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Abstract—In this paper we study the video streaming band-
width of peer-to-peer streaming networks where the underlying
topology is a complex network. We focus on the maximal
streaming rate and how it depends on the type of network.
We consider networks such as small world networks, scale free
networks, locally connected networks and random networks. The
experimental results indicate that a more connected graph does
not necessarily imply a higher streaming rate, whereas properties
such as the existence of a Hamiltonian path from the source does.

I. INTRODUCTION

Recently, peer-to-peer based data transmission has emerged

as a promising technology for distributing data to users at in-

ternet scale. Many applications such as BitTorrent and EMule

have successfully utilized the internet to distributes files to

thousands of users. In a peer-to-peer model, in comparison to

a client-server model, each peer can both transmit and receive

data between each other. The main advantage of a peer-to-peer

architecture is potentially a much smaller server load than the

client-server model, especially in a large scale network. It also

scales well with the number of clients.

The possibility of using peer-to-peer networks for video

streaming and video-on-demand has recently been studied

[7]. The current client-server model of online video stream-

ing and distribution incurs a significant bandwidth cost for

content providers and the peer-to-peer framework promises to

reduce significantly the bandwidth needed from the source.

Unlike peer-to-peer file sharing, peer-to-peer video streaming

has additional constraints and significant challenges in its

implementation. One of the most important constraints is

imposed by real-time streaming. Users are expected to watch

a downloaded video immediately (or with a few seconds of

delay). This means that the data must be downloaded quickly

in an ordered way. With applications such as BitTorrent, files

may take several hours and sometimes days to download and

the order in which the data packets are downloaded is not

important since the file is not used until it is complete.

This paper focuses on characterizing the maximal streaming

rate of data from a single source to its peers in a given network.

We analyzing different types of complex networks used to

model communication networks and they affect the streaming

rate.

II. MAXIMUM ACHIEVABLE STREAMING RATE PROBLEM

For a given network, we want to find the maximum achiev-

able streaming rate. The maximum achievable rate is defined

as the maximum streaming rate r∗ at which the source can

deliver content to all the nodes [4]. We model the network

as a graph G = {V, E} of n nodes and an upload bandwidth

ui for each node i. We define node s to be the source node

(server) and all other nodes to be peers. Since users are able

to download and upload data at different rates, our graphs

are directed. We assume that the download bandwidth of each

peer is not a bottleneck and can be assumed to be infinite.

e(i, j) is an edge of the graph if data can travel from node i
to node j at some rate r that is no more than ui. An upper

bound for the streaming rate in any bandwidth scenario is

given by min
(

us,
∑

i∈N
ui

n−1

)

[6]. This rate is achievable for

the complete graph1.

We define a packet spanning tree as a directed spanning tree

rooted at the source node. It has been shown (see e.g. [4])

that we can attain the maximum achievable rate by finding

the maximal number of packet spanning trees that can be

packed in the graph. It is easy to show that finding the

maximum achievable rate is a NP-hard problem. For a given

connected graph, if the bandwidth of each node is 1, then

the maximum achievable rate is either 0 or 1. Finding the

maximum achievable rate in this graph is then equivalent to

finding a Hamiltonian path starting from the source. In this

case the maximum achievable rate is 1 if and only if there is

a Hamiltonian path starting from the source. Since finding a

Hamiltonian path in a connected graph is NP-hard problem,

finding the maximum achievable rate is a NP-hard problem.

This argument also shows that if all the bandwidth ui are

equal, then the upper bound shown above is equal to us and

this bound is achievable if there is a Hamiltonian path starting

from the source.

Due to the intractability of the maximum achievable rate

problem, Ref. [4] gives an linear programming (LP) relaxation

of the maximum achievable rate problem. The approach is to

find a distribution of bandwidth among the links that satisfy

the constraints, while maximizing the minimum capacity from

the source to all other nodes which by Edmond’s theorem is

1Assuming r∗ is an integer.



equal to the achievable rate. Let xe be a flow value on edge

e ∈ E and fi,e be the amount of flow node i gets from the

source via edge e. Let R denote the streaming rate. The LP

problem is given by:

maxmize R
∑

e(s,j)∈E

fi,e −
∑

e(j,s)∈E

fi,e = R ∀i ∈ N \ {s}

∑

e(j,i)∈E

fi,e −
∑

e(i,a)∈E

fi,e = R ∀i ∈ N \ {s}

∑

e(b,a)∈E

fi,e −
∑

e(a,c)∈E

fi,e = R ∀i ∈ N \ {s},

∀a ∈ N \ {i, s}

xe − fi,e ≥ 0 ∀e ∈ E, i ∈ N \ {s}
∑

e(i,j)

xe ≤ ui ∀e ∈ N

fi,e ≥ 0 ∀e ∈ E, i ∈ N \ {s}

In our study, fi,e = 0, ∀e(j, s) ∈ E since we assume

that the source does not download from the peers. The

optimal value of the above linear programming problem is a

good approximation of the maximum achievable rate for their

difference is at most 2 [2]. In the sequel we will denote the

optimal value of the LP program as Rmax
LP .

We solve this LP problem using the GNU linear program-

ming kit (GLPK) for various types of networks such as random

graphs, scalefree graphs, small world graphs and grid graphs

and compare the corresponding values of Rmax
LP .

1) For random graphs we consider the model G(n, p) [3]

with n nodes and each edge occurs with probability p.

2) For small world graphs we consider the Watts-Strogatz

model where random edges are added to a cycle of n
nodes.

3) For scale-free graphs we use the iterative preferential

attachment model introduced by Barabasi [1]. We start

with a complete graph of k nodes and add a new

node and k new edges at each iteration. The k edges

connect the new node to existing nodes with the k
largest degrees. It has been shown that adhoc Peer-to-

peer networks can exhibit behaviors of scale free graphs

[9].

4) We will also consider m-dimensional grid graphs which

are formed by an m-fold graph Cartesian product of the

path graph Pn [10].

Using the 4 types of graphs discussed above as models for

peer-to-peer network, we consider the following 3 bandwidth

scenarios:

1) All peers and source have the same upload bandwidth

(ui = 10), we shall refer to this scenario as the

homogeneous scenario.

2) All peers have a constant upload bandwidth (ui = 10)

and the source has an upload bandwidth 100 times as

large (us = 1000), we refer to this scenario as the strong

source scenario.

3) The peers and source have upload bandwidths taken as

samples from a bandwidth distribution of users of a real

video streaming application found in [5].

modem ISDN DSL1 DSL2 Cable Ethernet

Upload 64 256 128 384 768/384 768

share (%) 2.8 4.3 14.3 23.3 18.0 37.3

For the Cable upload bandwidth, we used the average

of the two upload values given, i.e. 576. We refer to this

scenario as the random bandwidth scenario.

III. STREAMING RATES OF VARIOUS GRAPH TOPOLOGIES

A. Random Graphs

1) Random Graphs with Homogeneous Bandwidths: For

a fixed number of nodes n, we vary the edge probability p
and study the ratio k/c, where k is the average maximum

streaming rate of random graphs, and c = 10 is the maximal

streaming rate (which is achievable by the complete graph

which occurs when p = 1). We see that the convergence of

k/c to 1 as p is increased is faster for larger n as shown by

the graph in Figure 1. We believe that this is due to the fact

that a random graph contains a Hamiltonian cycle with high

probability if p ≥ c log n

n
for some constant c [8]. Thus for large

n, a smaller probability p is needed to ensure the existence of

a Hamiltonian path from the source node.

Fig. 1. Average streaming rate of a random graph with respect to edge
probability p for n = 5 and n = 15.

2) Random Graphs with Strong Source Bandwidths: Figure

2 shows the maximum streaming rate distribution for p = 0.5
and Figure 3 shows the maximum streaming rate distribution

for p = 0.3. Notice that in both cases there is a skewness

which suggests that we are more likely to obtain a streaming

rate higher rather than below the most commonly occuring

streaming rate.



Fig. 2. Distribution of streaming rate for p = 0.5 with us = 1000 and
ui = 10.

Fig. 3. Distribution of maximum streaming rate of random graph G(30, 0.3)

B. Small World Graphs

1) Small World Graphs with Homogeneous Bandwidths:

In this model, the maximum streaming rate is always 10. The

reason is that the small world graph of this model always

contains a cycle and thus a Hamiltonian path from the source,

along which the network can achieve its maximum streaming

rate.

C. Scale-free Graphs

1) Scale-free Graphs with Homogeneous Bandwidths: For

homogeneous bandwidths ui = 10, we generate 300 scale-free

graphs and calculate their maximum streaming rates. Figure 4

is a plot of the distribution of these maximum streaming rates.

It shows us that over half of the distribution of the streaming

rates is at the maximum possible rate 10.

Fig. 4. Distribution of Maximum Streaming Rates for scale free graphs with
homogeneous bandwidths.

2) Scale-free Graphs with Strong Source Bandwidths:

For strong source bandwidths, we also generate 300 scale-

free graphs. The mean of the 300 maximum streaming rates

is 10.7318 and the maximum of maximum streaming rates

amongst this trial is near 19 (Figure 5).

Fig. 5. Distribution of maximum streaming rate of scale free graphs with
strong source bandwidths.

3) Scale-free Graphs with Random Bandwidths: For the

random bandwidths case, we still generate 300 scale-free

graphs. Their maximum streaming rates range from 300 to

600(see Figure 6).

D. Grid Graphs

In this subsection, we focus on 5 × 5 grid graph. For each

node, we calculate the maximum streaming rate of taking this



Fig. 6. Distribution of maximum streaming rate of scale free graphs with
random bandwidths.

node as source and all the other nodes as peers.

1) Grid Graphs with Homogeneous Bandwidths: In the

homogeneous bandwidth case, we find that the maximum

stream rates alternate between 9 and 10 when the source node

change from one position to its neighborhood. The interesting

phenomenon comes from the fact that for any two adjacent

nodes in the grid graph, exactly one of them has a Hamiltonian

path starting from it.

2) Grid Graphs with Strong Source Bandwidths: We set

the bandwidth of the source node as 1000 and the bandwidth

of all the other nodes as 10. In the first trial, we take the first

node on the boundary as the source. In the second trial, we

choose the center node as the source. Surprisingly, in both

situation, we obtained the same result as in the homogeneous

bandwidths case.

3) Grid Graphs with Random Bandwidths: For randomly

generated bandwidths, we generate two samples each of which

consists of 100 tests. For each node, we average of the

maximum streaming rates of taking this node as source. Just

as in the constant bandwidth case, regardless of which node

is the source, the average maximum streaming rate does not

change much.

The grid graph does not seem to be the ideal model for a

peer-to-peer network. Even when the bandwidth at the source

is much greater than the bandwidth of the peers, the maximum

streaming rate is not large. One noticeable feature of these

graphs is that they are stable in the sense that the choice of

the source node does not affect the streaming rate.

IV. DISCUSSION

The maximum stream rate are achievable for random graphs

which are close to complete, a large percentage of scale-

free graphs, Watts-Strogatz small world model and most grid

graphs, even though random graphs are considered more

connected than small world graphs and grid graphs. This

indicate that the connectedness of a graphs is not correlated to

the maximum streaming rate. On the other hand, the relatively

larger diameter of the small world model and grid graphs

implies a larger latency for some peer in the context of video

streaming.

V. FUTURE WORK

Some questions to answer in future work are the following:

Given the dependence of the streaming rate and its robustness

on the network topology, how should this guide the way

new peers are joined into a peer-to-peer network? For local

bandwidth allocation algorithms which are suboptimal, do they

exhibit the same dependence on the network topology?
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