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Abstract. A method for solving the time dependent Navier-Stokes equations, aiming at higher
Reynolds’ number, is presented. The direct numerical simulation of flows with high Reynolds’ number
is computationally expensive. The method presented is unconditionally stable, computationally
cheap and gives an accurate approximation to the quantities sought. In the defect step, the artificial
viscosity parameter is added to the inverse Reynolds number as a stability factor, and the system is
antidiffused in the correction step. Stability of the method is proven, and the error estimations for
velocity and pressure are derived for the one- and two-step defect-correction methods. The spacial
error is O(h) for the one-step defect-correction method, and O(h2) for the two-step method, where h
is the diameter of the mesh. The method is compared to an alternative approach, and both methods
are applied to a singularly perturbed convection-diffusion problem. The numerical results are given,
which demonstrate the advantage (stability, no oscillations) of the method presented.
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1. Introduction. In the numerical solution of higher Reynolds number flow
problems one of the most commonly reported results is that ”the method failed”. Of-
ten ”failure” means that the iterative method used to solve the linear and/or nonlinear
system for the approximate solution at the new time level failed to converge within
the time constraints of the problem or the resulting approximation had poor solution
quality. The first type of failure can usually be overcome easily by using an upwind or
artificial viscosity (AV) discretization at the expense of decreasing dramatically the
accuracy of the method and possibly even altering the predictions of the simulation
at the qualitative, O(1) level, therefore increasing the likelihood of the second type of
failure.

One interesting approach to attaining (by a convergent method) an approximate
solution of desired accuracy is the defect correction method (DCM). Briefly, let a
kth order accurate discretization of the equilibrium Navier-Stokes equations (NSE) be
written as

NSEh(uh) = f, (1.1)

The DCM computes uh
1 , ..., uh

k as

−αh∆huh
1 + NSEh(uh

1 ) = f, (1.2)
−αh∆huh

l + NSEh(uh
l ) = f − αh∆huh

l−1, for l = 2, ..., k,

where the velocity approximations uh
i are sought in the finite element space of piece-

wise polynomials of degree k.
It has been proven under quite general conditions (see, e.g., [LLP02]) that for the

intermediate approximations of the equilibrium NSE

‖uNSE − uh
l ‖energy−norm = O(hk + h‖uNSE − uh

l−1‖energy−norm) = O(hk + hl),

and thus, after l = k steps,

‖u− uh
k‖energy−norm = O(hk).

Note that (1.2) requires solving an AV approximation k times which is often cheaper
and more reliable than solving (1.1) once.

In problems with high Reynolds number we may expect turbulence. In that case
the DCM needs to be combined with appropriate turbulence models. These models
tend to introduce extra nonlinearities (due to the closure of the model); it might be
possible to incorporate them into the residual on the right-hand side, as was done in
the quasistatic case by Ervin, Layton, Maubach [ELM00].

There has been an extensive study and development of this approach for equilib-
rium flow problems, see e.g. Hemker[Hem82], Koren[K91], Heinrichs[Hei96], Layton,
Lee, Peterson[LLP02], Ervin, Lee[EL06], and subsection 1.1 for a review of this work.

For many years, it has been widely believed that (1.2) can be directly imported
into implicit time discretizations of flow problems in the obvious way: discretize in
time, given uh(tOLD), the quasistatic flow problem for uh(tNEW ) is solved by applying
(1.2) directly, resulting in

−αh∆huh
1 (tNEW ) + B(uh

1 (tNEW ), uh
k(tOLD)) + NSEh(uh

1 (tNEW )) = f, (1.3)
−αh∆huh

l (tNEW ) + B(uh
l (tNEW ), uh

k(tOLD)) + NSEh(uh
l (tNEW ))

= f − αh∆huh
l−1(tNEW ), for l = 2, ..., k,
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where B is a time stepping operator (e.g., Backward Euler), and k is the degree of
piecewise polynomials in the finite element space.

Unfortunately, this natural idea doesn’t seem to be even stable (see Section 7).
On the other hand, there is a parallel development of DCM’s, for initial value

problems in which no spacial stabilization (such as −αh∆h in (1.2)) is used, but
DCM is used to increase the accuracy of the time discretization. This work contains no
reports of instabilities: see, e.g., Heywood, Rannacher[HR90], Hemker, Shishkin[HSS],
Lallemand, Koren[LK93], Minion[M04]. Yet, in spite of this parallel development and
after 30+ years of studies of (1.2), there has yet to be a successful extension of (1.2)
to time dependent flow problems.

This report will present this extension of (1.2) to the time dependent problem. We
notice that the obvious extension, described above, is in fact unstable, see Section 7 .
We give a small but critically important modification of the above natural extension
to time dependent problems, that we prove to be unconditionally stable (Theorem 3.3)
and convergent (Theorem 4.3). We complement the stability proof of the modified
DCM by a complete error analysis, which confirms the expected error in the resulting
method: ‖u(tn)− uh

l (tn)‖energy−norm = O(∆ta + hk + hl), l = 1, ..., k, where a is the
order of accuracy of the (implicit) time stepping employed.

The error analysis is necessarily technical. To keep the details under some control,
we study the backward Euler time discretization (It will be clear from our analysis
that extension to more accurate time discretizations requires no new ideas and only
more pages).

In subsection 1.1 we review important previous work on DCM in space and DCM
in time. Section 2 begins with (the inevitable) notation and preliminaries. Section
3, the heart of the report, gives the stability proof. The error analysis is given in
Sections 4, 5.2 and Section 7 gives a numerical illustration.

Consider the time dependent, incompressible Navier-Stokes equations

∂u

∂t
−Re−1∆u + u · ∇u +∇p = f, for x ∈ Ω, 0 < t ≤ T, (1.4)

∇ · u = 0, x ∈ Ω, 0 < t ≤ T,

u(x, 0) = u0(x), x ∈ Ω,

u|∂Ω = 0, for 0 < t ≤ T,

where Ω ⊂ Rd, d = 2, 3.

Before proceeding with the analysis we shall present carefully next the precise
extension of (1.2) to the time dependent NSE that we study.

Let Xh ⊂ X, Qh ⊂ Q be finite-dimensional finite element spaces. Denote the
finite-element discretization of the Navier-Stokes operator by

Nh
Re(u, p) ≡ ∂u

∂t
−Re−1∆hu + (u · ∇h)u +∇hp.

Adding an artificial viscosity parameter to the inverse Reynolds number leads to the
modified Navier-Stokes operator

Nh
R̃e

(u, p) ≡ ∂u

∂t
− (h + Re−1)∆hu + (u · ∇h)u +∇hp.

The method proceeds as follows: first we compute the AV approximation (u1, p1)
∈ (Xh, Qh) via

Nh
R̃e

(u1, p1) = f.
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The accuracy of the approximation is then increased by the correction step: compute
(u2, p2) ∈ (Xh, Qh), satisfying

Nh
R̃e

(u2, p2)−Nh
R̃e

(u1, p1) = f −Nh
Re(u1, p1).

The Backward Euler time discretization, combined with the two-step defect cor-
rection method in space leads to the following system of equations for (uh,n+1

1 , ph,n+1
1 ),

(uh,n+1
2 , ph,n+1

2 ) ∈ (Xh, Qh), ∀vh ∈ Xh at t = tn+1, n ≥ 0, with k := ∆t = ti+1 − ti

(
uh,n+1

1 − uh,n
1

k
, vh) + (h + Re−1)(∇uh,n+1

1 ,∇vh) + b∗(uh,n+1
1 , uh,n+1

1 , vh) (1.5)

−(ph,n+1
1 ,∇ · vh) = (f(tn+1), vh),

(
uh,n+1

2 − uh,n
2

k
, vh) + (h + Re−1)(∇uh,n+1

2 ,∇vh) + b∗(uh,n+1
2 , uh,n+1

2 , vh)

−(ph,n+1
2 ,∇ · vh) = (f(tn+1), vh) + h(∇uh,n+1

1 ,∇vh),

where b∗(·, ·, ·) is the explicitely skew-symmetrized trilinear form, defined below.
The initial value approximations are taken to be uh,0

1 = uh,0
2 = us

0, where us
0 is

the modified Stokes projection of u0 onto the space V h of discretely divergence-free
functions (this projection and this space are defined in section 2). The stability and
error estimate for the modified Stokes projection are proven in the sections 3 and 4.

1.1. Previous results. Many iterative methods can be written as a Defect Cor-
rection method, see e. g. Bohmer, Hemker, Stetter [BHS]. In the DCM we consider,
no iterates occur; a small number of updates are calculated to increase the accuracy
of the velocity and pressure approximations. Thus it is most similar to DCM’s which
are close to Richardson extrapolation (see, for example, Mathews, Fink [MF04]).
In the late 1970’s Hemker (Bohmer, Stetter, Heinrichs and others) discovered that
DCM, properly interpreted, is good also for nearly singular problems. Examples for
which this has been successful include equilibrium Euler equations (Koren, Lallemand
[LK93]), high Reynolds number problems (Layton, Lee, Peterson [LLP02]), viscoelas-
tic problems (Ervin, Lee [EL06]).

There has also been interesting work on Spectral Deferred Correction (SDC) for
IVP’s (e.g., Minion [M04], Bourlioux, Layton, Minion [BLM03], Kress, Gustafsson
[KG02], Dutt, Greengard, Rokhlin [DGR00]). With the exception of the SDC meth-
ods for time stepping, the majority of the results has been obtained for the equilibrium
problems - an odd fact, since, e.g., for the Euler equations the time-dependent prob-
lem is natural. For example, it has not been known apparently if the natural idea of
time stepping combined with the DCM in space for the associated quasi-equilibrium
problem is stable.

2. Mathematical Preliminaries and Notations. Throughout this paper the
norm ‖ · ‖ will denote the usual L2(Ω)-norm of scalars, vectors and tensors, induced
by the usual L2 inner-product, denoted by (·, ·). The space that velocity (at time t)
belongs to, is

X = H1
0 (Ω)d = {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d and v = 0 on ∂Ω}.

with the norm ‖v‖X = ‖∇v‖. The space dual to X, is equipped with the norm

‖f‖−1 = sup
v∈X

(f, v)
‖∇v‖ .
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The pressure (at time t) is sought in the space

Q = L2
0(Ω) = {q : q ∈ L2(Ω),

∫

Ω

q(x)dx = 0}.

Also introduce the space of weakly divergence-free functions

X ⊃ V = {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q}.

For measurable v : [0, T ] → X, we define

‖v‖Lp(0,T ;X) = (
∫ T

0

‖v(t)‖p
Xdt)

1
p , 1 ≤ p < ∞,

and

‖v‖L∞(0,T ;X) = ess sup
0≤t≤T

‖v(t)‖X .

Define the trilinear form on X ×X ×X

b(u, v, w) =
∫

Ω

u · ∇v · wdx.

The following lemma is also necessary for the analysis
Lemma 2.1. There exist finite constants M = M(d) and N = N(d) s.t. M ≥ N

and

M = sup
u,v,w∈X

b(u, v, w)
‖∇u‖‖∇v‖‖∇w‖ < ∞ , N = sup

u,v,w∈V

b(u, v, w)
‖∇u‖‖∇v‖‖∇w‖ < ∞.

The proof can be found, for example, in [GR79]. The corresponding constants Mh

and Nh are defined by replacing X by the finite element space Xh ⊂ X and V by
V h ⊂ X, which will be defined below. Note that M ≥ max(Mh, N, Nh) and that as
h → 0, Nh → N and Mh → M (see [GR79]).

Throughout the paper, we shall assume that the velocity-pressure finite element
spaces Xh ⊂ X and Qh ⊂ Q are conforming, have typical approximation properties
of finite element spaces commonly in use, and satisfy the discrete inf-sup, or LBBh,
condition

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖∇vh‖‖qh‖ ≥ βh > 0, (2.1)

where βh is bounded away from zero uniformly in h. Examples of such spaces can be
found in [GR79]. We shall consider Xh ⊂ X, Qh ⊂ Q to be spaces of continuous
piecewise polynomials of degree m and m − 1, respectively, with m ≥ 2. The case
of m = 1 is not considered, because the optimal error estimate (of the order h) is
obtained after the first step of the method - and therefore the DCM in this case is
reduced to the artificial viscosity approach.

The space of discretely divergence-free functions is defined as follows

V h = {vh ∈ Xh : (qh,∇ · vh) = 0,∀qh ∈ Qh}.

In the analysis we use the properties of the following Modified Stokes Projection
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Definition 2.2 (Modified Stokes Projection). Define the Stokes projection op-
erator PS: (X, Q) → (Xh, Qh), PS(u, p) = (ũ, p̃), satisfying

(h + Re−1)(∇(u− ũ),∇vh)− (p− p̃,∇ · vh) = 0, (2.2)
(∇ · (u− ũ), qh) = 0,

for any vh ∈ V h, qh ∈ Qh.
In (V h, Qh) this formulation reads: given (u, p) ∈ (X, Q), find ũ ∈ V h satisfying

(h + Re−1)(∇(u− ũ),∇vh)− (p− qh,∇ · vh) = 0, (2.3)

for any vh ∈ V h, qh ∈ Qh.
Define the explicitly skew-symmetrized trilinear form

b∗(u, v, w) :=
1
2
(u · ∇v, w)− 1

2
(u · ∇w, v).

The following estimate is easy to prove (see, e.g., [GR79]): there exists a constant
C = C(Ω) such that

|b∗(u, v, w)| ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖. (2.4)

The proofs will require the sharper bound on the nonlinearity. This upper bound
is improvable in R2.

Lemma 2.3 (The sharper bound on the nonlinear term). Let Ω ⊂ Rd, d = 2, 3.
For all u, v, w ∈ X

|b∗(u, v, w)| ≤ C(Ω)
√
‖u‖‖∇u‖‖∇v‖‖∇w‖.

Proof. See [GR79].
We will also need the following inequalities: for any u ∈ V

inf
v∈V h

‖∇(u− v)‖ ≤ C(Ω) inf
v∈Xh

‖∇(u− v)‖, (2.5)

inf
v∈V h

‖u− v‖ ≤ C(Ω) inf
v∈Xh

‖∇(u− v)‖. (2.6)

The proof of (2.5) can be found, e.g., in [GR79], and (2.6) follows from the Poincare-
Friedrich’s inequality and (2.5).

Define also the number of time steps N := T
k .

We conclude the preliminaries by formulating the discrete Gronwall’s lemma, see,
e.g. [HR90]

Lemma 2.4. Let k, B, and aµ, bµ, cµ, γµ, for integers µ ≥ 0, be nonnegative
numbers such that:

an + k

n∑
µ=0

bµ ≤ k

n∑
µ=0

γµaµ + k

n∑
µ=0

cµ + B for n ≥ 0.

Suppose that kγµ < 1 for all µ, and set σµ = (1− kγµ)−1. Then

an + k

n∑
µ=0

bµ ≤ ek
∑n

µ=0 σµγµ · [k
n∑

µ=0

cµ + B].
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3. Stability of the Velocity. In this section we prove the unconditional sta-
bility of the discrete artificial viscosity approximation uh

1 and use this result to prove
stability of the higher order approximation uh

2 . Over 0 ≤ t ≤ T < ∞ the approxima-
tions uh

1 and uh
2 are bounded uniformly in Re.

Hence, the formulation (1.5) gives the unconditionally stable extension of the
defect correction method to the time-dependent Navier-Stokes equations. We start by
proving stability of the modified Stokes Projection, that we use as the approximation
ũ0 to the initial velocity u0.

Proposition 3.1 (Stability of the Stokes projection). Let u, ũ satisfy (2.3).
The following bound holds

(h + Re−1)‖∇ũ‖2 ≤ 2(h + Re−1)‖∇u‖2 (3.1)
+2d(h + Re−1)−1 inf

qh∈Qh
‖p− qh‖2,

where d is the dimension, d = 2, 3.

Proof. Take vh = ũ ∈ V h in (2.3). This gives

(h + Re−1)‖∇ũ‖2 = (h + Re−1)(∇u,∇ũ) (3.2)
−(p− qh,∇ · ũ).

Using the Cauchy-Schwarz and Young’s inequalities, we obtain

(h + Re−1)‖∇ũ‖2 ≤ (h + Re−1)‖∇u‖2 +
h + Re−1

4
‖∇ũ‖2 (3.3)

+d(h + Re−1)−1 inf
qh∈Qh

‖p− qh‖2 +
h + Re−1

4d
‖∇ · ũ‖2.

Using the inequality ‖∇ · ũ‖2 ≤ d‖∇ũ‖2 and combining the like terms concludes the
proof.

Now we prove the main results of this section - stability of the AV approximation
uh

1 and the Correction Step approximation uh
2 .

Lemma 3.2 (Stability of the AV approximation). Let uh
1 satisfy the first equation

of (1.5). Let f ∈ L2(0, T ;H−1(Ω)). Then for n = 0, ..., N − 1

‖uh,n+1
1 ‖2 + kΣn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2 ≤ ‖us

0‖2

+
1

h + Re−1
kΣn+1

i=1 ‖f(ti)‖2−1.

Also, if f ∈ L2(0, T ; L2(Ω)) and the time constraint T is finite, then there exists a
constant C = C(T ) such that

‖uh,n+1
1 ‖2 + kΣn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2 (3.4)

≤ C(‖us
0‖2 + kΣn+1

i=1 ‖f(ti)‖2).
Proof. Let vh = uh,n+1

1 ∈ V h in the first equation of (1.5). Since b∗(u, v, v) = 0,
we obtain

‖uh,n+1
1 ‖2 − (uh,n

1 , uh,n+1
1 )

k
+ (h + Re−1)‖∇uh,n+1

1 ‖2 − (ph,n+1
1 ,∇ · uh,n+1

1 )

= (f(tn+1), u
h,n+1
1 ).
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Since ph,n+1
1 ∈ Qh and uh,n+1

1 ∈ V h it follows that (ph,n+1
1 ,∇ · uh,n+1

1 ) = 0. Applying
Cauchy-Schwartz and Young’s inequalities gives

‖uh,n+1
1 ‖2 − ‖uh,n

1 ‖2
2k

+ (h + Re−1)‖∇uh,n+1
1 ‖2 ≤ (f(tn+1), u

h,n+1
1 ). (3.5)

The definition of the dual norm and the Young’s inequality, applied to the inner-
product on the right-hand side, lead to

(fn+1, uh,n+1
1 ) ≤ ‖fn+1‖−1‖∇uh,n+1

1 ‖ (3.6)

≤ h + Re−1

2
‖∇uh,n+1

1 ‖2 +
1

2(h + Re−1)
‖f(tn+1)‖2−1.

We obtain

‖uh,n+1
1 ‖2 − ‖uh,n

1 ‖2
2k

+
h + Re−1

2
‖∇uh,n+1

1 ‖2 ≤ 1
2(h + Re−1)

‖f(tn+1)‖2−1. (3.7)

Summing (3.7) over all time levels and multiplying by 2k gives

‖uh,n+1
1 ‖2 + (h + Re−1)kΣn+1

i=1 ‖∇uh,i
1 ‖2 ≤ ‖us

0‖2 (3.8)

+
1

h + Re−1
kΣn+1

i=1 ‖f(ti)‖2−1.

This proves the first part of Lemma.
Consider (3.5). Apply the Cauchy-Schwarz and Young’s inequalities to the right-

hand side. Different choice of constants in the Young’s inequality gives

(f(tn+1), u
h,n+1
1 ) ≤ ‖f(tn+1)‖‖uh,n+1

1 ‖ ≤ 1
2
‖uh,n+1

1 ‖2 +
1
2
‖f(tn+1)‖2 (3.9)

and

(f(tn+1), u
h,n+1
1 ) ≤ ‖f(tn+1)‖‖uh,n+1

1 ‖ ≤ 1
4k
‖uh,n+1

1 ‖2 + k‖f(tn+1)‖2. (3.10)

Sum (3.5) over all time levels, using (3.9) at the time levels t0, t1, ..., tn and (3.10) at
t = tn+1. We obtain

‖uh,n+1
1 ‖2 − ‖us

0‖2
2k

+ Σn+1
i=1 (h + Re−1)‖∇uh,i

1 ‖2 (3.11)

≤ 1
4k
‖uh,n+1

1 ‖2 +
1
2
Σn

i=1‖uh,i
1 ‖2 + k‖f(tn+1)‖2 +

1
2
Σn

i=1‖f(ti)‖2.

Multiply by 4k and simplify to obtain

‖uh,n+1
1 ‖2 + 4kΣn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2 (3.12)

≤ 2‖us
0‖2 + 4k2‖f(tn+1)‖2 + 2kΣn

i=1‖f(ti)‖2 + 2kΣn
i=1‖uh,i

1 ‖2.

For the finite time constraint T , the discrete Gronwall’s lemma yields

‖uh,n+1
1 ‖2 + 4kΣn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2 (3.13)

≤ 2e( 2T
1−k )(‖us

0‖2 + kΣn+1
i=1 ‖f(ti)‖2).
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We use the result of Lemma 3.2 in the following
Theorem 3.3 (Stability). Let uh

1 , uh
2 satisfy (1.5). Let f ∈ L2(0, T ; H−1(Ω)).

Then for n = 0, ..., N − 1: uh,n+1
1 , uh,n+1

2 are bounded and

‖uh,n+1
2 ‖2 +

2h2

(h + Re−1)2
‖uh,n+1

1 ‖2 + kΣn+1
i=1 (h + Re−1)‖∇uh,i

2 ‖2 (3.14)

≤ (1 +
2h2

(h + Re−1)2
)‖us

0‖2

+(1 +
h2

(h + Re−1)2
)

2
h + Re−1

kΣn+1
i=1 ‖f(ti)‖2−1.

Also, if f ∈ L2(0, T ; L2(Ω)) and the time constraint T is finite, then there exists a
constant C = C(T ) such that

‖uh,n+1
2 ‖2 +

2h2

(h + Re−1)2
‖uh,n+1

1 ‖2 + kΣn+1
i=1 (h + Re−1)‖∇uh,i

2 ‖2 (3.15)

≤ C(‖us
0‖2 + kΣn+1

i=1 ‖f(ti)‖2).

It follows from (3.15) that both approximations uh
1 and uh

2 are bounded at any
time level and for any viscosity, provided that the initial approximation and the forcing
term are L2-integrable.

The rest of the section is devoted to the proof of Theorem 3.3.
Proof.
Take vh = uh,n+1

2 ∈ V h in the second equation of (1.5). This gives

1
2k

(‖uh,n+1
2 ‖2 − ‖uh,n

2 ‖2) + (h + Re−1)‖∇uh,n+1
2 ‖2 ≤ (f(tn+1), u

h,n+1
2 ) (3.16)

+h(∇uh,n+1
1 ,∇uh,n+1

2 ).

The Cauchy-Schwarz and Young’s inequalities give

1
2k

(‖uh,n+1
2 ‖2 − ‖uh,n

2 ‖2) + (h + Re−1)‖∇uh,n+1
2 ‖2 (3.17)

≤ 1
h + Re−1

‖f(tn+1)‖2−1 +
h + Re−1

4
‖∇uh,n+1

2 ‖2

+
h2

h + Re−1
‖∇uh,n+1

1 ‖2 +
h + Re−1

4
‖∇uh,n+1

2 ‖2.

Multiply (3.17) by 2k and simplify to obtain

‖uh,n+1
2 ‖2 − ‖uh,n

2 ‖2 + (h + Re−1)k‖∇uh,n+1
2 ‖2 (3.18)

≤ 2
h + Re−1

k‖f(tn+1)‖2−1 +
2h2

h + Re−1
k‖∇uh,n+1

1 ‖2.

Summing over all time levels leads to

‖uh,n+1
2 ‖2 + kΣn+1

i=1 (h + Re−1)‖∇uh,i
2 ‖2 (3.19)

≤ ‖us
0‖2 +

2
h + Re−1

kΣn+1
i=1 ‖f(ti)‖2−1

+
2h2

(h + Re−1)2
kΣn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2.
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Inserting the bound on kΣn+1
i=1 (h + Re−1)‖∇uh,i

1 ‖2 from the stability result (3.8) in
(3.19) gives

‖uh,n+1
2 ‖2 + (h + Re−1)kΣn+1

i=1 ‖∇uh,i
2 ‖2 (3.20)

≤ ‖us
0‖2 +

2
h + Re−1

kΣn+1
i=1 ‖f(ti)‖2−1

+
2h2

(h + Re−1)2
(‖us

0‖2 − ‖uh,n+1
1 ‖2 +

1
h + Re−1

kΣn+1
i=1 ‖f(ti)‖2−1).

Thus

‖uh,n+1
2 ‖2 +

2h2

(h + Re−1)2
‖uh,n+1

1 ‖2 + (h + Re−1)kΣn+1
i=1 ‖∇uh,i

2 ‖2 (3.21)

≤ (1 +
2h2

(h + Re−1)2
)‖us

0‖2

+(1 +
h2

(h + Re−1)2
)

2
h + Re−1

kΣn+1
i=1 ‖f(ti)‖2−1.

This proves the first statement of Theorem 3.3. To conclude, consider (3.16);
as in (3.9)-(3.10), use the Young’s inequalities differently at different time levels to
obtain

‖uh,n+1
2 ‖2 − ‖uh,n

2 ‖2
2k

+ (h + Re−1)‖∇uh,n+1
2 ‖2 (3.22)

≤ k‖f(tn+1)‖2 +
1
4k
‖uh,n+1

2 ‖2

+
h2

2(h + Re−1)
‖∇uh,n+1

1 ‖2 +
h + Re−1

2
‖∇uh,n+1

2 ‖2,

and

‖uh,i+1
2 ‖2 − ‖uh,i

2 ‖2
2k

+ (h + Re−1)‖∇uh,i+1
2 ‖2 (3.23)

≤ 1
2
‖f(ti+1)‖2 +

1
2
‖uh,i+1

2 ‖2

+
h2

2(h + Re−1)
‖∇uh,i+1

1 ‖2 +
h + Re−1

2
‖∇uh,i+1

2 ‖2,
for ∀i = 0, 1, .., n− 1.

Sum (3.23) over all time levels and add to (3.22); multiply by 4k to obtain

‖uh,n+1
2 ‖2 − 2‖us

0‖2 + 2kΣn+1
i=1 (h + Re−1)‖∇uh,i

2 ‖2 (3.24)

≤ 2kΣn
i=1‖uh,i

2 ‖2 + 4k2‖f(tn+1)‖2

+2kΣn
i=1‖f(ti)‖2 +

2h2

(h + Re−1)2
kΣn+1

i=1 (h + Re−1)‖∇uh,i
1 ‖2.

Insert the bound on kΣn+1
i=1 (h+Re−1)‖∇uh,i

1 ‖2 from (3.13) into (3.24) and simplify.
For the finite time constraint T , the discrete Gronwall’s lemma yields

‖uh,n+1
2 ‖2 +

2h2

(h + Re−1)2
‖uh,n+1

1 ‖2 + 2kΣn+1
i=1 (h + Re−1)‖∇uh,i

2 ‖2 (3.25)

≤ (2e( 2T
1−k ) + 4e( 4T

1−k ) h2

(h + Re−1)2
)[‖us

0‖2 + kΣn
i=1‖f(ti)‖2].
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The result of Theorem 3.3, combined with the result of Proposition 3.1, proves
the unconditional stability of both uh,i

1 and uh,i
2 for any i ≥ 0.

4. Error estimates. In this section we explore the error estimates in approx-
imating the NSE velocity u by the Artificial Viscosity approximation u1 and the
Correction Step approximation u2. The results agree with the general theory of the
defect correction methods: ‖u−uh

1‖energy−norm ≤ C(hm +h), ‖u−uh
2‖energy−norm ≤

C(hm + h2), where the velocity approximations uh
1 and uh

2 are sought in the finite-
element space of piecewise polynomials of degree m.

In the error analysis we shall use the error estimate of the Stokes projection (2.3).
Proposition 4.1 (Error estimate for Stokes Projection). Suppose the discrete

inf-sup condition (2.1) holds. Then the error in the Stokes Projection satisfies

(h + Re−1)‖∇(u− ũ)‖2 ≤ C[(h + Re−1) inf
vh∈V h

‖∇(u− vh)‖2 (4.1)

+(h + Re−1)−1 inf
qh∈Qh

‖p− qh‖2],

where C is a constant independent of h and Re.
Proof. Decompose the projection error e = u− ũ into e = u− I(u)− (ũ− I(u)) =

η − φ, where η = u − I(u), φ = ũ − I(u), and I(u) approximates u in V h. Take
vh = φ ∈ V h in (2.3). This gives

(h + Re−1)‖∇φ‖2 = (h + Re−1)(∇η,∇φ) (4.2)
−(p− qh,∇ · φ).

Since Ω ⊂ Rd, we have ‖∇ · φ‖2 ≤ d‖∇φ‖2.
Applying the Cauchy-Schwarz and Young’s inequalities to (4.2) gives

(h + Re−1)‖∇φ‖2 ≤ 2(h + Re−1)‖∇η‖2 (4.3)
+2d(h + Re−1)−1 inf

qh∈Qh
‖p− qh‖2.

Since I(u) is an approximation of u in V h, we can take infimum over V h. The proof
is concluded by applying the triangle inequality.

The following constants (depending upon Ω and u) are introduced in order to
simplify the notation.

Definition 4.2. Let

Cu := ‖u(x, t)‖L∞(0,T ;L∞(Ω)),

C∇u := ‖∇u(x, t)‖L∞(0,T ;L∞(Ω)),

and introduce C̃, satisfying

inf
v∈V h

‖∇(u− v)‖ ≤ C inf
v∈Xh

‖∇(u− v)‖ ≤ C1h
m‖u‖Hm+1 ≤ C̃hm.

Also, using the constant C(Ω) from Lemma 2.3, we define

C̄ := 1728C4(Ω).

The main results of this section are presented in the following theorem:
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Theorem 4.3 (Error estimates). Let f ∈ L2(0, T ;H−1(Ω)), let uh
1 , uh

2 satisfy
(1.5),

k ≤ h + Re−1

4C2
u + 2(h + Re−1)C∇u + 2C̄C̃4(h + Re−1)−2h4m

,

u ∈ L2(0, T ; Hm+1(Ω))
⋂

L∞(0, T ; L∞(Ω)),∇u ∈ L∞(0, T ; L∞(Ω)),

ut ∈ L2(0, T ; Hm+1(Ω)), utt ∈ L2(0, T ;L2(Ω)), p ∈ L2(0, T ; Hm(Ω)).

Then there exists a constant C = C(Ω, T, u, p, f, h + Re−1), such that

max
1≤i≤N

‖u(ti)− uh,i
1 ‖+

(
k

n+1∑

i=1

(h + Re−1)‖∇(u(ti)− uh,i
1 )‖2

)1/2

≤ C(hm + h + k),

and

max
1≤i≤N

‖u(ti)−uh,i
2 ‖+

(
k

n+1∑

i=1

(h + Re−1)‖∇(u(ti)− uh,i
2 )‖2

)1/2

≤ C(hm+h2+hk+k).

Hence, the second (Correction) step of the method gives an approximation of the
true solution, that is improved by (roughly) an order of h compared to the first step
(Artificial Viscosity) approximation.

The goal of this section is to prove Theorem 4.3 - that is, that the method is of
the first order in time and that the order of the approximation in space depends upon
the step of defect correction procedure.

Proof. By Taylor expansion, u(tn+1)−u(tn)
k = ut(tn+1) − kρn+1, where ρn+1 =

utt(tn+θ), for some θ ∈ [0, 1]. The variational formulation of the NSE, followed by the
equations (1.5), gives for u ∈ X, p ∈ Q,u1, u2 ∈ Xh, p1, p2 ∈ Qh, ∀v ∈ V h

(
u(tn+1)− u(tn)

k
, v) + (h + Re−1)(∇u(tn+1),∇v) + b∗(u(tn+1), u(tn+1), v) (4.4)

−(p(tn+1),∇ · v) = (f(tn+1), v) + h(∇u(tn+1),∇v)− k(ρn+1, v),

(
uh,n+1

1 − uh,n
1

k
, v) + (h + Re−1)(∇uh,n+1

1 ,∇v) + b∗(uh,n+1
1 , uh,n+1

1 , v) (4.5)

−(ph,n+1
1 ,∇ · v) = (f(tn+1), v),

(
uh,n+1

2 − uh,n
2

k
, v) + (h + Re−1)(∇uh,n+1

2 ,∇v) + b∗(uh,n+1
2 , uh,n+1

2 , v) (4.6)

−(ph,n+1
2 ,∇ · v) = (f(tn+1), v) + h(∇uh,n+1

1 ,∇v).

Subtract (4.5) from (4.4). Introduce the error in the AV approximation ei
1 := u(ti)−

uh,i
1 ,∀i. This gives

(
en+1
1 − en

1

k
, v) + (h + Re−1)(∇en+1

1 ,∇v) (4.7)

+[b∗(u(tn+1), u(tn+1), v)− b∗(uh,n+1
1 , uh,n+1

1 , v)]

−((p(tn+1)− ph,n+1
1 ),∇ · v) = h(∇u(tn+1),∇v)− k(ρn+1, v).

Adding and subtracting b∗(uh,n+1
1 , u(tn+1), v) to the nonlinear terms in (4.7) gives

b∗(u(tn+1), u(tn+1), v)− b∗(uh,n+1
1 , uh,n+1

1 , v) (4.8)

= b∗(en+1
1 , u(tn+1), v) + b∗(uh,n+1

1 , en+1
1 , v).
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Decompose the error

ei
1 = u(ti)− uh,i

1 = u(ti)− ũi + ũi − uh,i
1 = ηi

1 − φh,i
1 , (4.9)

where ũi ∈ V h is some projection of u(ti) into V h,

and ηi
1 = u(ti)− ũi, φh,i

1 = uh,i
1 − ũi, φh,i

1 ∈ V h, ∀i.

Take v = φh,n+1
1 ∈ V h in (4.7) and use (4.8). Using also b∗(·, φh,n+1

1 , φh,n+1
1 ) = 0 and

V h⊥Qh, we obtain

(
ηn+1
1 − ηn

1

k
, φh,n+1

1 )− (
φh,n+1

1 − φh,n
1

k
, φh,n+1

1 ) (4.10)

+(h + Re−1)(∇ηn+1
1 ,∇φh,n+1

1 )− (h + Re−1)‖∇φh,n+1
1 ‖2

+b∗(ηn+1
1 , u(tn+1), φ

h,n+1
1 )− b∗(φh,n+1

1 , u(tn+1), φ
h,n+1
1 )

+b∗(uh,n+1
1 , ηn+1

1 , φh,n+1
1 )− (p(tn+1)− qh,n+1,∇ · φh,n+1

1 )

= h(∇u(tn+1),∇φh,n+1
1 )− k(ρn+1, φh,n+1

1 ).

Apply the Cauchy-Schwarz and Young’s inequalities to (4.10). Since ‖∇ · φh,n+1
1 ‖2 ≤

d‖∇φh,n+1
1 ‖2 for ∀ε > 0

‖φh,n+1
1 ‖2 − ‖φh,n

1 ‖2
2k

+ (h + Re−1)‖∇φh,n+1
1 ‖2 (4.11)

≤ ε(h + Re−1)‖∇φh,n+1
1 ‖2 +

1
4ε(h + Re−1)

‖ηn+1
1 − ηn

1

k
‖2−1

+ε(h + Re−1)‖∇φh,n+1
1 ‖2 +

(h + Re−1)
4ε

‖∇ηn+1
1 ‖2

+|b∗(ηn+1
1 , u(tn+1), φ

h,n+1
1 )|+ |b∗(φh,n+1

1 , u(tn+1), φ
h,n+1
1 )|

+|b∗(uh,n+1
1 , ηn+1

1 , φh,n+1
1 )|

+ε(h + Re−1)‖∇φh,n+1
1 ‖2 +

d

4ε(h + Re−1)
inf

qh∈Qh
‖p(tn+1)− qh,n+1‖2

+ε(h + Re−1)‖∇φh,n+1
1 ‖2 +

h2

4ε(h + Re−1)
‖∇u(tn+1)‖2

+ε(h + Re−1)‖∇φh,n+1
1 ‖2 +

1
4ε(h + Re−1)

k2‖ρn+1‖2−1.

We bound the nonlinear terms on the right-hand side of (4.11), starting now with the
first one. Use the bound (2.4), the regularity of u and Young’s inequality to obtain

|b∗(ηn+1
1 , u(tn+1), φ

h,n+1
1 )| ≤ ε(h + Re−1)‖∇φh,n+1

1 ‖2 (4.12)

+C
1

h + Re−1
‖∇ηn+1

1 ‖2.

The second nonlinear term can be bounded, using the definition of b∗(·, ·, ·) and the
regularity of u. This gives

|b∗(φh,n+1
1 , u(tn+1), φ

h,n+1
1 )| ≤ C∇u

2
‖φh,n+1

1 ‖2 +
Cu

2
(|φh,n+1

1 |, |∇φh,n+1
1 |) (4.13)

≤ C∇u

2
‖φh,n+1

1 ‖2 + ε(h + Re−1)‖∇φh,n+1
1 ‖2 +

C2
u

16ε(h + Re−1)
‖φh,n+1

1 ‖2.
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For the third nonlinear term of (4.11), use the error decomposition to obtain

|b∗(uh,n+1
1 , ηn+1

1 , φh,n+1
1 )| ≤ |b∗(u(tn+1), ηn+1

1 , φh,n+1
1 )| (4.14)

+|b∗(ηn+1
1 , ηn+1

1 , φh,n+1
1 )|+ |b∗(φh,n+1

1 , ηn+1
1 , φh,n+1

1 )|.

Use the regularity of u and the inequality (2.4) to bound the first two terms on the
right-hand side of (4.14). Applying Lemma 2.3 to the third term gives

|b∗(φh,n+1
1 , ηn+1

1 , φh,n+1
1 )| ≤ C(Ω)‖∇φh,n+1

1 ‖3/2‖φh,n+1
1 ‖1/2‖ηn+1

1 ‖. (4.15)

We apply the Young’s inequality to (4.15) with p = 4
3 and q = 4. Finally it follows

from (4.14) that

|b∗(uh,n+1
1 , ηn+1

1 , φh,n+1
1 )| ≤ ε(h + Re−1)‖∇φh,n+1

1 ‖2 (4.16)

+
C

h + Re−1
(‖∇ηn+1

1 ‖2 + ‖∇ηn+1
1 ‖4)

+
27C4(Ω)

64ε3(h + Re−1)3
‖∇ηn+1

1 ‖4‖φh,n+1
1 ‖2,

where C(Ω) is the constant from Lemma 2.3 .

Take ε = 1
16 in (4.11). Using the bounds (4.12)-(4.16), we obtain

‖φh,n+1
1 ‖2 − ‖φh,n

1 ‖2
2k

+
h + Re−1

2
‖∇φh,n+1

1 ‖2 (4.17)

≤ C

h + Re−1
‖ηn+1

1 − ηn
1

k
‖2−1

+C(h + Re−1)‖∇ηn+1
1 ‖2

+
C

h + Re−1
inf

qh∈Qh
‖p(tn+1)− qh,n+1‖2

+
C

h + Re−1
h2‖∇u(tn+1)‖2

+
C

h + Re−1
k2‖ρn+1‖2−1 +

C

h + Re−1
(‖∇ηn+1

1 ‖2 + ‖∇ηn+1
1 ‖4)

+(
1
2
C∇u +

C2
u

h + Re−1
+

C̄

(h + Re−1)3
‖∇ηn+1

1 ‖4)‖φh,n+1
1 ‖2.

Sum (4.17) over all time levels and multiply by 2k. It follows from the regularity
assumptions of the theorem that

k

n∑

i=0

‖ρi+1‖2−1 ≤ Ck

n∑

i=0

‖ρi+1‖2 ≤ C.
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Therefore we obtain

‖φh,n+1
1 ‖2 + (h + Re−1)k

n∑

i=0

‖∇φh,i+1
1 ‖2 ≤ ‖φh,0

1 ‖2 (4.18)

+
2C

h + Re−1
k

n∑

i=0

[‖ηi+1
1 − ηi

1

k
‖2−1 + (h + Re−1)2‖∇ηi

1‖2

+‖∇ηi
1‖2 + ‖∇ηi

1‖4 + inf
qh∈Qh

‖p(ti)− qh,i‖2 + h2 + k2]

+k

n∑

i=0

(C∇u +
2C2

u

h + Re−1
+

2C̄

(h + Re−1)3
‖∇ηi+1

1 ‖4)‖φh,i+1
1 ‖2.

Take ũi in the error decomposition (4.9) to be the L2-projection of u(ti) into
V h, for i ≥ 1. Take ũ0 to be us

0. This gives φh,0
1 = 0 and e0

1 = η0
1 . Also it follows

from Proposition 4.1 that ‖∇η0
1‖ ≤ Chm; under the assumptions of the theorem the

discrete Gronwall’s lemma gives

‖φh,n+1
1 ‖2 + (h + Re−1)k

n∑

i=0

‖∇φh,i+1
1 ‖2 (4.19)

≤ C

h + Re−1
k

n∑

i=0

[‖ηi+1
1 − ηi

1

k
‖2−1 + ‖∇ηi

1‖2

+‖∇ηi
1‖4 + inf

qh∈Qh
‖p(ti)− qh,i‖2 + h2 + k2].

Using the error decomposition and the triangle inequality, we obtain

‖en+1
1 ‖ ≤ ‖ηn+1

1 ‖+ ‖φh,n+1
1 ‖, (4.20)

‖en+1
1 ‖2 ≤ 2‖ηn+1

1 ‖2 + 2‖φh,n+1
1 ‖2,

‖∇ei+1
1 ‖2 ≤ 2‖∇ηi+1

1 ‖2 + 2‖∇φh,i+1
1 ‖2,

k

n∑

i=0

(h + Re−1)‖∇ei+1
1 ‖2

≤ 2k

n∑

i=0

(h + Re−1)‖∇φh,i+1
1 ‖2 + 2k

n∑

i=0

(h + Re−1)‖∇ηi+1
1 ‖2.

Then it follows from (4.19),(4.20) that

‖en+1
1 ‖2 + k

n∑

i=0

(h + Re−1)‖∇ei+1
1 ‖2 (4.21)

≤ C

h + Re−1
k

n∑

i=0

[‖ηi+1
1 − ηi

1

k
‖2−1 + ‖∇ηi

1‖2

+‖∇ηi
1‖4 + inf

qh∈Qh
‖p(ti)− qh,i‖2 + h2 + k2].

Use the approximation properties of Xh, Qh. Since the mesh nodes do not depend
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upon the time level, it follows from (2.5),(2.6) that

k

n∑

i=0

‖ηi+1
1 − ηi

1

k
‖2−1 ≤ Ck

n∑

i=0

‖ηi+1
1 − ηi

1

k
‖2 ≤ Ch2m, (4.22)

k

n∑

i=0

‖∇ηi
1‖2 ≤ Ch2m,

k

n∑

i=0

inf
qh∈Qh

‖p(ti)− qh,i‖2 ≤ Ch2m.

Hence, we obtain from (4.21),(4.22) that

‖u(tn+1)− uh,n+1
1 ‖2 + k

n∑

i=0

(h + Re−1)‖∇(u(tn+1)− uh,n+1
1 )‖2 (4.23)

≤ C

h + Re−1
[h2m + h2 + k2],

where C = C(Ω, T, u, p, f).

This proves the first statement of the theorem.
Now subtract (4.6) from (4.4). Introduce the error in the Correction Step approx-

imation ei
2 := u(ti)− uh,i

2 , ∀i. This gives

(
en+1
2 − en

2

k
, v) + (h + Re−1)(∇en+1

2 ,∇v) (4.24)

+[b∗(u(tn+1), u(tn+1), v)− b∗(uh,n+1
2 , uh,n+1

2 , v)]

−((p(tn+1)− ph,n+1
2 ),∇ · v) = h(∇en+1

1 ,∇v)− k(ρn+1, v).

Note that (4.24) differs from (4.7) only in the first term on the right-hand side. Using
the Cauchy-Schwarz and Young’s inequality, we obtain that for any ε > 0

|h(∇en+1
1 ,∇v)| ≤ ε(h + Re−1)‖∇v‖2 +

1
4ε(h + Re−1)

h2‖∇en+1
1 ‖2. (4.25)

Therefore,

k

n∑

i=0

|h(∇en+1
1 ,∇v)| ≤ k

n∑

i=0

ε(h + Re−1)‖∇v‖2 (4.26)

+
1

4ε(h + Re−1)2
h2k

n∑

i=0

(h + Re−1)‖∇en+1
1 ‖2.

Using the bound on k
∑n

i=0(h + Re−1)‖∇en+1
1 ‖2 from (4.23), we obtain

k

n∑

i=0

|h(∇en+1
1 ,∇v)| ≤ k

n∑

i=0

ε(h + Re−1)‖∇v‖2 (4.27)

+
C

(h + Re−1)3
[h2m+2 + h4 + h2k2].

Decompose the error

ei
2 = u(ti)− uh,i

2 = u(ti)− ũi + ũi − uh,i
2 = ηi

2 − φh,i
2 , (4.28)

where ηi
2 = u(ti)− ũi, φh,i

2 = uh,i
2 − ũi, φh,i

2 ∈ V h, ∀i.



17

To conclude, repeat the proof of the first statement of the theorem, replacing
uh

1 , e1, φ
h
1 , η1 by uh

2 , e2, φ
h
2 , η2, respectively, and using (4.27). Note that the term

C
h+Re−1 h2 on the right-hand side of (4.23), which was obtained from the bound on
h(∇u(tn+1),∇v), is now replaced by C

(h+Re−1)3 [h2m+2 +h4 +h2k2]. Hence, we obtain

‖u(tn+1)− uh,n+1
2 ‖2 + k

n∑

i=0

(h + Re−1)‖∇(u(tn+1)− uh,n+1
2 )‖2 (4.29)

≤ C

(h + Re−1)3
[h2m + h4 + h2k2 + k2],

where C = C(Ω, T, u, p, f).

This completes the proof of Theorem 4.3. Thus, we have derived the error esti-
mates, that agree with the general theory of the defect correction methods. Namely,
the Correction Step approximation uh

2 is improved by an order of h, compared to the
Artificial Viscosity approximation uh

1 .
Next we shall prove stability and derive the error estimates for the pressure.

5. Pressure. This section gives the proof of stability and the convergence rates
for pressure approximations ph

1 and ph
2 .

For the pressure analysis we shall need the bounds on discrete time derivatives
‖ en+1

1 −en
1

k ‖ and ‖ en+1
2 −en

2
k ‖. For pressure stability it is enough to bound these quantities

by a constant, but a more subtle estimate is needed for proving the convergence rates.
We start by proving this estimate as a theorem.

Throughout this section we use the error decomposition ei
j = u(ti) − uh,i

j =
ηi

j − φh,i
j , j = 1, 2, i = 1, ..., n, introduced in (4.9),(4.28).

Also, taking ũi = us
0 on the initial time level gives φh,0

1 = φh,0
2 = 0 and e0

1 = η0
1 ,

e0
2 = η0

2 . It follows from Proposition 4.1 that ‖∇η0
1‖ ≤ Chm and ‖∇η0

2‖ ≤ Chm.
Theorem 5.1. Let the regularity assumptions of Theorem 4.3 be satisfied. Let

pt ∈ L2(0, T ;Hm(Ω)), uttt ∈ L2(0, T ;L2(Ω)).

Also let k ≤ min(h, (h + Re−1)3). Then for any time level n ≥ 0

‖en+1
1 − en

1

k
‖+ (k

n∑

i=1

(h + Re−1)‖∇(
ei+1
1 − ei

1

k
)‖2)1/2 ≤ C(hm + h + k),

and

‖en+1
2 − en

2

k
‖+ (k

n∑

i=1

(h + Re−1)‖∇(
ei+1
2 − ei

2

k
)‖2)1/2 ≤ C(hm + h2 + hk + k).

Proof. Start with the proof of the bound for ‖φh,n+1
1 −φh,n

1
k ‖. Consider (4.7) with

(4.8) for n ≥ 1

(
en+1
1 − en

1

k
, v) + (h + Re−1)(∇en+1

1 ,∇v) (5.1)

+b∗(en+1
1 , u(tn+1), v) + b∗(uh,n+1

1 , en+1
1 , v)

−((p(tn+1)− ph,n+1
1 ),∇ · v) = h(∇u(tn+1),∇v)− k(ρn+1, v),

where kρn+1 = ut(tn+1)− u(tn+1)− u(tn)
k

.
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Take v = φh,n+1
1 −φh,n

1
k =: sh,n+1 ∈ V h in (5.1). Then consider (5.1) at the previous

time level and make exactly the same choice v = sh,n+1 ∈ V h. Subtract the equations,
using the Taylor expansion to simplify the last term on the right-hand side. We obtain

k(
ηn+1
1 − 2ηn

1 + ηn−1
1

k2
, sh,n+1)− (sh,n+1 − sh,n, sh,n+1) (5.2)

+(h + Re−1)k(∇(
ηn+1
1 − ηn

1

k
),∇sh,n+1)− (h + Re−1)k‖∇sh,n+1‖2

+b∗(en+1
1 , u(tn+1), sh,n+1) + b∗(uh,n+1

1 , en+1
1 , sh,n+1)

−b∗(en
1 , u(tn), sh,n+1)− b∗(uh,n

1 , en
1 , sh,n+1)

−k(
(p(tn+1)− ph,n+1

1 )− (p(tn)− ph,n
1 )

k
,∇ · sh,n+1)

= hk(∇(
u(tn+1)− u(tn+1)

k
),∇sh,n+1)− Ck2(ρn+1

t , sh,n+1),

where ρn+1
t = uttt(tn+θ) for some θ ∈ [0, 1].

Consider the nonlinear terms of (5.2). Adding and subtracting b∗(en
1 , u(tn+1), sh,n+1)

and b∗(uh,n+1
1 , en

1 , sh,n+1) gives

b∗(en+1
1 , u(tn+1), sh,n+1)− b∗(en

1 , u(tn), sh,n+1) (5.3)

+b∗(uh,n+1
1 , en+1

1 , sh,n+1)− b∗(uh,n
1 , en

1 , sh,n+1)
= [b∗(en+1

1 , u(tn+1), sh,n+1)− b∗(en
1 , u(tn+1), sh,n+1)

+b∗(en
1 , u(tn+1), sh,n+1)− b∗(en

1 , u(tn), sh,n+1)]

+[b∗(uh,n+1
1 , en+1

1 , sh,n+1)− b∗(uh,n+1
1 , en

1 , sh,n+1)

+b∗(uh,n+1
1 , en

1 , sh,n+1)− b∗(uh,n
1 , en

1 , sh,n+1)].

Use the error decomposition (4.9). Since b∗(·, sh,n+1, sh,n+1) = 0, it follows from (5.3)
that

b∗(en+1
1 , u(tn+1), sh,n+1)− b∗(en

1 , u(tn), sh,n+1) (5.4)

+b∗(uh,n+1
1 , en+1

1 , sh,n+1)− b∗(uh,n
1 , en

1 , sh,n+1)

= kb∗(
ηn+1
1 − ηn

1

k
, u(tn+1), sh,n+1)− kb∗(sh,n+1, u(tn+1), sh,n+1)

+kb∗(en+1
1 ,

u(tn+1)− u(tn)
k

, sh,n+1) + kb∗(uh,n+1
1 ,

ηn+1
1 − ηn

1

k
, sh,n+1)

+kb∗(
uh,n+1

1 − uh,n
1

k
, en

1 , sh,n+1).

Use the regularity of u and the Cauchy-Schwarz and Young’s inequalities to obtain
the bounds on the terms in (5.4). It follows from (2.4) that for any ε > 0

k|b∗(ηn+1
1 − ηn

1

k
, u(tn+1), sh,n+1)| (5.5)

≤ ε(h + Re−1)k‖∇sh,n+1‖2 +
C

h + Re−1
k‖∇(

ηn+1
1 − ηn

1

k
)‖2.

For the second term on the right-hand side of (5.4) use the regularity of u and the
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Cauchy-Schwarz and Young’s inequalities to obtain

k|b∗(sh,n+1, u(tn+1), sh,n+1)| ≤ ε(h + Re−1)k‖∇sh,n+1‖2 (5.6)

+
C

h + Re−1
C2

uk‖sh,n+1‖2 +
1
2
C∇uk‖sh,n+1‖2.

The third nonlinear term on the right-hand side of (5.4) is bounded by

k|b∗(en+1
1 ,

u(tn+1)− u(tn)
k

, sh,n+1)| (5.7)

≤ ε(h + Re−1)k‖∇sh,n+1‖2 +
C

h + Re−1
k‖∇en+1

1 ‖2.

For the fourth nonlinear term, add and subtract u(tn+1) to the first term of the
trilinear form. Using (2.4) and Lemma 2.3 leads to

k|b∗(uh,n+1
1 ,

ηn+1
1 − ηn

1

k
, sh,n+1)| ≤ 2ε(h + Re−1)k‖∇sh,n+1‖2 (5.8)

+
C

h + Re−1
k‖∇(

ηn+1
1 − ηn

1

k
)‖2 + Ck‖en+1

1 ‖‖∇en+1
1 ‖‖∇(

ηn+1
1 − ηn

1

k
)‖2.

For the fifth term add and subtract u(tn+1) to the first term of the trilinear form to
obtain

k|b∗(uh,n+1
1 − uh,n

1

k
, en

1 , sh,n+1)| ≤ k|b∗(u(tn+1)− u(tn)
k

, en
1 , sh,n+1)| (5.9)

+k|b∗(ηn+1
1 − ηn

1

k
, en

1 , sh,n+1)|+ k|b∗(sh,n+1, en
1 , sh,n+1)|.

Apply the result of Lemma 2.3 to the last trilinear form in (5.9) and use the Young’s
inequality with p = 4

3 and q = 4. This gives

k|b∗(uh,n+1
1 − uh,n

1

k
, en

1 , sh,n+1)|(5.10)

≤ 3ε(h + Re−1)k‖∇sh,n+1‖2 +
C

h + Re−1
k‖∇en

1‖2

+
C

h + Re−1
k‖∇en

1‖2‖∇(
ηn+1
1 − ηn

1

k
)‖2 +

C

(h + Re−1)3
k‖∇en

1‖4‖sh,n+1‖2.

Apply the Cauchy-Schwarz and Young’s inequalities to (5.2), using the bounds (5.4)-
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(5.10) for the nonlinear terms. This gives

‖sh,n+1‖2 − ‖sh,n‖2
2

+ (h + Re−1)k‖∇sh,n+1‖2 (5.11)

≤ 13ε(h + Re−1)k‖∇sh,n+1‖2

+
C

h + Re−1
k‖ηn+1

1 − 2ηn
1 + ηn−1

1

k2
‖2−1 + C(h + Re−1)k‖∇(

ηn+1
1 − ηn

1

k
)‖2

+
C

h + Re−1
k inf

qh∈Qh
‖p(tn+1)− p(tn)

k
− qh,n+1 − qh,n

k
‖2

+
C

h + Re−1
k[‖∇(

ηn+1
1 − ηn

1

k
)‖2 + ‖∇en

1‖2 + ‖∇(
ηn+1
1 − ηn

1

k
)‖2‖∇en

1‖2]

+Ck‖en
1‖2‖∇en

1‖2 + Ck‖∇(
ηn+1
1 − ηn

1

k
)‖4

+
C

h + Re−1
k · h2‖∇(

u(tn+1)− u(tn)
k

)‖2 +
C

h + Re−1
k · k2‖ρn+1

t ‖2−1

+C(C∇u +
C2

u

h + Re−1
+

1
(h + Re−1)3

‖∇en
1‖4)k‖sh,n+1‖2.

Since uttt ∈ L2(0, T ; L2(Ω)), we have

k

n∑

i=0

‖ρi+1
t ‖2−1 ≤ Ck

n∑

i=0

‖ρi+1
t ‖2 ≤ C.

It follows from the assumption k ≤ h and the result of Theorem 4.3 that

max
i
‖∇ei

1‖ ≤ C,

max
i
‖∇ei

2‖ ≤ C.

Take ε = 1
26 in (5.11), simplify, multiply both sides of the inequality by 2 and

sum over all time levels n ≥ 1 to obtain

‖sh,n+1‖2 + (h + Re−1)k
n∑

i=1

‖∇sh,i+1‖2 ≤ ‖sh,1‖2 (5.12)

+
C

h + Re−1
k

n∑

i=1

[‖ηi+1
1 − 2ηi

1 + ηi−1
1

k2
‖2−1

+(h + Re−1)2‖∇(
ηi+1
1 − ηi

1

k
)‖2 + ‖∇(

ηi+1
1 − ηi

1

k
)‖2

+(h + Re−1)‖∇(
ηi+1
1 − ηi

1

k
)‖4

+ inf
qh∈Qh

‖p(ti+1)− p(ti)
k

− qh,i+1 − qh,i

k
‖2 + h2 + k2]

+
C

(h + Re−1)2
k

n∑

i=1

(h + Re−1)‖∇ei
1‖2 + Ck

n∑

i=1

‖ei
1‖2

+Ck

n∑

i=1

(C∇u +
C2

u

h + Re−1
+

1
(h + Re−1)3

‖∇ei
1‖4)‖sh,i+1‖2.
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Consider the error decomposition (4.9). Take ũi to be the L2 projection of u(ti) into
V h, for all i ≥ 1. Since the mesh nodes do not depend upon the time level, it follows
from the approximation properties of Xh, Qh and the regularity of u, p that

k

n∑

i=1

‖ηi+1
1 − 2ηi

1 + ηi−1
1

k2
‖2−1 ≤ Ck

n∑

i=1

‖ηi+1
1 − 2ηi

1 + ηi−1
1

k2
‖2 ≤ Ch2m, (5.13)

k

n∑

i=1

‖∇(
ηi+1
1 − ηi

1

k
)‖2 ≤ Ch2m,

k

n∑

i=1

‖∇(
ηi+1
1 − ηi

1

k
)‖4 ≤ Ch4m,

k

n∑

i=1

inf
qh∈Qh

‖p(ti+1)− p(ti)
k

− qh,i+1 − qh,i

k
‖2 ≤ Ch2m.

Using (5.13) and (4.23), we derive from (5.12) that

‖sh,n+1‖2 + (h + Re−1)k
n∑

i=1

‖∇sh,i+1‖2 ≤ ‖sh,1‖2 (5.14)

+C[h2m + h2 + k2]

+Ck

n∑

i=1

(C∇u +
C2

u

h + Re−1
+

1
(h + Re−1)3

‖∇ei
1‖4)‖sh,i+1‖2.

Take ũ0 = us
0 on the initial time level. This gives φh,0

1 = 0 and e0
1 = η0

1 = u0−us
0.

For the bound on ‖sh,1‖2 = ‖φh,1
1 −φh,0

1
k ‖2, consider (5.1) at n = 0 and take v =

φh,1
1 −φh,0

1
k . This gives

(
e1
1 − e0

1

k
,
φh,1

1 − φh,0
1

k
) + (h + Re−1)(∇e1

1,∇(
φh,1

1 − φh,0
1

k
)) (5.15)

+b∗(e1
1, u(t1),

φh,1
1 − φh,0

1

k
) + b∗(uh,1

1 , e1
1,

φh,1
1 − φh,0

1

k
)

−((p(t1)− ph,1
1 ),∇ · (φh,1

1 − φh,0
1

k
))

= h(∇u(t1),∇(
φh,1

1 − φh,0
1

k
))− k(ρ1,

φh,1
1 − φh,0

1

k
).

Rewrite the left-hand side of (5.15) so that we could use the properties of the modified
Stokes projection (2.3)

(
e1
1 − e0

1

k
,
φh,1

1 − φh,0
1

k
) + (h + Re−1)k(∇(

e1
1 − e0

1

k
),∇(

φh,1
1 − φh,0

1

k
)) (5.16)

+b∗(e1
1, u(t1),

φh,1
1 − φh,0

1

k
) + b∗(uh,1

1 , e1
1,

φh,1
1 − φh,0

1

k
)

+(h + Re−1)(∇e0
1,∇(

φh,1
1 − φh,0

1

k
))− ((p(t1)− ph,1

1 ),∇ · (φh,1
1 − φh,0

1

k
))

= h(∇u(t1),∇(
φh,1

1 − φh,0
1

k
))− k(ρ1,

φh,1
1 − φh,0

1

k
).
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Since φh,1
1 −φh,0

1
k ∈ V h and ph,1

1 ∈ Qh, it follows from the choice of initial approximation
ũ0 and from (2.3) that

(h + Re−1)(∇e0
1,∇(

φh,1
1 − φh,0

1

k
))− ((p(t1)− ph,1

1 ),∇ · (φh,1
1 − φh,0

1

k
)) = 0.(5.17)

Hence, using the Cauchy-Schwarz and Young’s inequalities, we derive from (5.16)
and (5.17) that for any ε, ε1 > 0

‖φh,1
1 − φh,0

1

k
‖2 + (h + Re−1)k‖∇(

φh,1
1 − φh,0

1

k
)‖2 (5.18)

≤ ε1‖φh,1
1 − φh,0

1

k
‖2 + C‖η1

1 − η0
1

k
‖2

+ε(h + Re−1)k‖φh,1
1 − φh,0

1

k
‖2 + C(h + Re−1)k‖∇(

η1
1 − η0

1

k
)‖2

+ε1‖φh,1
1 − φh,0

1

k
‖2 + Ck2‖ρ1‖2 + ε(h + Re−1)k‖∇(

φh,1
1 − φh,0

1

k
)‖2

+
C

h + Re−1
h2k‖∇(

u(t1)− u0

k
)‖2 + ε1‖φh,1

1 − φh,0
1

k
‖2 + Ch2‖∆u0‖2

+kb∗(
e1
1 − e0

1

k
, u(t1),

φh,1
1 − φh,0

1

k
) + b∗(e0

1, u(t1),
φh,1

1 − φh,0
1

k
)

+b∗(u(t1), e1
1,

φh,1
1 − φh,0

1

k
) + b∗(φh,1

1 , e1
1,

φh,1
1 − φh,0

1

k
)

−b∗(η1
1 , e1

1,
φh,1

1 − φh,0
1

k
).

Using the fact that φh,0
1 = 0, we obtain b∗(·, φh,1

1 ,
φh,1

1 −φh,0
1

k ) = 0. The nonlinear
terms in (5.18) are bounded by applying Cauchy-Schwarz and Young’s inequalities.
We obtain

kb∗(
e1
1 − e0

1

k
, u(t1),

φh,1
1 − φh,0

1

k
) + b∗(e0

1, u(t1),
φh,1

1 − φh,0
1

k
) (5.19)

+b∗(u(t1), e1
1,

φh,1
1 − φh,0

1

k
) + b∗(φh,1

1 , e1
1,

φh,1
1 − φh,0

1

k
)

−b∗(η1
1 , e1

1,
φh,1

1 − φh,0
1

k
)

≤ C

h + Re−1
k‖φh,1

1 − φh,0
1

k
‖2 + ε(h + Re−1)k‖∇(

φh,1
1 − φh,0

1

k
)‖2

+ε(h + Re−1)k‖∇(
φh,1

1 − φh,0
1

k
)‖2 +

C

h + Re−1
k‖∇(

η1
1 − η0

1

k
)‖2

+ε(h + Re−1)k‖∇(
φh,1

1 − φh,0
1

k
)‖2 +

C

(h + Re−1)3
k‖∇η1

1‖4‖
φh,1

1 − φh,0
1

k
‖2

+2ε1‖φh,1
1 − φh,0

1

k
‖2 + C‖η0

1‖2 + C‖∇η0
1‖2

+2ε1‖φh,1
1 − φh,0

1

k
‖2 + C‖η1

1‖2 + C‖∇η1
1‖2

+ε1‖φh,1
1 − φh,0

1

k
‖2 + Ch−2‖∇η1

1‖4.
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The inequalities (5.18)-(5.19) give

‖φh,1
1 − φh,0

1

k
‖2 + (h + Re−1)k‖∇(

φh,1
1 − φh,0

1

k
)‖2 (5.20)

≤ (8ε1 +
C

h + Re−1
k +

C

(h + Re−1)3
k‖∇η1

1‖4)‖
φh,1

1 − φ0
1

k
‖2

+5ε(h + Re−1)k‖∇(
φ1

1 − φ0
1

k
)‖2

+C[‖η1
1 − η0

1

k
‖2 + (h + Re−1)k‖∇(

η1
1 − η0

1

k
)‖2

+k2‖ρ1‖2 +
1

h + Re−1
h2k‖∇(

u(t1)− u(t0)
k

)‖2 + h2‖∆u0‖2

+
1

h + Re−1
k‖∇(

η1
1 − η0

1

k
)‖2 + ‖η1

1‖2 + ‖∇η1
1‖2 + h−2‖∇η1

1‖4].

It follows from the approximation properties of Xh, Qh that

‖φh,1
1 − φh,0

1

k
‖2 + (h + Re−1)k‖∇(

φh,1
1 − φh,0

1

k
)‖2 (5.21)

≤ C[h2m + h2 + k2],

and the triangle inequality gives

‖e1
1 − e0

1

k
‖2 + (h + Re−1)k‖∇(

e1
1 − e0

1

k
)‖2 (5.22)

≤ C[h2m + h2 + k2].

Insert the bound on ‖φh,1
1 −φh,0

1
k ‖2 into (5.14). The restriction on the time step k allows

to apply discrete Gronwall’s lemma. This leads to

‖φh,n+1
1 − φh,n

1

k
‖2 + (h + Re−1)k

n∑

i=1

‖∇(
φh,i+1

1 − φh,i
1

k
)‖2 (5.23)

≤ C[h2m + h2 + k2].

Using the triangle inequality we obtain

‖en+1
1 − en

1

k
‖2 + (h + Re−1)k

n∑

i=1

‖∇(
ei+1
1 − ei

1

k
)‖2 (5.24)

≤ C[h2m + h2 + k2].

This result proves the first statement of Theorem 5.1.

For the bound on ‖φh,n+1
2 −φh,n

2
k ‖ consider (4.24), n ≥ 1. Following the proof above,

take v = φh,n+1
2 −φh,n

2
k =: sh,n+1

2 , then consider (4.24) at the previous time level, make
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the same choice v = sh,n+1
2 and subtract the two equations. This leads to

k(
ηn+1
2 − 2ηn

2 + ηn−1
2

k2
, sh,n+1

2 )− (sh,n+1
2 − sh,n

2 , sh,n+1
2 ) (5.25)

+(h + Re−1)k(∇(
ηn+1
2 − ηn

2

k
),∇sh,n+1

2 )− (h + Re−1)k‖∇sh,n+1
2 ‖2

+b∗(en+1
2 , u(tn+1), s

h,n+1
2 ) + b∗(uh,n+1

2 , en+1
2 , sh,n+1

2 )

−b∗(en
2 , u(tn), sh,n+1

2 )− b∗(uh,n
2 , en

2 , sh,n+1
2 )

−k(
(p(tn+1)− ph,n+1

2 )− (p(tn)− ph,n
2 )

k
,∇ · sh,n+1

2 )

= hk(∇(
en+1
1 − en

1

k
),∇sh,n+1

2 )− Ck2(ρn+1
t , sh,n+1

2 ).

The nonlinear terms in (5.25) are bounded in the same manner as those in (4.24), with
sh, φh

1 and η1 replaced by sh
2 , φh

2 and η2. Using these bounds and the Cauchy-Schwarz
and Young’s inequalities, we obtain from (5.25) that

‖sh,n+1
2 ‖2 − ‖sh,n

2 ‖2
2

+ (h + Re−1)k‖∇sh,n+1
2 ‖2 (5.26)

≤ 13ε(h + Re−1)k‖∇sh,n+1
2 ‖2

+
C

h + Re−1
k‖ηn+1

2 − 2ηn
2 + ηn−1

2

k2
‖2−1 + C(h + Re−1)k‖∇(

ηn+1
2 − ηn

2

k
)‖2

+
C

h + Re−1
k inf

qh∈Qh
‖p(tn+1)− p(tn)

k
− qh,n+1 − qh,n

k
‖2

+
C

h + Re−1
k[‖∇(

ηn+1
2 − ηn

2

k
)‖2 + ‖∇en

2‖2 + ‖∇(
ηn+1
2 − ηn

2

k
)‖2‖∇en

2‖2]

+Ck‖en
2‖2‖∇en

2‖2 + Ck‖∇(
ηn+1
2 − ηn

2

k
)‖4

+
C

h + Re−1
k · h2‖∇(

en+1
1 − en

1

k
)‖2 +

C

h + Re−1
k · k2‖ρn+1

t ‖2−1

+C(C∇u +
C2

u

h + Re−1
+

1
(h + Re−1)3

‖∇en
2‖4)k‖sh,n+1

2 ‖2.

It follows from the assumption k ≤ h and the result of Theorem 4.3 that maxi ‖∇ei
2‖ ≤

C.
Take ε = 1

26 in (5.26), simplify, multiply both sides of (5.26) by 2 and sum over all

time levels n ≥ 1. The bound on (h + Re−1)k
∑n

i=1 ‖∇( ei+1
1 −ei

1
k )‖2 is obtained from

(5.24). Using the approximation properties of Xh, Qh and the triangle inequality, we
obtain

‖sh,n+1
2 ‖2 + (h + Re−1)k

n∑

i=1

‖∇sh,i+1
2 ‖2 ≤ ‖sh,1

2 ‖2 (5.27)

+C[h2m + h4 + h2k2 + k2]

+Ck

n∑

i=1

(C∇u +
C2

u

h + Re−1
+

1
(h + Re−1)3

‖∇ei
2‖4)‖sh,i+1

2 ‖2.



25

The bound on ‖sh,1
2 ‖ = ‖φh,1

2 −φh,0
2

k ‖ is obtained in the same manner as the bound on

‖φh,1
1 −φh,0

1
k ‖. Consider (4.24) at n = 0 and take v = sh,1

2 = φh,1
2 −φh,0

2
k . This leads to

‖φh,1
2 − φh,0

2

k
‖2 + (h + Re−1)k‖∇(

φh,1
2 − φh,0

2

k
)‖2 (5.28)

≤ (8ε1 +
C

h + Re−1
k +

C

(h + Re−1)3
k‖∇η1

2‖4)‖
φh,1

2 − φh,0
2

k
‖2

+5ε(h + Re−1)k‖∇(
φh,1

2 − φh,0
2

k
)‖2

+C[‖η1
2 − η0

2

k
‖2 + (h + Re−1)k‖∇(

η1
2 − η0

2

k
)‖2

+k2‖ρ1‖2 +
1

h + Re−1
h2k‖∇(

e1
1 − e0

1

k
)‖2 + h2‖∆η0

1‖2

+
1

h + Re−1
k‖∇(

η1
2 − η0

2

k
)‖2 + ‖η1

2‖2 + ‖∇η1
2‖2 + h−2‖∇η1

2‖4].

Use the bound on (h + Re−1)k‖∇( e1
1−e0

1
k )‖2 from (5.22). It follows from the

approximation properties of Xh, Qh and the triangle inequality, that

‖φh,1
2 − φh,0

2

k
‖2 + (h + Re−1)k‖∇(

φh,1
2 − φh,0

2

k
)‖2 (5.29)

≤ C[h2m + h4 + h2k2 + k2]

and

‖e1
2 − e0

2

k
‖2 + (h + Re−1)k‖∇(

e1
2 − e0

2

k
)‖2 (5.30)

≤ C[h2m + h4 + h2k2 + k2].

Insert the bound on ‖φh,1
2 −φh,0

2
k ‖2 into (5.27). The restriction on the time step k allows

to apply discrete Gronwall’s lemma. This leads to

‖φh,n+1
2 − φh,n

2

k
‖2 + (h + Re−1)k

n∑

i=1

‖∇(
φh,i+1

2 − φh,i
2

k
)‖2 (5.31)

≤ C[h2m + h4 + h2k2 + k2].

Using the triangle inequality we obtain

‖en+1
2 − en

2

k
‖2 + (h + Re−1)k

n∑

i=1

‖∇(
ei+1
2 − ei

2

k
)‖2 (5.32)

≤ C[h2m + h4 + h2k2 + k2].

This completes the proof of Theorem 5.1.

5.1. Stability of the Pressure. The stability of the pressure approximations
ph
1 and ph

2 follows from the discrete inf-sup condition (2.1). The required bound on
the time derivative of velocity is obtained under the assumptions of Theorem 5.1.
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Theorem 5.2. Let f ∈ L2(0, T ; H−1(Ω)). Let ph
1 and ph

2 satisfy the equations
(1.5) and let the assumptions of Theorem 5.1 be satisfied. Then there exists a constant
C = C(T, f, h + Re−1, us

0) s.t.

k

n∑

i=0

‖ph,i+1
1 ‖ ≤ C

and

k

n∑

i=0

‖ph,i+1
2 ‖ ≤ C

Proof. Consider the first equation of (1.5). It holds true for ∀vh ∈ Xh. Apply the
Cauchy-Schwarz inequality, divide both sides of the inequality by ‖∇vh‖ and regroup
the terms, leaving only the pressure term on the left-hand side. Using Lemma 2.1
gives

(ph,n+1
1 ,∇ · vh)
‖∇vh‖ ≤ ‖uh,n+1

1 − uh,n
1

k
‖−1 + (h + Re−1)‖∇uh,n+1

1 ‖ (5.33)

+M‖∇uh,n+1
1 ‖2 + ‖f(tn+1)‖−1.

It follows from (5.33) and the discrete LBB condition (2.1) that

βh‖ph,n+1
1 ‖ ≤ ‖uh,n+1

1 − uh,n
1

k
‖−1 + (h + Re−1)‖∇uh,n+1

1 ‖ (5.34)

+M‖∇uh,n+1
1 ‖2 + ‖f(tn+1)‖−1.

Decompose the first term on the right-hand side of (5.34), using the error decompo-
sition and the triangle inequality. This gives

‖uh,n+1
1 − uh,n

1

k
‖−1 ≤ ‖u(tn+1)− u(tn)

k
‖−1 + ‖en+1

1 − en
1

k
‖−1. (5.35)

Multiply both sides of (5.34) by k and sum over the time levels. Using (5.35), we
obtain

βhk

n∑

i=0

‖ph,i+1
1 ‖ ≤ k

n∑

i=0

‖u(ti+1)− u(ti)
k

‖−1 + k

n∑

i=0

‖ei+1
1 − ei

1

k
‖−1 (5.36)

+(h + Re−1)k
n∑

i=0

‖∇uh,i+1
1 ‖+ Mk

n∑

i=0

‖∇uh,i+1
1 ‖2 + k

n∑

i=0

‖f(ti+1)‖−1.

The discrete Hölder’s inequality gives

k

n∑

i=0

‖∇uh,i+1
1 ‖ = k

n∑

i=0

‖∇uh,i+1
1 ‖ · 1 (5.37)

≤ (k
n∑

i=0

‖∇uh,i+1
1 ‖2) 1

2 · (k
n∑

i=0

12)
1
2 = C(k

n∑

i=0

‖∇uh,i+1
1 ‖2) 1

2 .
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Similarly,

k

n∑

i=0

‖ei+1
1 − ei

1

k
‖−1 ≤ C(k

n∑

i=0

‖ei+1
1 − ei

1

k
‖2−1)

1
2 ≤ C(k

n∑

i=0

‖ei+1
1 − ei

1

k
‖2) 1

2 .(5.38)

The stability bound on k
∑n

i=0 ‖∇uh,i+1
1 ‖2 is obtained from Lemma 3.2. Using

(5.38) and Theorem 5.1, it follows from (5.36) that

βhk

n∑

i=0

‖ph,i+1
1 ‖ ≤ C[

1
h + Re−1

‖us
0‖2 +

1
(h + Re−1)2

k

n∑

i=0

‖f(ti+1)‖2−1]. (5.39)

Hence, if the forcing term f is sufficiently smooth, the pressure approximation ph
1 is

stable.
Next, consider the second equation of (1.5). Apply the Cauchy-Schwarz inequality,

divide both sides of the inequality by ‖∇vh‖ and regroup the terms. Following the
outline of the proof above, we obtain

βhk

n∑

i=0

‖ph,i+1
2 ‖ ≤ k

n∑

i=0

‖u(ti+1)− u(ti)
k

‖−1 + k

n∑

i=0

‖ei+1
2 − ei

2

k
‖−1 (5.40)

+(h + Re−1)k
n∑

i=0

‖∇uh,i+1
2 ‖+ Mk

n∑

i=0

‖∇uh,i+1
2 ‖2

+hk

n∑

i=0

‖∇uh,i+1
1 ‖+ k

n∑

i=0

‖f(ti+1)‖−1.

Use the discrete Hölder’s inequality as in (5.37). It follows from Theorem 5.1 and
Theorem 3.3 that

βhk

n∑

i=0

‖ph,i+1
2 ‖ ≤ C[

1
h + Re−1

‖us
0‖2 +

1
(h + Re−1)2

k

n∑

i=0

‖f(ti+1)‖2−1]. (5.41)

5.2. Error estimates for the pressure. In this section we estimate the error
in pressure approximations ‖p(ti)− ph,i

1 ‖ and ‖p(ti)− ph,i
2 ‖. The results are obtained

by using the inf-sup condition (2.1) and the result of Theorem 5.1. The main result
of the section is

Theorem 5.3 (Pressure Convergence Rates). Let u, p, uh
1 , ph

1 , uh
2 , ph

2 satisfy the
equations (4.4)-(4.6). Let the assumptions of Theorem 5.1 be satisfied. Then, for
∀n ≥ 0

k

n∑

i=0

‖p(ti+1)− ph,i+1
1 ‖ ≤ C[hm + h + k] (5.42)

and

k

n∑

i=0

‖p(ti+1)− ph,i+1
2 ‖ ≤ C[hm + h2 + hk + k]. (5.43)
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Proof. Decompose the error in the pressure approximation

p(tn+1)− ph,n+1
1 = (p(tn+1)− qh,n+1)− (ph,n+1

1 − qh,n+1) (5.44)

=: γn+1
1 − ψh,n+1

1 ,

where qh,n+1 is some projection of p(tn+1) into Qh. Thus, ψh,n+1
1 ∈ Qh.

Divide both sides of (5.1) by ‖∇v‖ and regroup the terms. Use the result of
Lemma 2.1 and the Cauchy-Schwarz inequality to obtain

(ψh,n+1
1 ,∇ · v)
‖∇v‖ ≤ ‖en+1

1 − en
1

k
‖−1 (5.45)

+(h + Re−1)‖∇en+1
1 ‖+ M‖∇u(tn+1)‖‖∇en+1

1 ‖+ M‖∇uh,n+1
1 ‖‖∇en+1

1 ‖
+ inf

qh∈Qh
‖p(tn+1)− qh,n+1‖+ h‖∇u(tn+1)‖+ k‖ρn+1‖−1.

Apply the discrete inf-sup condition. Multiply both sides of (5.45) by k and sum over
all time levels. Decomposing uh,n+1

1 = u(tn+1)− en+1
1 gives

βhk

n∑

i=0

‖ψh,i+1
1 ‖ ≤ k

n∑

i=0

‖ei+1
1 − ei

1

k
‖−1 (5.46)

+(h + Re−1)k
n∑

i=0

‖∇ei+1
1 ‖+ 2M max

0≤i≤n+1
‖∇u(ti)‖k

n∑

i=0

‖∇ei+1
1 ‖

+Mk

n∑

i=0

‖∇ei+1
1 ‖2 + hk

n∑

i=0

‖∇u(ti+1)‖

+k

n∑

i=0

inf
qh∈Qh

‖p(ti+1)− qh,i+1‖+ k · k
n∑

i=0

‖ρi+1‖−1.

Applying the discrete Hölder’s inequality and the triangle inequality and using The-
orem 5.1 and Theorem 4.3 proves (5.42).

Next, subtract (4.6) from (4.4). This gives for any v ∈ Xh

(
en+1
2 − en

2

k
, v) + (h + Re−1)(∇en+1

2 ,∇v) (5.47)

+b∗(en+1
2 , u(tn+1), v) + b∗(uh,n+1

2 , en+1
2 , v)

−((p(tn+1)− ph,n+1
2 ),∇ · v) = h(∇en+1

1 ,∇v)− k(ρn+1, v).

Following the proof above, we obtain

βhk

n∑

i=0

‖ψh,n+1
2 ‖ ≤ k

n∑

i=0

‖ei+1
2 − ei

2

k
‖−1 (5.48)

+(h + Re−1)k
n∑

i=0

‖∇ei+1
2 ‖+ 2M max

0≤i≤n+1
‖∇u(ti)‖k

n∑

i=0

‖∇ei+1
2 ‖

+Mk

n∑

i=0

‖∇ei+1
2 ‖2 + hk

n∑

i=0

‖∇ei+1
1 ‖

+k

n∑

i=0

inf
qh∈Qh

‖p(ti+1)− qh,i+1‖+ k · k
n∑

i=0

‖ρi+1‖−1.
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Applying the discrete Hölder’s inequality and the triangle inequality and using The-
orem 5.1 and Theorem 4.3 leads to (5.43).

6. Computational Tests. We test the convergence rates for a two-dimensional
problem with a known exact solution. Consider the Chorin’s vortex decay problem in
the unit square Ω = (0, 1)2. Take

u =
(− cos(πx) sin(πy)exp(−2π2t/Re)

sin(πx) cos(πy)exp(−2π2t/Re)

)
, (6.1)

p = −1
4
(cos(2πx) + cos(2πy))exp(−4π2t/Re),

and then the right-hand side f and initial condition u0 are computed such that (6.1)
satisfies (1.4).

In order to reduce the influence of the time discretization error, the time step is
taken to be very small: ∆t = O(h3).

For Re = 1, Re = 100000 and final time T = 1/320, the calculated conver-
gence rates in Tables 6.1-6.4 confirm what is predicted by Theorem 4.3 for (P2, P1)
discretization in space.

Table 6.1
AV approximation. Re = 1.

h ||u− uh
1 ||L2(0,T ;L2(Ω)) rate ||u− uh

1 ||L2(0,T ;H1(Ω)) rate
1/4 0.000295318 - 0.0111291 -
1/8 5.77794E-05 2.35 0.00280563 1.99
1/16 2.28146E-05 1.34 0.000756655 1.89
1/32 0.000011235 1.02 0.000244007 1.63

Table 6.2
Correction Step approximation. Re = 1.

h ||u− uh
2 ||L2(0,T ;L2(Ω)) rate ||u− uh

2 ||L2(0,T ;H1(Ω)) rate
1/4 0.00027283 - 0.0110347 -
1/8 3.56252E-05 2.94 0.00271592 2.02
1/16 4.55025E-06 2.97 0.000665649 2.03
1/32 5.77583E-07 2.98 0.000164297 2.02

The convergence rate of ‖u−uh
2‖L2(0,T ;L2(Ω)), predicted by Theorem 4.3, appears

to be improvable in the case of moderate Reynolds’ number. However, for the flow with
sufficiently large Reynolds’ number, the computed rates agree with those predicted
by the theorem.

Table 6.3
AV approximation. Re = 100000.

h ||u− uh
1 ||L2(0,T ;L2(Ω)) rate ||u− uh

1 ||L2(0,T ;H1(Ω)) rate
1/4 0.000339015 - 0.00534596 -
1/8 7.39569E-05 2.2 0.00104601 2.35
1/16 3.19763E-05 1.21 0.00025783 2.02
1/32 1.62156E-05 0.98 9.19028E-05 1.49
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Table 6.4
Correction Step approximation. Re = 100000.

h ||u− uh
2 ||L2(0,T ;L2(Ω)) rate ||u− uh

2 ||L2(0,T ;H1(Ω)) rate
1/4 0.000300427 - 0.00525358 -
1/8 0.000040032 2.91 0.000975526 2.43
1/16 5.94795E-06 2.75 0.000190267 2.36
1/32 1.37357E-06 2.11 4.26364E-05 2.16

7. Comparison of the approaches. For many years, it has been widely be-
lieved that (1.2) can be directly imported into implicit time discretizations of flow
problems in the obvious way: discretize in time, given uh(tOLD), the quasistatic flow
problem for uh(tNEW ) is solved by DCM of the form (1.2). In this section we compare
this approach and our method (1.5), applied to the same problem.

Apply both methods to the one-dimensional singularly perturbed equation

ut − εuxx + ux = f

Our method leads to the coupled pair of equations

un+1
1,i − un

1,i

∆t
− (ε + h)

un+1
1,i−1 − 2un+1

1,i + un+1
1,i+1

h2
+

un+1
1,i+1 − un+1

1,i−1

2h

= fn+1
i ,

un+1
2,i − un

2,i

∆t
− (ε + h)

un+1
2,i−1 − 2un+1

2,i + un+1
2,i+1

h2
+

un+1
2,i+1 − un+1

2,i−1

2h

= fn+1
i − h

un+1
1,i−1 − 2un+1

1,i + un+1
1,i+1

h2
,

whereas the other method gives

un+1
1,i − un

2,i

∆t
− (ε + h)

un+1
1,i−1 − 2un+1

1,i + un+1
1,i+1

h2
+

un+1
1,i+1 − un+1

1,i−1

2h
= fn+1

i ,

un+1
2,i − un

2,i

∆t
− (ε + h)

un+1
2,i−1 − 2un+1

2,i + un+1
2,i+1

h2
+

un+1
2,i+1 − un+1

2,i−1

2h

= fn+1
i − h

un+1
1,i−1 − 2un+1

1,i + un+1
1,i+1

h2
.

Consider 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, u(0, t) = 0, u(1, t) = 25, u(x, 0) = 0, f(x, t) =
tx2 + 20x, ε = 0.000001.

As one could have predicted, if we let the time interval be fixed and reasonably
big (∆t = 0.1) and decrease the space-interval, both methods give almost the same
results, since they mainly differ in treating the time-derivative. But if we fix ∆h
and monotonically decrease ∆t, we immediately see the oscillations of the solution,
obtained by the alternative method.

Figures Fig.7.1-Fig.7.4 show the solution, obtained by our method (denoted by
the solid line) and the solution, obtained by the alternative approach (dashed line
on the graphs). The spacial mesh is fixed (with ∆h = 0.01) and the time step ∆t
decreases to zero (see the captions).
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Fig. 7.1. ∆t = 0.01
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Fig. 7.2. ∆t = 0.001
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Fig. 7.3. ∆t = 0.0002
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Fig. 7.4. ∆t = 0.00001

As we see, although this alternative approach uses the Correction Step approx-
imation of the true solution on each time level (instead of the AV approximation),
the results are worse even for a simple one-dimensional problem with the bounded
domain and bounded right-hand side.

We conclude the comparison of the methods by applying them to the Navier-
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Stokes equations in R2. Consider the Chorin’s vortex decay problem in the square
Ω = (− 1

2 , 1
2 )2 with

f(x, y, t) =
(

1
2π sin(2πx)exp(−4π2t/Re)
1
2π sin(2πy)exp(−4π2t/Re)

)
(7.1)

and Re = 105. The final time is taken to be T = 1/10 and the mesh diameter is fixed
at h = 1/4. As the time step ∆t is decreased, the error estimates, obtained by the
DCM (1.5), do not change - see the following table.

Table 7.1
DCM. Re = 100000, T = 1/10, h = 1/4

∆t ||u− uh
2 ||L2(0,T ;L2(Ω)) ||u− uh

2 ||L2(0,T ;H1(Ω))

10−3 0.00682 0.0585
10−4 0.00682 0.0585
10−5 0.00682 0.0585

At the same time, applying the alternative approach we obtain

Table 7.2
ALTERNATIVE APPROACH. Re = 100000, T = 1/10, h = 1/4

∆t ||u− uh
2 ||L2(0,T ;L2(Ω)) ||u− uh

2 ||L2(0,T ;H1(Ω))

10−3 0.01019 0.1104
10−4 0.01449 0.1759
10−5 0.01582 0.2076

Hence, in the alternative approach the error increases as ∆t tends to zero.
We have seen from Figures Fig.7.1-Fig.7.4 that the alternative approach gives

worse results than the DCM, when solving the convection diffusion equation. Com-
paring the Tables 7.1-7.2, we conclude that the Defect Correction Method (1.5) also
behaves better, when applied to a more difficult Navier-Stokes problem.
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