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Abstract. Experience with fluid-flow simulation suggests that, in some instances, under-resolved
direct numerical simulation (DNS), without a residual-stress model per se but with artificial damping
of small scales to account for energy lost in the cascade from resolved to unresolved scales, may be as
reliable as simulations based on more complex models of turbulence. One efficient and versatile man-
ner to selectively damp under-resolved spatial scales is by a relaxation regularization, e.g. Stolz and
Adams [Phys. Fluids (1999)]. We consider the analogous approach based on time scales, time filter-
ing and damping of under-resolved temporal features. The paper explores theoretical and practical
aspects of temporally damped fluid flow simulations. We prove existence of unique strong solutions
to the resulting continuum model. We also establish the effect of the damping of under-resolved tem-
poral features as the energy balance and dissipation and prove that the time fluctuations → 0 in a
precise sense to the temporally damped Navier-Stokes equations. The method is then demonstrated
to obtain both steady-state and time-dependent coarse-grid solutions of the Navier-Stokes equations.
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1. Introduction. Direct numerical simulation (DNS) of a 3d turbulent flow
typically requires NNSE

dof ≃ O(Re+9/4) mesh points in space per time step, and thus is
often not computationally feasible within common time and resource constraints. A
promising alternative to DNS is large-eddy simulation (LES). In LES, the evolution of
the larger structures in the flow (containing most of the flow’s energy) is computed on
a relatively coarse grid at reasonable computational expense. The effects of the smaller
(unresolved) scales of motion upon the larger ones are modeled. The separation of
scales is effected by low-pass filtering in space or time. Filtering the nonlinear terms
of the Navier-Stokes equations (NSE) generates subfilter-scale (or residual) stresses,
which requires modeling. The approximate deconvolution model (ADM) of Stolz and
Adams [SA99] combine a deconvolution model of the residual stress with secondary
regularization to stabilize the computation. Recently, Pruett et al. [PTGG06, ?] have
developed a temporal approximate deconvolution model (TADM) based on filtering
and defiltering in the time domain rather than in space.

Broadly, an LES model has (at least) tow functions. First, through the model of
the filtered nonlinear term, it seeks to model the effect of the unresolved scales on the
resolved scales. Second, it mush add sufficient dissipation acting on the marginally
resolved scales to remove the energy normally passed from the resolved to unresolved
scales by the energy cascade. There has been significant recent work from several
directions that suggests that this second function is the more important one and
might suffice by itself, for a satisfactory turbulent flow simulation. In particular, we
mention the TNS (truncated Navier-Stokes) approach of Domaradzki [Dom05], the
VMS (variational multiscale method) of Hughes and co-workers, e.g. [HOM01], and
the time relaxation (based on spatial averaging) regularizations of Rosenau [Ros89],
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Schochet and Tadmor [ST92], and Stolz, Adams and Kleiser [SAK01a, SAK01b]. This
approach is often referred to as “secondary regularization” or “time relaxation.”

Given a definition of flow averages, denoted u, the associated fluctuations are then
u′ := u − u. Time relaxation regularization (in its simplest form) consists of adding
a term “+χ(u− u)” to the NSE to damp fluctuations exponentially in time:

ut + u · ∇u− ν∆u+ ∇p+ χ(u− u) = f and ∇ · u = 0. (1.1)

When u is defined by local spatial averaging, this approach has demonstrated many
positive results. It ensures sufficient numerical dissipation for numerical solution
of conservation laws [AS02] and does not alter shock speeds or jump conditions,
[ELN07]. It can be used quite independently of any turbulence model (and has been
so used in compressible flow calculations). As a stand alone regularization, it has
been successful for the Euler equations for shock-entropy wave interaction and other
tests, [AS02, SAK01a, SAK01b, SAK02], including aerodynamic noise prediction and
control (Geunanff [Gue04], see also Åkervik et. al. [ABHHMS06]).

Interestingly, when u is defined by a local and causal time filter, the method has
still greater algorithmic attractions and is relatively unexplored. Herein, we investi-
gate some theoretical and practical aspects of this latter approach, called temporally
regularized DNS (TRDNS). Time-domain filtering has a number of significant advan-
tages over spatial filtering, Dakhoul and Bedford [DB86] and Pruett [Pru00]. These
include

1. There is no filtering through boundaries (and avoidance of the associated
problems thereunto, [DJL, DM01]).

2. No difficulties with wall laws (specifying boundary conditions for non-local
averages, e.g., [PB02, JLS]).

3. Smooth local transition between DNS, temporal LES, and Reynolds-Averaged
Navier-Stokes approaches: δ = 0 corresponds to DNS, δ ∼ O(∆t) to TLES
and δ → ∞ to RANS.

4. Ease of cross validation of results with experimental data, which are typically
gathered in the time domain.

5. Ease, speed and parallelism in computation. The added work is only one step
of an uncoupled ODE (2.1) per mesh point.

Beyond our work herein, all of LES can be redeveloped using temporal filtering.
An underlying premise of temporal secondary regularization is that removing energy
at high frequencies effectively removes energy at high wavenumbers as well, so that
relative to DNS, TRDNS can be conducted at coarser temporal and spatial resolution.

Section 2 gives the precise definition of the temporal filter. With u defined by
(2.1), section 3 gives a theoretical foundation for the system (1.1). We show that the
added time relaxation term χ(u− u) in (1.1) does truncate scales (Theorem 3.7). We
also show that solutions of the NSE are recovered as the filter radius → 0 (Theorem
3.5) and give a precise evaluation of the added energy dissipation. Section 5 gives
several tests of both the basic time relaxation term in (1.1), and a higher order
version (defined in section 4) and shows their accuracy and great promise for future
development.

2. Mathematical Preliminaries. To introduce the time-relaxation term whose
effects on the NSE we study herein, we begin with the periodic case. Thus, let
D = (0, L)3 and suppose periodic boundary conditions (with the usual zero mean
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condition) are imposed,

φ(x+ Lej , t) = φ(x, t) and

∫

D

φ(x, t)dx = 0 for φ = u, p, f, u0.

A local temporal filtering operator associated with a time-scale δ must be selected
and many are possible. The normal approach is to consider a temporal convolution
filter in the theoretical development and then replace this with an approximating
initial value problem in practical computations. We shall work directly with an IVP
differential filter. For specificity, we choose the temporal differential filter of Pruett
et al.[?]: given a function φ(x, t), its time filtered analog φ is the unique solution of

d

dt
φ =

φ− φ

δ
, for t > 0. (2.1)

φ(x, 0) = φ(x, 0).

This filter is causal, meaning φ(t) depends only on φ(t′) and φ(t′) for t′ ≤ t. Further,
the application of the filter is “embarrassingly parallel”; its calculation at one mesh
point xi is independent of and uncoupled from its calculation at any other mesh point
xj . Both practical computing and physical intuition indicate that temporal filters in
LES should be causal.

3. Theoretical results. Consider the L-periodic (with zero mean) velocity and
pressure satisfying

ut + u · ∇u+ ∇p− ν△u+ χ(u− u) = f, in D × (0, T )

u(x, 0) = u0(x), in D and (3.1)

∇ · u = 0, in D × (0, T ) .

The relaxation coefficient χ must be specified and has units 1
time . We note that the

study of (3.1) is additionally relevant to recent work of Åkervik et al. [ABHHMS06]
and provides a proof of convergence to a steady-state solution of the NSE for their
method.

The analysis of time relaxation involves dimensional analysis coupled with precise
mathematical knowledge of (3.1)’s kinetic energy balance. The theory begins, like
the Leray theory of the NSE, with a clear global energy balance. It is derived in
proposition 3.2, and its proof utilizes the following lemma.

Lemma 3.1. For u ∈ L2
0(D × (0, T )) and any T > 0

∫ T

0

∫

D

(u− u) · u dxdt =
δ

2
||u(T )||2 −

δ

2
||u(0)||2 +

∫ T

0

||u− u||2dt.

Proof. We calculate using u− u = δ d
dtu and u = u+ δ d

dtu

∫ T

0

∫

D

(u− u) · u dxdt =

∫ T

0

∫

D

δ
d

dt
u · (u+ δ

d

dt
u) dxdt =

=
δ

2
||u(T )||2 −

δ

2
||u(0)||2 +

∫ T

0

δ2||ut||
2dt =

=
δ

2
||u(T )||2 −

δ

2
||u(0)||2 +

∫ T

0

||u− u||2dt,
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which completes the proof.
Proposition 3.2. Let u0 ∈ L2

0(D), f ∈ L2(D× (0, T )), and
∫

D
f(x, t)dx = 0. For

δ > 0 and χ > 0. If u is a strong solution of (3.1) or a Galerkin approximation in a
space of Stokes eigenfunctions, u satisfies for almost every T > 0

1

L3

1

2
(‖u(T )‖

2
+ χδ||u(T )||2) +

∫ T

0

1

L3

∫

D

ν|∇u(t)|2 + χ|(u− u)(t)|2dxdt =

1

L3

1

2
(‖u0‖

2
+ χδ||u0||

2) +

∫ T

0

1

L3

∫

D

f · u dxdt.

The above energy bound with equality replaced by ”≤” is also satisfied by weak solu-
tions.

Proof. This follows the Navier-Stokes case very closely except for the time relax-
ation term, e.g., Galdi [Ga00], [Gal95] for a clear and beautiful presentation of the
NSE case.

For the energy equality, multiply (3.1) by u, integrate over the domain D, then
integrate from 0 to T . This gives

1

2
‖u(T )‖

2
+

∫ T

0

∫

D

ν|∇u(t)|2 +χ(u−u) ·u dxdt =
1

2
‖u0‖

2
+

∫ T

0

∫

D

f ·u dxdt. (3.2)

From Lemma 3.1 we have

∫ T

0

∫

D

χ(u− u) · udxdt = χ

(

δ

2
||u(T )||2 −

δ

2
||u0||

2 +

∫ T

0

||u− u||
2
dt

)

,

and the proof is completed by substituting into (3.2).

Remark 3.3. By the above lemma and energy estimate, the model’s relaxation
term thus extracts energy from resolved scales. Thus, we can define an energy dissi-
pation rate induced by time relaxation for (3.1) as

ε model(u)(t) :=
1

L3

∫

D

ν|∇u(t)|2 + χ|(u− u)(t)|2dx (3.3)

The models kinetic energy is

E model(u)(t) :=
1

L3

1

2
(‖u(t)‖

2
+ χδ||u(t)||2) (3.4)

The following analytic estimate of the effect of the relaxation term follows easily
from the above energy estimate.

Corollary 3.4. There exists a weak solution to (3.1) satisfying

||u||2L∞(0,T ;L2(D)) + ||∇u||2L2(0,T ;L2(D)) ≤ C(ν, f, u0, χ, δ),

||u||2L∞(0,T ;L2(D)) + ||ut||
2
L2(0,T ;L2(D)) + ||u− u||2L2(0,T ;L2(D)) ≤ C(ν, f, u0, χ, δ).

Moreover, if a weak solution u is a strong solution, then it is also unique.
Proof. This follows the NSE case closely. Equation 3.1 is a linear, zeroth order

perturbation of the NSE and its solution satisfies a stronger á priori estimate than
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the NSE case. Thus the standard existence proof of Galerkin approximation, á priori
estimation and extracting a limit as the number of Galerkin modes increases works
here exactly as in the NSE case, e.g. Galdi [Gal95].

Theorem 3.5. Let u(x, t;χ, δ) denote a weak solution of (3.1) and let uNSE(x, t)
denote a weak solution of the NSE (i.e., (3.1) with χ = 0). As δ → 0 there is a
subsequence δj → 0 and a weak solution of the NSE such that such that u(x, t;χ, δj) →
uNSE(x, t) as δj → 0 . If uNSE is a strong solution then u(x, t;χ, δ) → uNSE(x, t) in
L2(0, T ;L2(Ω)) as δ → 0 .

Proof. This follows the proof in the case of spatial filtering e.g. [LN06].

Proposition 3.6. Let u be a weak solution of (3.1), u0 ∈ H1(D), δ > 0, and
χ > 0, then

ess− sup
[0,T ]

||∇u|| ≤ C(δ, ν, f, u0) <∞.

Proof. Since

ut =
u− u

δ
, (∇u)t =

∇u−∇u

δ
.

Thus, for any T ≥ 0

∇u(T ) = e−
1

δ
T∇u0 +

∫ T

0

e−
1

δ
(T−t)∇u(t)dt.

Taking norms of both sides and applying the generalized triangle and Cauchy-Schwarz
inequalities gives

||∇u(T )|| ≤ C(data) + T
1

2

∫ T

0

||∇u(t)||2dt ≤ C(data).

The limit as the averaging radius δ → 0 is technically intricate but follows closely
early work of J. Leray (and elaborations of this work). The other limiting case is
equally important and nontrivial. Since the purpose of the time relaxation term is to
drive fluctuations to zero, as χ increases the fluctuating part of u should go to zero if
the term is performing as intended. The next theorem shows that this is indeed true,
and the key to its proof is the next estimate.

Theorem 3.7. Let u be a weak solution of (3.1). If ∇u0 ∈ L2(D) , δ > 0 and
f ∈ L2(0, T ;L2(D)) then there is a C = C(u0, f, T ) such that as χ→ ∞

∫

D×(0,T )

|u(x, t) − u(x, t)|2dxdt→ 0, (3.5)

∫

D×(0,T )

|ut(x, t)|
2dxdt→ 0 . (3.6)

and thus u′ → 0 in L2(D × (0, T )) as χ→ ∞.
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Proof. Begin with the energy estimate for weak solutions

1

L3

1

2
(‖u(T )‖

2
+ χδ||u(T )||2) +

∫ T

0

1

L3

∫

D

ν

2
|∇u(t)|2 + χ|(u− u)(t)|2dxdt ≤

1

L3

1

2
(‖u0‖

2
+ χδ||u0||

2) +

∫ T

0

1

2νL3
||f ||2

∗
dt.

Divide by χ and let χ→ ∞ . This gives

δ

2
||u(T )||2 +

∫ T

0

∫

D

χ|(u− u)(t)|2dxdt−
δ

2
||u0||

2 → 0. (3.7)

Next, take the inner product of the model (3.1) with u − u . This gives (since
∇ · (u− u) = 0 )

∫ T

0

[
1

2

d

dt
||u||2 − (ut, u) − (u · ∇u, u) + χ||u− u||2 − (f, u− u)]dt = 0. (3.8)

For the first two terms, we use the filter equation and Corollary 3.4 to find
∫ T

0

[
1

2

d

dt
||u||2 − (ut, u)]dt

=

∫ T

0

[
1

2

d

dt
||u||2 −

d

dt
(u, u) − (u, ut)]dt

=

∫ T

0

d

dt
[
1

2
||u||2 − (u, u)] +

1

δ
(u, u− u)]dt

≤ C(data).

For the forcing term we employ a similar argument. The nonlinear term requires a
bit more care. By the standard bound for the nonlinear term:

∫ T

0

(u · ∇u, u)dt ≤ C

∫ T

0

||∇u||2||∇u||dt

≤ C(ess− sup
[0,T ]

||∇u||)

∫ T

0

||∇u||2dt ≤ C(data),

by the regularity result of Proposition 3.6.
Thus we have

∫ T

0

χ||u− u||2dt ≤ C(data).

Thus as χ→ ∞ ,
∫ T

0
||u− u||2dt→ 0 , as claimed.

4. Secondary regularization with temporal deconvolution. We now con-
sider the process of temporal deconvolution (defiltering). The ill-posed deconvolution
problem is central in image processing [BB98] and residual-stress modeling in spa-
tially averaged large eddy simulation [BIL06], [Gue97], [LL03], [LL04c], [LL05]. The
basic problem in approximate deconvolution is the following: given u find useful ap-
proximations of u. In other words, solve the following equation for an approximation
which is appropriate for the application at hand:

Gu = u, solve for u.
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Table 4.1

Coefficients dk for secondary deconvolution of selected degrees N .

N = 4 N = 3 N = 2 N = 1 N = 0
d0 2 + 59/128 35/16 15/8 3/2 1
d1 -2 - 69/128 -29/16 -9/8 -1/2 NA
d2 1 + 62/128 12/16 2/8 NA NA
d3 - 60/128 -2/16 NA NA NA
d4 + 8/128 NA NA NA NA

The original spatial-deconvolution method used by Stolz, Adams and Kleiser [SAK01a]
was the van Cittert algorithm. Unfortunately, previous work in [PTGG06] has shown
the van Cittert deconvolution to be unstable for the temporal filter of (2.1) and most
likely for any causal time filter. However, a stable linear deconvolution algorithm was
developed expressly for the differential filter of (2.1) by Pruett et. al. [PTGG06]. It
is defined by

φ ≈ DNφ ≡

N
∑

k=0

dkφ
(k+1)

. (4.1)

where N denotes the degree of the deconvolution, φ
(k)

denotes a k-time temporally
filtered field, and coefficients dk are given in table 4.1 for the first few degrees. In
addition to stability, these coefficients are designed to recover low frequency content
lost through the filter while attenuating high frequency content. For their derivation,
e.g. if higher order coefficients are desired, we refer the reader to [PTGG06, Pru08].
This leads to the model with secondary deconvolution regularization

ut + u · ∇u+ ∇p− ν△u+ χ(u−DNu) = f, in D × (0, T )

u(x, 0) = u0(x), in D and (4.2)

∇ · u = 0, in D × (0, T ).

Temporal deconvolution methods are just beginning to be studied and their theory
is not as clear as the zeroth order deconvolution case (i.e. N = 0) studied in section 3.
Thus we leave the extension of the theory to N > 0 as an interesting open problem.
However, we were able to extend the methodology to the N > 0 case; in section 5 we
give comparisons of N = 0 and N = 4 deconvolution within secondary regularization.

5. Numerical Results. In this section, the theoretical results of the previous
sections are corroborated by three computational demonstrations of TRDNS: 1) the
stabilization of an unstable, two-dimensional free-shear flow, 2) determination of a
steady-state solution for a highly unstable two-dimensional boundary-layer flow, and
3) selective frequency damping in a three-dimensional highly unstable boundary-layer
flow.

5.1. Stabilization of Free-Shear Flow. Free-shear flows result when two ad-
jacent fluid streams travel at differing velocities. The internal boundary layer gen-
erated at the interface is inviscidly unstable to small perturbations. As a result the
interface is subject to Kelvin-Helmholtz instability, which is characterized by rapid
growth of disturbances and the shedding of a von Karman vortex street. The discrete
vortices of the vortex street are typically separated by a distance of one wavelength
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of the most unstable frequency. If a subharmonic frequency is also present, adjacent
vortices experience downstream pairing.

Figure 5.1 shows a snapshot in time in the spatial evolution of a two-dimensional
mixing layer. The flow is from left to right. The velocity ratio of the upper stream
to the lower one is 0.181. This particular case was studied in 1989 by Pruett [Pru89].
Fluid parameter values, non-dimensionalization, and computational parameter values
can all be found in this paper, as can details of the numerical scheme.

Briefly, regarding the latter, the two-dimensional incompressible NSE are solved
in an ω−ψ formulation, ω being vorticity and ψ being streamfunction. The governing
system is thereby comprised of a transport equation for vorticity and a Poisson equa-
tion for the streamfunction. The highly efficient semi-explicit numerical scheme of
Kim and Moin [KM85] is exploited, which blends approximate factorization of linear
(diffusion) terms with explicit second-order Adams-Bashforth treatment of nonlinear
(advection) terms of the transport equation. The Poisson equation for streamfunction
is solved by a fast-elliptic solver that exploits Fourier techniques. Centered differences
are used for spatial derivatives rendering the algorithm of second-order accuracy in
time and space.

The mixing-layer flow of interest is forced at the inflow (left) boundary at a
frequency very close to its most unstable frequency, as determined by solution of the
Rayleigh equation. (See Fig. 4 of [Pru89].) The forcing amplitude of the fundamental
(A1 = 0.001) is quite low. A weak subarmonic of amplitude A1/2 = 0.0001 is also
included. Figure 5.1 results from a simulation of undamped flow; that is, with no
temporal regularization. The von Karman vortex street and incipient vortex pairing
are readily apparent. The streamwise (x) and transverse coordinates (y) in the figure
are scaled by momentum thickness θ and UT /β, respectively, where UT is the velocity
of the upper stream and β is the circular frequency of the imposed disturbance.
The two most fundamental parameters of the flow are the Reynolds number Re =
U2

t /(νβ) = 185.6, where ν is kinematic viscosity, and the Strouhal number Str =
βθ/UT = 0.114, which characterizes the fundamental forcing frequency.

Figure 5.2 portrays the same forced mixing layer subject to artificial stabilization
via low-degree (N = 0) secondary regularization. The physical time of the snapshot
is that same as that of Fig. 5.1, and flow parameters for Fig. 5.2 are identical to
those of Fig. 5.1. However, a regularization term of the form of that in Eq. (1.1) has
been appended to the vorticity transport equation. Specifically, the regularization
term is χ(ω − ω̄), where ω̄ is evolved in time along with the solution via an equation
analogous to Eq. (2.1). The damping parameters are r = δ/T = 0.5 and χ = 0.5,
where T is the period of the fundamental. It is interesting to note that the most
unstable frequency is completely stabilized. Moreover, for this flow, all frequencies
within the wide band 0 ≤ Str ≤ 0.37 are unstable, as shown in Fig. 4 of [Pru89].
Apparently, all unstable modes are stabilized by the regularization term. Recall that
the main result of this paper concludes that, for a fixed δ > 0, disturbances of all
frequencies can be stabilized for “sufficiently large” χ. Present results showing the
complete stabilization of a highly unstable forced mixing layer by temporal secondary
regularization corroborate our theoretical result and reveal that “sufficiently large” in
theory is relatively small in practice.

5.2. Laminar Base States of Unstable Flows. Until quite recently, numeri-
cal experiments of spatially transitioning flows had a problematic Achilles heel. Such
flows transition from laminar to turbulent states because they are unstable to certain
perturbations. Thus, in numerical transition experiments, one, by definition, inves-
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Fig. 5.1. Contours of disturbance streamfunction and total vorticity and in undamped planar
mixing layer at time equivalent to eight periods of forcing at most unstable frequency. The flow, left
to right, demonstrates Kelvin-Helmholtz instability characteristic of mixing layers. Contour levels
of disturbance streamfunction range in equal increments between -0.2753 and +0.5492; contours of
total vorticity range from -0.004 to 0.1914.

tigates the hydrodynamic stability of perturbed laminar and time-independent base
states. However, the very instability of the base state makes the numerical deter-
mination of such a state extremely difficult for high-order, non-dissipative numerical
methods, because numerical noise triggers the instabilities. In short, there was until
recently no universally satisfactory method for obtaining high-order time-independent
solutions of the NSE in the case of unstable flows.

In 2006 Åkervik et al. [ABHHMS06] adapted temporal secondary regularization
of Pruett et al. [?, PTGG06] to the computation of time-independent solutions of
globally unstable flows by relaxation methodology. Essentially their methodology
exploits low-order temporal secondary regularization (N = 0), with χ sufficiently
large to dampen all unstable frequencies, including the fundamental, so that a time-
dependent calculation relaxes toward a steady state. Theorem 3.7 undergirds their
work by essentially stating that such a χ always exists.

To demonstrate the utility of secondary regularization, we consider the test case
that one of Åkervik’s collaborators (Marxen) considered for his Ph.D. dissertation.
Specifically, we consider flat-plate boundary-layer flow subject to an adverse pressure
gradient. In such scenarios, the relatively weak viscous Tollmien-Schlicting instability
of boundary-layer flow is destabilized by adverse pressure gradient leading to rapid
transition from laminar to turbulent flow. As a consequence the base state of such a
flow is virtually impossible to compute without artificial stabilization.
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Fig. 5.2. Contours of disturbance streamfunction and total vorticity and in a temporally damped
planar mixing layer at time equivalent to eight periods of forcing at most unstable frequency. Contour
levels of disturbance streamfunction range in equal increments between -8.715 ×10−4 and +7.129
×10−4; contours of total vorticity range from 0.0 to 0.1914.

The parameter values of the test case and the numerical methodology can be
found in Marxen [Marx04]. Briefly, the high-order numerical methodology combines
fourth-order and sixth-order compact finite-difference techniques for streamwise and
wall-normal discretizations, respectively with Fourier pseudospectral methods (with
dealiasing) for the spanwise discretization and the classic fourth-order Runge-Kutta
method for time integration. Marxen’s DNS results were computed with spatial reso-
lution in the streamwise x and wall-normal y dimensions of 1970 and 225 grid points,
respectively, with 64 symmetric Fourier modes in the spanwise z dimension, and with
1600 steps in time for each fundamental period of the disturbance.

The flow, at Reδ1
= 580, the Reynolds number based on boundary-layer displace-

ment thickness δ1 at the inflow boundary, is forced by a disturbance strip along the
wall just downstream of the leading edge and activated by low-level periodic suction
and blowing at fundamental frequency β0. In a boundary layer without pressure gra-
dient, the disturbance strip generates Tollmien-Schlicting waves that initially grow
relatively slowly according to linear stability theory. The effect of adverse pressure
gradient downstream of the disturbance strip, however, is to induce a separation
bubble that greatly destabilizes the flow. The resulting instabilities are explosive in
nature, and the flow transitions from laminar to turbulent within a very few wave-
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lengths downstream of the disturbance strip.
Here, we demonstrate the ability of heavily damped TRDNS to obtain a steady

solution of the NSE for the highly unstable separation bubble problem. The un-
steady, NSE are solved in a vorticity-velocity formulation and in disturbance form.
Accordingly, the regularization term is added to the right-hand side of the vorticity
transport equations. The spatial resolution of the computation is 978 x 113, with 4
Fourier modes in the spanwise dimension, and the resolution in time is 600 steps per
fundamental period.

When the differential filtered of (2.1) is implemented via a discrete time-evolution
scheme, in this case fourth-order Runge-Kutta, it is natural to parameterize the filter
width δ as a fraction of some characteristic time scale, in this case the period of the
fundamental.

The regularization parameters are as follows. As stated previously, N = 0. The
damping coefficient χ is large, namely χ = 4.0. And r = 0.5τ0, where τ0 = 2π/β0

is the fundamental forcing period. That is, the temporal filter width is 50 percent
of the period of the fundamental of the most unstable frequency. For base-state
computations, the forcing is turned off by setting the forcing amplitude to zero.

The initial state is, of course, not an exact solution of the discretized time-
independent NSE, namely because determining such an illusive state is the goal of the
computation. As a result, the initial state, typically derived from the boundary-layer
equations, represents a small perturbation of an exact solution. On interest is how
the initial solution evolves toward the exact two-dimensional, steady-state solution.

To this end, Fig. 5.3 tracks the evolution of the spanwise component of disturbance
vorticity θ3 as a function of time. The figure presents extrema of disturbance vorticity
and their streamwise locations as functions of time. The figure suggests that there is
a transient sweep event in which the initial error propagates downstream like a wave
packet subject to extreme damping. The transient growth of the extrema over some
short time intervals is most likely due to constructive interference of damped traveling
waves at differing frequencies. Following the exit of the wavefront from the compu-
tational domain, the disturbance vorticity decays exponentially in time. Thus, with
regularization parameters that impose heavy damping, the regularized NSE are stable
to perturbations at all frequencies, apparently including three-dimensional ones. At
steady state, the regularization term vanishes, and thus, a time-independent solution
of the NSE can be attained after sufficiently long integration.

5.3. Temporally Regularized DNS. Our final result represents a computa-
tional extrapolation beyond the theoretical scope of this paper.

Higher degree (N > 1) temporal regularization has been shown to evoke selec-
tive freqency damping [PGGT03, Pru08], which suggests that TRDNS could be an
attractive alternative to LES. Although our main theoretical result applies only to
N = 0 regularization, we nevertheless demonstrate the utility of high-order TRDNS
methodology for selective frequency damping.

Once again, we consider the test case of Marxen [Marx04]: flow along a flat plate
subject to adverse pressure gradient.

We repeat the previous calculation with N = 4, χ = 2.5, and r = 0.4, parameter
values designed to permit low-frequency disturbances to evolve more-or-less naturally,
but to provide extreme dissipation to high-frequency traveling waves. The resolution
parameters are the same as before, except that the number of spanwise modes is
increased dramatically to 32 to accommodate three-dimensional instabilities charac-
teristic of transitional flow. At this resolution, the coarse-grid TRDNS represents a

11



0 0.5 1 1.5 2 2.5 3

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

ex
tr

em
a 

of
 θ

3

max
abs(min)

0 0.5 1 1.5 2 2.5 3

x 10
4

0

200

400

600

800

1000

time step, ll

in
di

ce
s 

n 
of

 e
xt

re
m

a

n
max

n
min

Fig. 5.3. Time evolution of extrema of spanwise component of disturbance vorticity for over-
damped N = 0 TRDNS showing convergence in time toward a time-independent solution of the
NSE.

reduction in computational effort relative to the DNS of Marxen by a factor of roughly
20. For this case, the forcing amplitude is non-zero but small, namely 10−4, with a
slight spanwise variation.

Figure 5.4 presents the same information as Fig. 5.3 for the forced TRDNS case.
There is an initial transient period of rapid growth of the vorticity maximum, a
subsequent period of roughly exponential growth, a third transitional period, and
a final period of apparently stationary “turbulent” flow characterized by vorticity
fluctuations that are a sizeable percentage of the mean vorticity.

Based upon the experience of Marxen [Marx04] and the second author’s expe-
rience with the same code, without regularization, a simulation at this resolution is
severely under-resolved and blows up as soon as the instabilities attain appreciable
amplitudes.

6. Discussion and Conclusions. Time relaxation regularization is a promis-
ing yet understudied method of truncating scales for under-resolved flow simulation.
Because the additional computational effort stems from solving linear ODEs, the
computational overhead of temporal regularization is relatively small. Moreover, the
methodology is readily parallelizable. Experience to date with TRDNS suggests that
it has a variety of useful applications and is worthy of further investigation.
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Fig. 5.4. Time evolution of extrema of spanwise component of disturbance vorticity for forced
TRDNS with N = 4, χ = 2.5, and r = 0.4.
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