studied in [20, 22, 23]. The case v < 1, which allows for only subsonic phase bound-
aries was considered in [20, 22|, and nontrivial shock solutions, which occur when v > 1,
were the focus of [23]. However, some important details about existence, structure and
stability of the traveling wave solutions and the fundamental difference between shock
and kink solutions remained unclear.

In this work we allow the elastic moduli to be different while also incorporating the
effect of long-range interactions. We obtain the traveling wave solutions for both kinks
(for any 7 # 1) and interphase shocks (for v > 1) in a unified framework. The inclusion
of long-range interactions changes the structure of the roots of the dispersion relation and
affects both the internal structure of a phase boundary and the frequency of the radiated
lattice waves. This influences existence and stability of the steady interface motion at a
given speed and the rate of energy dissipated by the moving front.

We derive the kinetic relation for kinks and show that the lack of such relation in
case of shocks is due to the different structure of the roots of the dispersion relation
in the intersonic regime, which in turn results in different asymptotic behavior of the
Wiener-Hopf factorization in the Fourier space. Instead of being constant at infinite wave
numbers, as was the case for kinks, both sides of the Wiener-Hopf equation now behave as
a linear polynomial. This leads to the additional degree of freedom in the shock problem
that is also seen on the continuum level: one of the strains w., say, w,, can be specified
independently of the given V. Since changing w, at the same V shifts the Rayleigh line
in Fig. 1a parallel to itself, this means that the same shock velocity corresponds to a set



of values of the driving force instead of a single value. The extra degree of freedom in this
case corresponds to the third incoming characteristic which brings additional information
about the state in front of the shock and can be interpreted as a non-oscillating “feeding
wave” with zero wave number [23].

The model that includes second-neighbor interactions of ferromagnetic type is ana-
lyzed in detail. Such interactions introduce an interfacial energy contribution into the
problem, which penalizes the formation of many phase boundaries and creates an addi-
tional structure around the interface [28]. We analyze the effect of the elastic moduli ratio
~v and the parameter 3, which measures the strength of second-neighbor interactions, on
the existence of traveling waves solutions of the assumed form. While solutions typically
exist when velocities are above a certain threhold, sufficiently small v or large enough
|G| result in existence of some low-velocity kinks and non-existence of shocks in a certain
velocity interval. We also investigate how kinetic relations for kinks and stability of the
constructed solutions are influenced by the two parameters. Stability is studied numeri-
cally by checking whether the long-time solutions of the Riemann problem approach the
traveling wave solutions. Our results suggest that sufficiently fast kinks and all existing
shock solutions are stable. Some of the slower kinks may become stable at smaller v and
larger |5|. At large |3| we also observe non-steady phase boundary motion which is not
described by the traveling wave ansatz.

The structure of the paper is as follows. The discrete model and the governing equa-
tions are formulated in Section 2. In Section 3 we seek solutions in the form of a traveling
wave. Factorization and the Wiener-Hopf technique are applied in Section 4 to represent
the corresponding equation in Fourier space in the Wiener-Hopf form. In Section 5 we
construct exact solutions for kinks, including equilibrium states with the corresponding
trapping region, and derive the kinetic relation. In Section 6 interphase shock solutions
are constructed. Example with ferromagnetic NNN interactions is studied in Section 7,
and stability of the traveling waves is investigated numerically in Section 8. The proof of
the proposition in Section 4 is given in the Appendix.

2 The discrete model

bi-stable spring linear spring
Ve

Figure 2: One-dimensional chain with viscoelastic nearest and elastic next-to-nearest-neighbor interac-
tions.

We consider the one-dimensional lattice model that consists of a chain of isolated



point masses connected by springs. Each particle in the chain interacts with its ¢ nearest
neighbors on each side. If u,(t) is the displacement of the nth particle, the total energy
of the chain can then be written as

N Untp — Un
f=e 3 [ e )] ©)

n=—oo

where ¢ is the reference interparticle distance and ¢,(w) is the potential of interaction
between p-th nearest neighbors. The dynamics of the chain with energy (6) is then
governed by the following infinite system of ordinary differential equations:

. 1 : I n - Un ' n — Yn—
L= RO N

p=1

To model phase transitions, we assume that the nearest-neighbor interactions are
governed by a nonconvex potential ¢;(w). To obtain an analytic solution, we further
assume that ¢ (w) is biquadratic:

P1(w) = (8)

@(wc —a)?, w > w,, phase IL

%K)II(’UJ - a)2 + %/ﬁwg - 2

{ SKIw?, w < w,, phase I
Here k; > 0 and k;; > 0 are the elastic moduli in phase I and phase II, respectively, a is
the transformation strain, and w, is the critical strain separating phase I from phase II.
As in [20, 22, 23|, we allow the elastic moduli of the two phases to be different (k; # xr)
(see Fig. 3(a)). This makes it possible to study both subsonic phase boundaries (kinks)
and intersonic ones (shocks).

As in [29], we also include long-range interactions, which are assumed to be harmonic:

1
¢p:§p,u'pw27 p:27"'7Q7 (9)
with elastic moduli p, chosen so that the uniform deformation u, = nw of the chain is

stable for w # w,.. Let

Up — Up—1

Wy, = ———
€

denote the strain in nth spring connecting the nearest neighbors (NN). We introduce

dimensionless variables

_ Uy _ Wy - _t\/li[
Up = —, Wy = —, n — )
£a a E\/P

and the dimensionless parameters

7:@, szﬁ for p=2,...,¢ (1 =1).
Kr K1
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Figure 3: The bilinear macroscopic stress-strain law.

The parameter v > (0 measures the elastic stiffness of phase II relative to phase I, and the
parameters (2,, p = 2, ..., g, measure the relative strength of the long-range interactions.
Here we set v # 1. The equal moduli case v = 1 was considered in [29].

In terms of the dimensionless quantities, with the tildes dropped, the system (7) of
governing ordinary differential equations becomes

q
Wy, = E Q, [wn+p — 2wy, + Wp—p
p=1

+(y—-1) [@(wn+1 — We)Wna1 — 20(w, — we)wy + O(wy_1 — W)Wy 1 (10)

bt 00 -]

where O(z) is the unit step function. This equation for the discrete model replaces the
continuum-level partial differential equation uy = (o(ug)), (the rescaled version of the
p-system (2)), where the macroscopic stress-strain law is given by

q 2
ciw w < w

o(w) = "(w)y=¢ 27 ¢ 11
() = > pé) (w) {CQM_% ho (1)

p=1 Y

See Fig. 3. Here
a 7
Co = (a + szﬁp) (12)
p=2

is the macroscopic sound speed in the phase I when o = 1 and in phase II when a = v,

with ¢, = y/c? + v — 1. The two lines in (11) intersect at the strain

w, = ——, (13)



The critical strain w, satisfies w, > w, when v < 1 and w, < w, when v > 1.

3 Traveling wave equation

To model an isolated phase boundary moving with a constant velocity V' we consider the
traveling wave solutions of (10) in the form w,(t) = w(§), & = n — Vi, with phase II
(w, > w,) behind the moving front (£ < 0) and phase I ahead of it (£ > 0). Substituting
this ansatz into (10), we obtain

Vi — éﬁp [W(£ +p) —2w(§) +w(€ - p)] =

w—lﬂ@ef—nw@+n—o@e@w@y+@ef+nw@—n (14)
—vkx—a—n—a@efy+@ef+1ﬂ,

a single advance-delay differential equation.

The configuration at £ = +oo must correspond to stable homogeneous equilibria
(constant strains), which due to the Hamiltonian structure of the problem are possibly
superimposed with short-wave oscillations with zero average; the averaging is over the
largest period of oscillations but can be also defined as

E+s

m@wﬂmlfw@a. (15)

3

In terms of averaged quantities we thus obtain the following boundary conditions
(w(§)) = we, as §— oo, (16)

where w, < w, < w_, wy > w, when v < 1 and w_ < w, when v > 1. Note that
although the original system (7) is nonlinear, the traveling wave equation (14) is linear
due to our assumption of linearity in each phase and the known phase distribution for a
traveling wave front. The nonlinearity of the problem thus reduces to the phase switch
condition

w(0) = w. (17)

Note also that in writing (14) we assumed that the NN springs in front of the moving
interface are in phase I and the springs behind it are in phase II. This implies that
admissible solutions must satisfy the inequalities

w(§) <w, for £ >0 (phase I), w(§) > w, for £ <0 (phase II). (18)



Consequently, the mathematical problem reduces to solving (14) subject to (16), (17) and
(18).

In what follows, we will consider two types of solutions: a kink (subsonic, 0 < V' <
Cmin = min{cy, ¢, }) and an interphase shock, which can occur only when v > 1 and has
intersonic velocity: ¢; <V < ¢,.

By linearity of (10), the solution in each phase region (i.e. behind and ahead of
the moving front) can be represented as a sum of the average strain at infinity and a
superposition of linear waves w, = e*“*=%") The dispersion relation for the waves is

k q k
4 sin® 3 +4 > Q,sin® %, phase 1,
w?(k) = p e Dk (19)
4y sin® 5 +43° Q,sin? B phase II.

p=2

Note that stability of the uniform deformation in each phase means that w?(k) > 0 must
hold for all £ € (0,7] [30]. In order for the linear modes to be compatible with the
traveling waves ansatz, their phase velocity V,(k,V) = w/k must be equal to V. This
gives the restriction on the admissible wave numbers in the form g;(k, V) = 0 in phase I
(€ > 0) and g,(k,V) = 0 in phase II (£ < 0), where

k d k
galk, V) = =V?K* +dasin? S +4 O sin’ %, a=1,7. (20)
p=2

To find the solution we set w(§) = wy + h(€§) and apply the generalized Fourier
transform to (14). Let h(k,V) = F[h(E)] = [ h(€)e*ede = h_(k, V) + hy(k,V), where

A~

hy(k, V) = F[O(££)h(£)]. Standard properties of the Fourier transform yield

9, V) (B, V) o 00 (b, V)R- (V) = (= ) 2 (1K V) = g, (5, V).

where we used (20). Dividing both sides by g,(k, V') and introducing the function

gl(kav)

Lk V)= o & v)

(21)
we obtain the equation

Lk, V) b (b, V) + b (5, V) = (w0 — ) —

= (L(k, V) —1). (22)

We want to solve this equation for two unknown functions A (k, V) and h_(k,V). This
can be done by applying the Wiener-Hopf technique, as described in the next section.

9



4 Wiener-Hopf technique and factorization

Consider the equation
Sy (k) Hy(k) = S_(k) H_(k), (23)

where the functions H,(k), H_(k) are unknown and S, (k) and S_(k) are given. We
assume that the left-hand side is regular (meaning it is analytic and has no zeroes or
poles) on C* | R, and the right-hand side is regular on C~ [JR. Here C*, C~, R denote
the upper half of the complex plane (Imk > 0), the lower half (Imk < 0) and the real
line, respectively. Since both sides are defined and regular on R, there exists a unique
analytic continuation function (k) defined on the whole complex plane that equals to
the right-hand side of (23) in the upper half-pane and to the left-hand side of (23) in
the lower half-plane. If the function Q(k) grows at infinity not faster than £", then by
Liouville’s theorem it must be a polynomial p,(k) of degree not higher than n. Assuming
that the coefficients for this polynomial can be found and equating both sides of (23) to
pn(k), we can find functions H, (k) and H_(k). This is the Wiener-Hopf technique in a
nutshell. We remark that it is sufficient to have both sides of (23) regular on an interval
on the real line.

To apply the Wiener-Hopf technique to solve the equation (22), we need to factor
L(k,V) defined in (21) into two functions:

L(k,V)=L (k, V)L (k,V), (24)

The domains of regularity of L (k,V) and L. (k,V) will be defined later. To find the
factorization (24) we need to study the structure of the roots of the function g,(k, V) at
a =1 and a = v and its dependence on the parameter V.

The function g,(k, V') has a double root at £ = 0 which can be factored out by setting

9ok, V) = (2 = V) E? fa(k, V).
Here fo(k,V) = 1+ O(k?) in a small neighborhood of zero, and ¢, is given by (12). Then
fi(k, V)

where 2 e
C —_—

The set of all roots of f,(k,V') coincides with all nonzero roots of g,(k,V) and has a
single accumulation point at infinity. We denote this set M, (V). Note that

fa(k, V) = fo(k, V) and  fo(=k,V) = fa(k,V),

which implies that if & is a root, then so are —k, k and —k. Thus the complex roots with
nonzero real and imaginary parts appear in quadruples, and the roots with zero real or

10



imaginary parts appear in pairs. We can divide M, (V') into two major subsets. The first
subset contains all real roots +r,;. These roots play a major role in the Hamiltonian
dynamics of the chain since they correspond to constant-amplitude waves emitted by a
moving phase boundary. We denote the set of all positive real roots by

Na(V)={r: go(r,V)=0, Imr=0, r>0}

and the set of all negative real roots by —N, (V). At nonzero V these sets have a finite
number of elements. The remaining non-real roots belong to the set

Co(V)={k: ga(k,V) =0, Imk # 0}

This set includes a finite number of purely imaginary roots +is,,; that provide the mono-
tone structure of the core region around the phase boundary and an infinite number of
complex roots ko ; = £7,; £ 1544, With nonzero real and imaginary parts, that provide
oscillatory contributions to the core. We thus have

Ma(V) = Ca(V) U Na(V) U =No(V).

For real 7 and V' > 0 the equation 9a(r, V) = 0 implicitly defines the continuous curve
V = V,(r), where

. 2 T N~ .2 DT
Va(r):m astE—I—;stmQ?; (26)

the real roots are found by solving V,(r) = V for a given V. Observe that V,(0) = c,
V(2rn) = 0 for integer n, so that the number of roots tends to infinity as V' — 0. The
curve V, (r) has local maxima and minima, as shown in Fig. 4. The corresponding values
of V are called the resonance velocities. Note that the inclusion of long-range interactions
may result in additional extrema (compare Fig. 4a and Fig. 4b) and change the number
of roots for a given V. Branches of non-real roots in the set C,(V') bifurcate from the
extrema at the resonance velocities. There are also isolated non-real root branches that
emanate from V = 0.

The function f,(k,V) is entire and satisfies the conditions of the infinite product

theorem [14, 24], which we apply to find factorization (24):

falk, V) = fa(0) eXp[k fé(o)] 11 (1_i)ek/ka,i.
| ;

fa(o) ka,ieMa(V Q,t

Due to f,(0) =1, f.(0) = 0 and the symmetry of the roots about the origin, the product
representation can be simplified to

fae, V)= ]I (1—;.). (27)
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Figure 4: Functions V; (r) (solid curve) and Vv (r) (dashed curve) for positive real roots r, with v = 3 and
(a) ¢ = 5 with Qy = —0.3, Q3 = 0.3, 24 = —0.1 and Q5 = —0.005; (b) ¢ = 1 (no long-range interactions).
For given V > 0, the roots are found from the intersections with the corresponding horizontal line. For
example, at V = 0.3 there is one positive real root (black circle) of g (r,V), located in N;"(0.3), and
three positive real roots of g,(r, V) (white circles), distributed to N (0.3) and N (0.3) according to the
signs.

We now want to factorize f, as
fo(k, V) = f3 (K, V) fo (K, V), (28)

so that the function f¥(k,V) are regular in the union of corresponding halves C* of
the complex plane and a subset of real line that contains an interval. The problem of
factorization is thus equivalent to the problem of dividing the roots into two sets and can
be done as follows. The set C, (V') of all non-real roots can be split into two subsets:

Co(V)=CF(V)ucC,(V), with CE(V)={k: gZ(k,V) =0, Imk = 0}. (29)

The positive real roots N, (V') have to be distributed according to the radiation condition
[18] that places the waves with group velocity

99a
a_w — V + M
or 2Vr
larger than the phase velocity V' in front, while the waves with V, < V can appear
only behind the phase boundary. Assuming V' > 0, we obtain that V;, 2 V whenever
r‘%ﬁ"(r, V) =2 0. This condition follows from the causality principle [19] and can also be
obtained in the limit of zero viscosity [31]. The notation r + 40 will be used to reflect the
effect of the radiation conditions on the real roots. The radiation condition yields

Na(V) = NG (V)UN, (V),

Vo= (30)

with
99a

NZV)=A{r: gz(r,V)=0, Imr =0, r>0, e
.

o7

(r,V) s 0}. (31)
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This implies that the real roots along the decreasing portions of Va(r) are placed in the
set N;F(V), which, as we will see, contributes waves that propagate behind the phase
boundary. Meanwhile, the roots along the increasing portions are in N (V) and corre-
spond to waves propagating ahead of the moving front. See Fig. 4a for an example. Note
that there is a difference in how non-real and real roots are distributed. For any non-real
root k € C} (V) we have —k € C_ (V). This is not the case for real roots. If r is a real root
that belongs to the set N (V) then —r belongs to —N;(V'), not to N (V). Denoting
by —NZ(V) the corresponding sets of negative real roots, we define the subsets

MGZ(V)=CE(V) UNZ(V) U =NZ(V), with Mo (V)= MI(V)UM,(V), (32)

Factorizing the terms with real and non-real roots separately, we obtain

s = L (1= ) = FealbaV) £tk (33
where
= T (+05) o= 1 (1-4) e

Tai€NT (V) At ko i€CE (V) ’

Here we combined the terms with real roots in symmetric pairs using

7)2
1— k : 1— k : =1+ M
r %10 —r 10 72
The desired factorization (24) is then obtained by substituting (33) and (34) into
f1 (k, V)
35
=Vh Ty )

We can now write the equation (22) in the Wiener-Hopf form. Dividing both sides of
the equation by L_(k, V) and rearranging the terms, we obtain:

L, (k, V)< ik hy (k, V)) - (]]%’ 7 (w+ —w. + ik ﬁ_(k,V)>. (36)

Note that the functions L. (k, V) are regular in corresponding half-planes C*. They are
also both regular in the set

RO :R\TE]\L[J(V)(T_é/ZT‘f‘é/Q),

where N'(V) = M (V) U =N (V) UN,(V) U =N, (V). This set is the complement on
real line to the union of intervals centered at the real roots (which are thus removed),

13



of infinitesimally small length § each, so the Wiener-Hopf technique is applicable. Thus
Li(k,V) are regular in C& = C* URy. Since by taking the Fourier transform we have
implicitly assumed the same regularity for A, and h_, it follows that the left side of (36) is
regular in CJ , while the right side is regular in C, . Both sides define an analytic function
on Ry and thus can be analytically continued on the whole space C.

To solve the equation (36) we need to know the asymptotic behavior of the functions
L. (k,V) at infinity and zero. As we will see, these asymptotics are different for shocks
and kinks due to the following proposition proved in Appendix.

Proposition. Let V' > 0 be a non-resonance velocity and let [N, (V)| denote the finite
number of elements in the set M,(V). If V is a kink velocity, V < min{ecy, ¢, }, we have

N (V) =N, (V)] +1

for both @ =1 and o = 7. If V is a shock velocity, ¢; < V' < ¢, (v > 1), this equality
holds only for a@ = =y, while

NV = IV (V)L

We remark that second equality in the proposition trivially holds for shocks in the case of
only NN interactions that was studied in [23]. Indeed, in this case V; (r) always reaches its
maximum at 7 = 0, and thus the sets N:*(V) are both empty for V > ¢; = V;(0). This,
however, is not generally true when long-range interactions are included (see Fig. 4a for
an example).

To find the asymptotic behavior of Ly(k,V) at zero and infinity we will follow the
procedure given in [18] and use the Cauchy-type integral for factorization. A function
F,(k,V) that satisfies conditions [20]

Fo(fo0,V) =1, Ind F,(k, V) =0, (37)
can be split F,(k,V) = Ff(k,V) F, (k,V), where

o

1 [ In F,(&,V)
=+ _ 7
Fi(k,V) =exp i—27ri / kT d¢

The function f, c(k, V) does not satisfy the conditions (37) but the function
C2 _ V2
V2 (I)* (I, )?

«

Fo(k, V) = — (0 — k)10 + k)N fo ok, V), o= [[ 7as

does and gives the desired factorization for f, c(k,V):
I, II, .
ok V) =it Halle (o -8 4 k)N FER, Y.
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We can now find the asymptotes. At infinity we obtain for both kinks and shocks

VIO, .
fack, V) ~ zﬁ (0 — ik)~Wa (0 4 i)~V
ke )2NT |
:t,R(ka V) ~ %, k — +i00.

Due to the above Proposition, this implies different asymptotic behavior for kinks and
shocks. For kinks we have
+

11
2 kT k — 4ioco (38)

N V2 e

for both @« =1 and o = 7, so that as in [20]

U e —

Li(k, V)= R(V)T' as k — +ico, (39)
where
II re II 7
N7 (V) N (V)
R(V) = . ; 40
V=" T (40)
NF(V) Ny (V)

Meanwhile, for shocks Proposition implies that (38) holds only at a =+, while

+
FERV) i D

as k — +ioo,
so that
Li(k, V)= R(V)FU.E,  k — +ico. (41)
At zero the asymptotics are the same for shocks and kinks:
Li(k,V)— /Ly as k— +i0. (42)

We can now solve the equation (36). Due to the different asymptotics (39) and (41),
the solution of (36) is different for kinks and shocks. In what follows, we consider these
two cases separately.

5 Kink solutions

5.1 Dynamic solutions

Consider velocities in the kink interval, 0 < V' < min{¢, ¢, }. In this case the asymptotics
(39) at infinity ensure that the analytic continuation of both sides of (36) is likewise
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bounded at infinity and hence is a constant. The value of this constant A can be found
by calculating the values of each side of (36) in the limits ¥ — 440 and k& — +iocc. Using
(39), (42) and the properties of the Fourier transform [19], we obtain

A= VLoV (ws —w,) = ﬁ(w_ —w,) = %V)(wc —w). (43)

It follows that
w_ = Lo(V) (w+ - w*)+w*, (44)

which coincides with the Rankine-Hugoniot condition V?[w] = [o(w)] (obtained by elimi-
nating the particle velocity from the two Rankine-Hugoniot conditions (3) for the rescaled
variables) computed for the macroscopic stress-strain relation (11). Equation (43) also
implies that the strains w. are determined by the given V:

vV Lo(V)

(we — wy) +w,, w_ = RO (we — w,) + w,. (45)

1
R(V)vVLo(V)

w4 =

Equating each side of the equation (36) to A from (43), we find the functions ho(k,V)
and h_(k,V). Adding them up, we get

h(k,V) = hy(k, V) + h_(k, V) = % Lo(V) (L(k, V) — ﬁ) . (46)

Applying inverse Fourier transform to B(k, V), we then obtain
1 [ .
W) =w, + 5 / Bk, V)e ™k, (47)
T

where I' is the contour that runs in the direction of increasing Rek and coincides with
the real line everywhere except near the singular points. To resolve the singularity at
k = 0, the contour goes below the origin £ = 0 along a small-radius semicircle in the
lower half-plane. To resolve the singularities at nonzero real roots according to the radi-
ation condition, the contour passes below all real roots from the sets =N, (V), A (V)
and above the real roots from the sets £, (V), £N.7 (V). This contour deformation ef-
fectively shifts the roots to the appropriate sets of singularities, either above (M U M:;)
or below (M; U M) the contour I'.

Closing the contour along a semicircle in the upper half plane at ¢ < 0 and the lower
half plane at £ < 0 and using Jordan’s lemma and the residue theorem, we obtain the
kink solution:

w_ — (w- — w,) So Pi(kys, Vet £ <0,
ky i €M (V)

— 48
wit) wy — (wy — w,) So 0 Pk, V)e i £ 0. 48)

k1 ieMT (V)
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Here we defined

1 @_ﬁg I Q_EJ
kg EME(V) kg P (k,V) = kyi €M (V) Ky

() oo (-4
kg € ME(V), b kij € ML (V), g

J#i J#

P (k, V)=

(49)

Note that in the generic case ¢ > 2 the continuity of w(&) at & = 0 is ensured by the fact
that the sum of all residues is zero:!

L= Lo(V)+Lo(V) >, Pilkyi V)= D P(kpV).
k»N'EM,f(V) k1,€EM (V)

Finally, one needs to check that the formally obtained solution (48) satisfies the admissi-
bility conditions (18) which ensure that the assumed phase distribution holds.

To find the particle velocity v,(t) = u,(t) we recall that w,(t) = u,(t) — un_1(%),
so that w, = v, — v, 1. Using the traveling wave ansatz, we thus obtain the following
relation between the particle velocity and the already computed strain profile:

v(€) —v(§ - 1) ==V (§).

Solving this equation by Fourier transform and using (46), we obtain

% k.. . 1
v+ 5(1‘0* - w*) Z . ’yl::,mv P+(k7,i, V)eim’w(&H/Q)’ 6 < _5,
kyi€MF (V) S =

U(g) = 174 ki ] 1 (50)

U4 + —(U)_|_ - ’U)*) Z A ;;1 ) P—(kl,ia V)67Zk1’i(§+1/2)’ 5 > A

2 kger (v) Sin 75 2

where

vy —v- =V (wy —w,) (Lo(V) —1). (51)

coincides with the first Rankine-Hugoniot condition for the macroscopic problem, [v] =
—V[w]. Recall that the other macroscopic jump condition was recovered by (44). Observe
also that by Galilean invariance, vy is arbitrary and can be set to zero.

In the case of only nearest-neighbor interactions (g = 1) we need to add the contribution of the
integrals along the semicircles at infinity, which in this case is nonzero at £ = £0 [29].
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5.2 Kinetic relation

An important feature of the kink solution obtained above is the fact that the strains
wy and w_ at infinity both depend on the velocity V' of the phase boundary via the
relations (45). Note that in view of (44) the two relations are not independent. Recall
that the traveling wave solution of the discrete problem introduces the structure in the
transformation front, replacing the sharp interface representation of a phase boundary in
the continuum theory by a transition layer. In particular, the limiting strains w4 in the
kink solution coincide with the strains ahead and in front of the moving discontinuity in
the macroscopic problem and, as we have established, satisfy the same Rankine-Hugoniot
jump conditions.

Thus we can choose either of the relations (45) as a closing kinetic relation which is
missing from the continuum theory and relates either w, or w_ to V. Once this relation
is specified (in this case, derived from the discrete problem), the continuum initial value
problem becomes well-posed and has a unique solution.

It is more common to specify the kinetic relation in a different but related form, as a
relation between the driving force G on a phase boundary and its velocity V. Using (5)
and (11), we obtain the following expression for the driving force:

-1
G = S(ws +w- = 2w) + T~ (wf —wiw) (52)
Applying (45) we then get the kinetic relation
v—1 2 1
= i — c — Wk l— —7— ’
G=G(V) 5 (we — wy) ( ’RQ(V)> (53)

which reduces to the expression obtained in [29] when v — 1. Note that the driving
force is entirely determined by the positive real roots of the dispersion relation, which in
turn are determined by V. Recall that these roots correspond to the undecaying lattice
waves radiated by a moving phase boundary and carrying energy away from it. In fact,
the kinetic relation (53) can be derived by accounting for the fluxes of energy carried by
the radiative waves, as was done for the case v = 1 in [29]. Although discrete system
we study is Hamiltonian, and thus conserves energy, on the macrolevel the short-length
lattice waves radiated by the phase boundary are not seen, and the energy the carry
is thus perceived as lost [19]. This transfer of energy from long to short waves, or the
radiative damping phenomenon, as it is known in the physics literature, is responsible for
a substantial part of the macroscopic dissipation [10, 11].

5.3 Equilibrium states and lattice trapping

As V tends to zero, the kink profile w,,(t) = w(n—Vt) approaches an equilibrium solution
wy, satisfying the system of difference equations (10) with the second time derivative in the
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left hand side replaced by zero. In the equilibrium states the phase boundary is stationary
(V =0), and the jump conditions (3) reduce to [o(w)] = 0, meaning that

cwy = c?rw_ -y =o, (54)

where o is the stress, which is constant in an equilibrium. The driving force (5) is then
given by
o’(l=9) oy ¥ 71
G — R T P 55
2cic? T T Ty e T e (55)
Note that at v # 1 it is a quadratic function of stress. The driving force vanishes at the

Maxwell stress
c1y

)
1+

(56)

OpM = CLCyWe —

which divides the stress-strain curve into two equal areas.
To obtain the equilibrium states with the phase boundary at n = —1, we follow [10, 29]
and replace the continuous Fourier transform by its discrete analog. Using (54), we obtain

i/ 2 ;
o+ _ (O' + 7y _ ’U)*) Z k’Y; / P+(k7’i’O)e—zk,y,i(n—l—l/Q)’ n< O,
k

2 c er sin(k.,;/2)
Wn =19 o o kii/2 ,
= — = —w, ——M " P (ky4,0)e thrilntl/2) > ().
c (c% v > 2 sin(k1,/2) (kv O)e ’ "=

ki1:€F]

(57)
Here
FE={k: go(k,0)=0, Imk =0, —7 < Rek < 7}

are the nonzero roots of the dispersion relation (19) in the strip |Rek| < 7 (note that
there are no nonzero real roots in this region), and Py (k,0) are given by (49) at V = 0.
In this case the real roots in each phase are given by integer multiples of 27, so that the
corresponding terms in (49) cancel out, and the products are thus taken over the sets
C=(0).

The admissible values of o are determined by the requirement that the assumed phase
distribution holds:

w, > w, for n < -1, w, <w, for n>0.

If the strain profile is monotone (e.g. when Q, < 0 for p = 2,...¢q), these constraints can
be replaced by wy < w. and w_; > w,. In this case the stress must be within the trapping
region

o —0p <o <oy+op (58)

in order for the equilibrium state (57) to exist. Here op and o, are the upper and
lower Peierls stresses that correspond to wg = w. and w_; = w,, respectively. Under the
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conditions?

k’72/2 ik~ /2 klz/z ik1 /2
Z ST o) P+(k’7,ia0)ez il <1, Z — P,(kl,i,O)e thii/ <1
Mgt sin(ky,i/2) s sin(ky,/2)
we obtain

k 1/2 . -1
= ¢y (we — w,) [Cl — Gy (1 - Z — Py (k.y;, O)e”“w’/?) ] ’

Op :
et sin(k.,;/2)
o L 69
O'; = —C (wc — ’LU*) {C,y —C <]. — Z S]I](?{?%/Q) P,(kl,i, 0)6”61,1/2) :| .
k1:€EF] "

In terms of the driving force, the trapping region (58) corresponds to the interval
Gp < G < G}, where

1— + +
2c1ey

One can show that all equilibria in the interior of the region (58) are stable (local mini-
mizers of energy) since all springs are inside their respective wells. A phase boundary may
get trapped in one of these stable states until the driving force reaches one of the limiting
Peierls values (60). At these values the equilibria become saddle points from which the
dynamic solution bifurcates. The phase boundary starts moving to the left (' < 0) when
G = G, = G(0-) and to the right (V > 0) when G = G} = G(0+).

6 Interphase shocks

Consider now (14) at v > 1 and choose a velocity in the shock interval, ¢; < V < ¢,.
In this case Ly(V) < 0 and hence y/Lo(V) becomes purely imaginary. Each side of (36)
now defines an analytic function which behaves as O(k) at infinity, which implies that
this function must be a linear polynomial of k, p;(k) = Bk + A. The constant A is
calculated by taking the limit & — +i0 of both sides. Since the zero asymptotics (42) are
the same for shocks and kinks, the first two equalities in (43) still hold. This means that
the constant A is the same, and the Rankine-Hugoniot jump condition (44) again holds.
Note, however, that the third equality in (43) no longer holds in case of shocks because
the asymptotics (41) are now different. Using it, we compute the constant B from

W, — Wy

R(V)

B= lim + (Ly(k V) (s — . F ik Bk, V) =

k—+ioco

2We have verified that these inequalities hold in the case ¢ = 2 considered in Section 7.
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Equating both sides of (36) to Bk + A, we obtain

bk, V) =hy(k,V)+h_(k,V) =
Wy — Wy

1 W, — Wy 1 (61)
i VielV) (L(’“V) - L+<k,V)> TR0 (“’“’V) - W)

Applying the inverse Fourier transform, Jordan’s lemma and the residue theorem as before,
we find w(§):

Lo(V .
wo— (w — W, + %‘(/)(wc — w*)k%i> Py (kyi, Ve #rié ) € <0
w() = kyi€MT (V) V)
We — Wy ik
wy— Y wy — wy + —ku) P_(ky;, V)e it £>0.
k1 €M (V) R(V)v/Lo(V)
(62)
Here P, (k,V) are again given by (49). Observe that in this case
Y Pk, V) =1, Y Pk V)=1 (63)
ky i EMT(V) k1€ML (V)

Indeed, consider the integral

1 [ L (kV)

" i k
Iy

I, dk

where we assume that the contour I'y is obtained by closing I' by a semicircle of infinite
radious in the upper half plane. On one hand, the residue theorem yields

1
I+:W L= Y PilkyiV)

ki €M (V)

On the other hand, direct evaluation using the fact that for shocks L_(k,V) = O(1/k)
at infinity yields I, = 0. This gives the first equality in (63). The second one can be
shown in the similar way. Note that (63) does not hold for kinks because of the different
asymptotics (39). One can also show that

R(V

Yk P(bV) = ROWED), Y kyPy(k V) = )
ky €M (V) ky i €EMI(V) LO(V)
v, €My v,i €My

Along with (63), these conditions ensure that w(&) given by (62) is continuous at £ = 0
and that the phase switch condition w(0) = w, is satisfied.
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The particle velocity can be found similarly to the kink case:

( 1% Lo(V)
v_ + 5 Z (w_ — U)*) + T‘/)(wc - w*)kfy,i)
ki €MF (V)
kyiPs (ki V) ik, se1r2) £< 2
_ sin(k,,i/2) ’ 2
o= vy + L > (w w7+ ! (we — w)k ) o
+ — 4+ — Wy c— Wx )Rl
2 k1€ M (V) RVIVL(V)

kiiP— (ki V) ik ev1/2) 1
Bt LN Sttt LU A 243 > ——

\ X sin(ki/2) ’ 2y

where vy once again satisfy the first Rankine-Hugoniot condition (51).

An important difference between the interphase shock and kink solutions is that due
to the different behavior of Ly (k,V') at infinite & in the case of shocks, the strains w.
at infinity are no longer uniquely determined by V, i.e. there is no condition equivalent
to (45) we had for kinks. Thus there is no kinetic relation wy = wi(V) or G = G(V).
Instead, either w, or w_ (which are related through (44)) is an additional parameter in
the problem, and it is easy to see that the driving force, which in this case reduces to

G = (&~ V))(w_ —we) — (& ~ V") — . )), (65)
is a function of V' and either w, or w_, or of w; and w_, by (44). Given any v, (which
can be set to zero), w, and w_ > w,, we can find V and v_ from the Rankine-Hugoniot
conditions (44) and (51), respectively, obtain the shock solution given by (62) and (64)
and calculate the driving force and hence the rate of energy dissipated by the shock. This
reflects on the discrete level the well-known fact that the continuum initial-value problem
is well-posed in the case of shocks, which unlike kinks satisfy the Lax condition. But in

the case of kinks arbitrarily chosen w1 may not be compatible with the kinetic relations
(45).

7 Examples

To illustrate the general solution, we now study in detail the case when only the first
and second-neighbor interactions are included, i.e. ¢ = 2. In this case it is convenient to
introduce the dimensionless parameter § = 4{); which measures the relative strength of
second-neighbor interactions. Then

61:\/1+ , ny:\/’}/“f'ﬂ.

The problem is thus completely determined by two parameters: S and v. We assume that

fe < B <0, Be = —min{1,7}. (66)
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Figure 5: The structure of roots of g,(k,V) = 0 when (a) a + 48 > 0 (here a = 1.2, = —0.2) and
(b) a+48 < 0 (here a = 0.6, 8 = —0.5). The thick curves correspond to the real roots, and thin curves
show the non-real root branches. Due to the root symmetry, only the first octant is shown.

The lower bound ensures stability of the uniform deformation in each phase, while the
upper bound is motivated by the linearization of the potentials of the Lennard-Jones type
[28]. Note that in this case the energy of the chain can be written as

E= 3 |+ olun) — S - wn?] 0lw) = ontw) + o

n=—oo

so that 8 < 0 introduces a strain-gradient-like interfacial energy term that makes an
isolated phase boundary considered here energetically favorable [28]. The case 5 > 0
favors multiple interface formation and needs to be treated differently [33].

7.1 Roots of the dispersion relation

We begin by considering the roots of the dispersion relation (20), which in this case
reduces to

k
9ok, V) = —V?k? + 4asin® 5t Bsin’k, a=1,7. (67)

The structure of the roots is shown in Fig. 5. As mentioned earlier, the branch of real
roots (r, V') can be found explicitly. In this case we obtain (for V' > 0)

1
V=— Bsin2r+4asin21;
7| 2

these roots are shown in Fig. 5 by thick curves. We can also find the branch of purely
imaginary roots (is, V'), where s is real. It is given by

1
V= H Bsinh? s + 4o sinh? g
S
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The two branches intersect at the point (k,V) = (0, c,). The other roots either bifurcate
from the local maxima of these branches or emanate from the roots at V' = 0, given by
k = 2mn £ 2is,, where n is any integer and

Sq = arccosh haly (68)
6]

As in [29], we note that there are two types of root structures. Example of the first type of
structure is shown in Fig. ba. It occurs when a+48 > 0 and thus the point (k, V) = (0, ¢,)
is the maximum of the real root branch. In this case the branch (is, V') of purely imaginary
roots has a maximum point at nonzero s,, from which complex roots with nonzero real
part bifurcate. If o 4+ 45 < 0, the point (0, ¢,) becomes a local minimum, and we obtain
the second type of root structure, an example of which is shown in Fig. 5b. In this case
the imaginary root branch has a maximum at (0, ¢,), and the real root branch (r, V) has
a maximum point at nonzero r,,, from which the complex roots bifurcate. As we shall
see, the type of root structure has significant implications in existence and structure of
shock and kink solutions, as well as their behavior at velocities near the sonic limit.

7.2 Equilibrium solutions

The equilibrium solutions (57) reduce to

O"Z’Y _ (U'Z’Y _ ’l,U*) : Sy P+(27;87,0)6257(n+1/2), n< -1,
c s sinh s,

_i_<i_w0 L P (=2is;,0)e 21(n+1/2), n >0,

c? c sinh s;

with s, defined in (68). It also can be written as

b n+ _;’Y’ <_1’
c
Wn = 07 (70)
ax™ + —, n >0,
c
1
where
(y = Do —cly 2
0= (¢, — /7 L r=2(a-1) -1
(e \/_)0%67(1—74-614-07\/’_}/) B
(v = Do —cly

b= (c;+1 )
(e )clc,%(l—’y+cl+c7\/§)
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The strain profile is monotonically decreasing, and the stress ¢ must be within the trap-
ping region (58), where the Peierls stresses (59) reduce to

_ C1Cy Cy =\ 1+01—\/7+Cv>
op=———=|1l—-c — + cy)w, + . ,
P cy—\/'?<( 1= VY e fycl—i—cy T+e =7+
+_ GG 1— 1 — T -+
7= o (A=At -t (e = ),
with the corresponding Peierls values of the driving force given by (60). In particular,

G = G(0+) = G corresponds to the saddle-point equilibrium from which the dynamic
solution branch with V' > 0 bifurcates:

we +a(z™ —1), n>0. (71)

wy, = lim w(n — Vi) =
V=0

{ we+by"—1), n< -1,

7.3 Dynamic kinks

We start by considering kink profiles at v = 2 and f = —0.1. In this case the kink
velocities must satisfy 0 < V < ¢; ~ 0.95. The corresponding structure of the real roots
is shown in Fig. 6a. When V is below ¢; but above the next resonance velocity, there
are two positive real roots, one in N;" (V) and another in NF(V'), which correspond to
non-decaying lattice waves propagating behind the phase boundary. An example of such
strain profile at V' = 0.8 is shown in Fig. 7a. One can see that it satisfies the constraints
(18) and thus represents an admissible strain profile. Consider now the velocity V' = 0.16.
As shown in Fig. 6a, in this case there are eight real roots, three from N;* (black circles)
and five from Nf (white circles). Five of these roots correspond to the waves appearing
behind the phase boundary (two from A" and three from Af), and the other three (one
from N and two from ./\/'7_) yield waves propagating in front. However, the corresponding
strain profile, shown in Fig. 7b, violates the constraints (18) and thus has to be discarded.
In general, for these parameter values only the kink profiles with velocities 0.33 <V < ¢;
are admissible.

Note, however, that for fixed V' and (, a sufficiently small value of v yields an ad-
missible solution. For example, at v = 0.2 the traveling wave solution with V = 0.16
and 8 = —0.1 becomes admissible, as shown in Fig. 8a. The corresponding real roots are
shown in Fig. 6b. Clearly, the set N;(0.16) remains the same, but the set A, (0.16) now
contains only one root (placed behind) since the curve V,(r) is now substantially below
Vi(r). Note also that the larger |8]/7 in this case implies smaller s., in (68) and thus the
purely imaginary roots of g,(k, V') are closer to the origin. The resulting wider boundary
layer structure around the phase boundary prevents the oscillations ahead of the front
from crossing over into the phase II region. Similarly, a sufficiently large |3| also yields
an admissible solution at fixed V' and ~v: see Fig. 8b for an admissible profile at V' = 0.16,
v =2and f = —0.93. Observe that the real root structure at V" = 0.16 is not significantly
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(a) y=2, p=-0.1 (b) y=0.2, p=-0.1

Figure 6: Positive real roots at different values of v and 3 in the kink region. Black and white circles
mark the roots in N1(V) and N, (V), respectively, and the plus and minus signs indicate whether the
corresponding waves appear behind (plus) or in front (minus) of the phase boundary.

(V=08 (b) V=0.16

Figure 7: Kink profiles at (a) V = 0.8 and (b) V = 0.16. Other parameters are v = 2, 3 = —0.1 and
w, = 1. The solution in (a) is admissible, but the solution in (b) is not.
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(a)y =02, B=-0.1 (b)y =2, B=-0.93
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Figure 8: Kink profiles at V = 0.16, w, = 1 and (a) v = 0.2, 8 = —0.1; (b) v = 2, 8 = —0.93. Both
solutions are admissible.

affected by the larger |3| (compare parts (a) and (c) in Fig. 6a). However, the boundary
layer effect described above is more pronounced in this case because increasing | 5| reduces
both s., and s; in (68), making purely imaginary roots of both g,(k, V') and ¢,(k, V) closer
to the origin.

7.4 Kinetic relations

Kinetic relations (53) at fixed f = —0.1 and different values of 4 are shown in Fig. 9
(solid curves) along with the corresponding values G(0+) = G of the upper Peierls
driving force. As discussed above, not all traveling wave solutions are admissible, and the
corresponding low-velocity portions of the kinetic curves need to be removed. One can
see that both the upper bound G}, of the trapping region and the minimal driving force
for dynamic kinks decrease as 7 increases.

Note also that at v # 1 the driving force is continuous at the resonance velocities.
Indeed, as V' approaches a resonance velocity (local maximum) from below we have two
positive real roots, r} (V) € N (V) and r (V) € N, (V) approach the same value at
the maximum point, so that their ratio 1 (V) /r_(V), which enters in R(V) via (40),
tends to 1. Here we have either & = v or « = 1. For velocities above the resonance
value these roots disappear, and thus R(V') approaches the same value from above. By
(53), the continuity of R(V) implies that G(V) is also continuous when v # 1 (note,
however, that its derivative has a finite jump discontinuity at each resonance speed). It
is not hard to see that this is also true in the general case ¢ > 2, where and the number
of resonance velocities may be larger and they may correspond to either maximum or
minimum points. As v — 1, the derivative of the driving force becomes larger as velocity
approaches a resonance value from below (see (b) and (c) in Fig. 9), and in the limiting
case 7 = 1 of equal slopes there is an infinite resonance at these values [29].

The behavior of the driving force as V' approaches the sonic limit ¢pmin = min{e, ¢, }
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Figure 9: Kinetic relations (solid curves) for kinks at # = —0.1 and different values of v and the results

of numerical simulations of the Riemann problem (circles). Solutions corresponding to the points inside
rectangles are shown in Figs. 13 and 14.
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from below depends on the structure of the real roots, which is in turn determined by 3
and 7. To see this, note that at 0 < V' < cmin the sets N} (V') and (V) each have only
one root in the interval (0, 27), and there are no other positive real roots in this interval.
Denote these roots by 1,1(V) € N (V) and ., (V) € Nf (V) and observe that R(V) in
(40) includes the factor 7, 1(V)/r11(V). If v > 1, the kinetic relation tends to a finite
value from below for any . Indeed, in this case ¢y, = ¢; and thus if 1+48 > 0, we have
r1,1(V) = 0asV — ¢; — 0 since (0, ¢;) is the maximum point (e.g. Fig. 6a), while (V)
has a nonzero limit. Other positive real roots r > 27 either disappear or tend to nonzero
values in the limit. This means that R(V) — oo, and hence the driving force tends to a
finite value as V' approaches the sonic limit from below:
G(V) > G, = 7T1 (wo — w.)?

in parts (b), (c) and (d) of Fig. 9 the values of G are 50, 2.5 and 1/6, respectively. Note
that in view of (13) G becomes infinite when v =1 (equal slopes). If 1 + 438 < 0, (0,¢)
is a local minimum, and all positive real roots tend to nonzero values as V. — ¢; — 0,
implying a finite limit of R(V') and hence G(V).

If v < 1, we have cpin = ¢y. In this case the limit is finite if v + 48 < 0, for the
same reason as above (the limits of all positive real roots are nonzero); see Fig. 9a. When
v+ 48 > 0, R(V) — 0 and hence G(V) — oo in the sonic limit because in this case
r41(V) approaches zero, while 71 1 (V') tends to a nonzero value.

7.5 Interphase shocks

Consider now the interphase shocks solutions. Recall that they can only occur at v > 1
and that the shock velocities satisfy ¢; <V < ¢,. In what follows, we will fix the average
strain w, in front of the shock, which is a free parameter in this case, at zero. As in the
case of kinks, the two different types of root structure affect the admissibility and the form
of shock solutions. Fox fixed v = 2 the two cases are illustrated in Fig. 10. In the first case
we have 1+43 > 0, so that the point (0, ¢;) is the maximum. This implies that all shock
solutions have only one radiative mode, corresponding to a single root in N;’ (V') and thus
propagating behind the shock. For v = 2, f = —0.1 and V = 1.05 this root is shown in
Fig. 10a, and the corresponding admissible strain profile is presented in Fig. 11a. Our
calculations suggest that for this type of root structure all interphase shock solutions are
admissible. Consider now § = —0.8, when 1+ 44 < 0 and (0, ¢;) is a local minimum. At
V = 1.05, which is above the maximum of Vl(r), we still have a single mode propagating
behind (see Fig. 10b), and the corresponding admissible strain profile is shown in Fig. 11b.
If, however, the shock velocity is below the maximum of V;(r), two additional radiative
modes appear due to roots of g;(r, V), one propagating behind and the other in front.
This is illustrated in Fig. 10b for V' = 0.7. The corresponding solution, shown in Fig. 11c,
is not admissible because the large-amplitude mode in front violates the constraints (18).
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Figure 10: Positive real roots at v = 2 and different values of 3 in the shock region. Black and white
circles mark the roots in N1 (V) and N, (V'), respectively, and the plus and minus signs indicate whether
the corresponding waves appear behind (plus) or in front (minus) of the phase boundary.
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Figure 11: Shock profiles at v = 2, w. = 1, wy = 0 and (a) V = 1.05, 3 = —0.1; (b) V = 1.05,
B =-0.8; (c) V=0.7, 8 = —0.8. Solutions in (a) and (b) are admissible, while solution in (¢) is not.
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In fact, our calculations suggest that only interphase shocks with velocities above the
maximum of Vi (r) that have a single radiative mode propagating behind the interface are
admissible in the case 1+ 483 < 0.3 Note also that when v + 48 < 0, as is the case in
Fig. 10b, the wave number of the radiative mode propagating behind approaches a finite
value when V' — ¢, — 0, whereas at v + 48 > 0 it tends to zero.

8 Stability of the traveling wave solutions

To study stability of the admissible traveling wave solutions, we numerically solve the
equations (10) subject to the Riemann initial data that consists of piecewise constant

strain
wg, n<ng,

We, TN = TNy,
0, n>ng.

w,(0) = (72)

and zero initial particle velocity. We assume that wy > w, > 0, so that the initial strain
profile has a phase boundary at n = ny.
On the macroscopic level, we expect to see a self-similar solution shown in Fig. 12. As

A . A
q kink
soun
wave =Vt shock
(w_,v_) sound (w_,v_) x=Vi
X==Cyt wave sound
wivy) wave
x=ct
(w,0) 00 ) 00
x x

(a) (b

Figure 12: Self-similar macroscopic solution of the Riemann problem with a single phase boundary that
is (a) a kink and (b) a shock.

before, subsonic and intersonic phase boundaries need to be considered separately.

8.1 Stability of kinks

If the phase boundary is a kink, there are two sound waves (in-phase shock waves), one
behind the kink and propagating with velocity ¢, > V in the opposite direction, and

3In general, admissibility of shock solutions also depends on the choice of w,. Larger w, makes the
interval of admissibility narrower.
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another one moving ahead of the kink with velocity ¢; > V; see Fig. 12a. Rankine-
Hugoniot jump conditions across each sound wave and across the phase boundary then
result in the following relationships between the left initial strain wy, the velocity V and
the strain w. in front and behind the phase boundary:

(e +V)wr +y . — cy(cy —V)wp —
(c1+¢y)(ey, + V)’ T (e + cy)(e=V)’

_ (73)
As remarked in the Introduction, one can see that in the absence of a kinetic relation that
yields w4 as functions of V', the macroscopic Riemann problem would have an infinite
number of solutions parameterized by the velocity V' of the kink. Having solved the
discrete problem, however, we now have the relations wy = wy(V), given by (45) (or,
equilavently, by the kinetic relation (53)), which select a unique velocity V for a given
left initial strain wy, provided that the corresponding traveling wave solution exists and
is stable.

To investigate stability of the obtained subsonic traveling wave solutions, we conducted
numerical simulations of the Riemann problem for the discrete system (10) on a truncated
chain with 600 lattice points for an increasing sequence of values of the initial strain wy,
in (72). For wy, below a certain threshold value, the long-time solution featured a trapped
phase boundary (V = 0) with sound waves propagating away from it. At some parameter
values, e.g. v = —0.2, 8 = —0.1 and w, = 1, formation and annihilation of additional
phase boundaries was also seen in this regime, due to the oscillations behind the sound
wave propagating ahead. At higher w;, a steady motion of the phase boundary with some
nonzero velocity V' was typically observed after an initial transient period. Using (73)
for given wy and V, we then computed the driving force (52) and compared it to the
value given by the kinetic relation G = G(V'). If the numerical solution around the phase
boundary approaches the corresponding traveling wave solution, implying its stability,
the difference between these two values should be small. The results of the simulations
at § = —0.1, w, = 1 and different values of v are shown in Fig. 9. They suggest that
kinks that travel sufficiently fast are stable, in agreement with the observation made in
[29] for the case v = 1. These solutions typically have velocities between the sound
speed Cmin = min{c, ¢, } and the next resonance velocity and feature lattice waves that
propagate only behind the phase boundary. An example of such solution is shown in
Fig. 13. One can see that the structure of the long-time solution is as predicted by the
macroscopic theory (Fig. 12a), with two sound waves propagating away from the kink, but
in the discrete problem the piecewise constant macroscopic strain is superimposed with
oscillations due to lattice dispersion. Note that the numerical solution zoomed around the
phase boundary (circles in Fig. 13b) is in perfect agreement with the analytical traveling
wave solution (solid line).

Recall that when ~ is sufficiently small (or when |3| is large enough), traveling wave
solutions with smaller velocities may become admissible. Fig. 9a suggests that some of
these admissible kinks may be also stable. An example of such solution at v = 0.2,
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Figure 13: (a) Solution of the Riemann problem w,(t) at t = 200, wy = 2.7, V = 0.4065, v = 1.2,
B = —0.1 and w, = 1. (b) Numerical solution (circles) inside the rectangle in (a) and the traveling wave
solution (solid line).

320 340 360 380 n

Figure 14: Solution of the Riemann problem w,(t) around the phase boundary (circles) and the cor-
responding traveling wave solution (solid line) at ¢t = 400, wr, = 11.6, V = 0.16, v = 0.2, 8 = —0.1 and
we = 1.

B =—0.1 and V = 0.16 is shown in Fig. 14. Note that in this case the moving kink emits
lattice waves in both directions. Based on [32], where a trilinear up-down-up stress-strain
law with equal moduli was considered, we expect that introducing a sufficiently wide
spinodal region will result in more admissible and stable solutions in the low-velocity
regime since the nonlinearity tends to reduce the amplitude of lattice waves. For the case
of different elastic moduli this problem will be analyzed elsewhere.

We found that when |3] is very large, there are also other attractors that do not have a
traveling wave form near the phase boundary and feature a non-steady kink motion with
velocity oscillating about some average value. Such solutions are usually seen for a small
interval of wy, values above and below which the attractors are again the traveling waves.
Consider, for example, the position s(t) of the front at v = 1.2, = —0.8 and w,. = 2. At
wy, = 4.8 the numerical solution quickly approaches a steady motion, as shown in Fig. 15a,
with velocity V = 0.1866. This motion is described by the corresponding traveling wave
solution. Like the solution shown in Fig. 14, this solution is a slower kink with lattice
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Figure 15: The position s(t) of the phase boundary in the solution of the Riemann problem at v = 1.2,
B =-0.8,w, =2 and (a) wr, =4.8; (b) wr, = 5.0. In (a) the solution approaches the steady kink motion
with V' = 0.1866, while in (b) the limiting solution is characterized by front velocity that oscillates
between two different values.

waves propagating in both directions. The same is true for 4.5 < w; < 4.9, and for
wy, > 6 the numerical solution around the phase boundary approaches a fast traveling
wave that oscillations behind the front. However, for the intermediate values of the left
initial strain the attractor is different. For instance, at wy = 5 the motion of the front is
no longer described by the traveling wave ansatz, as can be seen in Fig. 15b. Instead, the
time intervals over which the phase boundary advances by one lattice space continue to
oscillate between the values 3.08 and 5.05 even at large times. We plan to explore such
breather-like attractors in the future work.

8.2 Stability of interphase shocks

If v > 1 and the initial left strain wy, is sufficiently high, the phase boundary becomes
a shock with w; = 0 and ¢; < V < ¢,. The structure of the corresponding macroscopic
solution is shown in Fig. 12b. Applying the Rankine-Hugoniot conditions across the
interphase shock and the sound wave propagating behind, one obtains the average strain
behind the phase boundary and the relationship between V and wy:

Y . ’Y(Cv + V)

w-= W’ L= cy(c2 — V2)’

(74)

Inverting the second equation in (74), one can obtain a unique shock velocity for given
wr, find the corresponding w_ and compute the driving force (65), which reduces to

__r b=
2(c2 = V?) 2

— YW,
since wy = 0. This function is plotted in Fig. 16 at v = 2 and two different values of
(solid lines), along with the results of the numerical simulations (circles). At § = —0.1

the numerical solutions of the Riemann problem for the discrete system exhibit a single
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Figure 16: Driving force as the function of velocity for interphase shock solutions of the Riemann
problem as predicted by continuum theory (solid line) and numerical simulations of the discrete model

(circles) at v = 2 and (a) 8 = —0.1; (b) 8 = —0.8.
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Figure 17: Solutions of the Riemann problem w,(t) around the phase boundary (circles) and the
corresponding traveling wave solutions (solid lines) at ¢ = 200, V = 1.05, v = 2, w, = 1 and (a)
B = —0.1; (b) 8 = —0.8. The corresponding traveling wave profiles w(£) are shown in Fig. 11a,b.

interface with V' and w_ very close to the ones predicted by (74) for the entire range
of wy, that corresponds to ¢; < V < ¢,; see Fig. 16a. Around the phase boundary
numerical solutions converge to the corresponding traveling wave solutions, which in this
case are admissible in the entire shock interval. See, for example, the comparison of
numerical and analytical solutions at V' = 1.05 in Fig. 17a. Meanwhile, at 5 = —0.8
the numerical simulations with the initial data that corresponds to velocities below the
resonance velocity Vies & 0.7406 (the maximum of V;(r) in Fig. 10a) result in formation
of multiple phase boundaries; see Fig. 18 for an example. Recall that the corresponding
traveling wave solutions are not admissible, e.g. see Fig. 11c. When the initial data yield
Vies < V < ¢y, only one phase boundary forms. These simulations are shown by circles
in Fig. 16b. In each simulation with such initial data the numerical solution around the
phase boundary converges to the corresponding admissible traveling wave solution; see,
for example, Fig. 17b.
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Figure 18: (a) Solution of the Riemann problem w,,(t) with multiple phase boundaries. (b) Zoom-in of
the rectangle in part (a). Here t = 100, w, = 1, v = 2, § = —0.8 and wy, = 4.6169, which corresponds
to V = 0.7 according to (74). The corresponding traveling wave solution is not admissible, as shown in
Fig. 11c.

Appendix: Proof of the Proposition
Let V' be a non-resonance velocity. We first show that

N (V) +1, 0<V <cq

Nl Ve (75)

Na (V)] = {

Fix V such that 0 < V < ¢,. The real roots can be found from the equation V,(r) =V,
where we recall (26). On every interval [27n,27(n + 1)], where n is a positive integer,
the curve Va(r) can intersect the horizontal line corresponding to V' an even number of
times because it is a continuous nonnegative function that vanishes at the ends of the
interval and must have nonzero derivative at the intersections (if there are any) since V'
is a non-resonance velocity. The points of intersections belong to N,(V). The points
where V,(r) increases belong to the set A, (V), and the points where it decreases belong
to NF (V). For each point from N, (V) there is a corresponding point from A (V) and
hence on every such interval the number of roots in both sets is same. Now consider
the interval [0, 27]. Recall that V(0) = ¢, > 0 and V' < ¢,. The smallest positive root
Ta,1 € [0,27] is a point of intersection where the function decreases, and hence it belongs
to the set NF(V); it does not have a corresponding root in the set N7 (V). If there are
other roots in the interval (r,,1, 27|, they appear in pairs by the same argument. Thus
the first case in (75) holds.

To show the second case, observe that when V approaches the sound speed ¢, from
below, the first root r,; in N (V') disappears if r = 0 is a point of a local maximum of
V,(r), and the number of roots in NV (V) decreases by one. If 7 = 0 is a local minimum,
then a new smaller root appears on the increasing part of the curve Va(r). This root
belongs to the set N (V) and increases the number of elements in this set by one. In
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either case, the number of elements in the two sets becomes the same for V > ¢,.

Thus, for a kink velocity, which satisfies 0 < V' < min{ey, ¢y}, the first case in (75)
holds for both & = 1 and a = . Meanwhile, for a shock velocity, ¢; <V < ¢,, the first
case in (75) holds only for o« = 7, and the second case is true for a = 1, proving the
Proposition.
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