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Abstract

We develop a mixed finite element method for elliptic problems on hexahedral grids that re-
duces to cell-centered finite differences. The paper is an extension of our earlier paper for quadri-
lateral and simplicial grids [SIAM J. Numer. Anal., Vol. 55, pp. 2082–2106]. The construction is
motivated by the multipoint flux approximation method and it is based on an enhancement of the
lowest order Brezzi–Douglas–Durán–Fortin (BDDF) mixed finite element spaces on hexahedra.
In particular, there are four fluxes per face, one associated with each vertex. A special quadrature
rule is employed that allows for local velocity elimination and leads to a symmetric and posi-
tive definite cell-centered system for the pressures. Theoretical and numerical results indicate
first-order convergence for pressures and sub-face fluxes on sufficiently regular grids, as well as
second-order convergence for pressures at the cell centers. Second-order convergence for face
fluxes is also observed computationally.

Keywords: mixed finite element, multipoint flux approximation, cell-centered finite difference,
tensor coefficient, error estimates, hexahedra.

1 Introduction

In [48], the last two authors developed a special mixed finite element (MFE) method for elliptic
problems, the multipoint flux mixed finite element (MFMFE) method, that reduces to cell-centered
finite differences on quadrilateral and simplicial grids and performs well for discontinuous full tensor
coefficients. The goal of this paper is to develop and analyze a similar method for hexahedral grids.

MFE methods [15, 39] are widely used for modeling of fluid flow and transport, as they provide
accurate and locally mass conservative velocities and handle well discontinuous coefficients. In their
standard form MFE methods require solving coupled pressure-velocity algebraic systems of saddle
point type. To alleviate this problem, various modifications of the MFE method have been introduced.
The hybrid MFE method [7, 15] can be reduced to a symmetric positive definite system for the
pressure Lagrange multipliers on the element faces. In the case of the lowest order Raviart-Thomas
(RT0) MFE method [44, 38, 37], more efficient cell-centered formulations have also been developed,
see [40, 46] for diagonal tensor coefficients and rectangular grids, as well as the expanded mixed
finite element (EMFE) method for full tensor coefficients and general grids [5, 4]. The approach
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in these cell-centered methods is to diagonalize the mass matrix via appropriate quadrature rules,
allowing for elimination of the velocities (see also [8] for a related method for triangular grids and
diagonal tensor coefficients). Unfortunately the EMFE method suffers from deterioration of accuracy
on discontinuous coefficients and rough grids, unless pressure Lagrange multipliers are introduced
along discontinuous interfaces [4]. The computational cost of the EMFE method is comparable to
the finite volume methods [23]. The latter also require certain orthogonality properties of the grid
in the case of full tensor coefficients, or need to be augmented with face-centered pressure Lagrange
multipliers [24] to maintain optimal convergence. Further relationships between MFE and finite
volume methods are established in [49].

Two other methods that are closely related to the RT0 MFE method and perform well for rough
grids and coefficients are the control volume mixed finite element (CVMFE) method [18] and the
mimetic finite difference (MFD) methods [28]. The relationship between these methods and the MFE
method has been explored to analyze their convergence properties [29, 19, 41, 9, 11, 10, 17]. However,
as in the case of MFE methods, both methods require solving algebraic saddle point problems in their
standard form. Furthermore, MFE methods on polyhedral elements have been developed in [32, 33],
see also [42] for the analysis on hexahedra. The approach there is to subdivide the element into
tetrahedra and use a piecewise affine approximation. Again, this formulation leads to an algebraic
saddle point problem.

The multipoint flux approximation (MPFA) method [1, 2, 21, 22] has gained significant popularity
in recent years, since it combines the advantages of the above mentioned methods: it is accurate for
rough grids and coefficients and reduces to a cell-centered stencil for the pressures. The method was
originally developed as a non-variational finite volume method. The analysis of the MPFA method
has been done by formulating it as a MFE method with a special quadrature. In [48, 47], we developed
the MFMFE method on quadrilateral and simplicial elements, which was motivated by and closely
related to the MPFA method. Since the MPFA method uses sub-edge or sub-face fluxes to allow
for local flux elimination, we considered the lowest order Brezzi–Douglas–Marini method, BDM1

[14], which has similar velocity degrees of freedom. For example, the BDM1 velocity space on
quadrilaterals has a linear trace on each edge, thus two degrees of freedom per edge. We introduced a
special quadrature rule for the velocity mass matrix, reducing it to a block-diagonal form, with blocks
corresponding to the mesh vertices. As a result, the velocities could be eliminated, leading to a cell-
centered system for the pressures. A closely related method on simplicial elements is proposed in
[16]. An alternative approach on quadrilaterals is developed in [30] using a broken Raviart-Thomas
space with a piecewise constant trace on each edge. The analyses in [48] and [30] on quadrilaterals are
for the symmetric version of the MPFA method and require for optimal convergence that the elements
are O(h2)-perturbations of parallelograms. The numerical studies in [3] confirm these theoretical
results. In [31], the non-symmetric version of the MPFA method is studied and convergence is shown
for general quadrilaterals. A non-symmetric MFD method on polyhedral elements that reduces to a
cell-centered pressure system using an MPFA-type velocity elimination is developed and analyzed in
[35].

In this paper we develop the MFMFE method on hexahedral elements. The method is designed
to handle full tensor coefficients. The construction follows the approach in [48]. We consider the the
BDM1 spaces on hexahedra. The BDM spaces were defined on bricks in [13] and we will refer to
them as the BDDF spaces. Here we use their extension to hexahedra via the Piola transformation.
We further enhance the BDDF1 space in the following way. The original BDDF1 velocity space on
bricks has a linear normal velocity trace on each element face, thus three degrees of freedom per face.
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The MPFA construction requires four sub-face fluxes, one associated with each vertex of the face.
We enhance the BDDF1 velocity space by adding six curl basis functions. The resulting space has
bilinear normal traces on the faces, thus four degrees of freedom per face. We then formulate a mixed
finite element method using the enhanced BDDF1 spaces on hexahedra and a special trapezoidal-
based quadrature rule that allows for a local elimination of the velocities. The quadrature rule couples
only velocity degrees of freedom associated with the same mesh vertex, leading to a block-diagonal
mass matrix with 12×12 blocks corresponding to the mesh vertices. Solving the local linear systems
allows for eliminating the 12 velocities in terms of the cell centered pressures in the 8 elements that
share the vertex. The resulting system for the pressure is symmetric and positive definite and has a 27
point stencil.

The well-posedness and error analysis of the method are based on combining MFE analysis tools
with quadrature error analysis. The error analysis requires approximation properties for RT0 and
BDDF1 spaces on hexahedra. While such properties on quadrilaterals are well understood, see e.g.
[44, 15, 45, 6], there is very limited analysis available for hexahedra. It was observed in [36] that
the RT0 velocity space does not contain the space of constant vectors on general hexahedra. As a
result certain restrictive assumptions on the elements are needed to establish satisfactory approxima-
tion properties. Here we prove first order approximation in the H(div)-norm for RT0 and BDDF1 on
elements that are O(h2)-perturbations of parallelepipeds. Under an additional regularity assumption,
second order approximation in the L2-norm is shown for BDDF1. These results are established via
mapping to the reference element and require careful bounds for the Piola transformation on hexahe-
dra. We then prove first order convergence for the MFMFE pressure in the L2-norm and the velocity
in the H(div)-norm. We also employ a duality argument to establish second order convergence for
the pressure at the cell centers under the additional regularity assumption. The theoretical results are
verified numerically. We show that the geometry restriction on the elements is not just an artifact
of the analysis, as we observe deterioration in the convergence order when the element regularity
is reduced. We also compare the MFMFE method to the EMFE method and show that the former
outperforms the latter on discontinuous coefficients and rough grids, as predicted by the theory.

The rest of the paper is organized as follows. The method is developed in section 2. Error analysis
of the velocity and the pressure is given in sections 3 and 4, respectively. Numerical experiments are
presented in section 5.

2 Definition of the method

2.1 Preliminaries

We consider the second order elliptic problem written as a system of two first order equations,

u = −K∇p in Ω, (2.1)

∇ · u = f in Ω, (2.2)

p = g on ΓD, (2.3)

u · n = 0 on ΓN , (2.4)

where Ω ⊂ R3 is a polyhedral domain with a Lipschitz continuous boundary ∂Ω = ΓD ∪ ΓN ,
ΓD ∩ ΓN = ∅, measure(ΓD) > 0, n is the outward unit normal on ∂Ω, and K is a symmetric,
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uniformly positive definite tensor satisfying, for some 0 < k0 ≤ k1 <∞,

k0ξ
T ξ ≤ ξTK(x)ξ ≤ k1ξ

T ξ ∀x ∈ Ω ∀ξ ∈ R3. (2.5)

In flow in porous media modeling, p is the pressure, u is the Darcy velocity, and K represents the
permeability divided by the viscosity. The choice of boundary conditions is made for the sake of
simplicity. More general boundary conditions can also be treated. We assume that the source f ∈
L2(Ω) and the boundary data g ∈ H1/2(ΓD) (see the notation below).

Throughout this paper, C denotes a generic positive constant that is independent of the discretiza-
tion parameter h. For a domain G ⊂ R3, the L2(G) inner product and norm for scalar and vector
valued functions are denoted (·, ·)G and ‖·‖G, respectively. The norms and seminorms of the Sobolev
spaces W k,p(G), k ∈ R, p > 0 are denoted by ‖ · ‖k,p,G and | · |k,p,G, respectively. The norms and
seminorms of the Hilbert spaces Hk(G) are denoted by ‖ · ‖k,G and | · |k,G, respectively. We omit G
in the subscript if G = Ω. For a section of the domain or element boundary S ⊂ R2 we write 〈·, ·〉S
and ‖ · ‖S for the L2(S) inner product (or duality pairing) and norm, respectively. For a tensor-valued
function M , let ‖M‖α = maxi,j ‖Mij‖α for any norm ‖ · ‖α. The natural space for the velocity is

H(div; Ω) = {v ∈ (L2(Ω))3 : ∇ · v ∈ L2(Ω)}

equipped with the norm
‖v‖div = (‖v‖2 + ‖∇ · v‖2)1/2.

Let
V = {v ∈ H(div; Ω) : v · n = 0 on ΓN}, W = L2(Ω).

The weak formulation of (2.1)–(2.4) is: find u ∈ V and p ∈W such that

(K−1u,v) = (p,∇ · v) − 〈g,v · n〉ΓD
, v ∈ V, (2.6)

(∇ · u, w) = (f, w), w ∈W. (2.7)

It is well known [15, 39] that (2.6)–(2.7) has a unique solution.

2.2 A finite element mapping

Let Th be a finite element partition of Ω consisting of hexahedra, where h = maxE∈Th
diam(E).

We assume that Th is shape regular and quasi-uniform [20]. For any element E ∈ Th there exists a
trilinear bijection mapping FE : Ê → E where Ê is the reference cube. Denote the Jacobian matrix
byDFE and let JE = |det(DFE)|. Denote the inverse mapping by F−1

E , its Jacobian matrix byDF−1
E ,

and let JF−1

E
= |det(DF−1

E )|. We have that

DF−1
E (x) = (DFE)−1(x̂), JF−1

E
(x) =

1

JE(x̂)
.

The reference element Ê is the unit cube with vertices r̂1 = (0, 0, 0)T , r̂2 = (1, 0, 0)T , r̂3 =
(1, 1, 0)T , r̂4 = (0, 1, 0)T , r̂5 = (0, 0, 1)T , r̂6 = (1, 0, 1)T , r̂7 = (1, 1, 1)T , and r̂8 = (0, 1, 1)T .
Denote by ri = (xi, yi, zi)

T , i = 1, . . . , 8, the corresponding vertices of element E as shown in
Figure 1. The outward unit normal vectors to the faces of E and Ê are denoted by ni and n̂i,
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Figure 1: Trilinear hexahedral mapping.

i = 1, . . . , 6, respectively. We will also use the notation ne and n̂ê for the outward unit normals on
faces e and ê, respectively. The trilinear mapping FE is given by

FE(r̂)

= r1 (1 − x̂)(1 − ŷ)(1 − ẑ) + r2 x̂(1 − ŷ)(1 − ẑ) + r3 x̂ŷ(1 − ẑ) + r4 (1 − x̂)ŷ(1 − ẑ)

+ r5 (1 − x̂)(1 − ŷ)ẑ + r6 x̂(1 − ŷ)ẑ + r7 x̂ŷẑ + r8 (1 − x̂)ŷẑ

= r1 + r21x̂+ r41ŷ + r51ẑ + (r34 − r21)x̂ŷ + (r65 − r21)x̂ẑ + (r85 − r41)ŷẑ

+ ((r21 − r34) − (r65 − r78))x̂ŷẑ,

(2.8)

where rij = ri − rj . We note that the elements can have non-planar faces. Let φ̂(x̂), x̂ = (x̂, ŷ, ẑ)T ,
be defined on Ê and let φ = φ̂ ◦ F−1

E . Using the classical formula ∇φ = (DF−1
E )T ∇̂φ̂, it is easy to

see that for any face ei ⊂ ∂E

ni =
1

|ei|
JE(DF−1

E )T n̂i. (2.9)

It is also easy to see that the mapping definition (2.8) and the shape-regularity and quasiuniformity of
the grids imply that

‖DFE‖0,∞,Ê ≤ Ch, ‖JE‖0,∞,Ê ≤ Ch3, ‖DF−1
E ‖0,∞,E ≤ Ch−1,

and ‖JF−1

E
‖0,∞,E ≤ Ch−3 ∀E ∈ Th.

(2.10)

2.3 Mixed finite element spaces

Let Vh ×Wh be the lowest order BDDF1 MFE spaces on hexahedra [14, 13, 15]. On the reference
unit cube these spaces are defined as

V̂(Ê) = P1(Ê)3 + r0 curl(0, 0, x̂ŷẑ)T + r1 curl(0, 0, x̂ŷ2)T + s0 curl(x̂ŷẑ, 0, 0)T

+ s1 curl(ŷẑ2, 0, 0)T + t0 curl(0, x̂ŷẑ, 0)T + t1 curl(0, x̂2ẑ, 0)T

= P1(Ê)3 + r0(x̂ẑ,−ŷẑ, 0)
T + r1(2x̂ŷ,−ŷ

2, 0)T + s0(0, x̂ŷ,−x̂ẑ)
T

+ s1(0, 2ŷẑ,−ẑ
2)T + t0(−x̂ŷ, 0, ŷẑ)

T + t1(−x̂
2, 0, 2x̂ẑ)T ,

Ŵ (Ê) = P0(Ê),

(2.11)
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where ri, si, and ti, i = 0, 1, are real constants and Pk denotes the space of polynomials of degree
≤ k. Note that the curl terms above have been added so that

∇̂ · V̂(Ê) = Ŵ (Ê), and ∀ v̂ ∈ V̂(Ê), ∀ ê ⊂ ∂Ê, v̂ · n̂ê ∈ P1(ê).

There are other possibilities for augmenting P1(Ê)3 to achieve the above properties [15]. The degrees
of freedom for V̂(Ê) can be chosen to be the values of v̂ · n̂ê at any three points on each face ê
[14, 13, 15].

The BDDF1 spaces on any hexahedral element E ∈ Th are defined via the transformations

v ↔ v̂ : v =
1

JE
DFEv̂ ◦ F−1

E , w ↔ ŵ : w = ŵ ◦ F−1
E , (2.12)

where the Piola transformation is used for the velocity space. Under this transformation, the normal
components of the velocity vectors on the faces are preserved. Moreover [15],

∀ v̂ ∈ V̂(Ê), ∀ ŵ ∈ Ŵ (Ê), (∇ · v, w)E = (∇̂ · v̂, ŵ)Ê and 〈v · ne, w〉e = 〈v̂ · n̂ê, ŵ〉ê.
(2.13)

Note that (2.13) implies, using (2.9),

v · ne =
1

|e|
v̂ · n̂ê, ∇ · v =

(
1

JE
∇̂ · v̂

)
◦ F−1

E (x). (2.14)

It is clear that ∇ · v|E 6= constant, which leads to certain technical difficulties in the analysis.
The BDDF1 spaces on Th are given by

Vh = {v ∈ V : v|E ↔ v̂, v̂ ∈ V̂(Ê) ∀E ∈ Th},

Wh = {w ∈W : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê) ∀E ∈ Th}.
(2.15)

In [13], where cubic grids were considered, a MFE projection operator was defined, which here we
use as a reference element projection operator. Let Π̂ : (H1(Ê))3 → V̂(Ê) satisfy

∀ ê ⊂ ∂Ê, 〈(Π̂q̂ − q̂) · n̂ê, p̂1〉ê = 0 ∀ p̂1 ∈ P1(ê). (2.16)

Using the Piola transformation, we define a projection operator Π from V ∩ (H 1(Ω))3 onto Vh

satisfying on each element E
Πq ↔ Π̂q, Π̂q = Π̂q̂. (2.17)

Using (2.14) and (2.17), it is easy to see that Πq ·n is continuous across element faces, so it is in Vh,
and that it satisfies

(∇ · (Πq − q), w) = 0 ∀w ∈Wh. (2.18)

Similarly, one can see that Πq · n = 0 on ΓN if q · n = 0 on ΓN . Details of these arguments can be
found in [15, 45, 6, 48].

We will also use the projection operator onto the lowest order Raviart-Thomas spaces on hexahe-
dra [44, 38, 37, 15]. The RT0 spaces are defined on the unit cube as

V̂0(Ê) =




α1 + β1x̂
α2 + β2ŷ
α3 + β3ẑ


 , Ŵ 0(Ê) = P0(Ê). (2.19)

6



It holds that ∇̂ · V̂0(Ê) = Ŵ 0(Ê) and v̂ · n̂ê ∈ P0(ê). The degrees of freedom of V̂0(Ê) are the
values of v̂ · n̂ê at the midpoints of the six faces. The projection operator Π̂0 : (H1(Ê))3 → V̂0(Ê)
satisfies

∀ ê ⊂ ∂Ê, 〈(Π̂0q̂ − q̂) · n̂ê, p̂0〉ê = 0 ∀ p̂0 ∈ P0(ê). (2.20)

The spaces V0
h and W 0

h on Th and the projection operator Π0 : V ∩ (H1(Ω))3 → V0
h are defined

similarly to the case of BDDF1 spaces. Note that V0
h ⊂ Vh, W 0

h = Wh,

(∇ · (Π0q − q), w) = 0 ∀w ∈W 0
h , (2.21)

∇ · v = ∇ · Π0v ∀v ∈ Vh, (2.22)

and
‖Π0v‖ ≤ C‖v‖ ∀v ∈ Vh. (2.23)

2.3.1 An enhanced BDDF1 space

The MPFA elimination procedure requires on each face one velocity degree of freedom to be asso-
ciated with each vertex. Since the BDDF1 space Vh has only three degrees of freedom per face, we
need to augment it with six more degrees of freedom. In doing so, we need to preserve the constant
divergence, so we add six more curl terms. These terms should also preserve the linear independence
of the shape functions and the continuity of the normal component across element faces. As in the
definition of the original BDDF1 space, there is more than one way to achieve this. We define

V̂∗(Ê) = V̂(Ê) + r2 curl(0, 0, x̂2ẑ)T + r3 curl(0, 0, x̂2ŷẑ)T + s2 curl(x̂ŷ2, 0, 0)T

+ s3 curl(x̂ŷ2ẑ, 0, 0)T + t2 curl(0, ŷẑ2, 0)T + t3 curl(0, x̂ŷẑ2, 0)T

= V̂(Ê) + r2(0,−2x̂ẑ, 0)T + r3(x̂
2ẑ,−2x̂ŷẑ, 0)T + s2(0, 0,−2x̂ŷ)T

+ s3(0, x̂ŷ
2,−2x̂ŷẑ)T + t2(−2ŷẑ, 0, 0)T + t3(−2x̂ŷẑ, 0, ŷẑ2),

Ŵ (Ê) = P0(Ê),

(2.24)

We have
∇̂ · V̂∗(Ê) = Ŵ (Ê) and ∀ v̂ ∈ V̂∗(Ê), ∀ ê ⊂ ∂Ê, v̂ · n̂ê ∈ Q1(ê), (2.25)

where Q1 is the space of bilinear functions.

Lemma 2.1 The dimension of V̂∗(Ê) is 24.

Proof: It is enough to show that the 12 vectors added to P1(Ê)3 in (2.11) and (2.24) are linearly
independent. Denote these vectors by vi, i = 1, . . . , 12, and assume that

∑12

i=1
αivi = 0. The first

component of this equation implies that α1 = α6 = α8 = α11 = α12 = 0. The second component
implies that α2 = α3 = α4 = α7 = α10 = 0. The third component implies that α5 = α9 = 0. 2

The following lemma establishes degrees of freedom for V̂∗(Ê).

Lemma 2.2 Any vector v̂ ∈ V̂∗(Ê) is uniquely determined by the moments

∀ ê ⊂ ∂Ê, 〈v̂ · n̂ê, p̂1〉ê, p̂1 ∈ Q1(ê). (2.26)
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Figure 2: Degrees of freedom and basis functions for the enhanced BDDF1 velocity space on hexa-
hedra.

Proof: Let v̂ ∈ V̂∗(Ê). Using (2.11) and (2.24), the three components of v̂ are

v̂1 = p1(x̂, ŷ, ẑ) + r0x̂ẑ + 2r1x̂ŷ − t0x̂ŷ − t1x̂
2 + r3x̂

2ẑ − 2t2ŷẑ − 2t3x̂ŷẑ,

v̂2 = p2(x̂, ŷ, ẑ) − r0ŷẑ − r1ŷ
2 + s0x̂ŷ + 2s1ŷẑ − 2r2x̂ẑ − 2r3x̂ŷẑ + s3x̂ŷ

2,

v̂3 = p3(x̂, ŷ, ẑ) − s0x̂ẑ − s1ẑ
2 + t0ŷẑ + 2t1x̂ẑ − 2s2x̂ŷ − 2s3x̂ŷẑ + t3ŷẑ

2,

where pi(x̂, ŷ, ẑ) = aix̂ + biŷ + ciẑ + di, i = 1, 2, 3. Let us assume that all moments (2.26) are
zero. Since v̂ · n̂ê ∈ Q1(ê), we conclude that v̂ · n̂ê = 0 for all faces ê. For the face x̂ = 0 we have
v̂1 = 0, which implies b1 = c1 = d1 = t2 = 0. For the face x̂ = 1 we also have v̂1 = 0, which
implies a1 − t1 = 0, 2r1 − t0 = 0, r0 + r3 = 0, and t3 = 0. Similarly, v̂2 = 0 at ŷ = 0, implying
a2 = c2 = d2 = r2 = 0, and v̂2 = 0 at ŷ = 1, implying b2 − r1 = 0, s0 + s3 = 0, −r0 + 2s1 = 0,
and r3 = 0. Finally, v̂3 = 0 at ẑ = 0 implies a3 = b3 = d3 = s2 = 0, and v̂3 = 0 at ẑ = 1 implies
c1 − s1 = 0, −s0 + 2t1 = 0, t0 + t3 = 0, and s3 = 0. It is easy to see that the above equations imply
ai = bi = ci = di = 0, i = 1, 2, 3, and ri = si = ti = 0, i = 0, 1, 2, 3; hence v̂ = 0. 2

Since dimQ1(ê) = 4, the number of moments in (2.26) is 24, equal to dim V̂∗(Ê). Therefore
these moments can be used to define the degrees of freedom of V̂∗(Ê). In particular, these can be the
values of v̂ · n̂ê at four different points (such that no three points are colinear) on each of the six faces.
We choose these points to be the vertices of ê, see Figure 2. This choice gives certain orthogonalities
for the quadrature rule introduced in the next section.

Lemma 2.2 implies that there exists a unique projection operator Π̂∗ : (H1(Ê))3 → V̂∗(Ê) such
that

∀ ê ⊂ ∂Ê, 〈(Π̂∗q̂ − q̂) · n̂ê, p̂1〉ê = 0 ∀ p̂1 ∈ Q1(ê). (2.27)

The divergence theorem and (2.27) imply that

(∇̂ · (Π̂∗q̂ − q̂), ŵ)Ê = 0 ∀ ŵ ∈ Ŵ (Ê). (2.28)

The enhanced BDDF1 spaces V∗
h ×Wh on Th are defined as in (2.15). The projection operator Π∗

from V ∩ (H1(Ω))3 onto V∗
h is defined via the Piola transformation, as in (2.17).

Lemma 2.3 The projection operator Π∗ defined by (2.27) and (2.17) is an operator from V ∩
(H1(Ω))3 onto V∗

h. Moreover,

(∇ · (Π∗q − q), w) = 0 ∀w ∈Wh. (2.29)
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Proof: Let q ∈ (H1(Ω))3. To prove that Π∗q ∈ H(div; Ω), we need to show that Π∗q · n is
continuous across element faces.

First, note that (2.25) and (2.14) imply that on any face e

Π∗q · ne ∈ Q1(e) (2.30)

Let e be a face shared by elements E1 and E2. Let nEi
e be the outward unit normal to ∂Ei on e. Let êi

be the face of Ê corresponding to e in the mapping FEi
: Ê → Ei. Using (2.13), (2.17), and (2.27),

we have, for all p1 ∈ Q1(e),

〈Π∗qEi
· nEi

e , p1〉e = 〈Π̂∗qEi
· n̂êi

, p̂1〉êi
= 〈Π̂∗q̂Ei

· n̂êi
, p̂1〉êi

= 〈q̂Ei
· n̂êi

, p̂1〉êi
.

Since q̂E1
|ê1

= q̂E2
|ê2

and n̂ê1
= −n̂ê2

, the above equation and (2.30) imply that

Π∗qE1
· nE1

e + Π∗qE2
· nE2

e = 0,

therefore Π∗q ∈ H(div; Ω). A similar argument shows that if q · n = 0 on ΓN , then Π∗q · n = 0 on
ΓN .

Finally, (2.29) follows from (2.28) and (2.13). 2

2.4 A quadrature rule

The integration on any element E is performed by mapping to the reference element Ê. The quadra-
ture rule is defined on Ê. Using the definition (2.12), (2.15) of the finite element spaces we have for
q, v ∈ V∗

h
∫

E
K−1q · v dx =

∫

Ê
K̂−1 1

JE
DFEq̂ ·

1

JE
DFEv̂ JE dx̂

=

∫

Ê

1

JE
DF T

E K̂
−1DFE q̂ · v̂ dx̂ ≡

∫

Ê
K−1q̂ · v̂ dx̂,

where
K = JEDF

−1
E K̂(DF−1

E )T . (2.31)

It is easy to see that (2.10) and (2.5) imply that

‖K‖
0,∞,Ê ∼ h‖K‖0,∞,E , ‖K−1‖

0,∞,Ê ∼ h−1‖K−1‖0,∞,E (2.32)

and
c0k0h ξ

T ξ ≤ ξTK(x̂)ξ ≤ c1k1h ξ
T ξ ∀x̂ ∈ Ê ∀ξ ∈ R3, (2.33)

where the notation a ∼ b means that there exist positive constants c0 and c1 independent of h such
that c0b ≤ a ≤ c1b. The quadrature rule on an element E is defined as

(K−1q,v)Q,E ≡ (K−1q̂, v̂)Q̂,Ê ≡
|Ê|

8

8∑

i=1

K−1(r̂i)q̂(r̂i) · v̂(r̂i), (2.34)

which is the trapezoidal quadrature rule on Ê. The global quadrature rule is defined as

(K−1q,v)Q ≡
∑

E∈Th

(K−1q,v)Q,E .

9



The corner vector q̂(r̂i) is uniquely determined by its normal components to the three faces that
share that vertex. Since we chose the velocity degrees of freedom on any face ê to be the normal
components at the vertices of ê, there are three degrees of freedom associated with each corner r̂i and
they uniquely determine the corner vector q̂(r̂i). More precisely,

q̂(r̂i) =
3∑

j=1

(q̂ · n̂ij)(r̂i)n̂ij ,

where n̂ij , j = 1, . . . , 3, are the outward unit normal vectors to the three faces sharing r̂i, and
(q̂·n̂ij)(r̂i) are the velocity degrees of freedom associated with this corner. Denote the basis functions
associated with r̂i by v̂ij , j = 1, . . . , 3, see Figure 2, i.e.,

(v̂ij · n̂ij)(r̂i) = 1, (v̂ij · n̂ik)(r̂i) = 0, k 6= j, and (v̂ij · n̂lk)(r̂l) = 0, l 6= i, k = 1, . . . , 3.

The quadrature rule (2.34) couples only the three basis functions associated with a corner. For exam-
ple,

(K−1v̂11, v̂11)Q̂,Ê =
K−1

11 (r̂1)

8
, (K−1v̂11, v̂12)Q̂,Ê =

K−1
21 (r̂1)

8
,

(K−1v̂11, v̂13)Q̂,Ê =
K−1

31 (r̂1)

8
, and (K−1v̂11, v̂ij)Q̂,Ê = 0 ∀ ij 6= 11, 12, 13.

(2.35)

Using (2.12) and (2.31), (2.34) implies

(K−1q,v)Q,E =
1

8

8∑

i=1

K−1(ri)JE(ri)q(ri) · v(ri), (2.36)

which is related to an inner product used in the mimetic finite difference methods [28, 35].
Denote the element quadrature error by

σE(K−1q,v) ≡ (K−1q,v)E − (K−1q,v)Q,E (2.37)

and define the global quadrature error by σ(K−1q,v)|E = σE(K−1q,v). Similarly, denote the
quadrature error on the reference element by

σ̂Ê(K−1q̂, v̂) ≡ (K−1q̂, v̂)Ê − (K−1q̂, v̂)Q̂,Ê (2.38)

The following lemma will be used to bound the quadrature error.

Lemma 2.4 For any q̂ ∈ V̂∗(Ê),

(q̂ − Π̂0q̂, v̂0)Q̂,Ê = 0 for all constant vectors v̂0. (2.39)

Proof: On any face ê, if the degrees of freedom of q̂ are q̂ê,i, i = 1, . . . , 4, then (2.20) and an
application of the trapezoidal quadrature rule imply that Π̂0q̂ · n̂ê = (q̂ê,1 + q̂ê,2 + q̂ê,3 + q̂ê,4)/4. The
assertion of the lemma follows from a simple calculation, using (2.34). 2
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2.5 The multipoint flux mixed finite element method

Let P0 : L2(∂Ω) → V0
h · n be the L2-orthogonal projection onto the space of piecewise constant

functions on the trace of Th on ∂Ω:

∀ϕ ∈ L2(Ω), 〈ϕ− P0ϕ,v · n〉∂Ω = 0 ∀v ∈ V0
h. (2.40)

In the method defined below, the Dirichlet boundary data g is incorporated into the scheme as P0g.
As we see in the analysis, this is necessary for optimal approximation of the boundary condition term.

The method is defined as follows: find uh ∈ V∗
h and ph ∈Wh such that

(K−1uh,v)Q = (ph,∇ · v) − 〈P0g,v · n〉ΓD
, v ∈ V∗

h, (2.41)

(∇ · uh, w) = (f, w), w ∈Wh. (2.42)

Following the terminology from [48], we call the method (2.41)–(2.42) a multipoint flux mixed finite
element method (MFMFE), due to its relation to the MPFA method.

Before we prove existence and uniqueness of a solution to (2.41)–(2.42), we show that the quadra-
ture rule (2.34) produces a coercive bilinear form. We have the following auxiliary result.

Lemma 2.5 If E ∈ Th and q ∈ (L2(E))3, then

‖q‖E ∼ h−
1

2 ‖q̂‖Ê . (2.43)

Proof: Using (2.12), we have
∫

E
q · q dx =

∫

Ê

1

JE
DFEq̂ ·

1

JE
DFEq̂ JE dx̂

and ∫

Ê
q̂ · q̂ dx̂ =

∫

E

1

JF−1

E

DF−1
E q ·

1

JF−1

E

DF−1
E qJF−1

E
dx.

The result follows from the bounds (2.10). 2

Lemma 2.6 The bilinear form (K−1q,v)Q is an inner product in V∗
h and (K−1q,q)

1/2

Q is a norm
in V∗

h equivalent to ‖ · ‖.

Proof: Let q, v ∈ V∗
h. Clearly (K−1q,v)Q is linear and symmetric. It is easy to check that

|Ê|

8

8∑

i=1

q̂(r̂i) · q̂(r̂i) ∼ ‖q̂‖2

Ê
. (2.44)

Combining (2.34), (2.33), (2.44), and (2.43), we conclude that

(K−1q,q)Q,E ∼ ‖q‖2
E , (2.45)

which implies the assertion of the lemma. 2

We continue with the solvability of the method (2.41)–(2.42).
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Figure 3: Interactions of velocity the degrees of freedom in MFMFE

Lemma 2.7 The multipoint flux mixed finite element method (2.41)–(2.42) has a unique solution.

Proof: Since (2.41)–(2.42) is a square system, it is enough to show uniqueness. Let f = 0, g = 0,
and take v = uh and w = ph. This implies that (K−1uh,uh)Q = 0, and therefore uh = 0, due to
(2.45). We now consider the auxiliary problem

∇ ·ψ = ph in Ω, ψ = g1 on ∂Ω, (2.46)

where g1 ∈ (H1/2(∂Ω))3 is constructed to satisfy
∫
∂Ω

g1 · n =
∫
Ω
ph and g1 · n = 0 on ΓN . More

precisely, we take g1 =
(∫

Ω
ph

)
ϕn, where ϕ ∈ C0(∂Ω) is such that

∫
Ω
ϕ = 1 and ϕ = 0 on ΓN .

Clearly ‖g1‖1/2,∂Ω ≤ C‖ph‖. It is known [25] that the above problem has a solution satisfying

‖ψ‖1 ≤ C(‖ph‖ + ‖g1‖1/2,∂Ω) ≤ C‖ph‖. (2.47)

The regularity of ψ guarantees that Π∗ψ is well defined. The choice v = Π∗ψ ∈ V∗
h in (2.41) gives

0 = (ph,∇ · Π∗ψ) = (ph,∇ ·ψ) = ‖ph‖
2,

therefore ph = 0. 2

2.6 Reduction to a cell-centered stencil

In this section we describe how the multipoint flux mixed finite element method reduces to a system
for the pressures at the cell centers. Any interior vertex r is shared by 8 elements E1, . . . , E8; see
Figure 3 (the lower back left element E4 and the upper front right element E6 are not labeled to avoid
cluttering the image). We denote the faces that share the vertex by e1, . . . , e12, and the velocity basis
functions on these faces that are associated with the vertex by v1, . . . ,v12, i.e., (vi · ni)(r) = 1,
where ni is the unit normal on face ei. Let the corresponding values of the normal components of uh

be u1, . . . , u12. Note that for clarity the normal velocities on Figure 3 are drawn at a distance from
the vertex. The three images depict the normal velocities in directions x, y, and z, respectively.

Since the quadrature rule (K−1·, ·)Q localizes the basis functions interaction, see (2.35), taking
v = v1 in (2.41), for example, will lead to coupling u1 only with u5, u8, u9, and u12. Similarly, u2

will be coupled only with u6, u7, u9, and u12, etc. Therefore, the 12 equations obtained from taking
v = v1, . . . ,v12 form a linear system for u1, . . . , u12.

Proposition 2.1 The 12 × 12 local linear system described above is symmetric and positive definite.
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Proof: The system is obtained by taking v = v1, . . . ,v12 in (2.41). On the left hand side we have

(K−1uh,vi)Q =
12∑

j=1

uj(K
−1vj ,vi)Q ≡

k∑

j=1

aijuj , i = 1, . . . , 12.

Using Lemma 2.6 we conclude that the matrix Ā = {aij} is symmetric and positive definite. 2

We use the notation in the example in Figure 3 to describe the local linear system. For example,
taking v = v9 in (2.41), we obtain on the left hand side of the equation

(K−1uh,v9)Q = (K−1uh,v9)Q,E1
+ (K−1uh,v9)Q,E2

. (2.48)

Using (2.34), the first term on the right above gives

(K−1uh,v9)Q,E1
= (K−1ûh, v̂9)Q̂,Ê

=
∑

i

ui(K
−1v̂i, v̂9)Q̂,Ê

=
1

8
(K−1

11,E1
|e9|u9 + K−1

12,E1
|e5|u5 + K−1

13,E1
|e1|u1)|e9|,

(2.49)

where we have used (2.14) for the last equality and K−1
ij,E1

denotes a component of K−1 in E1 evalu-
ated at the vertex of Ê corresponding to vertex r in the mapping FE1

. Similarly, the second term in
(2.48) is

(K−1uh,v9)Q,E2
=

1

8
(K−1

11,E2
|e9|u9 + K−1

12,E2
|e6|u6 + K−1

13,E2
|e2|u2)|e9|. (2.50)

For the right hand side of (2.41) we write

(ph,∇ · v9) = (ph,∇ · v9)E1
+ (ph,∇ · v9)E2

= 〈ph,v9 · nE1
〉e9

+ 〈ph,v9 · nE2
〉e9

= 〈p̂h, v̂9 · n̂E1
〉ê9

+ 〈p̂h, v̂9 · n̂E2
〉ê9

=
1

4
(p1 − p2)|e9|.

(2.51)

For the last equality we used the trapezoidal rule for the integrals on ê9, which is exact since p̂h is
constant and v̂9 · n̂ is bilinear. Combining (2.48)–(2.51), we obtain

(
1

2
K−1

11,E1
+

1

2
K−1

11,E2

)
|e9|u9 +

1

2
K−1

12,E1
|e5|u5 +

1

2
K−1

12,E2
|e6|u6

+
1

2
K−1

13,E1
|e1|u1 +

1

2
K−1

13,E2
|e2|u2 = p1 − p2.

The other 11 equations of the local system for u1, . . . , u12 are obtained similarly.
The solution of the local 12 × 12 linear system allows for the velocities ui, i = 1, . . . , 12 to be

expressed in terms of the cell-centered pressures pi, i = 1, . . . , 8. Substituting these expressions into
the mass conservation equation (2.42) leads to a cell-centered stencil. The pressure in each element
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E is coupled with the pressures in the elements that share a vertex with E, i.e., we obtain a 27 point
stencil.

For any vertex on the boundary ∂Ω, the size of the local linear system equals the number of non-
Neumann (interior or Dirichlet) faces that share that vertex. In that case solving the local system leads
to an expression of the velocities in terms of the element pressures and the boundary data.

We have the following important property of the cell-centered finite difference (CCFD) algebraic
system.

Proposition 2.2 The CCFD system for the pressure obtained from (2.41)–(2.42) using the procedure
described above is symmetric and positive definite.

Proof: The proof follows the argument from Proposition 2.8 in [48]. We present it here for
completeness. Denote the bases of V∗

h and Wh by {vi} and {wj}, respectively. The algebraic system
arising from (2.41)–(2.42) is of the saddle point form

(
A BT

B 0

)(
U
P

)
=

(
G
F

)
, (2.52)

where Aij = (K−1vi,vj)Q and Bij = −(∇ · vi, wj). The matrix A is symmetric and positive
definite, as it is block-diagonal with symmetric and positive definite blocks, see Proposition 2.1. The
elimination of U leads to a CCFD system for P with a symmetric and positive semidefinite matrix

BA−1BT .

It is clear from the proof of Lemma 2.7 thatBTP = 0 implies P = 0. ThereforeBA−1BT is positive
definite. 2

3 Velocity error analysis

3.1 Auxiliary estimates

For the convergence analysis we need to impose a restriction on the element geometry. This is due
to the reduced approximation properties of the MFE spaces on general hexahedra, as shown below.
The numerical experiments in Section 5 confirm that the deterioration of convergence on rough grids
is not just a theoretical artifact. This is similar to the behavior observed on general quadrilaterals
[48, 3].

Recall that, since the mapping FE is trilinear, the faces of an element E may be non-planar. We
will refer to the faces as generalized quadrilaterals.

Definition. A generalized quadrilateral with vertices r1, . . . , r4 is called a h2-parallelogram if

‖r34 − r21‖R3 ≤ Ch2,

where ‖ · ‖R3 is the Euclidean vector norm in R3.
In the above we assume that the vertices are numbered consecutively along the boundary, which

implies that r34 and r21 are opposite sides.
Definition. A hexahedral element is called a h2-parallelepiped if all of its faces are h2-parallelograms.
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It is clear from (2.8) that the above condition implies that ∂2FE

∂x̂∂ŷ , ∂2FE

∂x̂∂ẑ , and ∂2FE

∂ŷ∂ẑ are O(h2).
Definition. An h2-parallelepiped is called regular if

‖(r21 − r34) − (r65 − r78)‖ ≤ Ch3.

The above condition implies that ∂3FE

∂x̂∂ŷ∂ẑ is O(h3). Note that this quantity is zero for hexahedra
with flat faces.

We have the following bounds on the derivatives of the mapping FE .

Lemma 3.1 The bounds

|DFE |j,∞,Ê ≤ Chj+1,

∣∣∣∣
1

JE
DFE

∣∣∣∣
j,∞,Ê

≤ Chj−2, and |JEDF
−1
E |j,∞,Ê ≤ Chj+2 (3.1)

hold for j = 0 if E is a general hexahedron, for j = 0, 1 if E is a h2-parallelepiped, and for
j = 0, 1, 2 if E is a regular h2-parallelepiped.

Proof: For j = 0 all three bounds follow immediately from (2.10). We have

DFE = [r21 + (r34 − r21)ŷ + (r65 − r21)ẑ + ((r21 − r34) − (r65 − r78))ŷẑ;

r41 + (r34 − r21)x̂+ (r85 − r41)ẑ + ((r21 − r34) − (r65 − r78))x̂ẑ;

r51 + (r65 − r21)x̂+ (r85 − r41)ŷ + ((r21 − r34) − (r65 − r78))x̂ŷ],

(3.2)

which implies |DF |
1,∞,Ê ≤ Ch2 if E is a h2-parallelepiped and |DF |

2,∞,Ê ≤ Ch3 if E is a regular
h2-parallelepiped.

To show the second inequality in (3.1), we note that, for a h2-parallelepiped, a simple calculation
gives

JE = a+ b(x̂+ ŷ + ẑ) + c(x̂ŷ + x̂ẑ + ŷẑ) + d(x̂, ŷ, ẑ), (3.3)

where a, b, and c are constants,

|a| ≤ Ch3, |b| ≤ Ch4, |c| ≤

{
Ch4, h2 − parall.
Ch5, regular h2 − parall.

, |d(x̂, ŷ, ẑ)| ≤ Ch5.

Then (
1

JE

)

x̂

= −
b+ c(ŷ + ẑ) + dx̂

J2
E

,

with similar expressions for the other partial derivatives, which implies
∣∣∣ 1

JE

∣∣∣
1,∞,Ê

≤ Ch−2, using

the bound on JE in (2.10). Furthermore,
(

1

JE

)

x̂ŷ

= −
(c+ dx̂ŷ)J

2
E − 2JE(b+ c(ŷ + ẑ) + dx̂)2

J4
E

,

with similar expressions for the other second derivatives, which implies
∣∣∣ 1

JE

∣∣∣
2,∞,Ê

≤ Ch−1 if E is a

regular h2-parallelepiped. We now have
∣∣∣∣

1

JE
DFE

∣∣∣∣
1,∞,Ê

≤

∣∣∣∣
1

JE

∣∣∣∣
1,∞,Ê

|DFE |0,∞,Ê +

∣∣∣∣
1

JE

∣∣∣∣
0,∞,Ê

|DFE |1,∞,Ê ≤ Ch−1,
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if E is a h2-parallelepiped, and
∣∣∣∣

1

JE
DFE

∣∣∣∣
2,∞,Ê

≤

∣∣∣∣
1

JE

∣∣∣∣
2,∞,Ê

|DFE |0,∞,Ê +

∣∣∣∣
1

JE

∣∣∣∣
1,∞,Ê

|DFE |1,∞,Ê +

∣∣∣∣
1

JE

∣∣∣∣
0,∞,Ê

|DFE |2,∞,Ê

≤ C,

if E is a regular h2-parallelepiped.
To show the third inequality in (3.1), using the cofactor formula for the inverse of a matrix, we

have that JEDF
−1
E = CT

E , where CE is the cofactor matrix ofDFE . It is easy to see that each element
of CE is of the form

α+ β(x̂, ŷ, ẑ) + γ(x̂, ŷ, ẑ), (3.4)

where α is a constant, β is a linear function, and, for an h2-parallelepiped,

|α| ≤ Ch2, |β| ≤ Ch3, and |γ| ≤

{
Ch3, h2 − parallelepiped
Ch4, regular h2 − parallelepiped

.

This implies
|JEDF

−1
E |

1,∞,Ê ≤ Ch3,

if E is a h2-parallelepiped, and
|JEDF

−1
E |

2,∞,Ê ≤ Ch4,

if E is a regular h2-parallelepiped. 2

The above bounds allow us to control the norms of the reference element velocity vectors and
permeability.

Lemma 3.2 For all q ∈ Hj(E), there exists a constant C independent of h such that the bound

|q̂|j,Ê ≤ Chj+1/2‖q‖j,E (3.5)

holds for j = 0 if E is a general hexahedron, for j = 0, 1 if E is a h2-parallelepiped, and for
j = 0, 1, 2 if E is a regular h2-parallelepiped. Furthermore, on general hexahedra,

|q̂|
1,Ê ≤ Ch1/2‖q‖1,E (3.6)

Proof: The bound for j = 0 was shown in Lemma 2.5, see (2.43). We proceed with the cases
j = 1 and 2. Let q̃(x̂) = q ◦ FE(x̂) and note that (2.12) implies that q̂(x̂) = JEDF

−1
E q̃(x̂). Using a

change of variables, the chain rule, and (3.1), it is easy to see that

|q̃|j,Ê ≤ Chj−3/2‖q‖j,E , j = 0, 1, 2, (3.7)

where the above equation holds for j = 0, 1 on general hexahedra and for j = 2 on h2-parallelepipeds.
We now have, for a h2-parallelepiped,

|q̂|
1,Ê ≤ |JEDF

−1
E |

1,∞,Ê |q̃|0,Ê + |JEDF
−1
E |

0,∞,Ê |q̃|1,Ê

≤ C(h3h−3/2|q|0,E + h2h−1/2|q|1,E) ≤ Ch3/2‖q‖1,E ,
(3.8)

16



where we have used (3.1) and (3.7) in the second inequality. Similarly, ifE is a regular h2-parallelepiped,

|q̂|
2,Ê ≤ |JEDF

−1
E |

2,∞,Ê |q̃|0,Ê + |JEDF
−1
E |

1,∞,Ê |q̃|1,Ê + |JEDF
−1
E |

0,∞,Ê |q̃|2,Ê

≤ C(h4h−3/2|q|0,E + h3h−1/2|q|1,E + h2h1/2|q|2,E) ≤ Ch5/2‖q‖2,E .

The proof of (3.6) follows from (3.8), except that on general hexahedra we only have

|JEDF
−1
E |

1,∞,Ê ≤ Ch2.

The above bound follows from (3.4), noting that on general hexahedra |β| + |γ| ≤ Ch2. 2

Lemma 3.3 There exists a constant C independent of h such that the bound

|K−1|j,∞,Ê ≤ Chj−1‖K−1‖j,∞,E (3.9)

holds for j = 0 if E is a general hexahedron, for j = 0, 1 if E is a h2-parallelepiped, and for
j = 0, 1, 2 if E is a regular h2-parallelepiped.

Proof: The bound for j = 0 was already shown above, see (2.32). Recall that

K−1 =
1

JE
DF T

E K̂
−1DFE .

Using a change of variables, the chain rule, and (3.1), it is easy to see that

|K̂−1|j,∞,Ê ≤ Chj |K−1|j,∞,E , (3.10)

where the above equation holds for j = 0, 1 on general hexahedra and for j = 2 on h2-parallelepipeds.
For a h2-parallelepiped we have

|K−1|
1,∞,Ê

≤

∣∣∣∣
1

JE
DF T

E

∣∣∣∣
1,∞,Ê

|K̂−1|
0,∞,Ê |DFE |0,∞,Ê +

∣∣∣∣
1

JE
DF T

E

∣∣∣∣
0,∞,Ê

|K̂−1|
1,∞,Ê |DFE |0,∞,Ê

+

∣∣∣∣
1

JE
DF T

E

∣∣∣∣
0,∞,Ê

|K̂−1|
0,∞,Ê |DFE |1,∞,Ê

≤ C(h−1h|K−1|0,∞,E + h−2hh|K−1|1,∞,E + h−2h2|K−1|0,∞,E) ≤ C‖K−1‖1,∞,E ,

where we have used (3.1) and (3.10) in the second inequality. Similarly, if E is a regular h2-
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parallelepiped,

|K−1|
2,∞,Ê ≤

(∣∣∣∣
1

JE
DF T

E

∣∣∣∣
2,∞,Ê

|DFE |0,∞,Ê +

∣∣∣∣
1

JE
DF T

E

∣∣∣∣
1,∞,Ê

|DFE |1,∞,Ê

+

∣∣∣∣
1

JE
DF T

E

∣∣∣∣
0,∞,Ê

|DFE |2,∞,Ê

)
|K̂−1|

0,∞,Ê

+

(∣∣∣∣
1

JE
DF T

E

∣∣∣∣
1,∞,Ê

|DFE |0,∞,Ê +

∣∣∣∣
1

JE
DF T

E

∣∣∣∣
0,∞,Ê

|DFE |1,∞,Ê

)
|K̂−1|

1,∞,Ê

+

∣∣∣∣
1

JE
DF T

E

∣∣∣∣
0,∞,Ê

|DFE |0,∞,Ê |K̂
−1|

2,∞,Ê

≤ C
(
(h+ h−1h2 + h−2h3)|K−1|0,∞,E + (h−1h+ h−2h2)h|K−1|1,∞,E

+h−2hh2|K−1|2,∞,E

)

≤ Ch‖K−1‖2,∞,E .

2

We continue with establishing approximation properties for the mixed projection operators Π∗

and Π0 on hexahedra. We note that the original BDDF paper [13] and RT papers [44, 38, 37] did not
consider hexahedral elements.

Lemma 3.4 There exists a constant C independent of h such that

‖q − Π∗q‖ + ‖q − Π0q‖ ≤ Ch‖q‖1 on h2 − parallelepipeds, (3.11)

‖q − Π∗q‖ ≤ Ch2‖q‖2 on regular h2 − parall., (3.12)

‖∇ · (q − Π∗q)‖ + ‖∇ · (q − Π0q)‖ ≤ Ch‖∇ · q‖1 on h2 − parallelepipeds. (3.13)

Proof: We present the proof for Π∗. The arguments for Π0 are similar. Using (2.43) and (3.5), we
have for every element E

‖q − Π∗q‖E ≤ Ch−1/2‖q̂ − Π̂∗q̂‖Ê ≤ Ch−1/2|q̂|j,Ê ≤ Chj‖q‖j,E ,

where j = 1 for a h2-parallelepiped and j = 2 for a regular h2-parallelepiped. In the second
inequality above we used that Π̂∗ preserves the constant and linear vectors and applied the Bramble-
Hilbert lemma [20]. Summation over the elements completes the proof of (3.11) and (3.12).

For (3.13), using (2.14), we obtain
∫

E
(∇ · (q − Π∗q))2 dx =

∫

Ê

1

J2
E

(∇̂ · (q̂ − Π̂∗q̂))2JE dx̂ ≤ Ch−3|∇̂ · q̂|2
1,Ê
, (3.14)

where we have used (2.10), (2.28), and the Bramble-Hilbert lemma in the last inequality. Furthermore,
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using (3.3),

|∇̂ · q̂|
1,Ê = |JE∇̂ · q|

1,Ê

≤ C(‖JE‖∞,Ê |∇̂ · q|
1,Ê + |JE |1,∞,Ê‖∇̂ · q‖Ê)

≤ C(h3|∇̂ · q|
1,Ê + h4‖∇̂ · q‖Ê)

≤ C(h3h h−3/2|∇ · q|1,E + h4h−3/2‖∇ · q‖E

≤ Ch5/2‖∇ · q‖1,E ,

(3.15)

where the next to last inequality follows from a change of variables back to E. A combination of
(3.14) and (3.15) and a summation over the elements completes the proof of (3.13). 2

Remark 3.1 The above result also applies to the BDDF projection operator Π from V ∩ (H 1(Ω))3

onto Vh on hexahedra, which extends the theory developed in [13] to such elements.

Let Q̂ be the L2(Ê)-orthogonal projection onto Ŵ (Ê), satisfying for any ϕ̂ ∈ L2(Ê),

(ϕ̂− Q̂ ϕ̂, ŵ)Ê = 0, ∀ ŵ ∈ Ŵ (Ê).

Let Qh : L2(Ω) →Wh be the projection operator satisfying for any ϕ ∈ L2(Ω),

Qhϕ = Q̂ϕ̂ ◦ F−1
E on all E.

It is easy to see that, due to (2.13),

(ϕ−Qhϕ,∇ · v) = 0, ∀v ∈ V∗
h. (3.16)

Using a scaling argument similar to (3.14)–(3.15), we can show that on general hexahedra

‖ϕ−Qhϕ‖ ≤ Ch|ϕ|1. (3.17)

For a scalar, vector, or tensor valued function ϕ, let ϕ̄ be its L2(E)-projection onto the space of
constant functions on E. It is known that [20]

‖ϕ− ϕ̄‖E ≤ Ch|ϕ|1,E . (3.18)

In the analysis we will make use of the following inverse inequality.

Lemma 3.5 For all elements E there exists a constant C independent of h such that

‖q‖j,E ≤ Ch−1‖q‖j−1,E , j = 1, 2, ∀q ∈ V∗
h(E). (3.19)

Proof: The proof is based on a scaling argument and using the standard inverse inequality on Ê.
Let q̃(x̂) = q ◦ FE(x̂). For j = 1 we have, using a change of variables and (2.10),

|q|1,E ≤ ‖DF−1
E ‖0,∞,E‖JE‖

1/2

0,∞,Ê
|q̃|

1,Ê ≤ C‖DF−1
E ‖0,∞,E‖JE‖

1/2

0,∞,Ê
‖q̃‖Ê

≤ C‖DF−1
E ‖0,∞,E‖JE‖

1/2

0,∞,Ê
‖JFE

−1‖
1/2

0,∞,E‖q‖E ≤ Ch−1‖q‖E .
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For j = 2, we note that, [20], Chapter 4.3,

|DF−1
E |1,∞,E ≤ |DFE |1,∞,Ê‖DF

−1
E ‖3

0,∞,E ≤ Ch−2,

using (2.10) and (3.1) on general hexahedra in the last inequality. Therefore, using a change of
variables,

|q|2,E ≤ (‖DF−1
E ‖2

0,∞,E |q̃|2,Ê + |DF−1
E |1,∞,E |q̃|1,Ê)‖JE‖

1/2

0,∞,Ê

≤ Ch−2‖JE‖
1/2

0,∞,Ê
(|q̃|

1,Ê + |q̃|
2,Ê)

≤ Ch−2‖JE‖
1/2

0,∞,Ê
|q̃|

1,Ê

≤ Ch−2‖JE‖
1/2

0,∞,Ê
‖DFE‖0,∞,Ê‖JFE

−1‖
1/2

0,∞,E |q|1,E

≤ Ch−1|q|1,E .

2

We next establish some continuity bounds for Π∗ and Π0.

Lemma 3.6 There exists a constant C independent of h such that

‖Π∗q‖j,E ≤ C‖q‖j,E ∀q ∈ (Hj(E))3, j = 1, 2, (3.20)

where the above holds for j = 1 on h2-parallelepipeds and j = 1, 2 on regular h2-parallelepipeds.
Furthermore, on h2-parallelepipeds,

‖Π0q‖1,E ≤ C‖q‖1,E ∀q ∈ (H1(E))3, (3.21)

and on general hexahedra,

‖Π∗q‖div,E + ‖Π0q‖div,E ≤ C‖q‖1,E ∀q ∈ (H1(E))3. (3.22)

Proof: Using (3.19) we have

|Π∗q|1,E = |Π∗q − q̄|1,E ≤ Ch−1‖Π∗q − q̄‖E

≤ Ch−1(‖Π∗q − q‖E + ‖q − q̄‖E) ≤ C‖q‖1,E ,

using (3.11) and (3.18) for the last inequality.
Similarly, taking q1 to be the L2(E)-projection of q onto the space of linear vectors on E, we

obtain

|Π∗q|2,E = |Π∗q − q1|2,E ≤ Ch−2‖Π∗q − q1‖E

≤ Ch−2(‖Π∗q − q‖E + ‖q − q1‖E) ≤ C‖q‖2,E ,

using (3.12) and the approximation property ‖q − q1‖E ≤ Ch2|q|2,E [20] for the last inequality.
The bound ‖Π∗q‖E ≤ C‖q‖1,E for a h2-parallelepiped follows from the approximation property

(3.11). This completes the proof of (3.20). The proof of (3.21) is similar.
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We continue with the proof of (3.22). For a general hexahedron E, using (2.14) and (2.10), we
obtain, similarly to (3.14)–(3.15),

‖∇ · Π∗q‖E ≤ Ch
−3/2

E ‖∇̂ · Π̂∗q̂‖Ê ≤ Ch
−3/2

E ‖∇̂ · q̂‖Ê

= Ch
−3/2

E ‖JE∇̂ · q‖Ê ≤ C‖∇ · q‖E ,
(3.23)

where we have also used that ∇̂ · Π̂∗q̂ is the L2(Ê)-projection of ∇̂ · q̂ (see (2.28)) for the second
inequality. Next, using (2.43), the Bramble-Hilbert lemma, and (3.6),

‖Π∗q‖E ≤ Ch−1/2‖Π̂∗q̂‖Ê ≤ Ch−1/2(‖Π̂∗q̂ − q̂‖Ê + ‖q̂‖Ê)

≤ Ch−1/2(|q̂|
1,Ê + ‖q̂‖Ê) ≤ C‖q‖1,E .

(3.24)

A combination of (3.23) and (3.23) implies that

‖Π∗q‖div,E ≤ C‖q‖1,E .

The argument for ‖Π0q‖div,E is the same. 2

For the permeability tensor K we will use the following notation. Let W α
Th

consist of functions ϕ
such that ϕ|E ∈ Wα(E) for all E ∈ Th and ‖ϕ‖α,E is uniformly bounded, independently of h. Let
|||ϕ|||α = maxE∈Th

‖ϕ‖α,E .
We conclude the subsection with an approximation result needed in the analysis.

Lemma 3.7 On h2-parallelepipeds, if K−1 ∈ W 1,∞
Th

, then there exists a constant C independent of
h such that for all v ∈ Vh

|(K−1Π∗u,v − Π0v)Q| ≤ Ch‖u‖1‖v‖. (3.25)

Proof: On any element E we have

(K−1Π∗u,v − Π0v)Q,E = (K−1Π̂∗û, v̂ − Π̂0v̂)Q̂,Ê

= ((K−1 −K−1)Π̂∗û, v̂ − Π̂0v̂)Q̂,Ê + (K−1Π̂∗û, v̂ − Π̂0v̂)Q̂,Ê .
(3.26)

Using the Bramble-Hilbert lemma and (2.45), we have for the first term on the right above

|((K−1 −K−1)Π̂∗û, v̂ − Π̂0v̂)Q̂,Ê | ≤ C|K−1|
1,∞,Ê‖Π̂∗û‖Ê‖v̂‖Ê

≤ C‖K−1‖1,∞,Eh
1/2‖u‖1,Eh

1/2‖v‖E ,
(3.27)

where we have used (3.9), (3.5), and (3.20) for the last inequality. Using (2.39), we have for the last
term in (3.26)

|(K−1Π̂∗û, v̂ − Π̂0v̂)Q̂,Ê | = |(K−1(Π̂∗û − Π̂∗û), v̂ − Π̂0v̂)Q̂,Ê |

≤ C‖K−1‖
0,∞,Ê |Π̂∗û|1,Ê‖v̂‖Ê

≤ Ch−1‖K−1‖0,∞,Eh
3/2‖u‖1,Eh

1/2‖v‖E ,

(3.28)

where we have also used the Bramble-Hilbert lemma, (3.9), (3.5), and (3.20). The proof is completed
by combining (3.26)–(3.28). 2
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3.2 First-order convergence for the velocity

Theorem 3.1 On h2-parallelepipeds, if K−1 ∈ W 1,∞
Th

, then, for the velocity uh of the MFMFE
method (2.41)–(2.42), there exists a constant C independent of h such that

‖u − uh‖ ≤ Ch‖u‖1, (3.29)

‖∇ · (u − uh)‖ ≤ Ch‖∇ · u‖1. (3.30)

Proof: The following error equations are obtained by subtracting the numerical scheme (2.41)–
(2.42) from the variational formulation (2.6)–(2.7):

(K−1(Π∗u − uh),v)Q = (Qhp− ph,∇ · v) − 〈g, (v − Π0v) · n〉ΓD

− (K−1u,v) + (K−1Π∗u,v)Q, v ∈ V∗
h, (3.31)

(∇ · (Π∗u − uh), w) = 0, w ∈Wh, (3.32)

where we have used the orthogonality property of P0 (2.40) to rewrite the error term on ΓD. For the
last two terms in (3.31) we write

− (K−1u,v) + (K−1Π∗u,v)Q = −(K−1u,v − Π0v) − (K−1(u − Π∗u),Π0v)

− (K−1Π∗u,Π0v) + (K−1Π∗u,Π0v)Q + (K−1Π∗u,v − Π0v)Q

(3.33)

For the first term on the right above we have

−(K−1u,v − Π0v) − 〈g, (v − Π0v) · n〉ΓD
= 0, (3.34)

which follows by taking v − Π0v as a test function in the variational formulation (2.6) and using
(2.22). Using (3.11) and (2.23), the second term on the right in (3.33) can be bounded as

|(K−1(u − Π∗u),Π0v)| ≤ Ch‖K−1‖0,∞‖u‖1‖v‖. (3.35)

The third and forth term on the right in (3.33) represent the quadrature error, which can be bounded
by Lemma 3.8 as

|σ(K−1Π∗u,Π0v)| ≤ Ch|||K−1|||1,∞‖u‖1‖v‖, (3.36)

using also (3.20) and (2.23). The last term on the right in (3.33) is bounded in Lemma 3.7.
We next note that

∇ · (Π∗u − uh) = 0, (3.37)

since, due to (2.14), we can choose w = JE∇ · (Π∗u − uh) ∈ Wh on any element E in (3.32) and
JE is uniformly positive. Taking v = Π∗u − uh in the error equation (3.31) above and combining
(3.33)–(3.36) with (2.45) and (3.25), we obtain

‖Π∗u − uh‖ ≤ Ch|||K−1|||1,∞‖u‖1. (3.38)

The assertion of the theorem follows from (3.38), (3.37), (3.11), and (3.13). 2

The following lemma provides a bound on the quadrature error.
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Lemma 3.8 On h2-parallelepipeds, if K−1 ∈ W 1,∞
Th

, then there exists a constant C independent of
h such that for all q ∈ V∗

h and for all v ∈ V0
h

|σ(K−1q,v)| ≤ C
∑

E∈Th

h‖K−1‖1,∞,E‖q‖1,E‖v‖E . (3.39)

Proof: On any element E we have

σE(K−1q,v) = σ̂Ê(K−1q̂, v̂) = σ̂Ê((K−1 −K−1)q̂, v̂) + σ̂Ê(K−1q̂, v̂). (3.40)

Using the Bramble-Hilbert lemma, the first term on the right above can be bounded as

|σ̂Ê((K−1 −K−1)q̂, v̂)| ≤ C|K−1|
1,∞,Ê‖q̂‖Ê‖v̂‖Ê ≤ C‖K−1‖1,∞,Eh

1/2‖q‖Eh
1/2‖v‖E , (3.41)

where we used (3.9) and (3.5) for the last inequality. For the last term in (3.40) we have that
σ̂Ê(K−1q̂0, v̂) = 0 for any constant vector q̂0, since the trapezoidal quadrature rule (·, ·)Q̂,Ê is
exact for linear functions. Hence the Bramble-Hilbert lemma implies

|σ̂Ê(K−1q̂, v̂)| ≤ C‖K−1‖
0,∞,Ê |q̂|1,Ê‖v̂‖Ê .

Using (3.9) and (3.5), we obtain

|σ̂Ê(K−1q̂, v̂)| ≤ Ch−1‖K−1‖0,∞,Eh
3/2‖q‖1,Eh

1/2‖v‖E . (3.42)

The above bound, together with (3.40)–(3.41), implies

|σE(K−1q,v)| ≤ Ch‖K−1‖1,∞,E‖q‖1,E‖v‖E .

The proof is completed by summing over all elements E. 2

4 Error estimates for the pressure

We first employ a standard inf-sup argument to prove optimal convergence for the pressure on h2-
parallelepipeds. Then, using a duality argument, we establish superconvergence for the pressure at
the element centers of mass on regular h2-parallelepipeds.

4.1 First-order convergence for the pressure

Theorem 4.1 On h2-parallelepipeds, if K−1 ∈ W 1,∞
Th

, then, for the pressure ph of the MFMFE
method (2.41)–(2.42), there exists a constant C independent of h such that

‖p− ph‖ ≤ Ch(‖u‖1 + ‖p‖1).

Proof: We first note that the RT0 spaces V0
h ×W 0

h on hexahedra satisfy the inf-sup condition

inf
06=w∈W 0

h

sup
06=v∈V0

h

(∇ · v, w)

‖v‖div‖w‖
≥ β, (4.1)
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where β is a positive constant independent of h. The proof of (4.1) uses a standard approach [15, 26].
In particular, for a given w ∈ W 0

h we consider the auxiliary problem (2.46) with ph replaced by w
and recall that there exists a solution ψ ∈ H1(Ω) that satisfies the regularity bound (2.47).

Taking v = Π0ψ ∈ V0
h, and using the properties of Π0 (2.21) and (3.22), as well as (2.47), we

have
(∇ · v, w)

‖v‖div‖w‖
=

(∇ ·ψ, w)

‖Π0ψ‖div‖w‖
≥

1

C

‖w‖2

‖ψ‖1‖w‖
≥

1

C
≡ β.

Using (4.1) and (3.31), we obtain

‖Qhp− ph‖

≤
1

β
sup

06=v∈V0

h

(∇ · v,Qhp− ph)

‖v‖div

=
1

β
sup

06=v∈V0

h

(K−1(Π∗u − uh),v)Q − (K−1(Π∗u − u),v) + σ(K−1Π∗u,v)

‖v‖div

≤
C

β
h|||K−1|||1,∞‖u‖1,

where we have used the Cauchy-Schwarz inequality, (3.38), (3.11), (3.39), and (3.20) in the last
inequality. The assertion of the theorem follows from an application of the triangle inequality and
(3.17). 2

4.2 Second-order convergence for the pressure

In this section we establish second-order convergence for the pressure on regular h2-parallelepipeds.
The following bound on the quadrature error will be used in the superconvergence analysis.

Lemma 4.1 On regular h2-parallelepipeds, if K−1 ∈ W 2,∞
Th

. then for all q ∈ V∗
h and v ∈ V0

h,
there exists a positive constant C independent of h such that

|σ(K−1q,v)| ≤ C
∑

E∈Th

h2‖K−1‖2,∞,E‖q‖2,E‖v‖1,E . (4.2)

Proof: For any element E we have σE(K−1q,v) = σ̂Ê(K−1q̂, v̂). Since the trapezoidal quadra-
ture rule is exact for linear functions, the Peano Kernel Theorem [43] implies

σ̂Ê(K−1q̂, v̂) =

∫

Ê

(
ϕ(x̂)

∂2

∂x̂2
(K−1q̂ · v̂)(x̂, 0, 0) + ϕ(ŷ)

∂2

∂ŷ2
(K−1q̂ · v̂)(0, ŷ, 0)

+ ϕ(ẑ)
∂2

∂ẑ2
(K−1q̂ · v̂)(0, 0, ẑ) + ψ(x̂, ŷ)

∂2

∂x̂∂ŷ
(K−1q̂ · v̂)(x̂, ŷ, 0)

+ψ(x̂, ẑ)
∂2

∂x̂∂ẑ
(K−1q̂ · v̂)(x̂, 0, ẑ) + ψ(ŷ, ẑ)

∂2

∂ŷ∂ẑ
(K−1q̂ · v̂)(0, ŷ, ẑ)

)
dx̂ dŷ dẑ,

(4.3)

where ϕ and ψ are bounded functions. Therefore, using that v̂ is linear,

|σ̂Ê(K−1q̂, v̂)| ≤ C((|K−1|
1,∞,Ê‖q̂‖Ê + ‖K−1‖

0,∞,Ê |q̂|1,Ê)|v̂|
1,Ê

+ (|K−1|
2,∞,Ê‖q̂‖Ê + |K−1|

1,∞,Ê |q̂|1,Ê + ‖K−1‖
0,∞,Ê |q̂|2,Ê)‖v̂‖Ê).
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Using (3.9) and (3.5), we obtain

|σE(K−1q,v)| ≤ Ch2‖K−1‖2,∞,E‖q‖2,E‖v‖1,E .

Summing over all elements completes the proof. 2

The following result establishes superconvergence of the pressure at the cell centers. The proof
is similar the argument of Theorem 4.3 in [48], but uses bounds for regular h2-parallelepipeds estab-
lished in the previous sections.

Theorem 4.2 Assume that the partition Th consists of regular h2-parallelepipeds, K ∈ W 1,∞
Th

,
K−1 ∈ W 2,∞

Th
, and the elliptic regularity (4.5) below holds. Then, for the pressure ph of the multi-

point flux mixed finite element method (2.41)–(2.42), there exists a constant C independent of h such
that

‖Qhp− ph‖ ≤ Ch2‖u‖2. (4.4)

Proof: The proof is based on a duality argument. Let φ be the solution to

−∇ ·K∇φ = −(Qhp− ph) in Ω,

φ = 0 on ΓD,

−K∇φ · n = 0 on ΓN .

We assume that this problem is H2-elliptic regular:

‖φ‖2 ≤ C‖Qhp− ph‖. (4.5)

Sufficient conditions for (4.5) can be found in [27, 34]. For example, (4.5) holds if the components
of K ∈ C0,1(Ω), ∂Ω is smooth enough, and either ΓD or ΓN is empty.

It is convenient to rewrite the error equation (3.31) in the form

(K−1(Π∗u − uh),v)Q = (Qhp− ph,∇ · v) + (K−1(Π∗u − u),v)

− σ(K−1Π∗u,v) − 〈g, (v − Π0v) · n〉ΓD
.

(4.6)

Take v = Π0K∇φ ∈ Vh in (4.6) to get

‖Qhp− ph‖
2 = (Qhp− ph,∇ · Π0K∇φ)

= (K−1(Π∗u − uh),Π0K∇φ)Q − (K−1(Π∗u − u),Π0K∇φ)

+ σ(K−1Π∗u,Π0K∇φ). (4.7)

For the second term on the right above, (3.12) and (3.21) imply that

|(K−1(Π∗u − u),Π0K∇φ)| ≤ Ch2‖K−1‖0,∞|||K|||1,∞‖u‖2‖φ‖2. (4.8)

Using (4.2), (3.20), and (3.21), the last term on the right in (4.7) can be bounded as

σ(K−1Π∗u,Π0K∇φ) ≤ Ch2|||K−1|||2,∞|||K|||1,∞‖u‖2‖φ‖2. (4.9)
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The first term on the right in (4.7) can be manipulated as follows:

(K−1(Π∗u − uh),Π0K∇φ)Q,E

= ((K−1 −K
−1

)(Π∗u − uh),Π0K∇φ)Q,E + (K
−1

(Π∗u − uh),Π0(K −K)∇φ)Q,E

+ (K
−1

(Π∗u − uh),Π0K(∇φ−∇φ1))Q,E + (K
−1

(Π∗u − uh),Π0K∇φ1)Q,E ,

(4.10)

where φ1 is a linear approximation to φ such that (see [12])

‖φ− φ1‖E ≤ Ch2‖φ‖2,E , ‖φ− φ1‖1,E ≤ Ch‖φ‖2,E . (4.11)

Since K−1 −K
−1

= K
−1

(K −K)K−1, using (2.5) we have that for each x ∈ Ω

|(K−1 −K
−1

)ξ · η| ≤
1

k2
0

‖K −K‖R3×3‖ξ‖R3‖η‖R3 ∀ξ, η ∈ R3,

where ‖ · ‖R3×3 is the matrix norm induced by the Euclidean vector norm ‖ · ‖R3 . Therefore, using
(3.18) and (3.21), the first term on the right in (4.10) can be bounded as

|(K−1 −K
−1

)(Π∗u − uh),Π0K∇φ)Q,E | ≤
C

k2
0

h‖K‖2
1,∞,E‖Π∗u − uh‖E‖φ‖2,E . (4.12)

To bound the second and third terms on the right in (4.10), first note that for any ψ ∈ (H 1(E))3

‖Π0ψ‖E ≤ ‖Π0ψ −ψ‖E + ‖ψ‖E ≤ C(h‖ψ‖1,E + ‖ψ‖E).

Then we have

|(K
−1

(Π∗u − uh),Π0(K −K)∇φ)Q,E | ≤
C

k0

h‖K‖1,∞,E‖Π∗u − uh‖E‖φ‖2,E (4.13)

and

|(K
−1

(Π∗u − uh),Π0K(∇φ−∇φ1))Q,E | ≤
C

k0

h‖K‖0,∞,E‖Π∗u − uh‖E‖φ‖2,E , (4.14)

where we have also used (4.11) in the last inequality. For the last term in (4.10) we have

(K
−1

(Π∗u − uh),Π0K∇φ1)Q,E = (Π∗u − uh,∇φ1)Q,E = (Π̂∗û − ûh, ∇̂φ̂1)Q̂,Ê , (4.15)

using that ∇φ1 = (DF−1
E )T ∇̂φ̂1 in the second equality. Note that φ̂1 is a trilinear function. Let φ̃1

be the linear part of φ̂1. We have

(Π̂∗û − ûh, ∇̂φ̂1)Q̂,Ê = (Π̂∗û − ûh, ∇̂(φ̂1 − φ̃1))Q̂,Ê + (Π̂∗û − ûh, ∇̂φ̃1)Q̂,Ê . (4.16)

Using (2.8), a direct calculation shows that

∇̂(φ̂1 − φ̃1) = (DFE(x̂) − [r21, r41, r51])
T ∇φ1,

where DFE is defined in (3.2). Using that E is a h2-parallelepiped, we have

|(Π̂∗û − ûh, ∇̂(φ̂1 − φ̃1))Q̂,Ê | ≤ Ch2‖Π̂∗û − ûh‖Ê‖∇φ1‖Ê

≤ Ch2h1/2‖Π∗u − uh‖Eh
−3/2‖∇φ1‖E

≤ Ch‖Π∗u − uh‖E‖φ‖2,E ,

(4.17)
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where we have used (3.5) in the second inequality. For the last term in (4.16), using (2.39) and the
fact that the trapezoidal rule is exact for linear functions, we obtain

(Π̂∗û − ûh, ∇̂φ̃1)Q̂,Ê = (Π̂0(Π̂∗û − ûh), ∇̂φ̃1)Q̂,Ê = (Π̂0(Π̂∗û − ûh), ∇̂φ̃1)Ê

= (Π̂0(Π̂∗û − ûh), ∇̂(φ̃1 − φ̂1)Ê + (Π̂0(Π̂∗û − ûh), ∇̂φ̂1)Ê .
(4.18)

We bound the first term on the right in (4.18) in a way similar to (4.17):

|(Π̂0(Π̂∗û − ûh), ∇̂(φ̃1 − φ̂1)Ê | ≤ Ch‖Π∗u − uh‖E‖φ‖2,E . (4.19)

For the second term on the right in (4.18) we have

(Π̂0(Π̂∗û − ûh), ∇̂φ̂1)Ê = (Π0(Π∗u − uh),∇φ1)E . (4.20)

Combining (4.10)–(4.20), summing over all elements, and using (3.38), we obtain

(K−1(Π∗u − uh),Π0K∇φ)Q = R+
∑

E∈Th

(Π0(Π∗u − uh),∇φ1)E (4.21)

where
|R| ≤ Ch2‖u‖1‖φ‖2. (4.22)

For the last term in (4.21), using the regularity of φ, (3.37), (2.22), and that (Π∗u − uh) · n = 0 on
ΓN and φ = 0 on ΓD, we obtain

∣∣∣∣∣∣
∑

E∈Th

(Π0(Π∗u − uh),∇φ1)E

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

E∈Th

(Π0(Π∗u − uh),∇(φ1 − φ))E

∣∣∣∣∣∣

≤ C
∑

E∈Th

‖Π∗u − uh‖E‖φ1 − φ‖1,E

≤ Ch2|||K−1|||1,∞‖u‖1‖φ‖2,

(4.23)

where we have also used (3.38) and (4.11). The proof of (4.4) is completed by combining (4.7)–(4.9)
and (4.21)–(4.23), and using (4.5). 2

Remark 4.1 Since |p(mE) − Qhp| ≤ Ch2, where mE is the center of mass of an element E, the
above theorem implies that

|||p− ph||| ≤ Ch2,

where |||ϕ||| =
(∑

E |E|ϕ(mE)2
)1/2.

5 Numerical experiments

In this section we provide several numerical experiments that confirm the theoretical results from the
previous sections. For all experiments, K is a full tensor with variable entries,

K =




x2 + (y + 2)2 0 cos (xy)
0 z2 + 2 sin (yz)

cos (xy) sin (yz) sin (y + 3)2


 .
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We solve a problem of type (2.1)–(2.3) on the with Dirichlet boundary conditions and known solution

p = x4y3 + x2 + yz2 + cos (xy) + sin (z) .

We present three examples with varying smoothness of the grids. In each example we test the conver-
gence of our method on 2k × 2k × 2k grids for k = 3, 4, 5, 6. To handle the large amount of memory
required in these computations, the problem domains are split into 8 equally partitioned subdomains
of size 2k × 2k × 2k for k = 2, 3, 4, 5 and the problem is solved in parallel. The discretization
errors and convergence rates at each level of refinement are provided for each example. The error
norms ‖p− ph‖, ‖u − uh‖, and ‖∇ · (u − uh)‖ are computed by an element-by-element trapezoid
quadrature rule. In addition, we report convergence for |||p − ph||| and |||u − uh|||, which represent an
approximation of the L2-norm obtained by an element-by-element midpoint quadrature rule. In the
tables below Rh

p , Rh
u, Rh

∇·u, R̃h
p , and R̃h

u represent the convergence rate between two refinements for
the errors ‖p− ph‖, ‖u − uh‖, ‖∇ · (u − uh)‖, |||p− ph|||, and |||u − uh|||, respectively; e.g.,

Rh
p =

log (
∥∥p− ph/2

∥∥ / ‖p− ph‖)

log (2)
.

In Example 1, we take the domain to be a C∞ map of the unit cube. The map is defined as

x = x̂+ 0.03 cos(3πx̂) cos(3πŷ) cos(3πẑ)

y = ŷ − 0.04 cos(3πx̂) cos(3πŷ) cos(3πẑ)

z = ẑ + 0.05 cos(3πx̂) cos(3πŷ) cos(3πẑ).

The computational grids on the different levels are defined by mapping uniform refinements of a
reference grid on the unit cube. More precisely, each element is defined via a trilinear map that
approximates locally the smooth map defined above. Due to the smoothness of the global map, the
elements are regular h2-parallelepipeds. The computed solution and its error on the second grid level
are shown in Figure 4. The convergence data is presented in Table 1. As predicted by the theory, we
observe first order convergence for the pressure, the velocity, and its divergence, as well as second
order convergence for the pressure at the cell centers. Moreover, the velocity also converges with
second order at the cell centers. In Table 1 we also report the convergence for the expanded mixed
finite element (EMFE) method. Since the grids are globally smooth, the MFMFE method and the
EMFE method perform in a comparable way.

In Example 2, we take the domain to be a random perturbation of an initial uniform 4 × 4 × 4
partition of the unit cube. More precisely, each grid point is moved randomly between −1/3 and
1/3 in each direction. The computational grids are uniform refinements of this initial rough grid.
The resulting elements are regular h2-parallelepipeds. Note that the non-smoothness of the grid
translates into a discontinuous reference permeability K, see (2.31). The computed solution and its
error on the second grid level are shown in Figure 5. The convergence data in Table 2 confirms the
theoretical results. In particular, we observe first order convergence for the pressure, the velocity,
and its divergence, as well as second order convergence for the pressure at the cell centers. As in the
smooth grids example, the velocity also exhibits superconvergence at the cell centers, although in this
case the rate is slightly reduced to O(h1.5). We again compare the MFMFE method to the EMFE
method. The computed EMFE solution and its error on the second grid level are shown in Figure 6.
The data for the EMFE method in Table 2 indicates reduced order convergence for the velocity, as
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Figure 4: 16×16×16 discretization on a smooth grid in Example 1: MFMFE solution (left), MFMFE
error (right).

Table 1: Discretization errors and convergence rates for Example 1.

MFMFE-Method

1/h ‖p − ph‖ Rh
p ‖u − uh‖ Rh

u
‖∇ · (u − uh)‖ Rh

∇·u |||p − ph||| R̃h
p |||u − uh||| R̃h

u

8 0.120E0 0.164E0 0.188E0 0.549E-2 0.508E-1
16 0.605E-1 1.0 0.834E-1 1.0 0.941E-1 1.0 0.182E-2 1.6 0.212E-1 1.3
32 0.304E-1 1.0 0.417E-1 1.0 0.470E-1 1.0 0.496E-3 1.9 0.610E-1 1.8
64 0.152E-1 1.0 0.208E-1 1.0 0.235E-1 1.0 0.127E-3 2.0 0.159E-1 1.9

EMFE-Method

1/h ‖p − ph‖ Rh
p ‖u − uh‖ Rh

u
‖∇ · (u − uh)‖ Rh

∇·u |||p − ph||| R̃h
p |||u − uh||| R̃h

u

8 0.120E0 0.177E0 0.188E0 0.594E-2 0.542E-1
16 0.606E-1 1.0 0.970E-1 0.8 0.941E-1 1.0 0.232E-2 1.4 0.231E-1 1.2
32 0.304E-1 1.0 0.500E-1 0.9 0.470E-1 1.0 0.696E-3 1.7 0.695E-1 1.7
64 0.152E-1 1.0 0.252E-1 1.0 0.235E-1 1.0 0.188E-3 1.9 0.192E-1 1.8
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Figure 5: 16×16×16 discretization on a rough grid in Example 2: MFMFE solution (left), MFMFE
error (right).

well as for the pressure and velocity at the cell centers. This is expected, as it is known that the EMFE
method suffers from reduction in accuracy on rough grids or discontinuous coefficients [4]. It can be
seen in Figure 6 that the velocity error for the EMFE method is quite large where the grid is rough.

In Example 3, the domain is the unit cube and the grids are defined by randomO (hs)-perturbations
of uniform refinements for s = 2, 1.5, and 1. The goal here is to study the dependence of the MFMFE
convergence rates on the regularity of the grids. The computed solution and its error on the second
grid level for case s = 1 are shown in Figure 7. The convergence data is given in Table 3. In the
case of O

(
h2
)
-perturbed refinements, the elements are regular h2-parallelepipeds and we observe

O (h)-convergence for ‖p− ph‖, ‖u− uh‖, and ‖∇ · (u − uh)‖, as well as O
(
h2
)
-convergence for

the pressure and the velocity at the cell centers. The pressure also converges with first order for
O(hs)-perturbed refinements when s < 2, but the optimal velocity convergence is lost, as well as
the superconvergence of the pressure and velocity in the discrete cell-centered L2-norms. Note that
the convergence deteriorates when the scale of the random perturbations is increased; no velocity
convergence is observed for O(h)-perturbed refinements.

In summary, the numerical experiments confirm the theoretical convergence results for the MFMFE
method. In addition, the MFMFE method performs favorably on rough grids compared to the EMFE
method, which suffers a reduction in the convergence rate.

Acknowledgments. The first and the third author were partially supported by the NSF grants DMS
0620402 and DMS 0813901 and the DOE grant DE-FG02-04ER25618. The second author was
partially supported by the NSF grant DMS 0618679 and the DOE grant DE-FG02-04ER25617. The
authors thank Guangri Xue for suggesting to use in the scheme the piecewise constant projection of
the boundary Dirichlet data.
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Figure 6: 16 × 16 × 16 discretization on a rough grid in Example 2: EMFE solution (left), EMFE
error (right).

Table 2: Discretization errors and convergence rates for Example 2.

MFMFE-Method

1/h ‖p − ph‖ Rh
p ‖u − uh‖ Rh

u
‖∇ · (u − uh)‖ Rh

∇·u |||p − ph||| R̃h
p |||u − uh||| R̃h

u

8 0.129E0 0.280E0 0.187E0 0.105E-1 0.895E-1
16 0.638E-1 1.0 0.125E0 1.1 0.937E-1 1.0 0.366E-2 1.5 0.374E-1 1.3
32 0.318E-1 1.0 0.590E-1 1.1 0.468E-1 1.0 0.107E-2 1.8 0.122E-1 1.6
64 0.159E-1 1.0 0.296E-1 1.0 0.234E-1 1.0 0.283E-3 1.9 0.410E-2 1.6

EMFE-Method

1/h ‖p − ph‖ Rh
p ‖u − uh‖ Rh

u
‖∇ · (u − uh)‖ Rh

∇·u |||p − ph||| R̃h
p |||u − uh||| R̃h

u

8 0.128E0 0.225E0 0.187E0 0.992E-2 0.965E-1
16 0.638E-1 1.0 0.129E0 0.8 0.937E-1 1.0 0.434E-2 1.1 0.536E-1 0.8
32 0.318E-1 1.0 0.708E-1 0.8 0.468E-1 1.0 0.170E-2 1.4 0.338E-1 0.7
64 0.159E-1 1.0 0.410E-1 0.8 0.234E-1 1.0 0.651E-3 1.4 0.258E-1 0.4
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Figure 7: 16 × 16 × 16 discretization on a random O(h) refinement in Example 3: MFMFE solution
(left), MFMFE error (right).

Table 3: Discretization errors and convergence rates for the MFMFE method in Example 3.

O
(
h2
)
-Refinements

1/h ‖p − ph‖ Rh
p ‖u − uh‖ Rh

u
‖∇ · (u − uh)‖ Rh

∇·u |||p − ph||| R̃h
p |||u − uh||| R̃h

u

8 0.118E0 0.104E0 0.190E0 0.549E-2 0.508E-1
16 0.584E-1 1.0 0.529E-1 1.0 0.958E-1 1.0 0.182E-2 2.0 0.212E-1 1.0
32 0.291E-1 1.0 0.265E-1 1.0 0.480E-1 1.0 0.496E-3 2.0 0.610E-1 1.0
64 0.146E-1 1.0 0.133E-1 1.0 0.240E-1 1.0 0.127E-3 2.0 0.159E-1 1.0

O
(
h1.5

)
-Refinements

1/h ‖p − ph‖ Rh
p ‖u − uh‖ Rh

u
‖∇ · (u − uh)‖ Rh

∇·u |||p − ph||| R̃h
p |||u − uh||| R̃h

u

8 0.119E0 0.170E0 0.191E0 0.538E-2 0.346E-1
16 0.587E-1 1.0 0.118E-1 0.5 0.961E-1 1.0 0.158E-2 1.8 0.266E-1 0.4
32 0.292E-1 1.0 0.816E-1 0.5 0.481E-1 1.0 0.507E-3 1.6 0.191E-1 0.5
64 0.146E-1 1.0 0.569E-1 0.5 0.240E-1 1.0 0.173E-3 1.5 0.138E-1 0.5

O (h)-Refinements

1/h ‖p − ph‖ Rh
p ‖u − uh‖ Rh

u
‖∇ · (u − uh)‖ Rh

∇·u |||p − ph||| R̃h
p |||u − uh||| R̃h

u

8 0.120E0 0.726E0 0.196E0 0.110E-1 0.100E-1
16 0.630E-1 1.0 0.155E+1 — 0.100E0 1.0 0.597E-2 0.9 0.112E-1 —
32 0.316E-1 1.0 0.692E-1 — 0.501E-1 1.0 0.391E-2 0.6 0.115E-1 —
64 0.161E-1 1.0 0.775E0 — 0.251E-1 1.0 0.327E-2 0.3 0.119E-1 —
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