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Abstract

This paper provides a new implementation of a multiscale mortar mixed
finite element method for second order elliptic problems. The algorithm uses
non-overlapping domain decomposition to reformulate a fine scale problem as
a coarse scale mortar interface problem, which is then solved using an itera-
tive method. The original implementation by Arbogast, Pencheva, Wheeler,
and Yotov, Multiscale Model. Simul. 2007, required solving one local Dirichlet
problem on each subdomain per interface iteration. We alter this implementa-
tion by forming a multiscale flux basis. This basis consists of mortar functions
representing the individual flux responses for each mortar degree of freedom,
on each subdomain independently. The computation of these basis functions
requires solving a fixed number of Dirichlet subdomain problems. Taking linear
combinations of the multiscale flux basis functions replaces the need to solve
any Dirichlet subdomain problems during the interface iteration. This new im-
plementation yields the same solution as the original implementation, and is
computationally more efficient in cases where the number of interface iterations
is greater than the number of mortar degrees of freedom per subdomain. The
gain in computational efficiency increases with the number of subdomains.

Keywords. Multiscale, Mortar Finite Element, Mixed Finite Element, Porous
Media Flow

1 Introduction

This paper provides a new way of implementing the multiscale mortar mixed finite
element method (MMMFEM) which was proposed by Arbogast, Pencheva, Wheeler,
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and Yotov in 2007 [7]. We consider a second order elliptic equation (1), which models
single phase flow in porous media. The permeability tensor K varies on a fine scale
and so do the velocity u and the pressure p. Resolving the solution on the fine scale is
often computationally infeasible, necessitating multiscale approximations. Our choice
of mixed finite element method for the discretization is motivated by its local element-
wise conservation of mass and accurate velocity approximation.

The MMMFEM was proposed in [7] as an alternative to existing multiscale meth-
ods, such as the variational multiscale method [18, 19, 4, 2, 5, 3] and multiscale finite
elements [16, 17, 14, 11, 20, 1]. The latter two approaches are closely related [5]. In all
three methods the domain is decomposed into a series of small subdomains (coarse
grid) and the solution is resolved globally on the coarse grid and locally (on each
coarse element) on a fine grid. All three are based on a divide and conquer approach:
solving relatively small fine scale subdomain problems that are only coupled together
through a reduced number (coarse scale) degrees of freedom.

The variational multiscale method and multiscale finite elements both compute a
multiscale basis by solving local fine scale problems with boundary conditions or a
source term corresponding to the coarse scale degrees of freedom. This basis is then
used to solve the coarse scale problem. The MMMFEM uses a non-overlapping do-
main decomposition algorithm which introduces a Lagrange multiplier space on the
subdomain interfaces to weakly impose certain continuity conditions. By eliminat-
ing the subdomain unknowns the global fine scale problem is reduced to an interface
problem, which is solved using an iterative method. The domain decomposition algo-
rithm was originally developed for the case of matching grids [15] and then extended
to the case of non-matching grids using mortar finite elements [28, 6]. This general-
ization allows for extremely flexible finite element partitions, as both the fine scale
elements across subdomain interfaces and the subdomains themselves (i.e., the coarse
grid) may be spatially non-conforming. Moreover, one has the ability to vary the
interface degrees of freedom [26, 23, 7]. If only a single mortar grid element is used
per interface, the resulting approximation is comparable to the one in the variational
multiscale method or multiscale finite elements. In the MMMFEM framework, a
posteriori error estimators [27] can be employed to adaptively refine the mortar grids
where necessary to improve the global accuracy. Furthermore, higher order mortar
approximation can be used to compensate for the coarseness of the mortar grid and
obtain fine scale convergence of the error [7]. Thus, the MMMFEM is more flexible
than the variational multiscale method and multiscale finite elements. Another ob-
servation is that the MMMFEM resolves the flux through the coarse interfaces on the
fine scale, which is not the case for the other two approaches.

The original implementation of the MMMFEM in [7] requires solving one Dirich-
let fine scale subdomain problem per interface iteration. As a result the number of
subdomain solves increases whit the dimension of the coarse space, making it difficult
to compare the computational efficiency of the method to other existing multiscale
methods. In this paper we alter this implementation by forming what we call a
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Multiscale Flux Basis, before the interface iteration begins. This basis consists of
mortar functions representing the individual flux responses from each mortar degree
of freedom, on each subdomain independently. These basis functions may also be
described as traces of the discrete Green’s functions corresponding to the mortar de-
grees of freedom along the subdomain interfaces. The computation of these basis
functions requires solving a fixed number of Dirichlet subdomain problems. Taking
linear combinations of the Multiscale Flux Basis functions replaces the need to solve
any Dirichlet subdomain problems during the interface iteration. This new imple-
mentation yields the same solution as the original implementation and makes the
MMMFEM comparable to the variational multiscale method and multiscale finite
elements in terms of computational efficiency. In our numerical experiments we com-
pare the computational cost of the new implementation to the one for the original
implementation with and without preconditioning of the interface problem. If no
preconditioning is used, the Multiscale Flux Basis implementation is computationally
more efficient in cases where the number of mortar degrees of freedom per subdomain
is less than the number of interface iterations. If balancing preconditioning is used
[13, 22], the number of iterations is reduced, but each interface iteration requires
three subdomain solves. In this case the Multiscale Flux Basis implementation is
more efficient if the number of mortar degrees of freedom per subdomain is less than
three times the number of interface iterations.

The format of the paper is as follows. Section 2 introduces the MMMFEM method
and its step-by-step formulation leading to its original implementation. Section 3
describes our new implementation. In particular, it introduces the concept of a Mul-
tiscale Flux Basis, explains how it is used in the interface iteration, and discusses
specific implementation details. Section 4 provides several numerical examples which
illustrate the computational efficiency of the Multiscale Flux Basis implementation.
Section 5 contains concluding remarks and directions for further work.

2 The MMMFEM

Our model problem is a second-order linear elliptic equation written as a first order
system in mixed form, arising in applications to single phase incompressible flow in
porous media. The pressure p and the Darcy velocity u satisfy the system

αp+ ∇ · u = f in Ω, (1a)

u = −K∇p in Ω, (1b)

p = gD on ΓD, (1c)

u · n = gN on ΓN . (1d)

Here Ω is a bounded domain in Rd (d = 2 or 3) with boundary ∂Ω = ΓD ∪ ΓN , ΓD ∩
ΓN = ∅, and outer unit normal n, α(x) ≥ 0, and K(x) is a symmetric and uniformly
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positive definite permeability tensor with components in L∞(Ω). We assume that
f ∈ L2(Ω), gD ∈ H1/2(ΓD), and gN ∈ L2(ΓN).

Throughout the paper, C denotes a generic positive constant independent of the
discretization parameters h and H. For a domain G ⊂ Rd, the L2(G) inner product
and norm for scalar and vector valued functions are denoted (·, ·)G and ‖ · ‖G, respec-
tively. We omit G in the subscript if G = Ω. For a section of the domain or element
boundary S ⊂ Rd−1 we write 〈·, ·〉S and ‖ · ‖S for the L2(S) inner product (or duality
pairing) and norm, respectively.

2.1 Domain Decomposition

The first step in formulating the MMMFEM is to use the domain decomposition
approach described in [15] to restrict the model problem into smaller pieces. The
domain Ω is divided into non-overlapping subdomains Ωi, i = 1, . . . , n, that are
allowed to be spatially non-conforming, so we have Ω =

⋃n
i=1 Ωi and Ωi ∩ Ωj = ∅ for

i 6= j. Denote the single interface between subdomains Ωi and Ωj by Γi,j = ∂Ωi∩∂Ωj,
all interfaces that touch subdomain Ωi by Γi = ∂Ωi\∂Ω, and the union of all interfaces
by Γ =

⋃
i6=j Γi,j. The domain decomposition can be viewed as a coarse grid on Ω.

System (1) holds within each subdomain Ωi. The pressure and the normal com-
ponents of the velocity must be continuous across the interfaces. Equivalently, we
seek (ui, pi) such that for i = 1, . . . , n,

αpi + ∇ · ui = f in Ωi, (2a)

ui = −K∇pi in Ωi, (2b)

pi = gD on ∂Ωi ∩ ΓD, (2c)

ui · n = gN on ∂Ωi ∩ ΓN , (2d)

pi = pj on Γi,j, i 6= j, (2e)

ui · ni + uj · nj = 0 on Γi,j, i 6= j, (2f)

where ni is the outer unit normal to ∂Ωi.

2.2 Variational Formulation

The weak pressure and velocity spaces for the global problem (1) are

W̃ = L2(Ω), Ṽ = H(div; Ω), Ṽγ = {v ∈ V | v · n = γ on ΓN},

where
H(div; Ω) = {v ∈ (L2(Ω))d | ∇ · v ∈ L2(Ω)}.

The corresponding dual mixed variational formulation is to find u ∈ ṼgN and p ∈ W̃
such that

(K−1u,v)Ω − (p,∇ · v)Ω = −〈v · n, gD〉∂ΓD
∀v ∈ Ṽ0, (3a)

(αp,w)Ω + (∇ · u, w)Ω = (f, w)Ω ∀w ∈ W̃ . (3b)
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Note that the Neumann boundary condition is imposed essentially in the space ṼgN ,
which is different from the weak velocity test space Ṽ0.

Similarly, define the weak spaces for each subdomain Ωi by

Wi = L2(Ωi), Vi = H(div; Ωi), Vγ
i = {v ∈ Vi | v · n = γ on ∂Ωi ∩ ΓN}.

The global weak spaces for the domain decomposition problem (2) are

W =
n⊕

i=1

Wi, Vγ =
n⊕

i=1

Vγ
i .

Note that no continuity is imposed across the interfaces for functions in V and W .
On the interfaces Γ we introduce a Lagrange multiplier space that has a physical
meaning of pressure and is used to weakly impose continuity of the normal velocities:

M = {µ ∈ H1/2(Γ) | µ|Γi
∈ (Vi · ni)

∗, i = 1, . . . , n},

where (·)∗ denotes the dual space.
The corresponding mixed variational formulation is to find u ∈ VgN , p ∈ W , and

λ ∈M such that for i = 1, . . . , n,

(K−1u,v)Ωi
− (p,∇ · v)Ωi

= −〈v · ni, λ〉∂Ωi∩Γ − 〈v · ni, gD〉∂Ωi∩ΓD
∀v ∈ V0

i ,(4a)

(αp,w)Ωi
+ (∇ · u, w)Ωi

= (f, w)Ωi
∀w ∈ Wi, (4b)

n∑
i=1

〈ui · ni, µ〉Γi
= 0 ∀µ ∈M. (4c)

Since Vγ 6= Ṽγ, the extra condition (4c) is needed to weakly enforce the flux conti-
nuity lost across the interfaces in the domain decomposition.

The following equivalence result is easy to show.

Lemma 2.1. If the solution (u, p) to (3) satisfies (1) in a distributional sense, then
(u, p, p|Γ) solves (4). Conversely, if (u, p, λ) solves (4), then (u, p) solves (3).

2.3 Discrete Formulation

The multiscale approach to the mortar mixed finite element method combines a local
fine scale discretization within each subdomain with a global coarse scale discretiza-
tion across subdomain interfaces.

First, independently partition each subdomain Ωi into its own local d-dimensional
quasi-uniform affine mesh Th,i. The faces (or edges) of these meshes are spatially
conforming within each subdomain, but are allowed to be non-conforming along sub-
domain interfaces. Let the maximal element diameter of this fine mesh be hi, and
let the global characteristic fine scale diameter be h = maxn

i=1 hi. Denote the global
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fine mesh by Th =
⋃n

i=1 Th,i. Let Vh,i ×Wh,i ⊂ Vi ×Wi be a mixed finite element
space on the mesh Th,i such that Vh,i contains piecewise polynomials of degree k and
Wh,i contains piecewise polynomials of degree l. Examples of such spaces are the RT
spaces [25, 21], the BDM spaces [10], the BDFM spaces [9], the BDDF spaces [8],
or the CD spaces [12]. Globally, the discrete pressure and velocity spaces for this
method are Wh =

⊕n
i=1Wh,i and Vh =

⊕n
i=1 Vh,i.

Second, we partition each subdomain interface Γi,j with a (d − 1)-dimensional
quasi-uniform affine mesh denoted TH,i,j. This mesh will be the mortar space that
weakly enforces continuity of normal fluxes for the discrete velocities across the non-
matching grids. Let the maximal element diameter of this coarse mesh be Hi,j, and
let the global characteristic coarse scale diameter be H = max1≤i<j≤nHi,j. Denote
the global coarse mesh by TH =

⋃
1≤i<j≤n TH,i,j. Let MH,i,j ⊂ L2(Γi,j) be the mortar

space containing continuous or discontinuous piecewise polynomials of degree m where
m ≥ k + 1. Globally, the mortar space for this method is MH =

⊕
1≤i<j≤nMH,i,j.

Notice that this is a nonconforming approximation, as MH * M .
With these finite dimensional subspaces, the multiscale mortar mixed finite ele-

ment approximation of (4) is to find uh ∈ VgN

h , ph ∈ Wh, and λH ∈ MH such that
for i = 1, . . . , n,

(K−1uh,v)Ωi
− (ph,∇ · v)Ωi

= −〈v · ni, λH〉∂Ωi∩Γ − 〈v · ni, gD〉∂Ωi∩ΓD
∀v ∈ V0

h,i,(5a)

(αph, w)Ωi
+ (∇ · uh, w)Ωi

= (f, w)Ωi
∀w ∈ Wh,i, (5b)

n∑
i=1

〈uh,i · ni, µ〉Γi
= 0 ∀µ ∈MH . (5c)

In this formulation the pressure continuity (2e) is modeled via the mortar pressure
function λH , while the flux continuity (2f) is imposed weakly on the coarse scale via
(5c). For the above method to be well posed, the two scales must be chosen such that
the mortar space is not too rich compared to the normal traces of the subdomain
velocity spaces.

Assumption 2.1. Assume there exists a constant C independent of h and H such
that

‖µ‖Γi,j ≤ C(‖Qh,iµ‖Γi,j + ‖Qh,jµ‖Γi,j), ∀µ ∈MH , 1 ≤ i < j ≤ n, (6)

where Qh,i : L2(Γi) → Vh,i · ni|Γi
is the L2-projection operator from the mortar space

onto the normal trace of the velocity space on subdomain i, i.e. for any φ ∈ L2(Γi),

〈φ−Qh,iφ,v · ni〉Γi
= 0, ∀v ∈ Vh,i. (7)

This condition can be easily satisfied in practice by restricting the size of H from
below (see e.g. [28, 6, 22]). Under the above assumption, method (5) is solvable,
stable, and accurate [7]. The following result has been shown in [7].
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Theorem 2.1. If Assumption 2.1 holds, then method (5) has a unique solution and
there exists a positive constant C, independent of h and H, such that

‖∇ · (u− uh)‖ ≤ C
n∑

i=1

‖∇ · u‖r,Ωi
hr, 0 ≤ r ≤ l + 1, (8)

‖u− uh‖ ≤ C
n∑

i=1

(
‖p‖s+1/2,Ωi

Hs−1/2 + ‖u‖r,Ωi
hr (9)

+ ‖u‖r+1/2,Ωi
hrH1/2

)
, 1 ≤ r ≤ k + 1, 0 < s ≤ m+ 1.

Furthermore, if the problem on Ω is H2-regular, then

‖p̂− ph‖ ≤ C

n∑
i=1

(
‖p‖s+1/2,Ωi

Hs+1/2 + ‖∇ · u‖t,Ωi
htH (10)

+ ‖u‖r,Ωi
hrH + ‖u‖r+1/2,Ωi

hrH3/2
)
,

‖p− ph‖ ≤ C
n∑

i=1

‖p‖t,Ωi
ht + ‖p̂− ph‖, (11)

where 1 ≤ r ≤ k + 1, 0 < s ≤ m+ 1, and 0 ≤ t ≤ l + 1 and p̂ is the L2-projection of
p onto Wh.

2.4 Interface Formulation

Following [15], we formulate (5) as an interface problem for the mortar pressure. We
decompose the solution to (5) into two parts: uh = u∗h(λH)+uh and ph = p∗h(λH)+ph.
The first component (u∗h, p

∗
h) ∈ V0

h×Wh solves subdomain problems with zero source
and boundary conditions, and has λH as a Dirichlet boundary condition along Γ, i.e.
for i = 1, . . . , n(

K−1u∗h,v
)
Ωi
− (p∗h,∇ · v)Ωi

= −〈v · ni, λH〉∂Ωi∩Γ ∀v ∈ V0
h,i, (12a)

(αp∗h, w)Ωi
+ (∇ · u∗h, w)Ωi

= 0 ∀w ∈ Wh,i. (12b)

The second component (uh, ph) ∈ VgN

h ×Wh solves subdomain problems with source
f , boundary conditions gD and gN on ∂Ω, and zero Dirichlet boundary conditions
along Γ, i.e. for i = 1, . . . , n

(K−1uh,v)Ωi
− (ph,∇ · v)Ωi

= −〈v · ni, gD〉∂Ωi∩ΓD
∀v ∈ V0

h,i, (13a)

(αph, w)Ωi
+ (∇ · uh, w)Ωi

= (f, w)Ωi
∀w ∈ Wh,i. (13b)

Since the sum of (12a)–(12b) and (13a)–(13b) gives (5a)–(5b), all that remains to do
is enforce equation (5c). Thus, the variational interface problem is to find λH ∈ MH

such that
n∑

i=1

〈−u∗h,i(λH) · ni, µ〉Γi
=

n∑
i=1

〈uh,i · ni, µ〉Γi
, ∀µ ∈MH . (14)
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Equivalently, we define bilinear forms bH,i : L2(Γi) × L2(Γi) → R and bH : L2(Γ) ×
L2(Γ) → R and a linear functional gH : L2(Γ) → R by

bH,i(λH,i, µ) = 〈−u∗h,i(λH,i) · ni, µ〉Γi
, (15a)

bH(λH , µ) =
n∑

i=1

bH,i(λH,i, µ), (15b)

gH(µ) =
n∑

i=1

〈uh,i · ni, µ〉Γi
. (15c)

With these definitions, (14) is equivalent to finding λH ∈MH such that bH(λH , µ) =
gH(µ), for all µ ∈ MH . The distinction is made between bilinear forms (15a) and
(15b) because the former measures the total flux across interface Γi and requires no
interprocessor communication, while the latter measures the total jump in flux across
the set of all interfaces Γ and hence does require interprocessor communication.

2.5 Interface Iteration

It is easy to check that bH is symmetric and positive semi-definite on L2(Γ). Moreover,
it is positive definite on MH if Assumption 2.1 holds and either ΓD 6= ∅ or α > 0
[6, 7]. Therefore we solve the resulting discrete system with a Conjugate Gradient
(CG) algorithm. Define linear operators BH,i : MH,i → MH,i and BH : MH → MH

and a vector gH ∈MH corresponding to equations (15) by

〈BH,iλH,i, µ〉Γi
= −〈u∗h,i(λH,i) · ni, µ〉Γi

∀µ ∈MH,i, (16a)

BHλH =
n∑

i=1

BH,iλH,i, (16b)

〈gH , µ〉Γ =
n∑

i=1

〈uh,i · ni, µ〉Γi
∀µ ∈MH . (16c)

Let QT
h,i : Vh,i · ni|Γi

→ MH,i be the L2-orthogonal projection from the normal
trace of the velocity space onto the mortar space. Note that (16a) and (16c) imply,
respectively,

BH,i = −QT
h,iu

∗
h,i(λH,i) · ni, gH =

n∑
i=1

QT
h,iuh,i · ni. (17)

Using this notation, the interface formulation is to find λH ∈MH such that BHλH =
gH . The operator BH is known as the Steklov-Poincaré operator [24].

Starting from an initial guess, we iterate on the value of λH using the CG algo-
rithm. On each CG iteration, we must evaluate the action of BH on λH . This is done
with the following steps:
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1. Project mortar data onto subdomain boundaries:

λH,i

Qh,i→ γi.

2. Solve the set of subdomain problems (12) with Dirichlet boundary data γi.

3. Project the resulting fluxes from Step 2 back onto the mortar space:

−u∗h(γi) · ni

QT
h,i→ −QT

h,iu
∗
h(γi) · ni.

4. Compute flux jumps across all subdomain interfaces Γi,j:

BHλH = −
n∑

i=1

QT
h,iu

∗
h(γi) · ni.

Steps 1-3 evaluate the action of the flux operator BH,i as in (17) and are done by
every subdomain in parallel. Step 4 evaluates the action of the jump operator BH as
in (16b) and requires interprocessor communication across every subdomain interface.

3 Multiscale Flux Basis Implementation

Observe that the dominant computational cost in each CG iteration is in the evalua-
tion of the flux operator BH,i, which requires solving one Dirichlet subdomain problem
per subdomain. One way to potentially reduce this computational cost is with the
following approach.

Before the CG algorithm begins, compute and store the flux responses associated
with each mortar degree of freedom, on each subdomain independently.

Figure 1: Illustration of the Multiscale Flux Basis approach.

1

0

0

0     0     0

Dirichlet

BC

Neumann

Response

This is what we call the Multiscale Flux Basis. Its assembly requires solving
only a fixed number of Dirichlet subdomain problems (12), see Figure 1. After these
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solves are completed, the action of BH,i is reduced to taking a linear combination of
Multiscale Flux Basis functions. Therefore, if the number of CG iterations exceeds
the maximum number of mortar degrees of freedom on any subdomain, then the
computational cost will be reduced in terms of fewer required subdomain solves, and
should yield faster runtime.

3.1 Assembly of the Multiscale Flux Basis

To compute each function in the Multiscale Flux Basis, we shall apply Steps 1-3 from
the interface iteration in order to evaluate the action of the operator BH,i on each
mortar basis function, on each subdomain independently. Let there be exactly NH,i

mortar degrees of freedom on subdomain i and define {φ(k)
H,i}

NH,i

k=1 to be the mortar
basis functions for MH,i. Then for λH,i ∈MH,i we may express

λH,i =

NH,i∑
k=1

λ
(k)
H,iφ

(k)
H,i.

Consider the k-th mortar basis function φ
(k)
H,i. Computing the Multiscale Flux Basis

function corresponding to φ
(k)
H,i involves the following steps.

1. Project this mortar basis function onto the subdomain boundary:

Qh,iφ
(k)
H,i = γ

(k)
i .

2. Solve problem (12) on each subdomain Ωi with Dirichlet interface condition

γ
(k)
i , i.e. find u∗h = u∗h(γ

(k)
i ) and p∗h = p∗h(γ

(k)
i ) such that

(K−1u∗h,v)Ωi
− (p∗h,∇ · v)Ωi

= −〈v · ni, γ
(k)
i 〉∂Ωi∩Γ ∀v ∈ V0

h,i,

(αp∗h, w)Ωi
+ (∇ · u∗h, w)Ωi

= 0 ∀w ∈ Wh,i.

3. Project the resulting boundary flux back onto the mortar space:

ψ
(k)
H,i = −QT

h,iu
∗
h(γ

(k)
i ) · ni.

Repeating this procedure for k = 1, . . . , NH,i forms the Multiscale Flux Basis for
subdomain Ωi: {

ψ
(1)
H,i, ψ

(2)
H,i, . . . , ψ

(NH,i)
H,i

}
⊂MH,i.

Remark 3.1. Note that each mortar basis function φ
(k)
H,i on interface Γi,j corresponds

to exactly two different Multiscale Flux Basis functions, one for Ωi and one for Ωj.
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Remark 3.2. Whereas the original MMMFEM implementation requires each pro-
cessor to perform the exact same number of subdomain solves during the interface
iteration process, our implementation may have each processor perform a different
number of subdomain solves in assembling its Multiscale Flux Basis. This is because
there may be a varying number of degrees of freedom in each mortar MH,i,j and sub-
domains may share portions of their boundaries with ΓD and ΓN .

Remark 3.3. The extra storage cost in saving the Multiscale Flux Basis functions
is equal to the square of the size of the mortar space on each subdomain, N2

H,i. This
is because each multiscale flux basis function belongs to the mortar space MH,i of
dimension NH,i, and there are exactly NH,i basis functions to be computed. Since only
interface data needs to be stored, the storage cost is significantly lower than the storage
cost for the variational multiscale method and multiscale finite elements, where the
basis functions are defined on the entire local fine grid.

3.2 Using the Multiscale Flux Basis in the Interface Iteration

To use the Multiscale Flux Basis to replace Steps 1-3 in the interface iteration, we
need only observe that the flux operator BH,i is linear. Therefore,

BH,i (λH,i) = BH,i

NH,i∑
k=1

λ
(k)
H,iφ

(k)
H,i

 =

NH,i∑
k=1

λ
(k)
H,iBH,i

(
φ

(k)
H,i

)
=

NH,i∑
k=1

λ
(k)
H,iψ

(k)
H,i. (19)

In other words, to compute the resulting flux on subdomain Ωi from Dirichlet data
λH,i, we simply take a linear combination of the Multiscale Flux Basis functions ψ

(k)
H,i

using the same scalars which express λH,i in terms of its mortar basis functions φ
(k)
H,i.

This demonstrates the equivalence of the original MMMFEM implementation to our
new Multiscale Flux Basis implementation.

Remark 3.4. In the original MMMFEM implementation, fine scale pressure and
velocity variables may also be updated iteratively in the interface iteration. In the
new Multiscale Flux Basis implementation, this convention should be dropped, because
storing arrays of these fine scale variables for each mortar degree of freedom would
be an unnecessary burden on memory. Instead, we perform one additional Dirichlet
subdomain solve after the CG iteration has converged in order to recover the fine scale
pressure and velocity.

4 Numerical Examples

The algorithm described in the previous section was implemented in the parallel flow
simulator PARCEL, which is programmed in FORTRAN. The domain decomposi-
tion uses spatially conforming rectangular subdomains (in 2-D) or brick subdomains
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(in 3-D). Within each of these subdomains, the fine grid is comprised of the lowest
order Raviart-Thomas mixed finite element spaces on rectangles (in 2-D) or bricks
(in 3-D) [25, 21], which are allowed to be spatially non-conforming across subdomain
interfaces. On these subdomain interfaces, a coarse grid is comprised of continuous
or discontinuous, linear or quadratic mortar spaces. Three numerical methods are
compared:

Method 1. Original MMMFEM implementation, no interface preconditioner.

Method 2. Original MMMFEM implementation, Balancing preconditioner.

Method 3. New Multiscale Flux Basis implementation, no preconditioner.

Unless otherwise noted, the tolerance for the relative residual in the CG algorithm
is taken to be 1e-06.

Remark 4.1. The balancing preconditioner used in the tests has been described in [13,
22, 7]. It involves solving Neumann subdomain problems and a course problem which
provides global exchange of information across subdomains. This causes the condition
number of the interface problem to grow more modestly versus non-preconditioned CG
as the grids are refined or the number of subdomains increases. The cost for one
preconditioned iteration is three subdomain solves and two coarse solves.

Four example problems are considered: a 2-D problem with smooth permeability,
a 2-D problem with a rough permeability, a 3-D problem with smooth permeability,
and a 2-D problem with adaptive mesh refinement. In the first three examples we
solve each problem using a fixed fine grid several times. Each time we increase
the number of subdomains, i.e., refine the coarse grid. This causes the interface
problem to become larger and more ill-conditioned, hence increasing the number of
CG iterations. Tables are provided which compare both the number of CG iterations
and maximum number of subdomain solves required by the three methods1. In this
way, the new multiscale flux basis implementation can be directly compared to the
original MMMFEM implementation. No error norms are reported in these tests,
because all three methods produce the same solution within roundoff error.

For the first two examples we also provide tests comparing the accuracy and the
cost of the MMMFEM solution to a fine scale solution.

The fourth example involves adaptive mesh refinement and illustrates the greater
flexibility of the MMMFEM compared to existing multiscale methods. It also shows
that the gain in efficiency from the new implementation is increased when grid adap-
tivity is employed.

Remark 4.2. It should be noted that under a fixed fine grid, as the number of sub-
domains is increased, the size of the local subdomain problems becomes smaller.

1Recall Remark 3.2.
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4.1 Example 1 : 2-D problem with a smooth solution

This example is a 2-D problem on the domain Ω = (0, 1)2 with a fixed global fine grid
of 120 × 120 elements. The solution is given by p(x, y) = x3y4 + x2 + sin(xy) cos(y),
and the coefficient K is a smooth, full tensor defined by

K =

(
(x+ 1)2 + y2 sin(xy)

sin(xy) (x+ 1)2

)
.

Boundaries {y = 0} and {y = 1} are Dirichlet type and boundaries {x = 0} and
{x = 1} are Neumann type.

Table 1: Example 1 using continuous linear mortars with 3 elements per interface.

Method 1 Method 2 Method 3
Subdomains CGIter Solves CGIter Solves CGIter Solves
2× 2 = 4 14 17* 11 41 14 19
3× 3 = 9 29 32* 19 67 29 35
4× 4 = 16 42 45 24 82 42 35*
5× 5 = 25 54 57 26 88 54 35*
6× 6 = 36 65 68 27 91 64 35*
7× 7 = 49 75 78 26 88 77 35*
8× 8 = 64 86 89 26 88 86 35*

* - denotes fewest number of solves

Table 1 shows results for Example 1 using continuous linear mortars with 3 ele-
ments per edge. Method 1 performs the best until we reach the 4×4 subdomain case.
After this point Method 3 becomes the most efficient in terms of subdomain solves.
Observe that the number of CG iterations increases with the number of subdomains,
and that Method 1 requires one subdomain solve per iteration plus three additional
subdomain solves. The balancing preconditioner used in Method 2 causes the num-
ber of CG iterations to grow more modestly with the number of subdomains, but
this method is still more costly in terms of subdomain solves. Notice that Method 3
always requires a fixed maximum number of subdomain solves (except in the 2 × 2
case where only two out of four edges of each subdomain have mortars). This table
demonstrates that as the number of subdomains is increased, there is a point after
which Method 3 performs best. We found this to be the case for most tests we ran.

Remark 4.3. Recall that the Balancing preconditioner involves two additional coarse
grid solves per CG iteration. Thus even in cases where Method 2 required fewer
subdomain solves, Method 3 was more efficient in terms of CPU time, as the time for
the coarse solves was not negligible. We do not report CPU times in this paper, since
they depend on the particular implementation of the coarse solve in the Balancing
preconditioner.
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Table 2: Example 1 using continuous quadratic mortars with 2 elements per interface.

Method 1 Method 2 Method 3
Subdomains CGIter Solves CGIter Solves CGIter Solves
2× 2 = 4 16 19* 12 44 16 53
3× 3 = 9 35 38* 17 61 34 63
4× 4 = 16 51 54* 20 70 51 63
5× 5 = 25 65 68 21 73 65 63*
6× 6 = 36 78 81 22 76 78 63*
7× 7 = 49 91 94 21 73 91 63*
8× 8 = 64 103 107 21 73 103 63*

* - denotes fewest number of solves

In Table 2 we report results for Example 1 with continuous quadratic mortars
with 2 elements per edge. This slightly increases the required work for Method 1
and slightly decreases the work for Method 2. However, for Method 3 this change
nearly doubles the amount of subdomain solves required due to the increase in mortar
degrees of freedom per subdomain. This means that initially our method solves more
subdomain problems than the other two, and the computational efficiency of Method
3 is not observed until the 5 × 5 case. This difference versus the previous table
shows that the number of mortar degrees of freedom per subdomain is an important
parameter which determines the relative computationally efficiency of the Multiscale
Flux Basis implementation.

Table 3: Numerical error and computational cost for the fine scale solution in Example
1.

Subdomains pres-L2-err vel-L2-err CGIter Solves
2× 2 = 4 7.1657E-05 7.1848E-05 58 123
3× 3 = 9 7.1955E-05 7.9269E-05 72 163
4× 4 = 16 7.1968E-05 8.7311E-05 85 123
5× 5 = 25 7.2211E-05 9.5265E-05 96 99
6× 6 = 36 7.2260E-05 1.0281E-04 107 83

To illustrate the accuracy of the MMMFEM and the efficiency of the proposed new
implementation, we compare the quality and cost of the multiscale solution to these of
the fine scale solution. The latter is computed using the same domain decomposition
algorithm with Method 3, but with fine scale Lagrange multipliers. In Table 3 we
report the pressure and velocity errors and the cost of the interface iteration. This
type of test is comparable to a standard mixed finite element algorithm without
domain decomposition. Indeed, the recorded error norms remain nearly constant as
the number of subdomains is increased.
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In comparison, Table 4 shows results for the MMMFEM using Method 3 with
linear mortars and a single element per interface. This subdomain configuration is
very much akin to the variational multiscale methods and multiscale finite element
methods mentioned in the introduction. We note that the MMMFEM requires signif-
icantly smaller number of subdomain solves, while at the same time resolves the flow
very well, as seen in Figure 2 where a comparison of the plots of the computed fine
scale and multiscale solutions with 5 × 5 subdomains is shown. The error norms re-
ported in Table 4 indicate that the error is larger for the multiscale solution, but does
decrease as the number of subdomain is increased. Figure 3 shows that the locations
with greatest error in the multiscale solution are along the subdomain interfaces.

Table 4: Numerical error and computational cost for the multiscale solution using
Method 3 with a single linear mortar per interface in Example 1.

Subdomains pres-L2-err vel-L2-err CGIter Solves
2× 2 = 4 1.2966E-02 4.4386E-02 8 11
3× 3 = 9 7.1036E-03 3.6534E-02 22 19
4× 4 = 16 4.2496E-03 3.0038E-02 33 19
5× 5 = 25 2.7673E-03 2.5191E-02 42 19
6× 6 = 36 1.9159E-03 2.1527E-02 51 19

Figure 2: Computed pressure (color) and velocity (arrows) in Example 1: fine scale
solution (left) and multiscale solution with a single linear mortar per interface (right).
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Figure 3: Pressure error (left) and magnitude of velocity error (right) for the multi-
scale solution with a single linear mortar per interface in Example 1.
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4.2 Example 2: 2-D problem with rough heterogeneous per-
meability

This problem uses a 2-D heterogeneous permeability field, obtained from the Society
of Petroleum Engineers (SPE) Comparative Solution Project2. The domain is Ω =
(0, 60)× (0, 220) with a fixed global fine grid of 60× 220 elements. Pressure values of
one and zero are specified on the left and right boundaries, respectively. No flow is
specified on the top and bottom boundaries. A plot of the permeability field is shown
on the left in Figure 4.

Table 5: Example 2 using continuous linear mortars with 2 elements per interface.

Method 1 Method 2 Method 3
Subdomains CGIter Solves CGIter Solves CGIter Solves
2× 2 = 4 13 15 8 31 13 14*
3× 2 = 6 19 21 15 53 19 20*
2× 4 = 8 25 27 18 62 23 20*
2× 5 = 10 37 39 29 95 35 20*
3× 4 = 12 37 39 28 93 36 26*
3× 5 = 15 51 53 37 120 51 26*

* - denotes fewest number of solves

Table 5 shows the results for Example 2 using continuous linear mortars with 2
elements per edge. Method 3 requires at most 26 solves per subdomain and is compu-

2For more information, see http://www.spe.org/csp
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Figure 4: Example 2: permeability field (left), fine scale solution (middle), and multi-
scale solution with 3× 5 subdomains and a single linear mortar per interface (right).
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tationally more efficient than Methods 1 and 2 for all subdomain configurations. As
the number of subdomains is increased, the improvement of Method 3 over Methods
1 and 2 becomes greater.

A comparison between the fine scale solution and the multiscale solution with 3×5
subdomains is presented in Figure 4. We observe a very good match between the two
solutions. We note that the number of subdomain solves required by Method 3 for
the multiscale solution, 26, is significantly less than Methods 1-3 used for computing
the fine scale solution, which require 388, 84, and 130 subdomain solves, respectively.

Table 6 shows the results for Example 2 using continuous quadratic mortars with
2 elements per interface. Compared to the previous table, the increased number of
mortar degrees of freedom per interface leads to more subdomain solves for Method 3,
the maximum number being 62. Nevertheless, Method 3 is still more computationally
efficient than Methods 1 and 2 for 10 and more subdomains.

4.3 Example 3 : 3-D problem with a smooth solution

This example is a 3-D problem on the domain Ω = (0, 1)3 with a fixed global fine grid
of 48 × 48 × 48 elements. The solution is given by p(x, y, z) = x + y + z − 1.5, and
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Table 6: Example 2 using continuous quadratic mortars with 2 elements per interface.

Method 1 Method 2 Method 3
Subdomains CGIter Solves CGIter Solves CGIter Solves
2× 2 = 4 17 19* 15 52 16 32
3× 2 = 6 30 32* 23 77 31 47
2× 4 = 8 39 41* 25 83 38 47
2× 5 = 10 56 58 39 125 56 47*
3× 4 = 12 53 55 33 108 52 62*
3× 5 = 15 92 94 46 147 92 62*

* - denotes fewest number of solves

the coefficient K is a smooth full tensor defined by

K =

 x2 + y2 + 1 0 0
0 z2 + 1 sin(xy)
0 sin(xy) x2y2 + 1

 .

Boundaries {y = 0} and {y = 1} are Dirichlet type and the rest of the boundary is
Neumann type.

Figure 5 shows the computed multiscale solution and its error for Example 3 with
4 × 4 × 4 subdomains and a single linear mortar per interface. Table 7 shows the
computational cost for Methods 1-3 with various coarse grids. Method 3 requires at
most 27 solves per subdomain and outperforms Methods 1 and 2 for all subdomain
configurations.

Table 7: Example 3 using linear mortars with one element per interface.

Method 1 Method 2 Method 3
Subdomains CGIter Solves CGIter Solves CGIter Solves
2× 2× 2 = 8 28 31 11 42 28 15*
2× 2× 3 = 12 33 36 12 46 33 19*
2× 3× 3 = 18 37 40 13 50 37 23*
3× 3× 3 = 27 46 49 13 51 46 27*
3× 3× 4 = 36 50 53 13 51 50 27*
3× 4× 4 = 48 55 58 13 51 55 27*
4× 4× 4 = 64 60 63 13 51 60 27*

* - denotes fewest number of solves

Table 8 shows the results for Example 3 using quadratic mortars with one ele-
ment per interface with the usual relative residual CG tolerance of 1e-06. Method 3
requires at most 57 solves per subdomain. It is the fastest method on coarser domain
decompositions, but Method 2 outperforms it slightly on 27 or more subdomains.
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Figure 5: Example 3: computed multiscale solution (left) and its error (right) on
4 × 4 × 4 subdomains with a single linear mortar per interface.

Table 8: Example 3 using quadratic mortars with one element per interface. Relative
residual CG tolerance = 1e-06.

Method 1 Method 2 Method 3
Subdomains CGIter Solves CGIter Solves CGIter Solves
2× 2× 2 = 8 36 39 13 48 36 30*
2× 2× 3 = 12 41 44 13 49 41 39*
2× 3× 3 = 18 47 50 14 53 47 48*
3× 3× 3 = 27 56 59 14 54* 56 57
3× 3× 4 = 36 60 63 14 54* 60 57
3× 4× 4 = 48 64 67 14 54* 64 57
4× 4× 4 = 64 69 72 14 54* 69 57

* - denotes fewest number of solves

When a tighter tolerance is imposed on the CG on the interface, all three methods
perform more CG iterations. Under Methods 1 and 2, this also requires performing
more subdomain solves. For Method 3, however, the maximum number of solves
per subdomain is unaffected by this change in tolerance. This is illustrated in Table
9, which shows the results for relative residual CG tolerance of 1e-09. In this case
Method 3 is the most computationally efficient for all subdomain configurations.
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Table 9: Example 3 using quadratic mortars with one element per interface. Relative
residual CG tolerance = 1e-09.

Method 1 Method 2 Method 3
Subdomains CGIter Solves CGIter Solves CGIter Solves
2× 2× 2 = 8 48 51 19 66 48 30*
2× 2× 3 = 12 56 59 19 67 56 39*
2× 3× 3 = 18 62 65 21 74 62 48*
3× 3× 3 = 27 74 77 20 72 74 57*
3× 3× 4 = 36 79 82 21 75 79 57*
3× 4× 4 = 48 84 87 21 75 85 57*
4× 4× 4 = 64 92 95 21 75 92 57*

* - denotes fewest number of solves

4.4 Example 4 : Mesh Adaptivity

The final example shows another benefit to the MMMFEM, the utilization of adap-
tive mesh refinement. The calculation of a posteriori error indicators within each
subdomain allows the MMMFEM to refine only those subdomains where the error
is highest. Mortars which touch refined subdomains are also refined to maintain
accuracy. For more details, see [27, 7].

The permeability K is a single realization of a stochastic permeability field on the
domain (0, 1)2. A Karhunen-Loève expansion for the log permeability Y = ln(K) (a
scalar quantity) is computed from the specified covariance function

CY (x, x̄) = σ2
Y exp

[
−|x1 − x̄1|

η1

− |x2 − x̄2|
η2

]
.

The parameters used for this test are correlation lengths η1 = 0.25, η2 = 0.125, and
variance σY = 2.1. The series was truncated after 400 terms. For the exact procedure
on computing the eigenfunctions and eigenvalues of this series semi-analytically, the
interested reader can consult Appendix A in [29].

This test was performed on 5 × 5 = 25 subdomains, initially starting with 2 ×
2 subdomain grids and continuous linear mortars with 1 element per edge. The
permeability field and its corresponding solution on the fourth level of mesh refinement
are shown in Figure 6. Using Method 1, each subdomain performed 283 subdomain
solves, roughly one for each CG iteration on each of the 4 grid levels. Using Method
3, the number of subdomain solves after 4 levels of mesh refinement is shown in the
figure on top of the permeability plot. The maximum number of subdomain solves is
160 and the minimum number is 56.

We can draw two conclusions from this example. First, since the computational
savings of the multiscale flux basis implementation happen on each level of adaptive
mesh refinement, the overall savings after all levels are complete is amplified by the
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number of refinement levels. Second, the workload for each processor may become
increasingly unbalanced due to a large variation in the number of mortar degrees of
freedom per subdomain. Nevertheless, even if the algorithm is only as fast as its slow-
est processor, the Multiscale Flux Basis implementation is still faster than the original
implementation. One can take full advantage of the computational efficiency of the
new method in adaptive mesh refinement setting by implementing load balancing.

Figure 6: Permeability field for Example 4 on mesh refinement level 4 (left) and its
corresponding solution (right). Numbers indicate the total number of subdomain
solves using the Multiscale Flux Basis implementation.
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5 Conclusions

In this paper we present a new implementation of the MMMFEM, which makes it
comparable in computational cost to existing multiscale methods. The MMMFEM
provides extra flexibility in the ability to vary locally and adaptively both the coarse
scale and the fine scale grids. Moreover, the fine scale grids can be completely non-
matching across coarse interfaces. The proposed implementation is based on precom-
puting a Multiscale Flux Basis and using it to compute solutions to subdomain solves
during the global coarse scale iteration.

The numerical examples demonstrate that the new implementation is more com-
putationally efficient than the original implementation in many cases. The number of
subdomain solves required for the construction of the Multiscale Flux Basis depends
only on the number of mortar degrees of freedom per subdomain and not on the size
of the global problem. Therefore the new implementation outperforms the original
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one for large problems. Moreover, if the Multiscale Flux Basis implementation is used
repeatedly, as in the case of adaptive mesh refinement, then the computational sav-
ings are amplified. Even greater computational gain is observed when this approach
is combined with stochastic collocation for uncertainty quantification, which requires
a large number of deterministic simulations. This extension will be discussed in a
forthcoming paper.
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