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Abstract. We investigate mortar multiscale numerical methods for coupled Stokes and Darcy
flows with the Beavers–Joseph–Saffman interface condition. The domain is decomposed into a
series of subdomains (coarse grid) of either Stokes or Darcy type. The subdomains are discretized
by appropriate Stokes or Darcy finite elements. The solution is resolved locally (in each coarse
element) on a fine scale, allowing for non-matching grids across subdomain interfaces. Coarse
scale mortar finite elements are introduced on the interfaces to approximate the normal stress and
impose weakly continuity of the normal velocity. Stability and a priori error estimates in terms
of the fine subdomain scale h and the coarse mortar scale H are established for fairly general
grid configurations, assuming that the mortar space satisfies a certain inf-sup condition. Several
examples of such spaces in two and three dimensions are given. Numerical experiments are presented
in confirmation of the theory.

1. Introduction

Mathematical and numerical modeling of coupled Stokes and Darcy flows has become a topic of
significant interest in recent years. Such coupling occurs in many applications, including surface
water-groundwater interaction, flows through vuggy or fractured porous media, industrial filters,
fuel cells, and cardiovascular flows. The most commonly used model is based on the experimentally
derived Beavers–Joseph–Saffman interface condition [10, 55], a slip with friction condition for the
Stokes flow with a friction coefficient that depends on the permeability of the adjacent porous media.
Existence and uniqueness of a weak solution has been studied in [46, 24]. Numerous stable and
convergent numerical methods have been developed, see, e.g., [46, 24, 54, 29, 44, 28, 49, 32, 33] for
methods based on different numerical discretizations suitable for each region, and [47, 4, 19, 59, 45, 9]
for approaches employing unified finite elements. The full Beavers–Joseph condition was considered
in [20, 2]. A coupling of Stokes-Darcy flows with transport was analyzed in [58]. The nonlinear
system of coupled Navier-Stokes and Darcy flows has been studied in [35, 26, 8].

In this paper we develop multiscale mortar methods for multi-domain non-matching grid dis-
cretizations of Stokes-Darcy flows in two and three dimensions. Non-matching grids provide flexibil-
ity in meshing complex geometries with relatively simple locally constructed subdomain grids that
are suitable for the choice of subdomain discretization methods. Mortar finite elements play the
role of Lagrange multipliers to impose weakly interface conditions. In [46], a Lagrange multiplier
approximating the normal stress was introduced to impose continuity of the normal velocity for
discretizations involving mixed finite element methods for Darcy and conforming Stokes elements.
With a choice of the Lagrange multiplier space as the normal trace of the Darcy velocity space,
the analysis in [46] applied to non-matching grids on the Stokes–Darcy interface, although this
was not explicitly noted. A similar choice was considered in subsequent mortar discretizations for
Stokes–Darcy flows [54, 29, 14]. Mortar methods for mixed finite element discretizations for Darcy
have been studied in [60, 5, 52, 6]. The analysis in these papers allows for the mortar grid to be
different from the traces of the subdomain grids with the assumption that the mortar space satis-
fies a suitable solvability condition that limits the number of mortar degrees of freedom. Mortar
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discretizations for Stokes have been developed in [11, 12]. There, the mortar grid was chosen to be
the trace of one of the neighboring subdomain grids, similar to the choice in mortar methods for
conforming Galerkin discretizations for second order elliptic problems [13].

In this work we allow for non-matching grid interfaces of Stokes–Darcy, Stokes–Stokes, and
Darcy–Darcy types. We develop multiscale discretizations, where the subdomains are discretized
on a fine scale h and the mortar space is discretized on a coarse scale H. Our method is based on
saddle-point formulations in both regions and employs inf-sup stable mixed finite elements for Darcy
and conforming elements for Stokes. The mortars approximate different physical variables and are
used to impose different matching conditions depending on the type of interface. On Stokes–Stokes
interfaces, the mortar functions represent the entire stress vector and impose weak continuity of
the entire velocity vector. On Stokes–Darcy and Darcy–Darcy interfaces, the mortars approximate
the normal stress, which is just the pressure in the Darcy region, and impose weak continuity of the
normal velocity. The mortar spaces are assumed to satisfy suitable inf-sup conditions, allowing for
very general subdomain and mortar grid configurations. We consider approximations of different
polynomial degrees on the three types of interfaces and the two types of subdomains. The mortar
spaces can be continuous or discontinuous, the latter providing localized mass conservation across
interfaces. Our method is more general than existing Stokes–Stokes mortar methods [11, 12] and
Stokes–Darcy mortar methods [46, 54, 29, 14]. On Darcy–Darcy interfaces, our condition is closely
related to the solvability condition considered in [60, 5, 52, 6].

The stability and convergence analysis relies on the construction of a bounded global interpolant
in the space of weakly continuous velocities that also preserves the velocity divergence in the usual
discrete sense. This is done in two steps, starting from suitable local interpolants and correcting
them to satisfy the interface matching conditions. The correction step requires the existence of
bounded mortar interpolants. This is a very general condition that can be easily satisfied in
practice. We present two examples in 2−D and one example in 3−D that satisfy this solvability
condition. Our error analysis shows that the global velocity and pressure errors are bounded by the
fine scale local approximation error and the coarse scale non-conforming error. Since the polynomial
degrees on subdomains and interfaces may differ, one can choose higher order mortar polynomials to
balance the fine scale and the coarse scale error terms and obtain fine scale asymptotic convergence.
The dependence of the stability and convergence constants on the subdomain size is explicitly
determined. In particular, the stability and fine scale convergence constants do not depend on the
size of subdomains, while the coarse scale non-conforming error constants deteriorate when the
subdomain size goes to zero. This is to be expected, as the relative effect of the non-conforming
error becomes more significant in such regime. However, this dependence can be made negligible
by choosing higher order mortar polynomials, as mentioned above.

Our multiscale Stokes–Darcy formulation can be viewed as an extension of the mortar multiscale
mixed finite element (MMMFE) method for Darcy developed in [6]. The MMMFE method provides
an alternative to other multiscale methods in the literature such as the variational multiscale method
[41, 3] and the multiscale finite element method [40, 22]. All three methods utilize a divide and
conquer approach: solve relatively small fine scale subdomain problems that are only coupled on
the coarse scale through a reduced number of degrees of freedom. The mortar multiscale approach
is more flexible as it allows for employment of a posteriori error estimation to adaptively refine the
mortar grids where necessary to improve the global accuracy [6]. Following the non-overlapping
domain decomposition approach from [37], it can be shown that the global Stokes–Darcy problem
can be reduced to a positive definite coarse scale interface problem [57]. The latter can be solved
using a preconditioned Krylov space solver requiring Stokes or Darcy subdomain solves at each
iteration. An alternative more efficient implementation for MMMFE discretizations for Darcy was
developed in [31], where a multiscale flux basis giving the interface flux response for each coarse scale
mortar degree of freedom is precomputed. The multiscale flux basis is used to replace the solution
of subdomain problems by a simple linear combination. The application of this methodology to
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the Stokes–Darcy interface problem will be discussed in a forthcoming paper. We should mention
that there have been a number of papers in the literature studying domain decomposition methods
for the Stokes–Darcy problem, primarily in the two-subdomain case, see, e.g., [25, 27, 39, 30, 21].

1.1. Notation and preliminaries. Let Ω be a bounded, connected Lipschitz domain of IRn,
n = 2, 3, with boundary ∂Ω and exterior unit normal vector n, and let Γ be a part of ∂Ω with
positive n − 1 measure: |Γ| > 0. We do not assume that Γ is connected, but if it is not connected,
we assume that it has a finite number of connected components. In the case when n = 3, we also
assume that Γ is itself Lipschitz. Let

H1
0,Γ(Ω) = {v ∈ H1(Ω) ; v|Γ = 0}.

Poincaré’s inequality in H1
0,Γ(Ω) reads: There exists a constant PΓ depending only on Ω and Γ such

that

(1.1) ∀v ∈ H1
0,Γ(Ω) , ‖v‖L2(Ω) ≤ PΓ|v|H1(Ω).

The norms and spaces are made precise later on. The formula (1.1) is a particular case of a more
general result (cf. [50, 15]):

Proposition 1.1. Let Ω be a bounded, connected Lipschitz domain of IRn and let Φ be a seminorm

on H1(Ω) satisfying:

1) there exists a constant P1 such that

(1.2) ∀v ∈ H1(Ω) , Φ(v) ≤ P1‖v‖H1(Ω),

2) the condition Φ(c) = 0 for a constant function c holds if and only if c = 0.
Then there exists a constant P2 depending only on Ω, such that

(1.3) ∀v ∈ H1(Ω) , ‖v‖L2(Ω) ≤ P2

(

|v|2H1(Ω) + Φ(v)2
)1/2

.

We recall Korn’s first inequality: There exists a constant C1 depending only on Ω and Γ such
that

(1.4) ∀v ∈ H1
0,Γ(Ω)n , |v|H1(Ω) ≤ C1‖D(v)‖L2(Ω),

where D(v) is the deformation rate tensor, also called the symmetric gradient tensor:

D(v) =
1

2

(

∇v + ∇vT
)

.

This is a particular case of the following more general result (see (1.6) in [16]):

Proposition 1.2. Let Ω be a bounded, connected Lipschitz domain of IRn and let Φ be a seminorm

on H1(Ω)n satisfying:

1) there exists a constant C2 such that

(1.5) ∀v ∈ H1(Ω)n , Φ(v) ≤ C2‖v‖H1(Ω),

2) the condition Φ(m) = 0 for a rigid-body motion m holds if and only if m is a constant vector.

Then there exists a constant C3 depending only on Ω, such that

(1.6) ∀v ∈ H1(Ω)n , |v|H1(Ω) ≤ C3

(

‖D(v)‖2
L2(Ω) + Φ(v)2

)1/2
.

In particular, Proposition 1.2 implies that there exists a constant CΩ, only depending on Ω such
that (see (1.9) in [16]),

(1.7) ∀v ∈ H1(Ω)n , |v|H1(Ω) ≤ CΩ

(

‖D(v)‖2
L2(Ω) +

∣

∣

∣

∣

∫

Ω
curlv

∣

∣

∣

∣

2
)1/2

,

where | · | denotes the Euclidean vector norm.
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For any non-negative integer m, recall the classical Sobolev space (cf. [1] or [50])

Hm(Ω) =
{

v ∈ L2(Ω) ; ∂kv ∈ L2(Ω)∀ |k| ≤ m
}

,

equipped with the following seminorm and norm (for which it is a Hilbert space)

|v|Hm(Ω) =





∑

|k|=m

∫

Ω
|∂kv|2 dx





1/2

, ‖v‖Hm(Ω) =





∑

0≤|k|≤m

|v|2Hk(Ω)





1/2

.

This definition is extended to any real number s = m + s′ for an integer m ≥ 0 and 0 < s′ < 1 by
defining in dimension n the fractional semi-norm and norm

|v|Hs(Ω) =





∑

|k|=m

∫

Ω

∫

Ω

|∂kv(x) − ∂kv(y)|2
|x − y|n+2 s′

dx dy





1/2

, ‖v‖Hs(Ω) =
(

‖v‖2
Hm(Ω) + |v|2Hs(Ω)

)1/2
.

In particular, we shall frequently use the fractional Sobolev spaces H1/2(Γ) and H
1/2
00 (Γ) for a

Lipschitz surface Γ when n = 3 or curve when n = 2 with the following seminorms and norms:

(1.8) |v|H1/2(Γ) =

(

∫

Γ

∫

Γ

|v(x) − v(y)|2
|x − y|n dxdy

)1/2

, ‖v‖H1/2(Γ) =
(

‖v‖2
L2(Γ) + |v|2

H1/2(Γ)

)1/2
,

(1.9) |v|
H

1/2
00 (Γ)

=

(

|v|2
H1/2(Γ)

+

∫

Γ

|v(x)|2
d∂Γ(x)

dx

)1/2

, ‖v‖
H

1/2
00 (Γ)

=

(

‖v‖2
L2(Γ) + |v|2

H
1/2
00 (Γ)

)1/2

,

where d∂Γ(x) denotes the distance from x to ∂Γ. When Γ is a subset of ∂Ω with positive n − 1

measure, H
1/2
00 (Γ) is the space of traces of all functions of H1

0,∂Ω\Γ(Ω). The above norms (1.8) and

(1.9) are not equivalent except when Γ is a closed surface or curve. The dual space of H1/2(Γ) is

denoted by H−1/2(Γ).
In addition to these spaces, we shall use the Hilbert space

H(div; Ω) =
{

v ∈ L2(Ω)n ; div v ∈ L2(Ω)
}

,

equipped with the graph norm

‖v‖H(div;Ω) =
(

‖v‖2
L2(Ω) + ‖div v‖2

L2(Ω)

)1/2
.

The normal trace v · n of a function v of H(div; Ω) on ∂Ω belongs to H−1/2(∂Ω) (cf. [34]). The
same result holds when Γ is a part of ∂Ω and is a closed surface. But if Γ is not a closed surface,

then v · n belongs to the dual of H
1/2
00 (Γ). When v · n = 0 on ∂Ω, we use the space

H0(div; Ω) = {v ∈ H(div; Ω) ; v · n = 0 on ∂Ω} .

2. Problem statement

2.1. Coupled Stokes and Darcy systems. Let Ω be partitioned into two non-overlapping re-
gions: the region of the Darcy flow, Ωd, and the region of the Stokes flow, Ωs, each one possibly
non-connected, but with a finite number of connected components, and with Lipschitz-continuous
boundaries ∂Ωd and ∂Ωs:

Ω = Ωd ∪ Ωs.

Let Γd = ∂Ωd ∩ ∂Ω, Γs = ∂Ωs ∩ ∂Ω, Γsd = ∂Ωd ∩ ∂Ωs. The unit normal vector on Γsd exterior to
Ωd, respectively Ωs, is denoted by nd, respectively ns. In dimension three, we assume that Γd, Γs,
and Γsd also have Lipschitz-continuous boundaries. Let fd be the gravity force in Ωd, f s a given
body force in Ωs, let νd > 0, respectively νs > 0, be the constant viscosity coefficient of the Darcy,
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respectively Stokes flow, let K be the rock permeability tensor in Ωd, let qd be an external source
or sink term in Ωd, and let α > 0 be the slip coefficient in the Beavers-Joseph-Saffman law [10, 55],
determined by experiment. As far as the data are concerned, we assume on one hand that K is
bounded, symmetric and uniformly positive definite in Ωd: there exist two constants, λmin > 0 and
λmax > 0 such that

(2.1) ∀x ∈ Ωd,∀χ ∈ IRn , λmin|χ|2 ≤ K(x)χ · χ ≤ λmax|χ|2,
and we assume on the other hand, that the source qd satisfies the solvability condition

(2.2)

∫

Ωd

qd dx = 0.

The fluid velocity and pressure in Ωd, respectively Ωs, are denoted by ud and pd, respectively by
us and ps. The stress tensor of the Stokes flow is denoted by σ(us, ps),

σ(us, ps) = −psI + 2νsD(us).

In the Darcy region Ωd, the pair (ud, pd) satisfies

νdK
−1ud + ∇ pd = fd in Ωd,(2.3)

div ud = qd in Ωd,(2.4)

ud · n = 0 on Γd.(2.5)

In the Stokes region Ωs, the pair (us, ps) satisfies

−div σ(us, ps) ≡ −2νsdiv D(us) + ∇ ps = f s in Ωs,(2.6)

div us = 0 in Ωs,(2.7)

us = 0 on Γs.(2.8)

The Darcy and Stokes flows are coupled on Γsd through the following interface conditions

(2.9) us · ns + ud · nd = 0 on Γsd,

(2.10) −
(

σ(us, ps)ns

)

· ns ≡ ps − 2νs

(

D(us)ns

)

· ns = pd on Γsd,

(2.11) −
√

Kl

νsα

(

σ(us, ps)ns

)

· τ l ≡ −
√

Kl

α
2
(

D(us)ns

)

· τ l = us · τ l, on Γsd, 1 ≤ l ≤ n − 1,

where τ l, 1 ≤ l ≤ n−1 is an orthogonal system of unit tangent vectors on Γsd and Kl =
(

Kτ l

)

·τ l.
Conditions (2.9) and (2.10) incorporate continuity of flux and normal stress, respectively. Condition
(2.11) is known as the Beavers-Joseph-Saffman law [10, 55, 42] describing slip with friction, where√

Kl/α is a friction coefficient.

2.2. First variational formulation. For any functions ϕd defined in Ωd and ϕs defined in Ωs, it
is convenient to define ϕ in Ω by ϕ|Ωd

= ϕd and ϕ|Ωs = ϕs. With this notation, regarding the data,
we assume that f ∈ L2(Ω)n, we extend qd by zero in Ωs, i.e. we set qs = 0 and owing to (2.2),
the extended function q belongs to L2

0(Ω). Regarding the unknowns, in view of the Darcy and
Stokes operators, it is reasonable for the moment to look for (ud, pd) in H(div; Ωd) × H1(Ωd) and
(us, ps) in H1(Ωs)

n × L2(Ωs). Before setting problem (2.3)–(2.11) into an equivalent variational
formulation, it is useful to interpret the interface conditions (2.10)–(2.11). First we observe from
the regularity of f s that each row of σ(us, ps) belongs to H(div; Ωs); hence σ(us, ps)ns belongs

to H−1/2(∂Ωs)
n, and in particular is well-defined as an element of the dual of H

1/2
00 (Γsd)

n, which
is a distribution space on Γsd. But without further information, it cannot be multiplied directly
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by the normal or tangent vectors, since the boundary is only Lipschitz-continuous. To bypass this
difficulty, following [35] we define the function on Γsd

(2.12) g = −pdns −
n−1
∑

l=1

νsα√
Kl

(us · τ l)τ l,

and replace (2.10)–(2.11) by the condition

(2.13) σ(us, ps)ns = g on Γsd.

As the traces of pd and of all components of us on Γsd belong to H1/2(Γsd), Sobolev’s imbeddings
[1] imply that g belongs to Lr(Γsd)

n for any finite r when n = 2 and r = 4 when n = 3. Hence
condition (2.13) makes sense. Let us check that it implies (2.10)–(2.11). First, prescribing (2.13)
guarantees that σ(us, ps)ns belongs at least to L4(Γsd)

n and thus can be multiplied by the normal
or tangent vectors. Then by virtue of this regularity, (2.12), (2.13) are equivalent to:

((

σ(us, ps)ns

)

· ns

)

ns +
n−1
∑

l=1

((

σ(us, ps)ns

)

· τ l

)

τ l = −pdns −
n−1
∑

l=1

νsα√
Kl

(us · τ l)τ l,

and therefore, by identifying on both sides the components of the normal and tangent vectors
(that forms an orthonormal set), we derive (2.10)–(2.11). Hence (2.13) is the interpretation of
(2.10)–(2.11).

Now, let (ud, pd) ∈ H(div; Ωd) × H1(Ωd) and (us, ps) ∈ H1(Ωs)
n × L2(Ωs) be a solution of

(2.3)–(2.11). In order to set (2.3)–(2.11) in variational form, we take the scalar product of (2.3)
and (2.6) respectively with any test function vd in H1(Ωd)

n satisfying vd · n = 0 on Γd, and any
vs in H1(Ωs)

n satisfying vs = 0 on Γs. Then we apply Green’s formula in Ωd and Ωs. This yields

(2.14) νd

∫

Ωd

K−1ud · vd −
∫

Ωd

pddiv vd +

∫

Γsd

pdvd · nd =

∫

Ωd

fd · vd,

(2.15) 2 νs

∫

Ωs

D(us) : D(vs) −
∫

Ωs

psdiv vs − 〈σ(us, ps)ns, vs〉Γsd
=

∫

Ωs

f s · vs,

where 〈·, ·〉Γsd
denotes the duality pairing between H

1/2
00 (Γsd)

n and its dual space. The validity of
(2.14) and (2.15) follows from the above considerations. By summing (2.14) and (2.15), by using
the fact that nd = −ns, and by applying (2.13), the term on the interface, say I, reads

I = −〈σ(us, ps)ns, vs〉Γsd
−
∫

Γsd

pdvd · ns = −
∫

Γsd

g · vs −
∫

Γsd

pdvd · ns.

Then the expression (2.12) for g yields

(2.16) I =
n−1
∑

l=1

∫

Γsd

νsα√
Kl

(us · τ l)(vs · τ l) +

∫

Γsd

pd[v · n],

where the jump [v · n] is defined by

[v · n] = vs · ns + vd · nd.

Finally, we eliminate this jump by enforcing strongly the transmission condition (2.9) on the test
function v. In view of the interior terms in (2.14) and (2.15) and what remains in (2.16), we see
that we can reduce the regularity of our functions and work in the space

(2.17) X̃ = {v ∈ H(div; Ω) ; vs ∈ H1(Ωs)
n, v|Γs = 0, (v · n)|Γd

= 0},
which is a Hilbert space equipped with the norm

(2.18) ∀v ∈ X̃ , ‖v‖X̃ =
(

‖v‖2
H(div;Ω) + |vs|2H1(Ωs)

)1/2
.
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Note that the restriction of v · n on Γsd belongs at least to L4(Γsd). Let us denote W = L2
0(Ω)

with the norm ‖w‖W = ‖w‖L2(Ω). Then we propose the following variational formulation : Find

(u, p) ∈ X̃ × W such that

∀v ∈ X̃ , νd

∫

Ωd

K−1ud · vd + 2 νs

∫

Ωs

D(us) : D(vs) −
∫

Ω
p div v

+
n−1
∑

l=1

∫

Γsd

νsα√
Kl

(us · τ l)(vs · τ l) =

∫

Ω
f · v,

(2.19)

(2.20) ∀w ∈ W ,

∫

Ω
w div u =

∫

Ωd

w qd.

Lemma 2.1. For any data f in L2(Ω)n and qd in L2
0(Ωd), problems (2.19)–(2.20) and (2.3)–(2.11)

are equivalent.

Proof. It stems from the above considerations that any solution (ud, pd) ∈ H(div; Ωd) × H1(Ωd)

and (us, ps) ∈ H1(Ωs)
n×L2(Ωs) of (2.3)–(2.11) is such that (u, p) belongs to X̃×L2(Ω) and solves

(2.19)–(2.20). Moreover as Ω is connected, (2.19) only defines p up to an additive constant and
this constant can be chosen so that p belongs to W .

Conversely, let (u, p) ∈ X̃ × W solve (2.19)–(2.20), and denote its restriction to Ωd and Ωs as
above. By choosing smooth test functions with compact support first in Ωd and next in Ωs, we
immediately derive that (ud, pd) is a solution of (2.3)–(2.5) and (us, ps) is a solution of (2.6)–(2.8).
Furthermore, since both fd and νdK

−1ud belong to L2(Ωd)
n, (2.3) implies that pd ∈ H1(Ωd).

It remains to recover the transmission conditions (2.9)–(2.11). First, (2.9) is a consequence of

the definition (2.17) of X̃. Next, we recover (2.14) and (2.15) by taking the scalar product of (2.3)

and (2.6) with a function v ∈ X̃ that is smooth in Ωd and in Ωs, and by applying Green’s formula
in both regions. By comparing with (2.19), this gives

∫

Γsd

pdvd · nd − 〈σ(us, ps)ns, vs〉Γsd
=

n−1
∑

l=1

∫

Γsd

νsα√
Kl

(us · τ l)(vs · τ l).

By taking into account the orientation of the normal, the regularity of v, and the definition (2.12)
of g, this is equivalent to:

〈σ(us, ps)ns, vs〉Γsd
= −

∫

Γsd

pdvs · ns −
n−1
∑

l=1

∫

Γsd

νsα√
Kl

(us · τ l)(vs · τ l) =

∫

Γsd

g · vs.

As the trace space of vs on Γsd is large enough, this implies (2.13). �

2.3. Existence and uniqueness of the solution. For any functions ud, vd in L2(Ωd)
n and us,

vs in H1(Ωs)
n, we define the bilinear form

(2.21) ã(u, v) = νd

∫

Ωd

K−1ud · vd + 2 νs

∫

Ωs

D(us) : D(vs) +
n−1
∑

l=1

∫

Γsd

νsα√
Kl

(us · τ l)(vs · τ l),

and for any functions vd ∈ H(div; Ωd), vs ∈ H(div; Ωs) and w ∈ L2(Ω), we define the bilinear form

(2.22) b̃(v, w) = −
∫

Ωd

w div vd −
∫

Ωs

w div vs.
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Note that ã(·, ·) is continuous on X̃ × X̃:

∀(u, v) ∈ X̃ × X̃ , |ã(u, v)| ≤ νd

λmin
‖ud‖L2(Ωd)‖vd‖L2(Ωd) + 2 νs‖∇us‖L2(Ωs)‖∇vs‖L2(Ωs)

+
n−1
∑

l=1

νsα√
λmin

‖us · τ l‖L2(Γsd)‖vs · τ l‖L2(Γsd),
(2.23)

and b̃(·, ·) is continuous on X̃ × L2(Ω):

∀(v, w) ∈ X̃ × L2(Ω) , |b̃(v, w)| ≤ ‖v‖X̃‖w‖L2(Ω).

Then (2.19)–(2.20) has the familiar form : Find (u, p) ∈ X̃ × W such that

(2.24) ∀v ∈ X̃ , ã(u, v) + b̃(v, p) =

∫

Ω
f · v,

(2.25) ∀w ∈ W , b̃(u, w) = −
∫

Ωd

w qd.

Next, we set

(2.26) X̃0 = {v ∈ X̃ ; div v = 0},
and more generally, for a given function g ∈ W , we define the affine variety

(2.27) X̃g = {v ∈ X̃ ; div v = g}.
Then we consider the reduced problem : Find u ∈ X̃q such that

(2.28) ∀v ∈ X̃0 , ã(u, v) =

∫

Ω
f · v,

recall that q is qd extended by zero on Ωs. It is well known [34, 18] that showing equivalence
between problems (2.28) and (2.24)–(2.25) amounts to proving the following inf-sup condition.

Lemma 2.2. There exists a constant β > 0 such that

(2.29) ∀w ∈ W , sup
v∈X̃

b̃(v, w)

‖v‖X̃

≥ β‖w‖W .

Proof. Let w ∈ W . The inf-sup condition between H1
0 (Ω)n and L2

0(Ω) implies that there exists a
function v ∈ H1

0 (Ω)n such that

div v = w in Ω and |v|H1(Ω) ≤
1

κ
‖w‖L2(Ω),

where κ depends only on Ω; see for example [34] or [18]. Then v belongs to X̃ and it remains to

evaluate its norm in X̃. Since v is in H1
0 (Ω)n, we have

‖div v‖L2(Ω) ≤ |v|H1(Ω),

and by Poincaré’s inequality (1.1):

‖v‖L2(Ω) ≤ P∂Ω|v|H1(Ω).

Therefore

‖v‖X̃ ≤
(

(

P2
∂Ω + 1

)

|v|2H1(Ω) + |v|2H1(Ωs)

)1/2
≤ 1

κ

(

P2
∂Ω + 2

)1/2‖w‖L2(Ω),

and (2.29) holds with β ≥ κ/
(

P2
∂Ω + 2

)1/2
. �

Lemma 2.2 has important consequences. First, as noted above, it implies that (2.28) and (2.24)–
(2.25) are equivalent in the following sense.
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Proposition 2.1. Let (f , qd) be given in L2(Ω)n × L2
0(Ωd). Let (u, p) ∈ X̃ × W be a solution of

(2.24)–(2.25). Then u solves (2.28). Conversely, let u ∈ X̃qd
be a solution of (2.28). Then there

exists a unique p in W such that (u, p) satisfies (2.24)–(2.25).

Now, let us prove that (2.28), and hence (2.24)–(2.25), is well-posed. This relies on the ellipticity

of ã(·, ·) on X̃0. If Ωs is connected and |Γs| > 0, a partial ellipticity result for ã(·, ·) follows directly
from Korn’s inequality (1.4):

(2.30) ∀v ∈ X̃ , ã(v, v) ≥ 2
νs

C2
1

|vs|2H1(Ωs)
+

νd

λmax
‖vd‖2

L2(Ωd),

with the constant C1 of (1.4). If Ωs is connected and |Γs| = 0, then Γsd = ∂Ωs up to a set of zero
measure, and proving the analogue of (2.30) makes use of (1.7) and the tangential components on
Γsd. Indeed, we have formally

(2.31) a.e. on ∂Ωs ,
∣

∣(vs × ns)(x)
∣

∣ ≤
n−1
∑

l=1

|(vs · τ l)(x)|,

and therefore
∫

Ωs

curlvs = −
∫

Γsd

vs × ns ⇒
∣

∣

∣

∫

Ωs

curlvs

∣

∣

∣
≤
∫

Γsd

(

n−1
∑

l=1

|vs · τ l|
)

.

Hence (1.7) and a straightforward manipulation yield
(2.32)

∀vs ∈ H1(Ωs)
n , 2νs‖D(vs)‖2

L2(Ωs)
+

n−1
∑

l=1

νsα√
Kl

‖vs · τ l‖2
L2(Γsd) ≥

νs

C2
Ω

min
(

2,
α√

λmax|Γsd|
)

|vs|2H1(Ωs)
.

As a consequence (2.30) is replaced by

(2.33) ∀v ∈ X̃ , ã(v, v) ≥ νd

λmax
‖vd‖2

L2(Ωd) +
νs

C2
Ω

min
(

2,
α√

λmax|Γsd|
)

|vs|2H1(Ωs)
.

Finally, if Ωs is not connected, the analogue of (2.30) holds on all connected components of Ωs that
are adjacent to Γs and the analogue of (2.33) holds on all connected components of Ωs that are not
adjacent to Γs.

It remains to establish that the mapping:

(2.34) v 7→ |v|X̃0
=
(

|vs|2H1(Ωs)
+ ‖vd‖2

L2(Ωd)

)1/2

is a norm on X̃0 equivalent to ‖v‖X̃ . This is the object of the next lemma.

Lemma 2.3. There exists a constant C4 such that

(2.35) ∀v ∈ X̃0 , ‖vs‖L2(Ωs) ≤ C4

(

|vs|2H1(Ωs)
+ ‖vd‖2

L2(Ωd)

)1/2
.

Proof. Let us assume that Ωs is connected; the case when Ωs is not connected is treated as above.
If |Γs| > 0, (2.35) follows from Poincaré’s inequality (1.1) applied in Ωs and does not require the
norm of vd in the right-hand side. When |Γs| = 0, the proof of (2.35) is a variant of the proof
of Peetre-Tartar’s Lemma [51]. Let us recall its argument. Assume that (2.35) is not true. Then

there exists a sequence (vm) in X̃0 such that

lim
m→∞

‖vm
d ‖L2(Ωd) = lim

m→∞
|vm

s |H1(Ωs) = 0 and ∀m, ‖vm
s ‖L2(Ωs) = 1.

As X̃0 is reflexive, this implies that there exists a function v ∈ X̃0 such that

lim
m→∞

vm = v weakly in X̃.
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Moreover vs = c, a constant vector, and vd = 0. Then the fact that v belongs to X̃ implies that
c · ns = 0 on Γsd, and since Γsd coincides with ∂Ωs, up to a set of zero measure, this implies that
c = 0. Thus

lim
m→∞

vm
s = 0 weakly in H1(Ωs)

n,

hence

lim
m→∞

vm
s = 0 strongly in L2(Ωs)

n.

This contradicts the fact that for all m ‖vm
s ‖L2(Ωs) = 1. �

Therefore (2.35) combined with either (2.30) or (2.33) yields the ellipticity of ã(·, ·).
Lemma 2.4. There exists a constant C5 > 0 such that

(2.36) ∀v ∈ X̃0 , ã(v, v) ≥ C5‖v‖2
X̃

.

With the continuity of ã(·, ·) and b̃(·, ·), the ellipticity of ã(·, ·) on X̃0, and the inf-sup condition
(2.29), the Babuška-Brezzi’s theory [7, 17] implies immediately that (2.24)–(2.25) is well-posed.

Theorem 2.1. Problem (2.24)–(2.25) has a unique solution (u, p) ∈ X̃ × W and there exists a

constant C that depends only on Ωd, Ωs, λmin, λmax, α, νd, and νs, such that

(2.37) ‖u‖X̃ + ‖p‖L2(Ω) ≤ C
(

‖f‖L2(Ω) + ‖qd‖L2(Ωd)

)

.

In turn, the well-posedness of problem (2.3)–(2.11) stems from Lemma 2.1.

2.4. Domain decomposition of the Darcy and Stokes regions. Let Ωs, respectively Ωd, be
decomposed into Ms, respectively Md, non-overlapping, open Lipschitz subdomains:

Ωs = ∪Ms
i=1Ωs,i , Ωd = ∪Md

i=1Ωd,i.

Set M = Md + Ms; according to convenience we can also number the subdomains with a single
index i, 1 ≤ i ≤ M , the Darcy subdomains running from Ms + 1 to M . Let ni denote the outward
unit normal vector on ∂Ωi. For 1 ≤ i ≤ M , let the boundary interfaces be denoted by Γi, with
possibly zero measure:

Γi = ∂Ωi ∩ ∂Ω,

and for 1 ≤ i < j ≤ M , let the interfaces between subdomains be denoted by Γij , again with
possibly zero measure:

Γij = ∂Ωi ∩ ∂Ωj .

In addition to Γsd, let Γdd, respectively Γss, denote the set of interfaces between subdomains of Ωd,
respectively Ωs. Then, assuming that the solution (u, p) of (2.3)–(2.11) is slightly smoother, we
can obtain an equivalent formulation by writing individually (2.3)–(2.11) in each subdomain Ωi,
1 ≤ i ≤ M , and complementing these systems with the following interface conditions

(2.38) [ud · n] = 0 , [pd] = 0 on Γdd,

(2.39) [us] = 0 , [σ(us, ps)n] = 0 on Γss,

where the jumps on an interface Γij , 1 ≤ i < j ≤ M , are defined as

[v · n] = vi · ni + vj · nj , [σn] = σini + σjnj , [v] = (vi − vj)|Γij ,

using the notation vi = v|Ωi . The smoothness requirement on the solution is meant to ensure that
the jumps [ud · n], respectively [σ(us, ps)n], are well-defined on each interface of Γdd, respectively
Γss.

Finally, let us prescribe weakly the interface conditions (2.38), (2.39), and (2.9) by means of
Lagrange multipliers, usually called mortars. For this, it is convenient to attribute a unit normal
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vector nij to each interface Γij of positive measure, directed from Ωi to Ωj (recall that i < j). The
basic velocity spaces are:

Xd = {v ∈ L2(Ωd)
n ; vd,i := v|Ωd,i

∈ H(div; Ωd,i), 1 ≤ i ≤ Md,

v · nij ∈ H−1/2(Γij), Γij ∈ Γdd ∪ Γsd, v · n = 0 on Γd},
Xs = {v ∈ L2(Ωs)

n ; vs,i := v|Ωs,i ∈ H1(Ωs,i)
n, 1 ≤ i ≤ Ms, v = 0 on Γs},

(2.40)

and the mortar spaces are:

∀Γij ∈ Γss , Λij =
(

H−1/2(Γij)
)n

,

∀Γij ∈ Γsd ∪ Γdd , Λij = H1/2(Γij).
(2.41)

Then we replace X̃ (see (2.17)) by

(2.42) X = {v ∈ L2(Ω)n ; vd := v|Ωd
∈ Xd, vs := v|Ωs ∈ Xs},

we keep W = L2
0(Ω) for the pressure, and we define the mortar spaces

Λs = {λ ∈
(

D′(Γss)
)n

; λ|Γij ∈
(

H−1/2(Γij)
)n

for all Γij ∈ Γss},
Λsd = {λ ∈ L2(Γsd) ; λ|Γij ∈ H1/2(Γij) for all Γij ∈ Γsd},
Λd = {λ ∈ L2(Γdd) ; λ|Γij ∈ H1/2(Γij) for all Γij ∈ Γdd}.

(2.43)

We equip these spaces with broken norms:

|||v|||Xd
=
(

Md
∑

i=1

‖v‖2
H(div;Ωd,i)

)1/2
, |||v|||Xs

=
(

Ms
∑

i=1

‖v‖2
H1(Ωs,i)

)1/2
, |||v|||X =

(

|||v|||2Xd
+ |||v|||2Xs

)1/2
,

|||λ|||Λs
=
(

∑

Γij∈Γss

‖λ‖2
H−1/2(Γij)

)1/2
, |||λ|||Λsd

=
(

∑

Γij∈Γsd

‖λ‖2
H1/2(Γij)

)1/2
,

|||λ|||Λd
=
(

∑

Γij∈Γdd

‖λ‖2
H1/2(Γij)

)1/2
.

Note that in most geometrical situations, Xd (and hence X) is not complete for the above norm,
but none of the subsequent proofs require its completeness.

The matching condition between subdomains is weakly enforced through the following bilinear
forms:

∀v ∈ Xs,∀µ ∈ Λs , bs(v, µ) =
∑

Γij∈Γss

〈[v], µ〉Γij ,

∀v ∈ Xd,∀µ ∈ Λd , bd(v, µ) =
∑

Γij∈Γdd

〈[v · n], µ〉Γij ,

∀v ∈ X, ∀µ ∈ Λsd , bsd(v, µ) =
∑

Γij∈Γsd

〈[v · n], µ〉Γij .

(2.44)
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For the velocity and pressure in the Darcy and Stokes regions, we use the following bilinear forms:

∀(u, v) ∈ Xs × Xs , as,i(u, v) = 2 νs

∫

Ωs,i

D(us,i) : D(vs,i)

+

n−1
∑

l=1

∫

∂Ωs,i∩Γsd

νsα√
Kl

(us · τ l)(vs · τ l) , 1 ≤ i ≤ Ms,

∀(u, v) ∈ Xd × Xd , ad,i(u, v) = νd

∫

Ωd,i

K−1ud,i · vd,i , 1 ≤ i ≤ Md,

∀v ∈ X, ∀w ∈ L2(Ω) , bi(v, w) = −
∫

Ωi

wdiv vi , 1 ≤ i ≤ M.

(2.45)

Then we set

∀(u, v) ∈ X × X , a(u, v) =

Ms
∑

i=1

as,i(u, v) +

Md
∑

i=1

ad,i(u, v),

∀(v, w) ∈ X × L2(Ω) , b(v, w) =

M
∑

i=1

bi(v, w).

The second variational formulation reads: Find (u, p, λsd, λd, λs) ∈ X × W × Λsd × Λd × Λs such
that

∀v ∈ X , a(u, v) + b(v, p) + bsd(v, λsd) + bd(v, λd) + bs(v, λs) =

∫

Ω
f · v,

∀w ∈ W , b(u, w) = −
∫

Ωd

w qd,

∀µ ∈ Λsd , bsd(u, µ) = 0,

∀µ ∈ Λd , bd(u, µ) = 0,

∀µ ∈ Λs , bs(u, µ) = 0.

(2.46)

It remains to prove that (2.46) is equivalent to (2.3)–(2.11) when the solution is sufficiently
smooth. Since we know from Theorem 2.1 that (2.3)–(2.11) has a unique solution, equivalence will
also establish that (2.46) is uniquely solvable.

Theorem 2.2. Assume that the solution (u, p) of (2.3)–(2.11) satisfies

∀Γij ∈ Γdd ∪ Γsd , (ud · nd)|Γij ∈ H−1/2(Γij) , ∀Γij ∈ Γss , (σ(us, ps)ns)|Γij ∈ H−1/2(Γij)
n.

Then (2.46) is equivalent to (2.3)–(2.11).

Proof. The argument is similar to that used in proving Lemma 2.1. Let (u, p) be a solution of
(2.3)–(2.11) satisfying the above regularity. Take the scalar product in each Ωi of (2.3) and (2.6)
with a test function v in X, apply Green’s formula and add the corresponding equations. In view
of (2.16) and the regularity of (u, p), this gives:

a(u, v) + b(v, p)

−
∑

Γij∈Γss

〈σ(us, ps)nij , [v]〉Γij +
∑

Γij∈Γdd

〈pd, [v · n]〉Γij +
∑

Γij∈Γsd

〈pd, [v · n]〉Γij =

∫

Ω
f · v.

We recover the first equation in (2.46) by defining

∀Γij ∈ Γss , λs|Γij = −σ(us, ps)|Γijnij ,

∀Γij ∈ Γdd , λd|Γij = pd|Γij ,

∀Γij ∈ Γsd , λsd|Γij = pd|Γij ,

(2.47)
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and the remaining equations follow from the regularity of (u, p).
Conversely, let (u, p, λsd, λd, λs) in X ×W ×Λsd ×Λd ×Λs be a solution of (2.46). By choosing

smooth test functions with compact support in each Ωi we recover the interior equations (2.3),
(2.4), (2.6), (2.7) in each subdomain. On one hand, we easily derive from the last equation of
(2.46) that u has no jump through the interfaces of Γss. Hence u ∈ H1(Ωs)

n. On the other hand,
we pick an index i with 1 ≤ i ≤ Ms and an interface Γij in Γss, we take a function v in X, smooth

in Ωi, zero outside Ωi, and zero on ∂Ωi \ Γij . By taking the scalar product of (2.6) in Ωi with v,
applying Green’s formula, comparing with (2.46), and using the same process in Ωj , we find

λs|Γij = −σ(us,i, ps,i)|Γijnij = −σ(us,j , ps,j)|Γijnij .

As λs is single-valued, this implies that σ(us, ps)|Γijnij has no jump through Γij . This is true for all
interfaces in Γss. Therefore (2.6) is satisfied in Ωs. By applying a similar process to the interfaces
of Γdd, we derive first that (ud, pd) belongs to H(div; Ωd)×H1(Ωd) and next that (2.3) is satisfied
in Ωd. Finally, the third equation in (2.46) implies that u belongs to H(div; Ω), therefore u is in
X and the pair (u, p) solves (2.19)–(2.20); by virtue of Lemma 2.1, it also solves (2.3)–(2.11). �

3. Discretization

3.1. Meshes and discrete spaces. In view of discretization, we assume from now on that Ω
and all its subdomains Ωi, 1 ≤ i ≤ M , have polygonal or polyhedral boundaries. Since none
of the subdomains overlap, they form a mesh, Td of Ωd and Ts of Ωs, and the union of these
meshes constitutes a mesh TΩ of Ω. Furthermore, we suppose that this mesh satisfies the following
assumptions:

Hypothesis 3.1. (1) TΩ is conforming, i.e. it has no hanging nodes.

(2) The subdomains of TΩ can take at most L different configurations, where L is a fixed integer

independent of M .

(3) TΩ is shape-regular in the sense that there exists a real number σ, independent of M such

that

(3.1) ∀i, 1 ≤ i ≤ M ,
diam(Ωi)

diam(Bi)
≤ σ,

where diam(Ωi) is the diameter of Ωi and diam(Bi) is the diameter of the largest ball

contained in Ωi. Without loss of generality, we can assume that diam(Ωi) ≤ 1.

As each subdomain Ωi is polygonal or polyhedral, it can be entirely partitioned into affine
finite elements. Let h > 0 denote a discretization parameter, and for each h, let T h

i be a regular
family of partitions of Ωi made of triangles or tetrahedra T in the Stokes region and triangles,
tetrahedra, parallelograms, or parallelepipeds in the Darcy region, with no matching requirement

at the subdomains interfaces. Thus the meshes are independent and the parameter h < 1 is allowed
to vary with i, but to reduce the notation, unless necessary, we do not indicate its dependence on
i. By regular, we mean that there exists a real number σ0, independent of i and h such that

(3.2) ∀i, 1 ≤ i ≤ M,∀T ∈ T h
i ,

hT

ρT
≤ σ0,

where hT is the diameter of T and ρT is the diameter of the ball inscribed in T . In addition we
assume that each element of T h

i has at least one vertex in Ωi. For the interfaces, let H > 0 be
another discretization parameter and for each H and each i < j, let T H

ij denote a regular family
of partitions of Γij into segments, triangles or parallelograms of diameter bounded by H, with no
matching conditions between interfaces.

On these meshes, we define the following finite element spaces. In the Stokes region, for each
Ωs,i, let (Xh

s,i, W
h
s,i) ⊂ H1(Ωs,i)

n × L2(Ωs,i) be a pair of finite element spaces satisfying a local

uniform inf-sup condition for the divergence. More precisely, setting Xh
0,s,i = Xh

s,i ∩ H1
0 (Ωs,i)

n and



14

W h
0,s,i = W h

s,i ∩ L2
0(Ωs,i), we assume that there exists a constant β⋆

s > 0, independent of h and the
diameter of Ωs,i, such that

(3.3) ∀i, 1 ≤ i ≤ Ms , inf
wh∈W h

0,s,i

sup
v

h∈Xh
0,s,i

∫

Ωs,i
whdiv vh

|vh|H1(Ωs,i)‖wh‖L2(Ωs,i)
≥ β⋆

s .

In addition, since Xh
0,s,i ⊂ H1

0 (Ωs,i)
n, it satisfies a Korn inequality: There exists a constant α⋆ > 0,

independent of h and the diameter of Ωs,i, such that

(3.4) ∀i, 1 ≤ i ≤ Ms , ∀vh ∈ Xh
0,s,i , ‖D(vh)‖L2(Ωs,i) ≥ α⋆|vh|H1(Ωs,i).

There are well-known examples of pairs satisfying (3.3) (cf. [34]), such as the mini-element, the
Bernardi-Raugel element, or the Taylor-Hood element. Similarly, in the Darcy region, for each
Ωd,i, let (Xh

d,i, W
h
d,i) ⊂ H(div; Ωd,i) × L2(Ωd,i) be a pair of mixed finite element spaces satisfying a

uniform inf-sup condition for the divergence. More precisely, setting Xh
0,d,i = Xh

d,i ∩ H0(div; Ωd,i)

and W h
0,d,i = W h

d,i ∩ L2
0(Ωd,i), we assume that there exists a constant β⋆

d > 0 independent of h and
the diameter of Ωd,i, such that

(3.5) ∀i, 1 ≤ i ≤ Md , inf
wh∈W h

0,d,i

sup
v

h∈Xh
0,d,i

∫

Ωd,i
whdiv vh

‖vh‖H(div;Ωd,i)‖wh‖L2(Ωd,i)
≥ β⋆

d .

Furthermore, we assume that

(3.6) ∀i, 1 ≤ i ≤ Md , ∀vh ∈ Xh
d,i , div vh ∈ W h

d,i.

Again, there are well-known examples of pairs satisfying (3.5) and (3.6) (cf. [18] or [34]), such
as the Raviart-Thomas elements, the Brezzi-Douglas-Marini elements, the Brezzi-Douglas-Fortin-
Marini elements, the Brezzi-Douglas-Duràn-Fortin elements, or the Chen-Douglas elements. Then
we discretize straightforwardly Xd and Xs by

Xh
d = {v ∈ L2(Ωd)

n ; v|Ωd,i
∈ Xh

d,i, 1 ≤ i ≤ Md, v · n = 0 on Γd},
Xh

s = {v ∈ L2(Ωs)
n ; v|Ωs,i ∈ Xh

s,i, 1 ≤ i ≤ Ms, v = 0 on Γs},
and we set

W h
d = {w ∈ L2(Ωd) ; w|Ωd,i

∈ W h
d,i} , W h

s = {w ∈ L2(Ωs) ; w|Ωs,i ∈ W h
s,i},

Xh = {v ∈ L2(Ω)n ; v|Ωd
∈ Xh

d , v|Ωs ∈ Xh
s } , W h = {w ∈ L2

0(Ω) ; w|Ωd
∈ W h

d , w|Ωs ∈ W h
s }.

The finite elements regularity implies that Xh
d ⊂ Xd, Xh

s ⊂ Xs and Xh ⊂ X. Of course, W h ⊂ W .

In the mortar region, we take finite element spaces ΛH
s , ΛH

d , and ΛH
sd. These spaces consist of

continuous or discontinuous piecewise polynomials. We will allow for varying polynomial degrees
on different types of interfaces. Although the mortar meshes and the subdomain meshes so far are
unrelated, we need compatibility conditions between ΛH

s , ΛH
sd and ΛH

d on one hand, and Xh
d and

Xh
s on the other hand. The following set of conditions is fairly crude and will be sharpened further

on.

(1) For all Γij ∈ Γss ∪Γsd, i < j, and for all v ∈ X̃, there exists vh ∈ Xh
s,i, vh = 0 on ∂Ωs,i \Γij

satisfying

(3.7)

∫

Γij

vh · nij =

∫

Γij

v · nij .

(2) For all Γij ∈ Γss, i < j, and for all v ∈ X̃, there exists vh ∈ Xh
s,j , vh = 0 on ∂Ωs,j \ Γij

satisfying

(3.8) ∀µH ∈ ΛH
s ,

∫

Γij

µH · vh =

∫

Γij

µH · v.
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(3) For all Γij ∈ Γdd ∪ Γsd, i < j, and for all v ∈ X̃, there exists vh ∈ Xh
d,j , vh · nj = 0 on

∂Ωd,j \ Γij satisfying

(3.9) ∀µH ∈ ΛH
d ,∀µH ∈ ΛH

sd ,

∫

Γij

µHvh · nij =

∫

Γij

µHv · nij .

Condition (3.7) is very easy to satisfy in practice and it trivially holds true for all examples of
Stokes spaces considered in this paper. Conditions (3.8) and (3.9) state that the mortar space is
controlled by the traces of the subdomain velocity spaces. Both conditions are easier to satisfy for
coarser mortar grids. Condition (3.8) is more general than previously considered in the literature for
mortar discretizations of the Stokes equations [11, 12]. We show one example in 3-D in Section 4.3
and two examples in 2-D in Section 4.4 and the Appendix for which (3.8) holds. The condition
(3.9) is closely related to the mortar condition for Darcy flow in [60, 5, 52, 6] on Γdd and more
general than existing mortar discretizations for Stokes-Darcy flows on Γsd [46, 54, 29, 14]. It is
discussed in more detail in Section 4.5.

Lemma 3.1. Under assumptions (3.8) and (3.9), the only solution
(

λH
sd, λ

H
d , λH

s

)

in ΛH
sd×ΛH

d ×ΛH
s

to the system

(3.10) ∀vh ∈ Xh , bs(v
h, λH

s ) + bd(v
h, λH

d ) + bsd(v
h, λH

sd) = 0

is the zero solution.

Proof. Consider any Γij ∈ Γss with i < j; the proof for the other interfaces being the same. Take

an arbitrary v in H1
0 (Ω)n and vh associated with v by (3.8), extended by zero outside Ωs,j . Then

on one hand,
∫

Γij

λH
s · v =

∫

Γij

λH
s · vh = bs(v

h, λH
s ),

and on the other hand,

bs(v
h, λH

d ) = bsd(v
h, λH

sd) = 0.

Therefore

∀v ∈ H1
0 (Ω)n ,

∫

Γij

λH
s · v = 0,

thus implying that λH
s = 0. �

Finally, we define

V h
d = {v ∈ Xh

d ; ∀µ ∈ ΛH
d , bd(v, µ) = 0},

V h
s = {v ∈ Xh

s ; ∀µ ∈ ΛH
s , bs(v, µ) = 0},

V h = {v ∈ Xh ; v|Ωd
∈ V h

d , v|Ωs ∈ V h
s ,∀µ ∈ ΛH

sd, bsd(v, µ) = 0},
Zh = {v ∈ V h ; ∀w ∈ W h, b(v, w) = 0}.

(3.11)

3.2. Variational formulations and uniform stability of the discrete problem. The discrete
version of the second variational formulation (2.46) is: Find (uh, ph, λH

sd, λ
H
d , λH

s ) ∈ Xh × W h ×
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ΛH
sd × ΛH

d × ΛH
s such that

∀vh ∈ Xh , a(uh, vh) + b(vh, ph) + bsd(v
h, λH

sd) + bd(v
h, λH

d ) + bs(v
h, λH

s ) =

∫

Ω
f · vh,

∀wh ∈ W h , b(uh, wh) = −
∫

Ωd

wh qd,

∀µH ∈ ΛH
sd , bsd(u

h, µH) = 0,

∀µH ∈ ΛH
d , bd(u

h, µH) = 0,

∀µH ∈ ΛH
s , bs(u

h, µH) = 0.

(3.12)

The last three equations of (3.12) state that uh ∈ V h. Therefore, we can extract from (3.12) the
following reduced formulation: Find uh ∈ V h, ph ∈ W h such that

∀vh ∈ V h, a(uh, vh) + b(vh, ph) =

∫

Ω
f · vh,

∀wh ∈ W h, b(uh, wh) = −
∫

Ωd

wh qd.
(3.13)

Lemma 3.2. Problems (3.12) and (3.13) are equivalent.

Proof. Clearly, (3.12) implies (3.13). Conversely, if the pair (uh, ph) solves (3.13), existence of
λH

sd, λ
H
d , λH

s such that all these variables satisfy (3.12) is an easy consequence of Lemma 3.1 and an
algebraic argument. �

In view of this equivalence, it suffices to analyze problem (3.13). From the Babuška–Brezzi’s
theory, uniform stability of the solution of (3.13) stems from an ellipticity property of the bilinear
form a in Zh and an inf-sup condition of the bilinear form b. Let us prove an ellipticity property
of the bilinear form a, valid when n = 2, 3. For this, we make the following assumptions on the
mortar spaces:

Hypothesis 3.2. (1) On each Γij ∈ Γdd ∪ Γsd, ΛH
d |Γij and ΛH

sd|Γij contain at least IP 0.

(2) On each Γij ∈ Γss, on each hyperplane F ⊂ Γij, ΛH
s |F contains at least IPn

0 .

(3) On each Γij ∈ Γss, ΛH
s |Γij contains at least IPn

1 .

The second assumption guarantees that nij ∈ ΛH
s |Γij ; it follows from the third assumption when

Γij is flat. The third assumption is solely used for deriving a discrete Korn inequality; it can be
relaxed, as we shall see in the 3 − D example. The first two assumptions imply that all functions
vh in V h satisfy

M
∑

i=1

∫

Ωi

div vh =
M
∑

i=1

∫

∂Ωi

vh · ni =
∑

i<j

∫

Γij

[vh · n] = 0.

Therefore, the zero mean-value restriction on the functions of W h can be relaxed. Thus the condi-
tion vh ∈ Zh implies in particular that

∀wh ∈ W h
d,i ,

∫

Ωd,i

whdiv vh
d = 0.

With (3.6), this means that div vh
d = 0 in Ωd,i, 1 ≤ i ≤ Md. Hence

(3.14) ∀vh ∈ Zh , |||vh
d |||Xd

= ‖vh
d‖L2(Ωd).

First, we treat the simpler case when |Γs| > 0 and Ωs is connected.
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Lemma 3.3. Let |Γs| > 0 and Ωs be connected. Then under Hypothesis 3.2, we have

(3.15) ∀vh ∈ Zh , a(vh, vh) ≥ νd

λmax
|||vh

d |||2Xd
+ 2

νs

C2
|||vh

s |||2Xs
,

where the constant C only depends on the shape regularity of Ts.

Proof. As |Γs| > 0 and Ωs is connected, we have vh
s |Γs = 0. In addition, since vh

s ∈ V h
s and

IPn
1 ∈ ΛH

ss|Γij for each Γij ∈ Γss, then P1[v
h
s ] = 0, where P1 is the orthogonal projection on IPn

1 for

the L2 norm on each Γij . Therefore, inequality (1.12) in [16] gives

(3.16) ∀vh
s ∈ V h

s ,

Ms
∑

i=1

|vh
s |2H1(Ωs,i)

≤ C2
Ms
∑

i=1

‖D(vh
s )‖2

L2(Ωs,i)
,

where the constant C only depends on the shape regularity of Ts. Hence we have the analogue of
(2.30):

(3.17) ∀vh ∈ Zh , a(vh, vh) ≥ νd

λmax
|||vh

d |||2Xd
+ 2

νs

C2

Ms
∑

i=1

|vh
s |2H1(Ωs,i)

.

Finally the above argument permits to apply formula (1.3) in [15] in order to recover the full norm
of Xs in the right-hand side of (3.17). In fact, it is enough that IPn

0 ∈ ΛH
ss|Γij for each Γij ∈ Γss. �

Now we turn to the case when Ωs is connected and |Γs| = 0, consequently Γsd = ∂Ωs, up to a
set of zero measure.

Lemma 3.4. Let |Γs| = 0 and Ωs be connected, i.e. Γsd = ∂Ωs. Then under Hypothesis 3.2, we

have

(3.18) ∀vh ∈ Zh , a(vh, vh) ≥ νd

λmax
|||vh

d |||2Xd
+

νs

C2
min

(

2,
α√

λmax|Γsd|
)

|||vh
s |||2Xs

,

where the constant C only depends on the shape regularity of Ts.

Proof. All constants in this proof only depend on the shape regularity of Ts. Since (3.14) holds, it
suffices to derive a lower bound for as(v

h
s , vh

s ). To begin with, as vh
s ∈ V h

s , we apply Theorem 4.2
if n = 2 or 5.2 if n = 3 in [16]:

∀vh
s ∈ V h

s ,

Ms
∑

i=1

|vh
s |2H1(Ωs,i)

≤ C2
(

Ms
∑

i=1

‖D(vh
s )‖2

L2(Ωs,i)
+
(

Φ(vh
s )
)2
)

,

where the functional Φ is a suitable seminorm. Let us choose

(3.19) ∀v ∈ Xs , Φ(v) =

∣

∣

∣

∣

∫

Γsd

v × ns

∣

∣

∣

∣

.

Clearly, Φ is a seminorm on Xs. Next, considering that

∀v ∈ H1(Ωs)
n , Φ(v) =

∣

∣

∣

∣

∫

Ωs

curlv

∣

∣

∣

∣

,

it is easy to check that if m is a rigid body motion, then Φ(m) = 0 if and only if m is a constant
vector. Finally, observing that Φ behaves exactly like the functional Φ2 of Example 2.4 in [16], we
see that Φ satisfies all assumptions of Theorem 4.2 or 5.3 in [16]. Thus

(3.20) ∀vh
s ∈ V h

s ,

Ms
∑

i=1

|vh
s |2H1(Ωs,i)

≤ C2

(

Ms
∑

i=1

‖D(vh
s )‖2

L2(Ωs,i)
+

∣

∣

∣

∣

∫

Γsd

vh
s × ns

∣

∣

∣

∣

2
)

.
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In order to recover the full norm of Xs in the left-hand side of (3.20), we apply Theorem 5.1 in [15]
with the functional

Φ(v) =
n−1
∑

l=1

∫

Γsd

|vs · τ l|.

Again, Φ is a seminorm on Xs and since Γsd is a closed curve or surface, the condition Φ(c) = 0 for
a constant vector c implies that c = 0. The remaining assumptions of this theorem easily follow
by observing that Φ has the same behavior as the functional Φ1 of Example 4.2 in [15]. This yields

(3.21) ∀vh
s ∈ V h

s , ‖vh
s‖2

L2(Ωs)
≤ C2

(

Ms
∑

i=1

|vh
s |2H1(Ωs,i)

+
(

n−1
∑

l=1

∫

Γsd

|vh
s · τ l|

)2
)

.

By combining (3.20) and (3.21), we obtain

(3.22) ∀vh
s ∈ V h

s , ‖vh
s‖2

Xs
≤ C2

(

Ms
∑

i=1

‖D(vh
s )‖2

L2(Ωs,i)
+

∣

∣

∣

∣

∫

Γsd

vh
s × ns

∣

∣

∣

∣

2

+
(

n−1
∑

l=1

∫

Γsd

|vh
s · τ l|

)2
)

.

Then (3.18) follows from (3.22) by arguing as in deriving (2.31). �

The case when Ωs is not connected follows from Lemmas 3.3 or 3.4 applied to each connected
component of Ωs according that it is or is not adjacent to Γs.

To control the bilinear form b in Ωs, we make the following assumption: There exists a linear
approximation operator Θh

s : H1
0 (Ω)n 7→ V h

s satisfying for all v ∈ H1
0 (Ω)n:

•

(3.23) ∀i, 1 ≤ i ≤ Ms ,

∫

Ωs,i

div
(

Θh
s (v) − v

)

= 0.

• For any Γij in Γsd,

(3.24)

∫

Γij

(

Θh
s (v) − v

)

· nij = 0.

• There exists a constant C independent of v, h, H, and the diameter of Ωs,i, 1 ≤ i ≤ Ms,
such that

(3.25) |||Θh
s (v)|||Xs

≤ C|v|H1(Ω).

The construction of the operator Θh
s is presented in Section 4. In particular, a general construction

strategy discussed in Section 4.1 gives an operator that satisfies (3.23) and (3.24). The stability
bound (3.25) is shown to hold for the specific examples presented in Sections 4.2–4.4, see Corol-
lary 4.2.

Lemma 3.5. Assuming that an operator Θh
s satisfying (3.23)–(3.25) exists, then there exists a

linear operator Πh
s : H1

0 (Ω)n 7→ V h
s such that for all v ∈ H1

0 (Ω)n,

(3.26) ∀wh ∈ W h
s ,

Ms
∑

i=1

∫

Ωs,i

whdiv(Πh
s (v) − v) = 0,

(3.27) ∀Γij ∈ Γsd ,

∫

Γij

(

Πh
s (v) − v

)

· nij = 0,

and there exists a constant C independent of v, h, H, and the diameter of Ωs,i, 1 ≤ i ≤ Ms, such

that

(3.28) |||Πh
s (v)|||Xs

≤ C|v|H1(Ω).



19

Proof. The operator Πh
s is constructed by correcting Θh

s :

Πh
s (v) = Θh

s (v) + ch
s (v)

where ch
s (v)|Ωs,i ∈ Xh

0,s,i and

(3.29) ∀wh ∈ W h
0,s,i, 1 ≤ i ≤ Ms ,

∫

Ωs,i

wh div ch
s (v) =

∫

Ωs,i

wh div
(

v − Θh
s (v)

)

.

Existence of ch
s (v) follows directly from (3.3) and with the same constant

(3.30) |ch
s (v)|H1(Ωs,i) ≤

1

β⋆
s

‖div(v − Θh
s (v))‖L2(Ωs,i).

The restriction wh ∈ W h
0,s,i is relaxed by applying (3.23) and using the fact that ch

s (v) belongs to

Xh
0,s,i. Finally, (3.28) follows from the above bound and (3.25). �

The idea of constructing the operator Πh
s via the interior inf-sup condition (3.3) and the simplified

operator Θh
s satisfying (3.23) and (3.25) is not new. It can be found for instance in [36] and [12].

To control the bilinear form b in Ωd, we make the following assumption: There exists a linear
operator Πh

d : H1
0 (Ω)n 7→ V h

d satisfying for all v ∈ H1
0 (Ω)n:

•

(3.31) ∀wh ∈ W h
d ,

Md
∑

i=1

∫

Ωd,i

whdiv
(

Πh
d(v) − v

)

= 0.

• For any Γij in Γsd,

(3.32) ∀µH ∈ ΛH
sd ,

∫

Γij

µH
(

Πh
d(v) − Πh

s (v)
)

· nij = 0.

• There exists a constant C independent of v, h, H, and the diameter of Ωd,i, 1 ≤ i ≤ Md,
such that

(3.33) |||Πh
d(v)|||Xd

≤ C|v|H1(Ω).

The construction of the operator Πh
d is presented in Section 4. In particular, the general con-

struction strategy discussed in Section 4.1 gives an operator that satisfies (3.31) and (3.32). The
stability bound (3.33) is shown to hold for various cases in Section 4.5.

The next lemma follows readily from the properties of Πh
s and Πh

d .

Lemma 3.6. Under the above assumptions, there exists a linear operator Πh ∈ L(H1
0 (Ω)n; V h)

such that for all v ∈ H1
0 (Ω)n

(3.34) ∀wh ∈ W h ,

M
∑

i=1

∫

Ωi

whdiv
(

Πh(v) − v
)

= 0,

(3.35) |||Πh(v)|||X ≤ C|v|H1(Ω),

with a constant C independent of v, h, H, and the diameter of Ωi, 1 ≤ i ≤ M .

Proof. Take Πh(v)|Ωs = Πh
s (v) and Πh(v)|Ωd

= Πh
d(v). Then (3.34) follows from (3.26) and (3.31).

The matching condition of the functions of V h at the interfaces of Γsd holds by virtue of (3.32).
Finally, the stability bound (3.35) stems from (3.28) and (3.33). �

The following inf-sup condition between W h and V h is an immediate consequence of a simple
variant of Fortin’s Lemma [34, 18] and Lemma 3.6.
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Theorem 3.1. Under the above assumptions, there exists a constant β⋆ > 0, independent of h, H,

and the diameter of Γij for all i < j such that

(3.36) ∀wh ∈ W h, sup
v

h∈V h

b(vh, wh)

|||vh|||X
≥ β⋆‖wh‖L2(Ω).

Finally, well-posedness of the discrete scheme (3.13) follows from Lemma 3.3 or 3.4 and Theorem
3.1.

Corollary 3.1. Under the above assumptions, problem (3.13) has a unique solution (uh, ph) ∈
V h × W h and

(3.37) |||uh|||X + ‖ph‖L2(Ω) ≤ C
(

‖f‖L2(Ω) + ‖qd‖L2(Ωd)

)

,

with a constant C independent of h, H, and the diameter of Γij for all i < j.

Proof. Since (3.13) is set into finite dimension, it is sufficient to prove uniqueness, and as uniqueness
follows from (3.37), it suffices to prove this stability estimate. Thus let (uh, ph) solve (3.13), which
is a typical linear problem with a non-homogeneous constraint. By virtue of the discrete inf-sup
condition (3.36), there exists a function uh

q ∈ V h such that

∀wh ∈ W h, b(uh
q , wh) = −

∫

Ωd

wh qd,

(3.38) |||uh
q |||X ≤ 1

β⋆
‖qd‖L2(Ωd).

Then uh
0 = uh − uh

q solves (3.13) with qd = 0 and the coercivity condition (3.15) or (3.18) and the
discrete inf-sup condition (3.36) imply that

|||uh
0 |||X + ‖ph‖L2(Ω) ≤ C‖f‖L2(Ω).

With (3.38), this gives (3.37). �

4. Construction of the approximation operators Θh
s and Πh

d

Constructing an operator Θh
s with values in V h

s , satisfying (3.23)–(3.25), uniformly stable with
respect to the diameter of the subdomains and interfaces, is not straightforward, particularly in
3 − D. On the other hand, a general construction of Πh

d in Ωd can be found in [5], and we shall

adapt it so that it matches suitably Θh
s on Γsd. Let us describe our strategy in each region.

4.1. General construction strategy. Let v ∈ H1
0 (Ω)n. In Ωs, we propose the following three-

step construction.

(1) Starting step. In each Ωs,i, 1 ≤ i ≤ Ms, take Θh
s (v) = Sh(v), where Sh(v) is a Scott &

Zhang [56] approximation operator, constructed so that Sh(v)|∂Ωs,i only uses values of v

restricted to ∂Ωs,i, and in particular, Sh(v)|Γs = 0. Thus Sh(v)|Ωs,i ∈ Xh
s,i and Sh(v) ∈ Xh

s .

(2) First correction step. For each Γij ∈ Γss ∪ Γsd with i < j, correct Θh
s (v) in Ωs,i by setting

Θh
s (v)|Ωs,i := Θh

s (v)|Ωs,i + ch
i,Γij

(v),

where ch
i,Γij

(v) ∈ Xh
s,i, ch

i,Γij
(v) = 0 on ∂Ωs,i \ Γij ,

(4.1)

∫

Γij

ch
i,Γij

(v) · nij =

∫

Γij

(

v − Sh(v)|Ωs,i

)

· nij ,

and satisfies suitable bounds. The existence of ch
i,Γij

(v) (without bounds) is guaranteed by

assumption (3.7). In particular, one can define it on Γij to satisfy (4.1), extend it by zero

on ∂Ωs,i \ Γij , and extend it arbitrarily inside Ωs,i to a function in Xh
s,i. Note that the
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correction ch
i,Γij

(v) only affects values at points located in the interior of Ωs,i and in the

interior of Γij . It has no influence on values at points located on the other interfaces. For
this reason, the discrete term that appears in the right-hand side of (4.1) is the trace on
Γij of Sh(v) coming from Ωs,i; this term has not been yet corrected. Once this correction

step is performed on all Γij ∈ Γss ∪Γsd with i < j, the resulting function Θh
s (v) satisfies on

all these interfaces

(4.2)

∫

Γij

(

Θh
s (v)|Ωs,i − v

)

· nij = 0.

Note that this step does not modify the trace on Γij of Sh(v) coming from Ωs,j . This trace
will be modified in the next step.

(3) Second correction step. For each Γij ∈ Γss with i < j, correct Θh
s (v) in Ωs,j by setting

Θh
s (v)|Ωs,j := Θh

s (v)|Ωs,j + ch
j,Γij

(v),

where ch
j,Γij

(v) ∈ Xh
s,j , ch

j,Γij
(v) = 0 on ∂Ωs,j \ Γij ,

(4.3) ∀µH ∈ ΛH
s ,

∫

Γij

µH · ch
j,Γij

(v) =

∫

Γij

µH ·
(

Θh
s (v)|Ωs,i − Sh(v)|Ωs,j

)

,

and satisfies suitable bounds. The existence of ch
j,Γij

(v) (without bounds) is guaranteed

by assumption (3.8). In particular, one can define it on Γij to satisfy (4.3), extend it by

zero on ∂Ωs,j \ Γij , and extend it arbitrarily inside Ωs,j to a function in Xh
s,j . Here also,

the correction ch
j,Γij

(v) has no influence on values at points located on the other interfaces.

Once this correction step is performed on all Γij ∈ Γss with i < j, the resulting function

Θh
s (v) satisfies on all these interfaces bs(Θ

h
s (v), µH) = 0 for all µH ∈ ΛH

s , i.e.

(4.4) ∀µH ∈ ΛH
s ,

∫

Γij

[Θh
s (v)] · µH = 0.

Finally, if the second assumption in Hypothesis 3.2 holds, then n ∈ ΛH
s and (4.2) and (4.4)

imply that on all these interfaces,

(4.5)

∫

Γij

(

Θh
s (v)|Ωs,j − v

)

· n = 0.

Therefore Θh
s (v) satisfies (3.23) and (3.24). Specific constructions of the corrections ch

i,Γij
(v)

and ch
j,Γij

(v) that guarantee that Θh
s (v) also satisfies (3.25) are presented in the forthcoming

subsections.

Next, we propose the following two-step construction algorithm in Ωd.

(1) Starting step. Set P h
d (v) = Rh(v) ∈ Xh

d , where Rh(v) is a standard mixed approximation

operator associated with W h
d . It preserves the normal component on the boundary:

(4.6) ∀Γij ⊂ ∂Ωd,k, 1 ≤ k ≤ Md , ∀vh ∈ Xh
d ,

∫

Γij

vh · nij

(

Rh(v)|Ωd,k
− v

)

· nij = 0,

and satisfies

(4.7) ∀1 ≤ i ≤ Md , ∀wh ∈ W h
d ,

∫

Ωd,i

whdiv
(

Rh(v) − v
)

= 0.

(2) Correction step. It remains to prescribe the jump condition. For each Γij ∈ Γdd ∪ Γsd with

i < j, correct P h
d (v) in Ωd,j by setting:

P h
d (v)|Ωd,j

:= P h
d (v)|Ωd,j

+ ch
j,Γij

(v),
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where ch
j,Γij

(v) ∈ Xh
d,j , ch

j,Γij
(v) · nj = 0 on ∂Ωd,j \ Γij , div ch

j,Γij
(v) = 0 in Ωd,j ,

∀µH ∈ ΛH
d ,

∫

Γij

µHch
j,Γij

(v) · nij =

∫

Γij

µH
(

Rh(v)|Ωd,i
− Rh(v)|Ωd,j

)

· nij ,

∀µH ∈ ΛH
sd ,

∫

Γij

µHch
j,Γij

(v) · nij =

∫

Γij

µH
(

Πh
s (v)|Ωs,i − Rh(v)|Ωd,j

)

· nij ,

(4.8)

and ch
j,Γij

(v) satisfies adequate bounds. Existence of a non necessarily divergence-free

ch
j,Γij

(v) (without bounds) follows from (3.9); it suffices to extend suitably Rh(v)|Ωd,j
and

Rh(v)|Ωd,i
or Πh

s (v)|Ωs,i . The zero divergence will be prescribed in the examples. Note that

ch
j,Γij

(v) has no effect on interfaces other than Γij and no effect on the restriction of P h
d (v)

in Ωd,i or on that of Πh
s (v) in Ωs,i. Therefore these corrections can be superimposed.

When step 2 is done on all Γij ∈ Γdd ∪Γsd with i < j, the resulting function P h
d (v) has zero normal

trace on Γd, it belongs to V h
d since, due to the first equation in (4.8), it satisfies for all Γij ∈ Γdd

with i < j

(4.9) ∀µH ∈ ΛH
d ,

∫

Γij

µH [P h
d (v) · n] = 0,

and, as the corrections are assumed to be divergence-free in each subdomain,

(4.10) ∀wh ∈ W h
d , ∀1 ≤ i ≤ Md ,

∫

Ωd,i

whdiv
(

P h
d (v) − v

)

= 0.

Furthermore, due to the second equation in (4.8), it satisfies for all Γij ∈ Γsd,

(4.11) ∀µH ∈ ΛH
sd ,

∫

Γij

µH
(

Πh
s (v)|Ωs,i − P h

d (v)|Ωd,j

)

· nij = 0.

Therefore, taking Πh
d(v) = P h

d (v) in Ωd, it satisfies (3.31) and (3.32).

The remainder of this section is devoted to specific examples of corrections ch
i,Γij

(v) and ch
j,Γij

(v)

where the constants in the stability bounds (3.25) and (3.33) are shown to be independent of the
discretization parameters and the diameter of the subdomains. In particular, the bounds for the
corrections will stem from the fact that each involves differences between v and good approximations
of v. Beforehand, we need to refine the assumptions on the meshes at the interfaces and refine
Hypothesis 3.1 on the mesh of subdomains.

Hypothesis 4.1. For i < j, let T be any element of T h
i that is adjacent to Γij, and let {Tℓ} denote

the set of elements of T h
j that intersect T . The number of elements in this set is bounded by a fixed

integer and there exists a constant C such that

|Tℓ|
|T | ≤ C.

The same is true if the indices i and j of the triangulations are interchanged. These constants are

independent of i, j, h, and the diameters of the interfaces and subdomains.

Hypothesis 4.2. (1) Each Ωi, 1 ≤ i ≤ M , is the image of a “reference” polygonal or polyhedral

domain by an homothety and a rigid body motion:

(4.12) Ωi = Fi(Ω̂i) , x = Fi(x̂) = AiRix̂ + bi,

where Ai = diam(Ωi), Ri is an orthogonal matrix with constant coefficients and bi a constant

vector.



23

(2) There exists a constant σ1 independent of M such that for any pair of adjacent subdomains

Ωi and Ωj, 1 ≤ i, j ≤ M , we have

(4.13)
Ai

Aj
≤ σ1.

By (4.12) diam(Ω̂i) = 1. In addition, it follows from Hypothesis 3.1 that on one hand the

reference domains Ω̂i can take at most L configurations and on the other hand,

(4.14) ∀i, 1 ≤ i ≤ M , diam(B̂i) ≥
1

σ
,

where B̂i is the largest ball contained in Ω̂i and σ is the constant of (3.1).

4.2. A construction of ch
i,Γij

(v). In this section we construct a correction ch
i,Γij

(v) satisfying (4.1)

and suitable bounds needed to establish the stability estimate (3.25). Recall the approximation
properties of the Scott & Zhang operator of degree r ≥ 1. Let v ∈ Ht(Ωs,i), for some real number

t ≥ 1 and let T be an element of T h
i , 1 ≤ i ≤ Ms. Let ∆T denote the macro-element that is used

for defining the values of Sh(v) in T . Then (cf. [56]) there exists a constant C that depends only
on r, t, and the shape regularity of T h

i , such that the following local approximation error holds

(4.15) ‖v − Sh(v)‖L2(T ) + hT |v − Sh(v)|H1(T ) ≤ Ch
min(r,t)
T |v|Hmin(r,t)(∆T ).

Owing to the regularity of T h
i , when (4.15) is summed over all T in T h

i , it gives

(4.16) ‖v − Sh(v)‖L2(Ωs,i) + h|v − Sh(v)|H1(Ωs,i) ≤ Chmin(r,t)|v|Hmin(r,t)(Ωs,i)
.

Let v ∈ H1
0 (Ω)n. Consider the case when n = 3, the case n = 2 being simpler, and also consider

the case when Γij is a polyhedral surface, not necessarily a flat plane. Let Xh
i,Γij

denote the trace

of Xh
s,i on Γij , and T h

i,Γij
the trace of T h

i on Γij , 1 ≤ i ≤ Ms, i < j; T h
i,Γij

is a triangular mesh of

each flat plane in Γij . In all cases considered, the restriction to each T of functions of Xh
s,i contains

at least IPn
1 . Now, choose one of the planes, say F , of Γij . For each interior vertex ak of T h

i,Γij
,

1 ≤ k ≤ NF , on F , let Ok denote the macro-element of all triangles of T h
i,Γij

(i.e. faces on Γij) that

share the vertex ak. Thus

F = ∪NF
k=1Ok.

The set {Ok} is not a partition of F , but it can be transformed into a partition by setting

∆1 = O1, and recursively ∆k = Ok \ ∪k−1
ℓ=1 ∆ℓ.

Note that some ∆k may be empty. By construction, we have

F = ∪NF
k=1∆k, , ∆k ∩ ∆ℓ = ∅ , k 6= ℓ , ∆k ⊂ Ok.

This can be done for all flat planes of Γij . For each k, let bk be the piecewise IP 1 “bubble” function
such that

bk(aℓ) = δk,ℓ,

extended by zero to all vertices inside Ωs,i, and define ch
i,Γij

(v) by

(4.17) ch
i,Γij

(v) =
∑

F∈Γij

NF
∑

k=1

ckbk , where ck =
1

∫

Ok
bk

∫

∆k

(

v − Sh(v)|Ωs,i

)

, ck = 0 , if ∆k = ∅.
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Lemma 4.1. The correction ch
i,Γij

(v) defined by (4.17) satisfies (4.1), more precisely

(4.18) ∀F ∈ Γij ,

∫

F
ch

i,Γij
(v) =

∫

F

(

v − Sh(v)|Ωs,i

)

,

and there exists a constant C independent of h and the diameter of Ωs,i and Γij such that

(4.19) ∀v ∈ H1
0 (Ω)n , |ch

i,Γij
(v)|H1(Ωs,i) ≤ C|v|H1(Ωs,i), ‖ch

i,Γij
(v)‖L2(Ωs,i) ≤ Ch|v|H1(Ωs,i).

Proof. For each k, the support of the trace of bk on Γij is contained in a single flat plane, say F ,
therefore,

∫

F
ch

i,Γij
(v) =

∫

F

NF
∑

k=1

ckbk =

NF
∑

k=1

ck

∫

F
bk =

NF
∑

k=1

ck

∫

Ok

bk =

NF
∑

k=1

∫

∆k

(

v − Sh(v)|Ωs,i

)

=

∫

F

(

v − Sh(v)|Ωs,i

)

,

since the set (∆k) is a partition of Γ.

To derive the estimate (4.19), we consider the faces T ′ in ∆k, pass to the reference element T̂ ,

where T is the element of T h
i adjacent to T ′, apply a trace theorem in T̂ , and revert to T . This

gives
∣

∣

∣

∣

∫

∆k

(

v − Sh(v)|Ωs,i

)

∣

∣

∣

∣

≤
∑

T ′⊂∆k

‖v − Sh(v)|Ωs,i‖L1(T ′)

≤Ĉ
∑

T ′⊂∆k

|T ′|
|T |1/2

(

‖v − Sh(v)‖L2(T ) + hT |v − Sh(v)|H1(T )

)

.

In this proof, Ĉ denotes constants that depend only on the reference element and the shape regu-
larity of the triangulation. Then considering the regularity of T h

i , the local approximation formula
(4.15) with r = t = 1 implies that

(4.20)

∣

∣

∣

∣

∫

∆k

(

v − Sh(v)|Ωs,i

)

∣

∣

∣

∣

≤ Ĉ
∑

T ′⊂∆k

hT
|T ′|
|T |1/2

|v|H1(∆T ) ≤ Ĉ
|∆k|
ρ
1/2
k

|v|H1(Dk),

where Dk is the set of elements of T h
i where the values of v are taken for computing Sh(v), and

ρk = minT∈Dk
ρT .

Therefore, considering that |∆k| ≤ |Ok|, ck defined by (4.17) satisfies

(4.21) |ck| ≤
Ĉ

ρ
1/2
k

|v|H1(Dk).

Now,

|ch
i,Γij

(v)|2H1(Ωs,i)
=

∫

Ωs,i

∣

∣

∑

F∈Γij

NF
∑

k=1

ck∇ bk

∣

∣

2
=
∑

T∈T h
i

∫

T

∣

∣

∑

F∈Γij

NF
∑

k=1

ck∇ bk

∣

∣

2
.

But given an element T in T h
i there is at most a fixed (and small) number of indices k such that

bk|T 6= 0. Therefore

|ch
i,Γij

(v)|2H1(T ) =

∫

T

∣

∣

∑

F∈Γij

NF
∑

k=1

ck∇ bk

∣

∣

2 ≤ Ĉ
∑

k

|ck|2|bk|2H1(T ),
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where the sum runs over all indices k such that bk|T 6= 0. By substituting (4.21) into this inequality
and estimating the norm of bk, we easily derive that

(4.22) |ch
i,Γij

(v)|2H1(T ) ≤ Ĉ
∑

k

1

ρk

1

ρ2
T

|T ||v|2H1(Dk).

Since ρkρ
2
T has the same order as |T |, then by summing (4.22) over all T in T h

i and considering that
there is at most a fixed (and small) number of repetitions in the Dk, we obtain the first inequality
in (4.19). The second inequality in (4.19) follows in a similar manner from the representation (4.17)
and bound (4.21). �

4.3. A construction of ch
j,Γij

(v) in Ωs. The 3 − D case. Recall that constructing a suitable

correction solving (4.3) relies on condition (3.8). In 3−D this is fairly complex because it amounts
to satisfying many conditions on each interface, and exerting a global control on such a system is
far from easy. It is much easier to achieve when the conditions are local and independent, as is
done above for ch

i,Γij
(v). In this section we present an example for which (3.8) holds by explicit

construction and consequently (4.3) has a solution. The correction satisfies suitable continuity
bounds that are needed to establish the stability estimate (3.25). We follow the approach of
BenBelgacem [12] who presents a local construction in 3 − D by adding to the space Xh

s,j in Ωs,j

a stabilizing bubble function in each face T ′ of the trace T h
j,Γij

of the triangulation T h
j on Γij and

choosing for ΛH constant vectors on each face T ′. More precisely, for each j, 1 ≤ j ≤ Ms, and for
each T in T h

j , let P(T ) denote a polynomial space such as the mini-element or Bernardi-Raugel
element, used in approximating the velocity of the Stokes problem with order one. For each face
T ′ of T h

j,Γij
, let

bT ′ |T ′ = λ1λ2λ3,

extended by zero elsewhere, where λk, k = 1, 2, 3, denote the barycentric coordinates of the three
vertices of T ′. Then set

Xh
s,j = {v ∈ C0(Ωs,j)

3;∀T ∈ T h
j , T not adjacent to Γij , v|T ∈ P(T ),

∀T ∈ T h
j , T adjacent to Γij , v|T ∈ P(T ) + bT ′IR3},

(4.23)

and choose

(4.24) ΛH = {µH ∈ L2(Γij)
3 ; ∀T ′ ∈ T h

j,Γij
, µH |T ′ ∈ IP 3

0}.

As bT ′ vanishes at all vertices of T , it does not change the approximating properties of P(T ). Note
that ΛH does not satisfy Hypothesis 3.2 (3). Nevertheless a discrete Korn inequality holds in V h

s ,
see Propositions 4.1 and 4.2 below. With this choice, we can show that (3.8) holds. Indeed, for

v ∈ X̃, it is easy to see that

vh =
∑

T ′∈T h
j,Γij

vT ′bT ′ , where vT ′ =
1

∫

T ′ bT ′

∫

T ′

v

satisfies (3.8). We now define

(4.25) ch
j,Γij

(v) =
∑

T ′∈T h
j,Γij

cT ′bT ′ , where cT ′ =
1

∫

T ′ bT ′

∫

T ′

(

Θh
s (v)|Ωs,i − Sh(v)|Ωs,j

)

,

where Θh
s (v)|Ωs,i is computed in the preceding subsection by correcting Sh(v)|Ωs,i with ch

i,Γij
(v)

defined in (4.17).
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Lemma 4.2. The correction ch
j,Γij

(v) defined by (4.25) satisfies (4.3) and there exists a constant

C independent of h and the diameter of Ωs,i, Ωs,j, and Γij such that

(4.26)

∀v ∈ H1
0 (Ω)n, |ch

j,Γij
(v)|H1(Ωs,j) ≤ C|v|H1(Ωs,i∪Ωs,j), ‖ch

j,Γij
(v)‖L2(Ωs,j) ≤ Ch|v|H1(Ωs,i∪Ωs,j).

Proof. For any face T ′ of T h
j,Γij

, we can write

cT ′ =
1

∫

T ′ bT ′

∫

T ′

(

Θh
s (v)|Ωs,i − v − (Sh(v)|Ωs,j − v)

)

.

But on Γij ,

Θh
s (v)|Ωs,i = Sh(v)|Ωs,i + ch

i,Γij
(v),

owing to the support of each correction. Therefore

cT ′ =
1

∫

T ′ bT ′

∫

T ′

(

ch
i,Γij

(v) + (Sh(v)|Ωs,i − v) − (Sh(v)|Ωs,j − v)
)

= A1 + A2 + A3.

Let T be the element of T h
j adjacent to T ′. By arguing as in the proof of Lemma 4.1, we easily

derive

(4.27) |A3bT ′ |H1(T ) ≤ Ĉ|v|H1(∆T ),

where ∆T is the macro-element of T h
j required to define Sh(v) in T . The estimation of A2 is

similar, but more technical because T ′ belongs to T h
j whereas Sh(v)|Ωs,i is constructed on T h

i . Let

{Tℓ} denote the set of elements of T h
i that intersect T . The argument of Lemma 4.1 gives:

|A2bT ′ |H1(T ) ≤ Ĉ
1

|T |1/2

∑

ℓ

|Tℓ|1/2|v|H1(∆Tℓ
).

Then Hypothesis 4.1 implies

(4.28) |A2bT ′ |H1(T ) ≤ Ĉ
∑

ℓ

|v|H1(∆Tℓ
).

The bound for A1 follows the same lines. With the notation of Lemma 4.1,

A1 =
1

∫

T ′ bT ′

∫

T ′

∑

k

ckbk,

where the sum runs over the indices k for which Ok ∩ T ′ 6= ∅. According to Hypothesis 4.1, the
number of terms in this sum is bounded by a fixed integer. Thus

|A1| ≤
∑

k

Ĉ

ρ
1/2
k

|v|H1(Dk),

and

|A1bT ′ |H1(T ) ≤ Ĉ
|T |1/2

ρT

∑

k

1

ρ
1/2
k

|v|H1(Dk).

Then Hypothesis 4.1 implies that

(4.29) |A1bT ′ |H1(T ) ≤ Ĉ|v|H1(∆̃Tℓ
),

where ∆̃Tℓ
is a macro-element in Ωs,i and again the number of elements in ∆̃Tℓ

is bounded by a
fixed integer. All constants are independent of h and the diameter of Ωs,i, Ωs,j , and Γij . Finally,
the first inequality in (4.26) follows readily by summing (4.27)–(4.29) and applying Hypothesis 4.1.
The argument for the second inequality in (4.26) is similar. �
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4.3.1. A discrete Korn inequality in V h
s . Since all assumptions except Hypothesis 3.2 (3) hold, it

suffices to examine the jump of functions of V h
s through the interfaces Γij ∈ Γss. The next two

lemmas show that the projection of this jump on polynomials of IP 1 is small.

Lemma 4.3. Let Γij ∈ Γss, i < j. There exists a constant C, independent of h and the diameters

of Γij, Ωs,i, and Ωs,j such that

(4.30) ∀vh ∈ V h
s ,∀p ∈ IP 3

1 ,

∣

∣

∣

∣

∣

∫

Γij

[vh] · p
∣

∣

∣

∣

∣

≤ Ch3/2|Γij |1/2
(

|vh|H1(Ds,i) + |vh|H1(Ds,j)

)

,

where Ds,k denotes the layer of elements in Ωs,k adjacent to Γij.

Proof. All constants in this proof are independent of h and the diameters of Γij , Ωs,i, and Ωs,j .

Let T ′ be an element (i.e. a face) of T h
j,Γij

, which is the mesh of ΛH . There is no loss of generality

in assuming that T ′ lies on the x1 − x2 plane. Consider a generic component vh of vh. Since the
jump already satisfies

∫

T ′

[vh] = 0,

it suffices to bound the product of the jump by xk, k = 1, 2, say x1. Then for any constant c,
∫

T ′

[vh]x1 =

∫

T ′

(

[vh] − c
)(

x1 −
1

|T ′|

∫

T ′

x1

)

.

A scaling argument gives
∥

∥

∥

∥

x1 −
1

|T ′|

∫

T ′

x1

∥

∥

∥

∥

L2(T ′)

≤ Ĉ|T ′|1/2hT ′ .

Similarly,

inf
c∈IR

‖[vh] − c‖L2(T ′) ≤ ĈhT ′ |[vh]|H1(T ′) ≤ ĈhT ′

(

|vh|Ωs,i |H1(T ′) + |vh|Ωs,j |H1(T ′)

)

.

On one hand, equivalence of norms gives

|vh|Ωs,j |H1(T ′) ≤ Ĉ
1

ρ
1/2
T

|vh|Ωs,j |H1(T ),

where T is the element of T h
j adjacent to T ′. On the other hand, arguing as in the proof of Lemma

4.2, we prove that

|vh|Ωs,i |H1(T ′) ≤ Ĉ
1

ρ
1/2
T

|vh|Ωs,i |H1(∆T ),

where ∆T is the union of all elements of T h
i that intersect T ′. Then taking the product and summing

over all faces T ′ of T h
j,Γij

, we obtain

∣

∣

∣

∣

∣

∫

Γij

[vh]x1

∣

∣

∣

∣

∣

≤ Ĉh3/2
(

∑

T ′∈T h
j,Γij

|T ′|
)1/2(|vh|H1(Ds,i) + |vh|H1(Ds,j)

)

,

whence (4.30). �

Lemma 4.4. Let Γij ∈ Γss, i < j, and let Π([vh]) ∈ IP 3
1 denote the projection of [vh] onto IP 3

1 on

Γij. There exists a constant C, independent of h and the diameters of Γij, Ωs,i, and Ωs,j such that

(4.31) ∀vh ∈ V h
s , ‖Π([vh])‖L2(Γij) ≤ Ch3/2

(

|vh|H1(Ds,i) + |vh|H1(Ds,j)

)

.
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Proof. By definition Π([vh]) ∈ IP 3
1 solves

∀p ∈ IP 3
1 ,

∫

Γij

Π([vh]) · p =

∫

Γij

[vh] · p.

By passing to the reference subdomain Ω̂j , this reads

∀p̂ ∈ IP 3
1 ,

∫

Γ̂
Π([vh]) ◦ Fj · p̂ =

|Γ̂|
|Γij |

∫

Γij

[vh] · p.

The coefficients of the polynomial of degree one Π([vh]) ◦ Fj solve a linear system whose matrix

only depends on Γ̂. Therefore, in view of (4.30),

‖Π([vh])‖L2(Γij) ≤ |Γij |1/2‖Π([vh]) ◦ Fj‖L∞(Γ̂) ≤ Ĉh3/2
(

|vh|H1(Ds,i) + |vh|H1(Ds,j)

)

.

�

This last result enables us to prove Korn’s inequality in V h
s .

Proposition 4.1. Let |Γs| > 0 and Ωs be connected. Then there exists h0 > 0 such that for all

h ≤ h0,

(4.32) ∀vh ∈ V h
s ,

Ms
∑

i=1

|vh|2H1(Ωs,i)
≤ C

Ms
∑

i=1

‖D(vh)‖2
L2(Ωs,i)

;

the constants C and h0 are independent of h and the diameters of the interfaces Γij and the

subdomains Ωs,k.

Proof. Let vh ∈ V h
s . Formula (1.12) in [16] gives, with a constant C1 that depends only on the

shape regularity of the mesh of subdomains TΩ,

Ms
∑

i=1

|vh|2H1(Ωs,i)
≤ C1

(

Ms
∑

i=1

‖D(vh)‖2
L2(Ωs,i)

+
∑

i<j

1

diam(Γij)
‖Π([vh])‖2

L2(Γij)

)

≤ C1

(

Ms
∑

i=1

‖D(vh)‖2
L2(Ωs,i)

+ Ĉ
∑

i<j

1

diam(Γij)
h3
(

|vh|2H1(Ωs,i)
+ |vh|2H1(Ωs,j)

)

,

owing to (4.31). But h < diam(Γij) and there exists an h0 > 0 such that

∀h ≤ h0 ,
h2

C1Ĉ
≤ 1

2
.

Since C1 and Ĉ are independent of h and the diameters of the interfaces Γij and the subdomains,
then so is h0. Hence for all h ≤ h0,

Ms
∑

i=1

|vh|2H1(Ωs,i)
≤ 2C

Ms
∑

i=1

‖D(vh)‖2
L2(Ωs,i)

.

�

By arguing as in the proof of Lemma 3.4, we easily derive Korn’s inequality when |Γs| = 0 and
Ωs is connected.

Proposition 4.2. Let |Γs| = 0 and Ωs be connected, i.e. Γsd = ∂Ωs. Then there exists h0 > 0
such that for all h ≤ h0,

(4.33) ∀vh ∈ V h
s ,

Ms
∑

i=1

|vh|2H1(Ωs,i)
≤ C

Ms
∑

i=1

(

‖D(vh)‖2
L2(Ωs,i)

+
(

2
∑

l=1

∫

Γsd

|vh
s · τ l|

)2
)

;
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the constants C and h0 are independent of h and the diameters of the interfaces Γij and the

subdomains Ωs,k.

The case when Ωs is not connected follows from these two propositions applied to each connected
component of Ωs according that it is or not adjacent to Γs.

4.4. A construction of ch
j,Γij

(v) in Ωs. The 2−D case. Of course, the above construction can

be applied in 2 − D, but since the situation in this case is much simpler, we can work with more
elaborate mortar spaces, without enriching Xh

i,Γij
. This is made possible by following the sharp

approach of Crouzeix and Thomée [23]. To this end, we slightly modify the underlying Scott &

Zhang operator by asking that the modified operator S̃h be continuous at the end points of all
interfaces Γij in Γss ∪ Γsd, and coincide elsewhere with Sh. This only concerns the set of points,

say ak, 1 ≤ k ≤ P , that do not lie on Γs, since Sh(v) is necessarily zero at those points. Note that
these are all interior cross points of the triangulation of subdomains TΩ. To achieve continuity at
any such point a, we choose once and for all an element Ta in Ωs with vertex a and we set

S̃h(v)(a) =

∫

Ta

v

|Ta|
.

Both corrections ch
i,Γij

(v) and ch
j,Γij

(v) are defined to satisfy respectively (4.1) and (4.3) with Sh(v)

replaced by S̃h(v). For v ∈ H1(Ω), this does not change the approximation properties (4.16) of

S̃h and hence (4.19), except that the domain of definition of v is a little larger than Ωs,i or Ωs,j

near the end points of Γij . Owing to the continuity of S̃h(v) at the end points of Γij and the fact
that all previously made corrections vanish at the end points of the interfaces Γij in Γss ∪ Γsd, the
integrand in the right-hand side of (4.3) also vanishes at the end points of Γij . Thus the trace of

Θh
s (v)|Ωs,i − S̃h(v)|Ωs,j on Γij belongs to H

1/2
00 (Γij)

2, see Section 1.1. We shall see that this property

is crucial for estimating uniformly ch
j,Γij

(v).

We propose to split the construction of ch
j,Γij

(v) into two parts:

(1) Construct an operator πh
s ∈ L(H

1/2
00 (Γij)

2, Xh
j,Γij

) such that for all ℓ ∈ H
1/2
00 (Γij)

2,

∀µH ∈ ΛH
s ,

∫

Γij

(πh
s (ℓ) − ℓ) · µH = 0,

πh
s (ℓ) = 0, at the end points of Γij ,

|πh
s (ℓ)|

H
1/2
00 (Γij)

≤ κs |ℓ|H1/2
00 (Γij)

,

(4.34)

with a constant κs that is independent of h, H, and the measure of Γij .

(2) Define ch
j,Γij

(v) to be a suitable extension of πh
s (Θh

s (v)|Ωs,i − S̃h(v)|Ωs,j ) inside Ωs,j so that

it satisfies all uniform properties required for the stability bound (3.25).

Note that ch
j,Γij

(v) satisfies (4.3) by construction. Also, the existence of the operator πh
s implies

that condition (3.8) holds.
We now discuss the construction of an operator satisfying (4.34). Uniformity with respect to

the diameters of Γij and Ωs,j is obtained by reverting to the reference subdomains. Let Ω̂j be

associated with Ωs,j by Hypothesis 4.2 and let Γ̂ = F−1
j (Γij). Let the image by F−1

j of T h
j,Γij

be

denoted by T̂j . Similarly, set

X̂j = {v̂ = vh◦F−1
j ; vh ∈ Xh

j,Γij
, vh = 0, at the end points of Γij} , Λ̂ = {µ̂ = µH◦F−1

j ; µH ∈ ΛH
s }.
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Then, given ℓ̂ in H
1/2
00 (Γ̂)2, if we construct π̂j(ℓ̂) in X̂j unique solution of

(4.35) ∀µ̂ ∈ Λ̂ ,

∫

Γ̂
π̂j(ℓ̂) · µ̂ =

∫

Γ̂
ℓ̂ · µ̂,

and satisfying

(4.36) |π̂j(ℓ̂)|H1/2
00 (Γ̂)

< Ĉ|ℓ̂|
H

1/2
00 (Γ̂)

,

with a constant Ĉ independent of j and ℓ̂, then by reverting to Ωs,j and defining πh
j (ℓ) by

(4.37) πh
j (ℓ) ◦ Fj = π̂j(ℓ ◦ Fj) = π̂j(ℓ̂),

we shall obtain an operator satisfying (4.34). Indeed, uniqueness of the solution of (4.35) will
guarantee that the mapping π̂j is linear, and the inequality in (4.34) with the same constant will

follow from the invariance of the H
1/2
00 seminorm by a homothety and a rigid body motion. But

since explicit constructions of π̂j are fairly technical, we postpone them to the Appendix and discuss
the extension part (2) now. First we construct a suitable function v in H1(Ωs,j).

Lemma 4.5. For any Ωs,j ⊂ Ωs, any interface Γ ⊂ ∂Ωs,j and any ℓ ∈ H
1/2
00 (Γ) there exists a

function v = E(ℓ) ∈ H1(Ωs,j) satisfying

v|Γ = ℓ , v|∂Ωs,j\Γ = 0,

the mapping E is linear and there exists a constant C independent of ℓ, v, and the diameter of Γ
and Ωs,j such that

(4.38) |v|H1(Ωs,j) ≤ C|ℓ|
H

1/2
00 (Γ)

, ‖v‖L2(Ωs,j) ≤ CAj |ℓ|H1/2
00 (Γ)

,

where Aj is the diameter of Ωs,j.

Proof. With the notation of Hypothesis 4.2, let ℓ̂ = ℓ ◦Fj . Then ℓ̂ belongs to H
1/2
00 (Γ̂); hence it can

be extended by zero to ∂Ω̂j and the extended function, say ℓ̂0 belongs to H1/2(∂Ω̂j) with

(4.39) |ℓ̂0|H1/2(∂Ω̂j)
≤ Ĉ|ℓ̂|

H
1/2
00 (Γ̂)

.

There exists an extension operator Ê ∈ L(H1/2(∂Ω̂j); H
1(Ω̂j)) such that

(4.40) ‖Ê‖L(H1/2(∂Ω̂j);H1(Ω̂j))
≤ Ĉ.

Take v̂ = Ê(ℓ̂0) and v = v̂ ◦ F−1
j . The mapping ℓ 7→ v is linear, v belongs to H1(Ωs,j), its trace

satisfies the statement of the lemma, and it remains to check (4.38). The following inequalities
stem from (4.40), (4.39) and a straightforward scaling argument:

|v|H1(Ωs,j) ≤ |v̂|H1(Ω̂j)
≤ Ĉ|ℓ̂0|H1/2(∂Ω̂j)

≤ Ĉ|ℓ̂|
H

1/2
00 (Γ̂)

≤ Ĉ|ℓ|
H

1/2
00 (Γ)

‖v‖L2(Ωs,j) ≤ ĈAj‖v̂‖L2(Ω̂j)
≤ ĈAj |ℓ|H1/2

00 (Γ)
.

(4.41)

�

Next, we take Γ = Γij and define

(4.42) ch
j,Γij

(v) = Sh(w), w = E(πh
s (Θh

s (v)|Ωs,i − S̃h(v)|Ωs,j )),

where the Scott & Zhang interpolant Sh is constructed so that Sh(w) vanishes on ∂Ωs,j \ Γij .

The uniform approximation properties (4.16) of Sh, (4.36), and (4.38) imply, with constants C
independent of h and the diameters of Γij , Ωs,i and Ωs,j :

(4.43) ‖ch
j,Γij

(v)‖H1(Ωs,j) ≤ C|w|H1(Ωs,j) ≤ C|Θh
s (v)|Ωs,i − S̃h(v)|Ωs,j |H1/2

00 (Γij)
,
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and it remains to derive a uniform bound for the last norm in terms of v. This is the object of the
next lemma.

Lemma 4.6. Let Γij ∈ Γss, i < j. There exists a constant C independent of h and the diameters

of Γij, Ωs,i and Ωs,j, such that

(4.44) ∀v ∈ H1
0 (Ω)2 , |Θh

s (v)|Ωs,i − S̃h(v)|Ωs,j |H1/2
00 (Γij)

≤ C|v|H1(Ωs,i∪Ωs,j∪Oij),

where Oij contains the few elements near the endpoints a of Γij used in defining S̃h(v)(a), and

that are not in Ωs,i ∪ Ωs,j.

Proof. Recall that the trace on Γij of Θh
s (v)|Ωs,i is S̃h(v)|Ωs,i + ch

i,Γij
(v). As ch

i,Γij
(v) vanishes on

∂Ωs,i \ Γij , then by passing to the reference subdomain Ω̂i, we obtain

|ch
i,Γij

(v)|
H

1/2
00 (Γij)

= |ch
i,Γij

(v) ◦ Fi|H1/2
00 (Γ̂)

≤ Ĉ|ch
i,Γij

(v) ◦ Fi|H1(Ω̂i)
≤ Ĉ|ch

i,Γij
(v)|H1(Ωs,i).

Therefore it is bounded owing to (4.19), with Ωs,i augmented by Oij . Thus it suffices to consider

the jump [S̃h(v)] through Γij .

First, by writing [S̃h(v)] = [S̃h(v)−v], by passing to the reference subdomains Ω̂k, k = i, j, and
by using the approximation properties (4.16) of Sh, we derive

|
(

S̃h(v) − v
)

|Ωs,k
|H1/2(Γij)

=|(S̃h(v) − v) ◦ Fk|Ω̂k
|H1/2(Γ̂) ≤ Ĉ‖(S̃h(v) − v) ◦ Fk‖H1(Ω̂k)

≤ Ĉ
(

|S̃h(v) − v|2H1(Ωs,k) +
1

A2
k

‖S̃h(v) − v‖2
L2(Ωs,k)

)1/2

≤ Ĉ
(

|v|2H1(Ωs,k∪Oij)
+

h2

A2
k

|v|2H1(Ωs,k∪Oij)

)1/2
.

(4.45)

Since h < Ak, this bounds the first part of the norm and it remains to estimate
∫

Γij

1

d(x)

∣

∣[S̃h(v)]
∣

∣

2
,

where d(x) denotes the distance between x and the end points of Γij . This part does not have
the same immediate bound as the above correction because the jump does not vanish on the other
boundaries of the subdomains.

Let us first consider the case when Γij is a straight line. There is no loss of generality in
assuming that Γij lies on the axis y = 0 with end point at the origin: Γij =]0, L[. Let 0 = x0 <

x1 < · · · < xN < xN+1 = L denote the nodes of T h
i,Γij

and exceptionally set hn = xn+1 − xn. Then

d(x) = Min(x, L − x) and since
∫

Γij

1

d(x)

∣

∣[S̃h(v)]
∣

∣

2 ≤
∫ L

0

1

x

∣

∣[S̃h(v)]
∣

∣

2
+

∫ L

0

1

L − x

∣

∣[S̃h(v)]
∣

∣

2
,

it suffices to examine the first term:
∫ L

0

1

x

∣

∣[S̃h(v)]
∣

∣

2
=

N
∑

n=0

∫ xn+1

xn

1

x

∣

∣[S̃h(v)]
∣

∣

2
.

For any n ≥ 1, we have xn ≥ hn−1, and since [S̃h(v)] belongs to
(

H1(0, L) ∩ C0(0, L)
)2

, we can
write

∫ xn+1

xn

1

x

∣

∣[S̃h(v)]
∣

∣

2 ≤ 1

xn

∫ xn+1

xn

(

[S̃h(v)(xn)] +

∫ x

xn

d

dt
[S̃h(v)(t)]dt

)2
dx

≤ 2hn

hn−1

(

[S̃h(v)(xn)]2 +
hn

2
‖ d

dx
[S̃h(v)]‖2

L2(xn,xn+1)

)

.

(4.46)
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By using an equivalence of norms, arguing as in the proof of Lemma 4.2 in order to control the
discrepancy in the meshes on both sides of Γij , and using the approximation properties of S̃h and
the regularity of the triangulations, we infer

2hn

hn−1

∣

∣[S̃h(v)(xn)]|2 ≤ 2hn

hn−1
‖[S̃h(v)]‖2

L∞(xn,xn+1) ≤ Ĉ
1

hn−1
‖[S̃h(v)]‖2

L2(xn,xn+1)

= Ĉ
1

hn−1
‖[S̃h(v) − v]‖2

L2(xn,xn+1) ≤ Ĉ
(

|v|2
H1(∆̃n,i)

+ |v|2
H1(∆̃n,j)

)

,

(4.47)

where ∆̃n,k denotes the set of elements in Ωs,k used in defining S̃h(v) on [xn, xn+1]. Similarly,

h2
n

hn−1

∥

∥

∥

d

dx
[S̃h(v)]

∥

∥

∥

2

L2(xn,xn+1)
≤ Ĉ

1

hn−1
‖[S̃h(v)]‖2

L2(xn,xn+1) = Ĉ
1

hn−1
‖[S̃h(v) − v]‖2

L2(xn,xn+1)

≤ Ĉ
(

|v|2
H1(∆̃n,i)

+ |v|2
H1(∆̃n,j)

)

.

(4.48)

When n = 0, as [S̃h(v)(0)] = 0, there only remains the second term in the first line of (4.46), and
we immediately derive

∫ x1

0

1

x

∣

∣[S̃h(v)]
∣

∣

2
=

∫ x1

0

1

x

(

∫ x

0

d

dt

(

[S̃h(v)]
)

dt
)2

dx

≤
∫ x1

0

∥

∥

∥

d

dx

(

[S̃h(v)]
)

∥

∥

∥

2

L2(0,x)
≤ h1

∥

∥

∥

d

dx

(

[S̃h(v)]
)

∥

∥

∥

2

L2(0,x1)
≤ Ĉ

(

|v|2
H1(∆̃0,i)

+ |v|2
H1(∆̃0,j)

)

.

Finally, when Γij is a polygonal line, the above argument is valid on the segments that share an
end point with Γij and is simpler on the other segments since then d(x) is not small with respect
to h. �

Inequalities (4.43) and (4.44) imply the following.

Corollary 4.1. Let Γij ∈ Γss, i < j. There exists a constant C independent of h and the diameters

of Γij, Ωs,i and Ωs,j, such that

(4.49) ∀v ∈ H1
0 (Ω)2 , ‖ch

j,Γij
(v)‖H1(Ωs,j) ≤ C|v|H1(Ωs,i∪Ωs,j∪Oij).

Corollary 4.2. The approximation operator Θh
s constructed in Section 4.1 with corrections ch

i,Γij
(v)

and ch
j,Γij

(v) described in Sections 4.2–4.4 satisfies assumption (3.25).

Proof. Since Θh
s (v) is constructed by correcting the Scott-Zhang interpolant S̃h with ch

i,Γij
(v) and

ch
j,Γij

(v), assumption (3.25) follows from (4.16), (4.19), (4.26), (4.49), and the Poincaré inequality

(1.1). �

4.5. A construction of ch
j,Γij

(v) in Ωd. Here we construct a correction ch
j,Γij

(v) in Ωd satisfying

(4.8) and suitable continuity bounds that are needed to establish the stability estimate (3.33).
Recall that the existence of ch

j,Γij
(v) relies on (3.9). In the construction below we directly show

that (3.9) holds for a wide range of mesh configurations.
Let v be given in H1

0 (Ω)n. Recall that the mixed approximation operator Rh defined in each
Ωd,i takes its values in Xh

d and satisfies (4.6) on each Γij ⊂ ∂Ωd,k, 1 ≤ k ≤ Md, and (4.7) in each
Ωd,i, 1 ≤ i ≤ Md:

∀vh ∈ Xh
d ,

∫

Γij

vh · nij

(

Rh(v)|Ωd,k
− v

)

· nij = 0,

∀wh ∈ W h
d ,

∫

Ωd,i

whdiv
(

Rh(v) − v
)

= 0.
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Furthermore there exists a constant C independent of h and the geometry of Ωd,i, such that

(4.50) ∀v ∈ H1
0 (Ω)n , ‖Rh(v)‖H(div;Ωd,i) ≤ C‖v‖H1(Ωd,i), 1 ≤ i ≤ Md.

This is easily established by observing that the moments defining the degrees of freedom of Rh(v)
are invariant by homothety and rigid-body motion; in particular the normal vector is preserved. In
addition, it satisfies (3.6):

∀i, 1 ≤ i ≤ Md , ∀vh ∈ Xh
d,i , div vh ∈ W h

d,i.

The above properties also imply (3.5): for all i, 1 ≤ i ≤ Md,

inf
wh∈W h

0,d,i

sup
v

h∈Xh
0,d,i

∫

Ωd,i
whdiv vh

‖vh‖H(div;Ωd,i)‖wh‖L2(Ωd,i)
≥ β⋆

d ,

with a constant β⋆
d > 0 independent of h and Ai.

Now, let Γij ∈ Γdd∪Γsd; by analogy with the situation in the Stokes region, we denote by Xh
d,j,Γij

the trace space of Xh
d,j on Γij . Following [5], we define the space of normal traces

Xn

j,Γij
= {w · nij ; w ∈ Xh

d,j,Γij
},

and the orthogonal projection Qh
j,Γij

from L2(Γij) into Xn

j,Γij
. Then we make the following assump-

tion: There exists a constant C, independent of H, h, i, j, and the diameters of Γij and Ωd,j , such
that

(4.51) ∀µH ∈ ΛH
d ,∀µH ∈ ΛH

sd , ‖µH‖L2(Γij) ≤ C‖Qh
j,Γij

(µH)‖L2(Γij).

It is shown in [60] that (4.51) holds for both continuous and discontinuous mortar spaces, if the
mortar grid T H

ij is a coarsening by two of T h
j,Γij

. A similar inequality for more general grid configu-

rations is shown in [52]. Formula (4.51) implies that the projection Qh
j,Γij

is an isomorphism from

the restriction of ΛH
sd, respectively ΛH

d , to Γij , say ΛH
sd,ij respectively ΛH

d,ij , onto its image in Xn

j,Γij
,

and the norm of its inverse is bounded by C. Then a standard algebraic argument shows that its
dual operator, namely the orthogonal projection from Xn

j,Γij
into ΛH

sd,ij , respectively ΛH
d,ij , is also

an isomorphism from the orthogonal complement in Xn

j,Γij
of the projection’s kernel onto ΛH

sd,ij ,

respectively ΛH
d,ij , and the norm of its inverse is also bounded by C. As a consequence, for each

f ∈ L2(Γij), there exists vh · nij ∈ Xn

j,Γij
such that

∀µH ∈ ΛH
d ,∀µH ∈ ΛH

sd ,

∫

Γij

µHvh · nij =

∫

Γij

fµH ,

and there exists a constant C independent of h, and the diameter of Γij , such that

‖vh · nij‖L2(Γij) ≤ C‖f‖L2(Γij).

This implies that (3.9) holds. Furthermore, the solution vh · nij is unique in the orthogonal

complement of the projection’s kernel and by virtue of this uniqueness, vh ·nij depends linearly on
f . This result permits to partially solve (4.8).

Lemma 4.7. Let v ∈ H1
0 (Ω)n. Under assumption (4.51), for each Γij ∈ Γdd ∪ Γsd, there exists

wh · nij ∈ Xn

j,Γij
such that

∀µH ∈ ΛH
d ,

∫

Γij

µHwh · nij =

∫

Γij

µH
[

Rh(v) · n
]

,

‖wh · nij‖L2(Γij) ≤ C‖
[

Rh(v) · n
]

‖L2(Γij),

(4.52)
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∀µH ∈ ΛH
sd ,

∫

Γij

µHwh · nij =

∫

Γij

µH
(

Θh
s (v)|Ωs,i − Rh(v)|Ωd,j

)

· nij ,

‖wh · nij‖L2(Γij) ≤ C‖
(

Θh
s (v)|Ωs,i − Rh(v)|Ωd,j

)

· nij‖L2(Γij),

(4.53)

with the constant C of (4.51). The mapping v 7→ wh · nij is linear.

Lemma 4.7 constructs a normal trace wh ·nij on Γij and we must extend it inside Ωd,j . To this

end, let ℓh ∈ L2(∂Ωd,j) be the extension of wh · nij by zero on ∂Ωd,j . Next, we solve the problem:
Find q ∈ H1(Ωd,j) ∩ L2

0(Ωd,j) such that

(4.54) ∆ q = 0 in Ωd,j ,
∂q

∂nj
= ℓh on ∂Ωd,j .

Lemma 4.8. Problem (4.54) has one and only one solution q ∈ H3/2(Ωd,j) ∩ L2
0(Ωd,j) and

|q|H1(Ωd,j) ≤ C
√

Aj‖[Rh(v) · n]‖L2(Γij),

|q|H3/2(Ωd,j)
≤ C‖[Rh(v) · n]‖L2(Γij), Γij ∈ Γdd,(4.55)

|q|H1(Ωd,j) ≤ C
√

Aj‖
(

Θh
s (v)|Ωs,i − Rh(v)|Ωd,j

)

· nij‖L2(Γij),

|q|H3/2(Ωd,j)
≤ C‖

(

Θh
s (v)|Ωs,i − Rh(v)|Ωd,j

)

· nij‖L2(Γij), Γij ∈ Γsd,(4.56)

with constants C independent of h, H, q, i, j, and the diameters of Γij and Ωd,j.

Proof. Since µH contains the constant functions, ℓh satisfies on Γij ∈ Γdd, using (4.52) and (4.6),
∫

∂Ωd,j

ℓh =

∫

Γij

wh · nij =

∫

Γij

[

(Rh(v) − v) · n] = 0,

and this implies the unique solvability of (4.54). A similar argument holds on Γij ∈ Γsd using (4.53)

and (3.24). In order to check (4.55), we pass to the reference subdomain Ω̂j associated with Ωd,j ,

let n̂j be its exterior unit normal vector, Γ̂ = F−1
j (Γij), q̂ = q ◦Fj and ℓ̂ = ℓh ◦Fj = (wh ◦Fj) · n̂j ;

then q̂ ∈ H1(Ω̂j) ∩ L2
0(Ω̂j) is the unique solution of

∆̂ q̂ = 0 in Ω̂j ,
∂̂q̂

∂̂n̂j

= Aj ℓ̂ on ∂Ω̂j .

As ℓ̂ is in L2(∂Ω̂j), it follows from [43] that q̂ belongs to H3/2(Ω̂j) and

‖q̂‖H3/2(Ω̂j)
≤ ĈAj‖ℓ̂‖L2(∂Ω̂j)

,

with a constant Ĉ that only depends on the geometry of Ω̂j . Then (4.55) is a direct consequence
of (4.52) and the following bounds:

‖ℓh‖L2(Γij) = A
(n−1)/2
j ‖ℓ̂‖L2(∂Ω̂j)

, |q|H1(Ωd,j) = A
n/2−1
j |q̂|H1(Ω̂j)

, |q|H3/2(Ωd,j)
= A

(n−3)/2
j |q̂|H3/2(Ω̂j)

.

The argument for (4.56) is similar, using (4.53). �

Now define c = ∇ q in Ωd,j . Then c belongs to H(div; Ωd,j) ∩ H1/2(Ωd,j)
n and div c = 0.

Therefore Rh(c) is well defined [18] and satisfies the approximation property for divergence-free
functions [48]

(4.57) ‖c − Rh(c)‖L2(Ωd,j) ≤ Chr|c|Hr(Ωd,j), 0 < r ≤ 1/2,

with a constant C independent of h, j, and the diameter of Ωd,j . We are now ready to define the

correction ch
j,Γij

(v). In particular, take ch
j,Γij

(v) = Rh(c) applied in Ωd,j . Note that ch
j,Γij

(v) belongs
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to Xh
d,j , and (4.7) and (4.6) imply that div ch

j,Γij
(v) = 0 in Ωd,j and ch

j,Γij
(v) · nj = ℓh = wh · nij

on Γij . Therefore (4.52) and (4.53) imply that ch
j,Γij

(v) satisfies (4.8). Furthermore, (4.57) yields

‖ch
j,Γij

(v)‖L2(Ωd,j) ≤ ‖Rh(c) − c‖L2(Ωd,j) + ‖c‖L2(Ωd,j) ≤ Ch
1/2
j |c|H1/2(Ωd,j)

+ ‖c‖L2(Ωd,j),

with a constant C independent of the geometry of Ωd,j . Considering that hj ≤ Aj , Lemma 4.8
gives

(4.58) ‖ch
j,Γij

(v)‖L2(Ωd,j) ≤ C
√

Aj‖[Rh(v) · n]‖L2(Γij), Γij ∈ Γdd,

(4.59) ‖ch
j,Γij

(v)‖L2(Ωd,j) ≤ C
√

Aj‖(Θh
s (v)|Ωs,i − Rh(v)|Ωd,j

) · nij‖L2(Γij), Γij ∈ Γsd,

with a constant C independent of h, H, v, i, j, and the diameters of Γij and Ωd,j .

Corollary 4.3. The approximation operator Πh
d constructed in Section 4.1 with corrections ch

j,Γij
(v)

described above satisfies assumption (3.33).

Proof. Since Πh
d is a correction of the mixed interpolant Rh, which is stable in the sense of (4.50),

it remains to bound ‖ch
j,Γij

(v)‖H(div;Ωd,j). By construction div ch
j,Γij

(v) = 0. In the following we

will make use of the trace inequality [38]

(4.60) ∀ϕ ∈ H1(Ωd,j) , ‖ϕ‖L2(Γij) ≤ C
(

A
−1/2
j ‖ϕ‖L2(Ωd,j) + A

1/2
j |ϕ|H1(Ωd,j)

)

.

For Γij ∈ Γdd, using (4.58), (4.6), and (4.60), we have

‖ch
j,Γij

(v)‖L2(Ωd,j) ≤ C
√

Aj(‖v · ni‖L2(Γij) + ‖v · nj‖L2(Γij)) ≤ C‖v‖H1(Ωd,i∪Ωd,j),

using also that Aj ≤ 1. For Γij ∈ Γsd, we employ (4.59) and (4.1) to obtain

‖ch
j,Γij

(v)‖L2(Ωd,j) ≤ C
√

Aj

(

‖(v−Rh(v)|Ωd,j
) ·nj‖L2(Γij)+‖(v−(Sh(v)+ch

i,Γij
(v))|Ωs,i) ·ni‖L2(Γij)

)

,

with ch
i,Γij

(v) defined in (4.1) and constructed in Section 4.2. For the first term in the right-hand

side, using (4.6), we have

‖(v − Rh(v)|Ωd,j
) · nj‖L2(Γij) ≤ ‖v · nj‖L2(Γij) ≤ C‖v‖H1(Ωd,j).

For the second term on the right, using (4.60) and the approximation property (4.16) of Sh, we
have

‖(v − Sh(v)|Ωs,i) · ni‖L2(Γij) ≤ C(A
−1/2
i ‖v − Sh(v)‖L2(Ωs,i) + A

1/2
i |v − Sh(v)|H1(Ωs,i))

≤ C(A
−1/2
i hi|v|H1(Ωs,i) + A

1/2
i |v|H1(Ωs,i))

≤ C|v|H1(Ωs,i),

using that hi < Ai ≤ 1, with a similar bound for ‖ch
i,Γij

(v)‖L2(Ωs,i), in view of (4.19). The proof is

completed by combining all bounds and using the Poincaré inequality (1.1). �

5. Error analysis

In this section we establish a priori error estimates for our method. Let us assume that the finite
element spaces Xh

s and W h
s in Ωs contain at least polynomials of degree rs and rs − 1, respectively.

Let Xh
d and W h

d in Ωd contain at least polynomials of degree rd and ld, respectively. In all cases

under consideration, either ld = rd or ld = rd−1. Let ΛH
sd, ΛH

d , and ΛH
s contain at least polynomials

of degree rsd, rdd, and rss, respectively. In the analysis we will make use of the following well known
approximation properties of the mixed interpolant Rh [18, 34]: for all v ∈ Ht(Ω), t ≥ 1, there exists
a constant C that depends only on rd, ld, t, and the shape regularity of T h

i , such that for all T in
T h

i

‖v − Rh(v)‖L2(T ) ≤ Chr|v|Hr(T ), 1 ≤ r ≤ min(rd + 1, t),(5.1)
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‖div(v − Rh(v))‖L2(T ) ≤ Chr|div v|Hr(T ), 0 ≤ r ≤ min(ld + 1, t − 1),(5.2)

‖(v − Rh(v)|Ωd,i
) · n‖L2(T ′) ≤ Chr|v · n|Hr(T ′), 0 ≤ r ≤ min(rd + 1, t − 1/2),(5.3)

where T ′ denotes an arbitrary element of the trace T h
i,Γij

on Γij . We begin with the following

approximation result for the operator Πh defined in Lemma 3.6.

Lemma 5.1. Under the assumptions of Lemma 3.6, the operator Πh ∈ L(H1
0 (Ω)n; V h) satisfies for

all v ∈
(

Ht(Ω) ∩ H1
0 (Ω)

)n
, t ≥ 1,

(5.4) |||v − Πh(v)|||Xs
≤ Chr|v|Hr+1(Ω), 0 ≤ r ≤ min(rs, t − 1),

|||v − Πh(v)|||Xd
≤ C

(

hr‖v‖Hr+1/2(Ω) + hq‖div v‖Hq(Ω) + hs‖v‖Hs+1(Ω)

)

,

1/2 ≤ r ≤ min(rd + 1, t − 1/2), 0 ≤ q ≤ min(ld + 1, t − 1), 0 ≤ s ≤ min(rs, t − 1).

(5.5)

Proof. To show (5.4), recall that Πh(v)|Ωs = Πh
s (v), Πh

s (v) = Θh
s (v)+ch

s (v), where ch
s (v) is defined

in (3.29), and Θh
s is a correction of the Scott-Zhang operator constructed in Section 4. The triangle

inequality and (3.30) imply that

‖v − Πh
s (v)‖H1(Ωs,i) ≤ C‖v − Θh

s (v)‖H1(Ωs,i).

Recall that Θh
s (v) is constructed by correcting the Scott-Zhang interpolant Sh with ch

i,Γij
(v)

and ch
j,Γij

(v). Since ‖v − Sh(v)‖H1(Ωs,i) is bounded optimally in (4.16), it remains to bound

‖ch
i,Γij

(v)‖H1(Ωs,i) and ‖ch
j,Γij

(v)‖H1(Ωs,j). The bound on ‖ch
i,Γij

(v)‖H1(Ωs,i) follows from a sim-

ple modification of the argument in the proof of Lemma 4.1. More precisely, by using (4.15) with
0 ≤ r ≤ min(rs, t − 1), (4.20) can be modified as

∣

∣

∣

∣

∫

∆k

(

v − Sh(v)|Ωs,i

)

∣

∣

∣

∣

≤ C
hr

T |∆k|
ρ
1/2
k

|v|Hr+1(Dk).

Propagating the above bound through the proof gives

‖ch
i,Γij

(v)‖L2(Ωs,i) + h|ch
i,Γij

(v)|H1(Ωs,i) ≤ Chr+1|v|Hr+1(Ωs,i), 0 ≤ r ≤ min(rs, t − 1).

We proceed with the bound on ‖ch
j,Γij

(v)‖H1(Ωs,j). We first consider the 3 − D case presented in

Section 4.3. Modifying the proof of Lemma 4.2 in a similar way gives

‖ch
j,Γij

(v)‖L2(Ωs,j) + h|ch
j,Γij

(v)|H1(Ωs,j) ≤ Chr+1|v|Hr+1(Ωs,i∪Ωs,j), 0 ≤ r ≤ min(rs, t − 1).

We next consider the 2−D case presented in Section 4.4. Inequality (4.45) in the proof of Lemma 4.6

can be modified, using the approximation property (4.16) of S̃h, as

|
(

S̃h(v) − v
)

|Ωs,k
|H1/2(Γij)

≤ Chr|v|Hr+1(Ωs,k∪Oi,j), 0 ≤ r ≤ min(rs, t − 1),

and (4.47) and (4.48) can be modified, using the approximation property (4.15) of S̃h, as
∫ xn+1

xn

1

x

[

S̃h(v)
]2

≤ Ĉh2r|v|2
Hr+1(∆̃n)

, 0 ≤ r ≤ min(rs, t − 1),

implying

‖ch
j,Γij

(v)‖H1(Ωs,j) ≤ Chr|v|Hr+1(Ωs,i∪Ωs,j∪Oij), 0 ≤ r ≤ min(rs, t − 1).

A combination of the above inequalities gives (5.4).
We continue with the proof of (5.5). Recall that Πh(v)|Ωd

= Πh
d(v), where Πh

d(v) = Rh(v) +

ch
j,Γij

(v) is a corrected mixed interpolant with a correction satisfying (4.8). Since ‖v−Rh(v)‖H(div;Ωd,i)

is bounded optimally in (5.1)–(5.2), it remains to bound ch
j,Γij

(v) constructed in Section 4.5. By
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construction div ch
j,Γij

(v) = 0, so we only need to control ‖ch
j,Γij

(v)‖L2(Ωd,j). Consider first Γij ∈ Γdd.

Using (5.3), bound (4.58) gives

‖ch
j,Γij

(v)‖L2(Ωd,j) ≤ CA
1/2
j hr|v|Hr(Γij) ≤ Chr‖v‖Hr+1/2(Ωd,i∪Ωd,j)

, 0 < r ≤ min(rd + 1, t − 1/2),

where we have used the trace inequality [38]

(5.6) |ϕ|Hr(Γij) ≤ A
−1/2
i ‖ϕ‖Hr+1/2(Ωd,i)

, r > 0.

For Γij ∈ Γsd, we modify the argument in Corollary 4.3 to use the full approximation properties

(4.16) of Sh to obtain

‖ch
j,Γij

(v)‖L2(Ωd,j) ≤ C
(

hr‖v‖Hr+1/2(Ωs,i∪Ωd,j)
+ hs‖v‖Hs+1(Ωs,i∪Ωd,j)

)

,

0 < r ≤ min(rd + 1, t − 1/2), 0 ≤ s ≤ min(rs, t − 1).

A combination of the above inequalities completes the proof of (5.5). �

Next, we need to approximate the functions for the pressure. For any q ∈ L2(Ωi), let Phq be its
L2(Ωi)-projection onto W h

i = W h|Ωi ,

(q − Phq, wh) = 0, ∀wh ∈ W h
i ,

satisfying the approximation property

(5.7) ‖q − Phq‖0,Ωi ≤ C hr|q|r , 0 ≤ r ≤ ri + 1,

where ri is the polynomial degree in the space W h
i : ri = rs − 1 in Ωs and ri = ld in Ωd.

5.1. Error estimates. From the error equation:

(5.8) ∀vh ∈ Zh,∀qh ∈ Wh, a(u−uh, vh) = −(b(vh, p−qh)+ bsd(v
h, λsd)+ bd(v

h, λd)+ bs(v
h, λs)),

and Lemmas 3.3 and 3.4, we immediately derive

(5.9) |||u − uh|||X ≤ C

(

inf
v

h∈V h(qd)
|||u − vh|||X + inf

wh∈W h
‖p − wh‖W

)

+ CRh
u,

where V h(qd) = {v ∈ V h ; ∀w ∈ W h, b(v, w) =
∫

Ωd
w qd},

(5.10) Rh
u = sup

v
h∈Zh

1

|||vh|||X

∣

∣

∣
bsd(v

h, λsd) + bd(v
h, λd) + bs(v

h, λs)
∣

∣

∣
,

is the consistency error at the interfaces. Similarly a simple variant of (5.8) with vh ∈ V h and
Theorem 3.1 yield

(5.11) ‖p − ph‖W ≤ C

(

|||u − uh|||X + inf
wh∈W h

‖p − wh‖W

)

+ CRh
p ,

where Rh
p is given by (5.10) with Zh replaced by V h. As the bound on the approximation error of

W h follows from (5.7) and Lemma 5.1 estimates the approximation error of V h(qd), it suffices to
bound Rh

p . Note that by virtue of (3.11), we have for all µH
s ∈ ΛH

s , µH
d ∈ ΛH

d , µH
sd ∈ ΛH

sd,

(5.12) Rh
p = sup

v
h∈V h

1

|||vh|||X

∣

∣

∣
bsd(v

h, λsd − µH
sd) + bd(v

h, λd − µH
d ) + bs(v

h, λs − µH
s )
∣

∣

∣
.

The bound for bs(v
h, λs − µH

s ) is straightforward because vh is measured in H1 in each Ωs,i, and
therefore its trace can be considered on each Γi,j . But deriving an optimal bound for the other
terms is more intricate because vh is measured in H(div) in each Ωd,i and this only controls the

trace of the normal component in H−1/2(∂Ωd,i). Consequently, λsd −µH
sd and λd −µH

d must belong

to H1/2(∂Ωd,i). In 2 − D, this is easily achieved by interpolating λsd and λd with a variant of the
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Scott and Zhang interpolant that is continuous at the vertices of the subdomains; a similar idea
was used in Section 4.4. But in 3 − D, this construction requires an additional assumption on the
mortar grids in the Darcy region.

Hypothesis 5.1. For each Ωd,i in 3−D, the mortar grids T H
ij on all Γij ⊂ ∂Ωd,i \ ∂Ω are chosen

such that their traces on the boundaries of Γij coincide.

This assumption implies conformity of mortar grids along interface boundaries in each connected

region in Ωd and it allows us to consider the space ΛH,c
d , which is the subset of continuous functions

in ΛH
d ∪ ΛH

sd. On Γdd ∪ Γsd, let IH be the Scott-Zhang interpolant in ΛH,c
d . We assume that its

definition depends only on function values on Γdd ∪ Γsd. On Γss, let IH be the L2(Γij)-orthogonal
projection operator in ΛH

s . This operator has the following approximation properties, assuming
sufficient smoothness of µ and µ:

∀Γij ∈ Γdd,∀τ ∈ Γij , ‖µ − IH(µ)‖Ht(τ) ≤ CHr−t|µ|Hr(∆τ ), 0 ≤ t ≤ 1, t ≤ r ≤ rdd + 1,(5.13)

∀Γij ∈ Γsd,∀τ ∈ Γij , ‖µ − IH(µ)‖Ht(τ) ≤ CHr−t|µ|Hr(∆τ ), 0 ≤ t ≤ 1, t ≤ r ≤ rsd + 1,(5.14)

∀Γij ∈ Γss,∀τ ∈ Γij , ‖µ − IH(µ)‖L2(τ) ≤ CHr|µ|Hr(∆τ ), 0 ≤ r ≤ rss + 1,(5.15)

where ∆τ is the macroelement used in defining IH(µ) restricted to τ . The union of all ∆τ for τ in
∂Ωi may overlap a little interfaces that are not part of ∂Ωi; we denote the overlap by O.

Lemma 5.2. There exists a constant C independent of h, H, and the diameters of the subdomains

such that, for all vh ∈ Xh:

(5.16) |bs(v
h, λs − IH(λs))| ≤ C Hs

Ms
∑

i=1

A
−1/2
i ‖vh‖H1(Ωs,i)|λs|Hs(∂Ωs,i∩Γss∪O), 0 ≤ s ≤ rss + 1,

provided λs is sufficiently smooth.

Proof. We have

bs(v
h, λs−IH(λs)) =

∑

Γij∈Γss

∫

Γij

[vh]·(λs−IH(λs)) ≤
Ms
∑

i=1

‖vh‖L2(∂Ωs,i∩Γss)‖λs−IH(λs)‖L2(∂Ωs,i∩Γss).

Then (5.16) follows readily from (5.15) and the trace inequality (4.60). �

Lemma 5.3. Under Hypothesis 5.1, there exists a constant C independent of h, H, and the diam-

eters of the subdomains such that, for all vh ∈ Xh:

|bsd(v
h, λsd−IH(λsd)) + bd(v

h, λd − IH(λd))|

≤ C
(

Md
∑

i=1

‖vh‖H(div;Ωd,i)

(

Hq−1/2|λ|Hq(∂Ωd,i∩Γdd∪O) + Hr−1/2|λ|Hr(∂Ωd,i∩Γsd∪O)

)

+

Md
∑

i=1

∑

j

A
−1/2
j ‖vh‖H1(Ωs,j)H

r|λ|Hr(∂Ωd,i∩Γsd∪O)

)

,

1/2 ≤ q ≤ rdd + 1, 1/2 ≤ r ≤ rsd + 1,

(5.17)

provided λsd and λd are sufficiently smooth, and where the last sum runs over all Ωs,j adjacent to

Ωd,i.
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Proof. In the following λ denotes either λd or λsd depending on the type of interface. We can write

bsd(v
h, λ − IH(λ))+bd(v

h, λ − IH(λ)) =
∑

Γij∈Γsd∪Γdd

∫

Γij

[vh · n](λ − IH(λ))

=

Md
∑

i=1

∫

∂Ωd,i

vh · ni(λ − IH(λ)) +
∑

Γij∈Γsd

∫

Γij

vh · ns(λ − IH(λ)),

where we have used that vh · n = 0 on ∂Ωd,i ∩ ∂Ω and λ − IH(λ) has been extended continuously

from H1/2(∂Ωd,i \ ∂Ω) to H1/2(∂Ωd,i). The argument of Lemma 5.2 can be used to bound the
second sum above by the last sum in (5.17). Thus it is left to bound the first sum.

Consider first one subdomain Ωd,i that is not adjacent to Γsd. Let us switch to the reference

domain Ω̂i and let Ê denote the extension operator defined in (4.40) relative to Ω̂i. For any f in

H1/2(∂Ωd,i), define E(f) by: E(f) = Ê(f ◦Fi); therefore E maps H1/2(∂Ωd,i) into H1(Ωd,i). Thus,
by Green’s formula

∫

∂Ωd,i

vh · ni(λ − IH(λ)) =

∫

∂Ωd,i

vh · niE(λ − IH(λ))

=

∫

Ωd,i

div vhE(λ − IH(λ)) +

∫

Ωd,i

vh · ∇E(λ − IH(λ)).

By reverting to the reference domain and observing that IH is invariant under the rigid body
motion Fi, this reads

∣

∣

∣

∣

∣

∫

∂Ωd,i

vh · ni(λ − IH(λ))

∣

∣

∣

∣

∣

≤ An−1
i ‖v̂‖H(d̂iv;Ω̂i)

‖Ê(λ̂ − Î(λ̂))‖H1(Ω̂i)
.

On one hand, the bound in (4.40) gives

‖Ê(λ̂ − Î(λ̂))‖H1(Ω̂i)
≤ Ĉ‖λ̂ − Î(λ̂))‖H1/2(∂Ω̂i)

≤ Ĉ‖λ̂ − Î(λ̂))‖H1/2(∂Ω̂i\∂Ω̂)

≤ Ĉ
(

∑

Γ̂⊂∂Ω̂i\∂Ω̂

‖λ̂ − Î(λ̂))‖2
H1/2(Γ̂)

)1/2
,

with constants here and below independent of h, H, and the diameters of Ωd,i and Γij . By space

interpolation between L2(Γ̂) and H1(Γ̂), the estimates (5.13) summed on Γ̂ with t = 0 and t = 1
readily imply that

(5.18) ‖λ̂ − Î(λ̂))‖H1/2(Γ̂) ≤ ĈĤ
r−1/2
i |λ̂|Hr(∆Γ̂),

1

2
≤ r ≤ rdd + 1,

where the mesh size Ĥi on ∂Ω̂i is related to the mesh size Hi on ∂Ωi by

Hi = AiĤi.

In the case when r is not an integer, since (5.18) is stated in the reference region Γ̂, we choose the
fractional seminorm in the right-hand side to be defined by (1.8) and incorporate the equivalence

constant into Ĉ. The motivation for this choice is that the intrinsic norm is easily transformed by
Fi. Therefore

‖λ̂ − Î(λ̂))‖H1/2(∂Ω̂i)
≤ ĈĤ

r−1/2
i |λ̂|Hr(∂Ω̂i\∂Ω̂∪Ô) ≤ ĈĤ

r−1/2
i A

r−(n−1)/2
i |λ|Hr(∂Ωd,i\∂Ω∪O).

On the other hand,

‖v̂‖H(d̂iv;Ω̂i)
= A

−n/2
i

(

A2
i ‖div vh‖2

L2(Ωd,i)
+ ‖vh‖2

L2(Ωd,i)

)1/2
.
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By collecting these inequalities, we derive
∣

∣

∣

∣

∣

∫

∂Ωd,i

vh · ni(λ − IH(λ))

∣

∣

∣

∣

∣

≤ Ĉ
(

AiĤi

)r−1/2‖vh‖H(div;Ωd,i)|λ|Hr(∂Ωd,i\∂Ω∪O),
1

2
≤ r ≤ rdd + 1.

By applying (5.18) to a portion of Γsd, using (5.14), the same argument handles the case when Ωd,i

is adjacent to Γsd. Then (5.17) follows easily from these estimates. �

Remark 5.1. We can skip Hypothesis 5.1, work locally on each Γij , and use the L2 norm for both

factors vh · ni and λ − IH(λ). But this gives rise to a factor of the form
(

Hi/h
)1/2

in (5.17), that
is clearly not optimal when h is very small compared to Hi.

Let Rh denote either Rh
u or Rh

p . The next lemma estimates Rh.

Lemma 5.4. Under Hypothesis 5.1, the consistency error Rh satisfies

Rh ≤ C
(

A−1/2Hr−1/2‖pd‖Hr+1/2(Ωd) + A−1/2Hq−1/2‖pd‖Hq+1/2(Ωd)

+ A−1Hs(‖us‖Hs+3/2(Ωs)
+ ‖ps‖Hs+1/2(Ωs)

)
)

,

1/2 ≤ q ≤ rdd + 1, 1/2 ≤ r ≤ rsd + 1, 0 < s ≤ rss + 1,

(5.19)

where A = min1≤i≤M Ai.

Proof. By combining (5.16) and (5.17), we easily derive

Rh ≤ C
(

Hq−1/2
(

Md
∑

i=1

|λ|2Hq(∂Ωd,i∩Γdd∪O)

)1/2
+ Hr−1/2

(

Md
∑

i=1

|λ|2Hr(∂Ωd,i∩Γsd∪O)

)1/2

+ Hs
(

Ms
∑

i=1

A−1
i |λs|2Hs(∂Ωs,i∩Γss∪O)

)1/2
+ Hr

(

Ms
∑

i=1

A−1
i |λ|2Hr(∂Ωs,i∩Γsd∪O)

)1/2
)

,

1/2 ≤ q ≤ rdd + 1, 1/2 ≤ r ≤ rsd + 1, 0 ≤ s ≤ rss + 1.

In view of the representation (2.47), local trace theorems yield:

|λsd|Hr(∂Ωd,i∩Γsd) ≤ CA
−1/2
i ‖pd‖Hr+1/2(Ωd,i)

,

|λd|Hq(∂Ωd,i∩Γdd) ≤ CA
−1/2
i ‖pd‖Hq+1/2(Ωd,i)

,

|λs|Hs(∂Ωs,i∩Γss) ≤ CA
−1/2
i

(

‖us‖Hs+3/2(Ωs,i)
+ ‖ps‖Hs+1/2(Ωs,i)

)

.

Then (5.19) follows easily from these bounds and the fact that A−1
i < H−1. �

Now we use the abstract error bounds (5.9) and (5.11), the approximation results (5.4), (5.5),
and (5.7), and the consistency error bound (5.19) to obtain the following convergence result.

Theorem 5.1.

|||u − uh|||X + ‖p − ph‖W

≤ C
(

hr1(‖u‖Hr1+1(Ω) + ‖p‖Hr1 (Ω)) + hr2‖u‖Hr2+1/2(Ω) + hr3(‖div u‖Hr3 (Ω) + ‖p‖Hr3 (Ω))

+ A−1Hr4(‖us‖Hr4+3/2(Ωs)
+ ‖ps‖Hr4+1/2(Ωs)

)

+ A−1/2Hr5−1/2‖pd‖Hr5+1/2(Ωd) + A−1/2Hr6−1/2‖pd‖Hr6+1/2(Ωd)

)

,

0 ≤ r1 ≤ rs, 1/2 ≤ r2 ≤ rd + 1, 0 ≤ r3 ≤ ld + 1,

0 < r4 ≤ rss + 1, 1/2 ≤ r5 ≤ rdd + 1, 1/2 ≤ r6 ≤ rsd + 1.
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Remark 5.2. In the above estimate, the fine scale subdomain approximation error terms are of
optimal order with constants independent of the size of the subdomains A. The constants of the
coarse scale mortar consistency error terms deteriorate with decrease in A, since in that case the
number of interfaces grows. Nevertheless, higher order mortar polynomials can be employed to
balance the error terms, giving optimal fine scale convergence.

6. Numerical tests

In this section we validate our analysis by carrying out some numerical experiments. In all
tests the computational domain is taken to be Ω = Ωs ∪ Ωd, where Ωs = (0, 1) × (1

2 , 1) and

Ωd = (0, 1) × (0, 1
2). For simplicity we set

σ(us, ps) = −psI + νs∇us

in the Stokes equation in Ωs, and
K = KI

in the Darcy equation in Ωd, where K is a positive constant.
To test for convergence we construct the following analytical solution satisfying the flow equations

in Ωs and Ωd along with the conditions on the interface Γsd:

us =

[

(2 − x)(1.5 − y)(y − ξ)

−y3

3 + y2

2 (ξ + 1.5) − 1.5ξy − 0.5 + sin(ωx)

]

,

ud =

[

ω cos(ωx)y
χ(y + 0.5) + sin(ωx)

]

,

ps = −sin(ωx) + χ

2K
+ νs(0.5 − ξ) + cos(πy),

pd = − χ

K

(y + 0.5)2

2
− sin(ωx)y

K
,

where

νs = 0.1, K = 1, α = 0.5, G =

√
νsK

α
, ξ =

1 − G

2(1 + G)
, χ =

−30ξ − 17

48
, and ω = 6.0.

The right hand sides f s, fd, and qd for the Stokes-Darcy flow system are obtained by substituting
the analytical solution into (2.6), (2.3), and (2.4), respectively. The boundary conditions are as
follows: for the Stokes region, the velocity us is specified on the left and top boundaries, and the
normal and tangential stresses (σns) · ns and (σns) · τ s are specified on the right boundary; for
the Darcy region, the normal velocity ud · nd is specified on the left boundary and the pressure
pd is specified on the bottom and right boundaries. Each region Ωs and Ωd is divided into two
subdomains, giving a total of four subdomains. The subdomain grids do not match across the
interfaces. The Stokes subdomains are discretized by the Taylor–Hood triangular finite elements
with quadratic velocities and linear pressures (rs = 2). The Darcy subdomains are discretized by
the lowest order Raviart–Thomas rectangular finite elements (rd = ld = 0). We use discontinuous
piecewise linear mortars on all interfaces (rss = rdd = rsd = 1). To test convergence, we solve the
problem on a sequence of grid refinements. On the coarsest level, the subdomain grids are 3 × 4
in the lower left and upper right subdomains and 2 × 3 in the other two subdomains. We test two
cases, H = 2h and H =

√
h. In both cases the coarsest mortar grids have a single element per

interface. In the first case the mortar grids are refined by two each time the subdomain grids are
refined by two. In the second case the mortar grids are refined by two each time the subdomain
grids are refined by four. The non-matching grids on the middle level of refinement are shown in
Figure 6.1. The computed solution and the numerical error on this grid level with mortar meshes
H = 2h are displayed in Figure 6.2. The numerical errors and convergence rates on all refinement
levels are reported in Tables 1–6. We report separately the errors in Ωs and Ωd in their respective
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Figure 6.1. Non-matching subdomain meshes 8 × 12 – 12 × 16.

norms. In the Darcy region we also report the discrete L2 errors ‖ · ‖M,Ωd
for the pressure and the

velocity, computed via the use of the midpoint quadrature rule on each element.
In the case H = 2h we observe second order of convergence for ‖us−uh

s‖H1(Ωs) and ‖ps−ph
s‖L2(Ωs),

as well as first order convergence for ‖ud − uh
d‖H(div;Ωd) and ‖pd − ph

d‖L2(Ωd). These rates are

consistent with the error terms O(hrs) = O(h2) and O(hrd+1) = O(hld+1) = O(h) that appear in
Theorem 5.1. Note that in the case H = 2h the interface consistency error terms are O(hrss+1) =

O(h2) and O(hrdd+1/2) = O(hrsd+1/2) = O(h3/2). While the error terms in Theorem 5.1 depend
on the global solution norms, the results indicate that the lower convergence rates in Ωd and
on Γsd do not affect the second order convergence in Ωs. This suggests that it may be possible
to establish interior convergence error estimates. Such estimates were derived in [53] for mortar
discretizations for Darcy flow. Another possible reason for the negligible effect of the Darcy error
on the Stokes error is the fact that the solution in the Darcy region exhibits superconvergence at the
cell centers, as indicated by the O(h2) convergence of ‖pd − ph

d‖M,Ωd
and the O(h3/2) convergence

of ‖ud − uh
d‖M,Ωd

. Superconvergence for mixed finite element discretizations for Darcy flow has
been extensively studied in the literature, see, e.g. [5] and the references therein. The reduced

superconvergence order for the Darcy velocity is due to the O(h3/2) mortar error term, as shown
in [5].

In the case H =
√

h, we observe approximately O(h) convergence for all error norms. Note that

in this case the interface consistency error terms are O(h(rss+1)/2) = O(h) and O(h(rdd+1/2)/2) =

O(h(rsd+1/2)/2) = O(h3/4), so their effect on the convergence in the Stokes and Darcy regions is
more significant. In this multiscale case, one may utilize higher order mortars to recover optimal
fine scale subdomain convergence, see [6] for the Darcy case.

7. Appendix

We present here two simple particular cases when Γij is a straight line segment and the traces
of the discrete spaces on Γij are piecewise IP 1 finite elements, where one can construct an operator

πh
s satisfying (4.34) that was needed for the construction of the correction ch

j,Γij
(v) in Ωs in the

2 − D case. In particular, given ℓ̂ in H
1/2
00 (Γ̂)2, we want to construct π̂j(ℓ̂) in X̂j , unique solution
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Figure 6.2. Test 1: computed solution (left) and error (right) on subdomain
meshes 8 × 12 – 12 × 16 and mortar meshes H = 2h.

mesh ‖us − uh
s‖H1(Ωs) rate ‖ps − ph

s‖L2(Ωs) rate

2x3 3x4 3.93e-01 2.64e-02
4x6 6x8 8.95e-02 2.13 6.37e-03 2.05

8x12 12x16 2.10e-02 2.09 1.53e-03 2.06
16x24 24x32 5.08e-03 2.05 3.75e-04 2.03
32x48 48x64 1.25e-03 2.02 9.29e-05 2.01

Table 1. Test 1: H = 2h. Numerical errors and convergence rates in Ωs

mesh ‖ud − uh
d‖H(div;Ωd) rate ‖pd − ph

d‖L2(Ωd) rate

2x3 3x4 3.51e+00 1.01e-01
4x6 6x8 1.79e+00 0.97 5.05e-02 1.00

8x12 12x16 9.00e-01 0.99 2.52e-02 1.00
16x24 24x32 4.50e-01 1.00 1.26e-02 1.00
32x48 48x64 2.20e-01 1.00 6.28e-03 1.00

Table 2. Test 1: H = 2h. Numerical errors and convergence rates in Ωd

mesh ‖ud − uh
d‖M,Ωd

rate ‖pd − ph
d‖M,Ωd

rate
2x3 3x4 2.60e-01 1.65e-02
4x6 6x8 6.71e-02 1.95 4.13e-03 2.00

8x12 12x16 2.09e-02 1.68 1.01e-03 2.03
16x24 24x32 6.85e-03 1.61 2.50e-04 2.01
32x48 48x64 2.32e-03 1.56 6.22e-05 2.01

Table 3. Test 1: H = 2h. Numerical errors and convergence rates in Ωd using the
discrete ‖ · ‖M,Ωd

norm.



44

mesh ‖us − uh
s‖H1(Ωs) rate ‖ps − ph

s‖L2(Ωs) rate

2x3 3x4 3.93e-01 2.64e-02
8x12 12x16 5.59e-02 1.41 3.51e-03 1.46

32x48 48x64 1.03e-02 1.22 6.02e-04 1.27

Table 4. Test 2: H =
√

h. Numerical errors and convergence rates in Ωs

mesh ‖ud − uh
d‖H(div;Ωd) rate ‖pd − ph

d‖L2(Ωd) rate

2x3 3x4 3.51e+00 1.01e-01
8x12 12x16 9.10e-01 0.97 2.53e-02 1.00

32x48 48x64 2.30e-01 0.99 6.32e-03 1.00

Table 5. Test 2: H =
√

h. Numerical errors and convergence rates in Ωd

mesh ‖ud − uh
d‖M,Ωd

rate ‖pd − ph
d‖M,Ωd

rate
2x3 3x4 2.60e-01 1.65e-02

8x12 12x16 1.10e-01 0.62 3.65e-03 1.09
32x48 48x64 5.01e-02 0.57 7.57e-04 1.13

Table 6. Test 2: H =
√

h. Numerical errors and convergence rates in Ωd using the
discrete ‖ · ‖M,Ωd

norm.

of (4.35):

∀µ̂ ∈ Λ̂ ,

∫

Γ̂
π̂j(ℓ̂) · µ̂ =

∫

Γ̂
ℓ̂ · µ̂,

and satisfying (4.36).

Without loss of generality, we can suppose that Γ̂ is the segment [0, 1], that the nodes of T̂j are

0 = x̂0 < x̂1 < · · · < x̂N < x̂N+1 = 1, and we set ĥn = x̂n+1 − x̂n, 0 ≤ n ≤ N . We choose

each component of the functions of X̂j piecewise IP 1 in the subintervals [x̂n, x̂n+1], with degrees of
freedom at the nodes x̂n, 1 ≤ n ≤ N .

7.1. First example. As a first example, we choose each component of the mortar functions of Λ̂
also piecewise IP 1 in the subintervals [x̂n, x̂n+1], with degrees of freedom at the nodes x̂n, n = 0,

2 ≤ n ≤ N − 1, and n = N + 1. The nodes x̂1 and x̂N are deleted so that X̂j and Λ̂ have the
same dimension 2N ; thus the matrix of the linear system (4.35) is square. In order to express
these functions in terms of a basis, it is convenient to modify slightly the standard Lagrange basis
functions for the velocity. More precisely, we define

ϕ̂0(x̂)|[x̂0,x̂2] =
1

ĥ0 + ĥ1

(x̂2 − x̂) , ϕ̂N+1(x̂)|[x̂N−1,x̂N+1] =
1

ĥN + ĥN−1

(x̂ − x̂N−1),

ϕ̂2(x̂)|[x̂0,x̂2] =
1

ĥ0 + ĥ1

(x̂ − x̂0) , ϕ̂2(x̂)|[x̂2,x̂3] =
1

ĥ2

(x̂3 − x̂),

ϕ̂N−1(x̂)|[x̂N−2,x̂N−1] =
1

ĥN−1

(x̂ − x̂N−2) , ϕ̂N−1(x̂)|[x̂N−1,x̂N+1] =
1

ĥN−1 + ĥN

(x̂N+1 − x̂),

ϕ̂n(x̂)|[x̂n−1,x̂n] =
1

ĥn−1

(x̂ − x̂n−1) , ϕ̂n(x̂)|[x̂n,x̂n+1] =
1

ĥn

(x̂n+1 − x̂), n = 1, 3 ≤ n ≤ N − 2, n = N,

(7.1)
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extended by zero elsewhere. We take

(7.2) X̂j = {v̂ ∈ H1
0 (0, 1)2 ; v̂(x̂) =

N
∑

n=1

v̂nϕ̂n(x̂)},

(7.3) Λ̂ = {µ̂ ∈ H1(0, 1)2 ; µ̂(x̂) = µ̂(x̂0)ϕ̂0(x̂) +
N−1
∑

n=2

µ̂(x̂n)ϕ̂n(x̂) + µ̂(x̂N+1)ϕ̂N+1(x̂)}.

On one hand, the set {ϕ̂0, ϕ̂n, 2 ≤ n ≤ N −1, ϕ̂N+1} is indeed a Lagrange basis for Λ̂. On the other

hand, the set {ϕ̂n, 1 ≤ n ≤ N} is a basis but not a Lagrange basis for X̂j ; however, it is easy to
check that

(7.4) v̂1 = v̂(x̂1)− v̂(x̂2)ϕ̂2(x̂1) , v̂n = v̂(x̂n), 2 ≤ n ≤ N − 1 , v̂N = v̂(x̂N )− v̂(x̂N−1)ϕ̂N−1(x̂N ).

The system (4.35) can be decoupled into two independent systems in IRN , one for each component,
and each system has the form Mα = b, where α ∈ IRN is the unknown, the non zero coefficients
of M per row are

M1,1 =
1

6
(ĥ0 + 2ĥ1) , M1,2 =

1

6
(ĥ0 + ĥ1),

M2,1 =
1

6
(2ĥ0 + ĥ1) , M2,2 =

1

3
(ĥ0 + ĥ1 + ĥ2) , M2,3 =

ĥ2

6
,

Mn,n−1 =
ĥn−1

6
, Mn,n =

1

3
(ĥn−1 + ĥn) , Mn,n+1 =

ĥn

6
, 3 ≤ n ≤ N − 2,

MN−1,N−2 =
ĥN−2

6
, MN−1,N−1 =

1

3
(ĥN−2 + ĥN−1 + ĥN ) , MN−1,N =

1

6
(ĥN−1 + 2ĥN ),

MN−1,N =
1

6
(2ĥN−1 + ĥN ) , MN,N =

1

6
(ĥN−1 + ĥN ).

Denoting by ℓ̂ a generic component of ℓ̂, the components of b ∈ IRN are

b1 =

∫ x̂2

x̂0

ℓ̂ϕ̂0 , b2 =

∫ x̂3

x̂0

ℓ̂ϕ̂2 , bn =

∫ x̂n+1

x̂n−1

ℓ̂ϕ̂n, 3 ≤ n ≤ N − 2,

bN−1 =

∫ x̂N+1

x̂N−2

ℓ̂ϕ̂N−1 , bN =

∫ x̂N+1

x̂N−1

ℓ̂ϕ̂N+1.

(7.5)

The matrix M is tridiagonal but not symmetric, the coefficients of its three diagonals are all strictly
positive, and it is strictly diagonally dominant, hence invertible, but this is not sufficient to obtain
a sharp estimate for its inverse. To this end, we use the approach of Crouzeix and Thomée [23].
More precisely, let D be the principal diagonal of M and factor M into M = D(I + K) where
K is a tridiagonal matrix with principal diagonal zero. Denote the diagonal terms of D by dn > 0
and note that D1/2 is well-defined. The next lemma relates π̂j(ℓ̂) and α. Recall that | · | denotes
the Euclidean vector norm.

Lemma 7.1. For each component ℓ̂ of ℓ̂ we have

(7.6) ‖π̂j(ℓ̂)‖L2(Γ̂) ≤ 2|D1/2α|.
Proof. Considering the support of the basis functions ϕ̂n, we have

‖π̂j(ℓ̂)‖2
L2(Γ̂)

=

∫ x̂2

x̂0

(α1ϕ̂1 + α2ϕ̂2)
2 +

N−2
∑

n=2

∫ x̂n+1

x̂n

(αnϕ̂n

+ αn+1ϕ̂n+1)
2 +

∫ x̂N+1

x̂N−1

(αN−1ϕ̂N−1 + αN+1ϕ̂N+1)
2.
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By substituting the expression of these integrals and rearranging terms, we derive

‖π̂j(ℓ̂)‖2
L2(Γ̂)

≤ 2

3

(

α2
1(ĥ0 + ĥ1) + α2

2(ĥ0 + ĥ1 + ĥ2) +

N−2
∑

n=3

α2
n(ĥn−1 + ĥn)

+ α2
N−1(ĥN−2 + ĥN−1 + ĥN ) + α2

N (ĥN−1 + ĥN )
)

.

In view of the diagonal terms dn of D, this can be written

‖π̂j(ℓ̂)‖2
L2(Γ̂)

≤ 2
(

α2
1

ĥ0 + ĥ1

3
+

N−1
∑

n=2

α2
ndn + α2

N

ĥN−1 + ĥN

3

)

.

But
ĥ0 + ĥ1

3
= 2d1

ĥ0 + ĥ1

ĥ0 + 2ĥ1

< 2d1 , and similarly
ĥN−1 + ĥN

3
< 2dN .

Hence

(7.7) ‖π̂j(ℓ̂)‖L2(Γ̂) ≤ 2
(

N
∑

n=1

α2
ndn

)1/2
,

whence (7.6). �

This lemma shows that an L2 bound for π̂j(ℓ̂) relies on a bound for |D1/2α|. But D1/2α has
also the following expression

D1/2α =
(

I + D1/2KD−1/2
)−1(

D−1/2b
)

.

Therefore Lemma 7.1 implies that

(7.8) ‖π̂j(ℓ̂)‖L2(Γ̂) ≤ 2‖
(

I + D1/2KD−1/2
)−1‖2|D−1/2b|,

where ‖ · ‖2 denotes the matrix norm subordinated by the Euclidean norm, and more generally
‖ · ‖p is the matrix norm subordinated by the lp vector norm. The next lemma gives a bound for

|D−1/2b|.
Lemma 7.2. We have

(7.9) |D−1/2b| ≤
√

3‖ℓ̂‖L2(Γ̂).

Proof. By integrating the basis functions ϕ̂n, we derive

|D−1/2b|2 =
N
∑

n=1

d−1
n b2

n

≤ 1

3

( ĥ0 + ĥ1

d1
‖ℓ̂‖2

L2(x̂0,x̂2) +
ĥ0 + ĥ1 + ĥ2

d2
‖ℓ̂‖2

L2(x̂0,x̂3) +

N−2
∑

n=3

ĥn−1 + ĥn

dn
‖ℓ̂‖2

L2(x̂n−1,x̂n+1)

+
ĥN−2 + ĥN−1 + ĥN

dN−1
‖ℓ̂‖2

L2(x̂N−2,x̂N+1) +
ĥN−1 + ĥN

dN
‖ℓ̂‖2

L2(x̂N−1,x̂N+1)

)

.

(7.10)

Then proceeding as in Lemma 7.1, we obtain

|D−1/2b|2 ≤ ‖ℓ̂‖2
L2(x̂0,x̂1) + ‖ℓ̂‖2

L2(x̂0,x̂2) +
N
∑

n=1

‖ℓ̂‖2
L2(x̂n−1,x̂n+1) + ‖ℓ̂‖2

L2(x̂N ,x̂N+1) + ‖ℓ̂‖2
L2(x̂N−1,x̂N+1),

whence (7.9). �
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It remains to evaluate ‖
(

I + D1/2KD−1/2
)−1‖2. Following Crouzeix & Thomée, we introduce

the restriction on the mesh length ĥn:

Hypothesis 7.1. There exist two constants c0 > 0 and γ > 0 independent of N such that

(7.11) ∀n, m, 0 ≤ n, m ≤ N ,
ĥn

ĥm

≤ c0γ
|n−m|.

This condition holds for quasi-uniform meshes, but it is also satisfied by much more general
meshes.

Proposition 7.1. If Hypothesis 7.1 holds with suitable constants c0 and γ, then there exists a

constant C independent of N and j such that

(7.12) ‖
(

I + D1/2KD−1/2
)−1‖2 ≤ C.

Hence with the same constant C,

(7.13) ∀ℓ̂ ∈ L2(Γ̂)2 , ‖π̂j(ℓ̂)‖L2(Γ̂) ≤ 2
√

3C‖ℓ̂‖L2(Γ̂).

Proof. The proof follows the ideas of [23] but is more complex because the functions of X̂j vanish

at the end points of Γ̂ whereas those of Λ̂ do not. Let us prove convergence of the series

∞
∑

r=1

‖D1/2KrD−1/2‖2;

this will yield

(7.14) ‖
(

I + D1/2KD−1/2
)−1‖2 ≤ 1 +

∞
∑

r=1

‖D1/2KrD−1/2‖2.

As K has three diagonals, then Kr has 2r +1 diagonals. In addition, since the coefficients of these
diagonals are non negative, this implies that

‖D1/2KrD−1/2‖1 ≤ (2r + 1)‖D1/2KrD−1/2‖∞,

and by interpolation,

‖D1/2KrD−1/2‖2 ≤ (2r + 1)1/2‖D1/2KrD−1/2‖∞.

Therefore

(7.15) ‖D1/2KrD−1/2‖2 ≤ sup
|n−m|≤2r

( dn

dm

)1/2
(2r + 1)1/2‖K‖r

∞.

Thus a sufficient condition for the series convergence is:

(7.16) sup
|n−m|≤2r

( dn

dm

)1/2
≤ c
( δ

‖K‖∞

)r
,

where c > 0 and 0 < δ < 1 are two constants independent of r. First, assuming Hypothesis 7.1, a
simple but tedious computation gives for 0 < γ < 2

(7.17) sup
|n−m|≤2r

dn

dm
≤ 2c0(1 + γ + γ2)γ2r.

Hence the series converges if

γ < Min
(

2,
1

‖K‖∞

)

.
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It is easy to check that

‖K‖∞ = Max
( ĥ0 + ĥ1

ĥ0 + 2ĥ1

,
ĥN + ĥN−1

ĥN + 2ĥN−1

,
1

2

(

1 +
ĥ0

ĥ0 + ĥ1 + ĥ2

)

,
1

2

(

1 +
ĥN

ĥN−2 + ĥN−1 + ĥN

)

)

.

To simplify the notation, set θ = c0γ. Owing to Hypothesis 7.1, for θ ≥ 1, we have

(7.18) ‖K‖∞ ≤ 1

2

(

1 + Max
( θ

2 + θ
,

θ2

1 + θ + θ2

)

)

=
1

2

(

1 +
θ2

1 + θ + θ2

)

.

Take for instance θ = 3
2 ; then (7.18) yields ‖K‖∞ < 3

4 . Therefore the series converges for γ = 4
3

and in turn c0 = 9
8 . Then (7.13) is an immediate consequence of Lemmas 7.1 and 7.2. �

Now we estimate π̂j(ℓ̂) in H1(Γ̂)2 for ℓ̂ ∈ H1
0 (Γ̂)2. First, we have the analogue of Lemma 7.1.

Lemma 7.3. We keep the notation of Lemma 7.1. Under Hypothesis 7.1 with γ > 1, we have

(7.19) |π̂j(ℓ̂)|H1(Γ̂) ≤
√

2

3

(

c0γ(1 + γ) + 2 +
c0γ

2

1 + γ

)1/2|D−1/2α|.

Proof. Let us denote the derivation on Γ̂ with a prime. Then

π̂j(ℓ̂)
′ =

N
∑

n=1

αnϕ̂′
n,

and a straightforward computation gives

‖π̂j(ℓ̂)
′‖2

L2(Γ̂)
≤ 2
(

α2
1

( 1

ĥ0

+
1

ĥ1

)

+ α2
2

( 1

ĥ0 + ĥ1

+
1

ĥ2

)

+

N−2
∑

n=3

α2
n

( 1

ĥn−1

+
1

ĥn

)

+ α2
N−1

( 1

ĥN−2

+
1

ĥN−1 + ĥN

)

+ α2
N

( 1

ĥN−1

+
1

ĥN

)

)

.

Hypothesis 7.1 yields

1

ĥ0

+
1

ĥ1

≤ 1

2d1
(1+c0γ) ,

1

ĥ0 + ĥ1

+
1

ĥ2

≤ 1

3d2

(

c0γ(1+γ)+2+
c0γ

2

1 + γ

)

,
1

ĥn−1

+
1

ĥn

≤ 2

3dn
(1+c0γ),

1

ĥN−2

+
1

ĥN−1 + ĥN

≤ 1

3dN−1

(

c0γ(1 + γ) + 2 +
c0γ

2

1 + γ

)

,
1

ĥN−1

+
1

ĥN

≤ 1

2dN
(1 + c0γ).

Then (7.19) follows readily from the fact that for γ > 1,

c0γ(1 + γ) + 2 +
c0γ

2

1 + γ
> 2(1 + c0γ).

�

Comparing with (7.8) and the proof of Lemma 7.2, we see that a direct estimate of π̂j(ℓ̂)
′ relies

on a bound for |D−3/2b|, which we can hardly expect to be sharp. This difficulty can be bypassed

by using the fact that ℓ̂ belongs to H1
0 (Γ̂)2 and arguing as in [23]. Uniqueness of the solution of

(4.35) in X̂j implies that π̂j(Î(ℓ̂)) = Î(ℓ̂) where Î denotes the standard Lagrange interpolant in X̂j ,

that is well-defined because Γ̂ is a line segment. This permits to write

(7.20) π̂j(ℓ̂)
′ = π̂j(ℓ̂ − Î(ℓ̂))′ + (Î(ℓ̂) − ℓ̂)′ + ℓ̂

′
.

First, we easily derive that
|Î(ℓ̂) − ℓ̂|H1(Γ̂) ≤ 2|ℓ̂|H1(Γ̂).

Therefore

(7.21) |π̂j(ℓ̂)|H1(Γ̂) ≤ 3|ℓ̂|H1(Γ̂) + |π̂j(ℓ̂ − Î(ℓ̂))|H1(Γ̂),
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and it suffices to derive a bound for this last term. Let Mα = b be the system (4.35) for a generic

component of ℓ̂ − Î(ℓ̂). Applying (7.12) and the analogue of (7.8), we obtain

(7.22) |π̂j(ℓ̂ − Î(ℓ̂))|H1(Γ̂) ≤ ‖
(

I + D−1/2KD1/2
)−1‖2|D−3/2b| ≤ C|D−3/2b|,

with the constant C of (7.12), provided c0 and γ are chosen as in the proof of Proposition 7.1. Here

we use the fact that (7.15) is also valid for ‖D−1/2KrD1/2‖2. It remains to estimate |D−3/2b|.

Proposition 7.2. Let ℓ̂ belong to H1
0 (Γ̂)2. If Hypothesis 7.1 holds with the constants c0 and γ

chosen as in the proof of Proposition 7.1, then each component ℓ̂ of ℓ̂ satisfies

(7.23) |D−3/2b| <
√

30c|ℓ̂|H1(Γ̂),

where c depends only on the interpolant Î. Therefore,

(7.24) ∀ℓ̂ ∈ H1
0 (Γ̂)2 , |π̂j(ℓ̂)|H1(Γ̂) <

(

3 +
√

30cC
)

|ℓ̂|H1(Γ̂),

with the constants c and C of (7.23) and (7.12).

Proof. We sketch the proof. To simplify, set w = ℓ̂ − Î(ℓ̂). Arguing as in Lemma 7.2, we recover

a bound for |D−3/2b| by replacing dn by d3
n and ℓ̂ by w in (7.10). The key point here is that the

properties of the interpolant Î imply

‖w‖2
L2(x̂0,x̂1) ≤ c

(

ĥ2
0|ℓ̂|2H1(x̂0,x̂1) + ĥ2

1|ℓ̂|2H1(x̂1,x̂2)

)

,

for a constant c independent of N , with analogous expressions for the norms in the other subinter-
vals. The factors involving ĥn in |D−3/2b| can be bounded by applying (7.11) with c0γ = 3

2 , as in
the proof of Proposition 7.1. This gives

|D−3/2b|2 < 10c
(

|ℓ̂|2H1(x̂0,x̂1) + |ℓ̂|2H1(x̂0,x̂2) +
N
∑

n=1

|ℓ̂|2H1(x̂n−1,x̂n+1) + |ℓ̂|2H1(x̂N ,x̂N+1) + |ℓ̂|2H1(x̂N−1,x̂N+1)

)

,

and (7.23) follows. �

Finally, space interpolation between (7.13) and (7.24) gives

(7.25) ∀ℓ̂ ∈ H
1/2
00 (Γ̂)2 , |π̂j(ℓ̂)|H1/2

00 (Γ̂)
< Ĉ|ℓ̂|

H
1/2
00 (Γ̂)

,

with a constant Ĉ independent of N .

7.2. Second example. In the first example, Λ̂ and X̂j have the same dimension, but of course this
is not necessary. For the unique solvability of (3.8), it is sufficient that the set of degrees of freedom

of Λ̂ be an adequate subset of those of X̂j , sufficiently rich to guarantee a good approximation

property of the Lagrange interpolant Î. Let us briefly give another simple choice of Λ̂ with roughly
half as many degrees of freedom as in the first example. Let N be an odd integer, keep the same
ϕ̂0 and ϕ̂N+1 as in (7.1), and choose

ϕ̂1(x̂)|[x̂0,x̂1] =
1

ĥ0

(x̂ − x̂0) , ϕ̂1(x̂)|[x̂1,x̂2] =
1

ĥ1

(x̂2 − x̂),

ϕ̂N (x̂)|[x̂N−1,x̂N ] =
1

ĥN−1

(x̂ − x̂N−1) , ϕ̂N (x̂)|[x̂N ,x̂N+1] =
1

ĥN

(x̂N+1 − x̂),

ϕ̂2n(x̂)|[x̂2n−2,x̂2n] =
1

ĥ2n−2 + ĥ2n−1

(x̂ − x̂2n−2),

ϕ̂2n(x̂)|[x̂2n,x̂2n+2] =
1

ĥ2n + ĥ2n+1

(x̂2n+2 − x̂), 1 ≤ n ≤ N

2
,

(7.26)
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extended by zero elsewhere. We take

(7.27) X̂j = {v̂ ∈ H1
0 (0, 1)2 ; v̂(x̂) = v̂1ϕ̂1(x̂) +

N/2
∑

n=1

v̂(x̂2n)ϕ̂2n(x̂) + v̂N ϕ̂N (x̂)},

(7.28) Λ̂ = {µ̂ ∈ H1(0, 1)2 ; µ̂(x̂) =

(N+1)/2
∑

n=0

µ̂(x̂2n)ϕ̂2n(x̂)}.

With this choice, (4.35) is uniquely solvable and it can be checked that all the results established
for the first example carry over to this second example, with different constants.
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