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Abstract
The pre-Bötzinger complex (preBötc) in the mammalian brainstem

has an important role in generating respiratory rhythms. An influen-
tial differential equation model for the activity of individual neurons
in the preBötc yields transitions from quiescence to bursting to tonic
spiking as a parameter is varied. Further, past work has established
that bursting dynamics can arise from a pair of tonic model cells cou-
pled with synaptic excitation. In this paper, we analytically derive
one- and two-dimensional maps from the differential equations for a
self-coupled neuron and a two-neuron network, respectively. Using
a combination of analysis and simulations of these maps, we explore
the possible forms of dynamics that the model networks can produce
as well as which transitions between dynamic regimes are mathemat-
ically possible. [Keywords: maps, bursting, synaptic coupling, pre-
Bötzinger complex]

1 Introduction

Biology provides many examples of systems where individual units, such
as organisms, cells, or molecules, display qualitatively different dynamics
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under different conditions. Particular dynamic regimes often have specific
functional consequences, and hence the conditions under which each form
of dynamics appears, and the mechanisms underlying transitions between
dynamic regimes, represent important topics for analysis in models of bi-
ological systems. Square-wave, or fold-homoclinic, bursting is a relatively
complex activity pattern [24, 14] that arises in mathematical models for a
variety of biological systems, including pancreatic β-cells [6] and neurons in
a respiratory region of the mammalian brain stem, the pre-Bötzinger com-
plex (preBötc) [30, 3, 2]. For some time now, the minimal mathematical
ingredients needed for square-wave bursting to arise in a single model cell
and the mechanisms by which such a cell can switch its behavior between
quiescence, square-wave bursting, and another form of activity, called tonic
spiking, have been understood [24, 33]. Chaotic activity within transitional
regions has also been analyzed [32, 18]. However, although the burst-capable
cells in the relevant biological systems belong to coupled networks, the anal-
ysis of transitions between dynamic regimes in model coupled networks has
been relatively limited. The main point of this work is to develop a reduced
representation, based on return maps, for a coupled pair of burst-capable
model preBötc cells [3, 4] and to show how different activity patterns, and
transitions between them, arise in the map representation.

To do so, we build heavily on two earlier papers, in addition to the work
of Butera et al. [3, 4] that first introduced the model that we consider. In the
study of a variety of models used in neuroscience [10, 16, 5], and in other areas
as well [12, 1, 7, 21, 25, 26], high dimensional systems of differential equations
have been reduced to one-dimensional maps to facilitate analysis. Maps
have also been constructed phenomenologically to reproduce some important
characteristics of a given activity pattern [34, 28, 29]. In this work, we follow
a rigorous reduction, derived recently by Medvedev [19] for individual square-
wave burst-capable elements such as the single-cell Butera et al. preBötC
model [3], that takes advantage of the presence of two disparate timescales
in the model. We recapitulate Medvedev’s approach to show explicitly how
it plays out for a self-coupled model preBötc cell. Further, we provide a
novel extension of the reduction to the case of a pair of model cells, mutually
coupled with synaptic excitation, which yields a two-dimensional map.

Second, in our analysis of the two-dimensional map, we make extensive
comparison with another recent study of the dynamics of a pair of coupled
model preBötC cells [2]. In that work, numerical simulation and bifurcation
analysis of an appropriate slow averaged system revealed the existence of
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four different dynamic regimes and explained the mathematical mechanisms
underlying transitions between these regimes, in the singular limit where a
fast-slow decomposition applies. Here, we show how each dynamic regime is
manifested in the two-dimensional map and arrive at a more comprehensive
representation of possible transitions between regimes, valid when the ratio
of the slow and fast timescales is small, but not necessarily zero as in the
singular limit.

The paper is organized as follows. In Section 2, we present the version
of the differential equation model that we study. For this model, we review
the dynamic mechanisms that give rise to bursting in a single cell and in a
two-cell network. In Section 3, we consider the one-d map derived from the
single cell equations, properties of this map, and constraints on the possible
forms of single cell dynamics that can be inferred from the map. Section 4
presents similar topics for the two-d map description of a two-cell network. In
particular, we introduce an iterated map approach that we find useful for the
study of this map. Section 5 provides a brief discussion of our results, while
Appendix A gives further details of functions and parameter values used in
the model and Appendix B presents analytical arguments underlying some
of the mathematical properties of the one-d map. We note that, although
we present our analysis in terms of the Butera et al. preBötc model, our
qualitative results generalize immediately to any other model that shares its
timescale decomposition and bifurcation structure.

2 Model and Previous Results

The original Butera et al. model describes the time (t) evolution of the
membrane potential (v), activation (n) and inactivation (h) levels associated
with certain transmembrane currents, and fraction (s) of maximal synaptic
conductance available, for a single preBötc cell [3]. For completeness, this
model is presented in Appendix A. In this paper, we work with the following
version of the Butera et al. preBötc model [3], rescaled such that voltage lies
in (−1, 1) and cast in a way that allows for consideration of either one or two
cells:

dVi

dT
= (−INaP (Vi, hi)− INa(Vi, ni)− IK(Vi, ni)− IL(Vi)

− Iton(Vi)− Isyn(Vi))/ρ ≡ F (Vi, hi, ni) (1)
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dhi

dT
= ε∗τh(Vi)(h∞(Vi)− hi) (2)

dni

dT
= (n∞(Vi)− ni)/τn(Vi) (3)

dsi

dT
= αs(1− si)s∞(Vj)− s/τs, (4)

where a standard approximation is used to incorporate the variable ni into
both the fast sodium and potassium currents, INa and IK . In the self-coupled
case, i = j = 1, while in the two-cell case, i = 1, 2 and j = 3− i. This system
is obtained from the original model by rescaling variables for time (t = 10T ),
voltage (v = 100V ), and maximal conductances (ḡ∗i = ḡi

ḡNa
) and introducing

the new parameters

ρ = C/(10ḡNa) = 7.5× 10−2, ε∗ = 10−3, αs = 2, τs = τ̄s/10 = 0.5,

where parameters with bars on them are from the original Butera model.
Note, in particular, that we have factored out the small parameter ε∗ from

equation (2). For unscaled voltages v betweeen -80 and 10 mV, the functions
τh(V ), τn(V ) remain below 100, while h∞(Vi), n∞(Vi) ∈ (0, 1) for each i, such
that hi, ni ∈ (0, 1) as well. Hence, we treat hi as slow relative to the other
variables in the system. The nature of the rescaling implies that system (1-4)
has the same dynamics and associated structures as the original model. In
the rest of this section, we summarize the key features of system (1-4).

2.1 Single-cell dynamics

Since hi is slow, it is natural to define the fast or inner subsystem

V ′
i = F (Vi, ni)

n′i = (n∞(Vi)− ni)/τn(Vi)

s′i = αs(1− si)s∞(Vj)− s/τs,

(5)

where the prime symbol denotes differentiation with respect to T and where
hi is incorporated implicitly as a parameter. We can also rescale time, intro-
ducing τ = ε∗T as a variable that changes slowly relative to T , recast system
(1-4) in terms of differentiation with respect to τ , and divide through by ε∗
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to obtain the slow or outer subsystem

0 = F (Vi, hi, ni)

ḣi = τh(Vi)(h∞(Vi)− hi)

0 = (n∞(Vi)− ni)/τn(Vi)

0 = αs(1− si)s∞(Vj)− s/τs.

(6)

In the remainder of this section, since we consider single-cell dynamics, we
drop the subscript i on our dependent variables.

To understand the dynamics associated with these systems, a bifurcation
analysis of the fast subsystem (5) can be performed, using h as a bifurcation
parameter [24]. The left panel of Figure 1 shows an example of a resulting
bifurcation diagram, which is very similar to that shown in [2], augmented
with the h-nullcline, for a fixed parameter set in the self-coupled case. The
intersection of the h-nullcline with the critical manifold S is a critical point,
p0, of the full system (1-4). An unstable family of periodic orbits emerges
from S in a subcritical Andronov-Hopf (AH) bifurcation, say at h = hAH .
This family meets another, stable family of periodic orbits, P , in a saddle-
node of periodic orbits (SNPO) bifurcation at h > hAH . In the diagrams
in Figure 1, the family P ends in an orbit homoclinic to a point on the
middle branch of S, at hHC < hAH . For some other parameter values, the
corresponding family P ends in a second SNPO bifurcation, where it meets a
third family of periodic orbits. This third family is unstable and terminates
in an orbit homoclinic to a point on S (see [2]).

The attractor in the configuration shown in the left panel of Figure 1 is
the critical point p0 on the lower branch of S, where the h-nullcline meets
S. The dynamics associated with the approach to this attractor is called
quiescence, since no spikes are generated (possibly after an initial transient).
It has been shown previously [4, 2] that system (1-4) can also exhibit square-
wave bursting or tonic spiking in certain parameter regimes. More precisely,
increasing gton yields a transition from quiescence to bursting by changing
the relative positions of S and the h-nullcline such that p0 moves to the
middle branch, and further increases in gton elicit a second transition, to
tonic spiking. In tonic spiking, the downward drift in h during the high-V
part of a spike is balanced by the upward drift in h in the trough of a spike.
In the singular limit, the transition from bursting to tonic spiking occurs
when p0 moves in a direction of decreasing h through h = hHC , when hHC
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exists, or when h decreases through an analogous point when hHC does not
exist. The right panel of Figure 1 shows a configuration with p0 at an h-value
before hHC , predicted to give tonic spiking for ε sufficiently small. Varying
gsyn has different effects on the bifurcation diagram and resulting dynamics,
with increases in gsyn from 0 initially expanding the bursting region and later
contracting it again (see [4, 2]). Interestingly, for an appropriate interval of
gton that yields tonic spiking with gsyn = 0, increasing gsyn can switch the
system back to bursting, showing that dynamic synapses could play a role in
promoting bursting, a functionally relevant activity pattern of the preBötc.

2.2 Two-cell dynamics

Best et al. [2] noted that when a pair of coupled cells is considered, the range
in (gton, gsyn) over which bursting occurs is enhanced even further than in the
self-coupled case, matching the simulations of Butera et al. [4]. A system of
two coupled cells includes two slow variables, h1, h2, and hence the fast-slow
decomposition approach becomes more complicated. When both cells are in
the silent phase, their dynamics are well approximated by solutions to the
slow subsystem (6). Best et al. computed the net drift in the hi when both
cells are in the active phase by using the method of averaging. That is, at
any (h1, h2) for which the two-cell fast subsystem exhibits a stable periodic
oscillation L(h1,h2) with period Λ(h1, h2),

L(h1,h2) =
{
(V1(T ), n1(T ), s1(T ), V2(T ), n2(T ), s2(T )) ∈ R6, T ∈ [0, Λ(h1, h2)

}
,

the dynamics of the slow variables with respect to the slow time τ = ε∗T is
given, up to O(ε∗), by the averaged slow equations

ḣi =
1

Λ(h1, h2)

∫ Λ(h1,h2)

0

gi(vi)dξ i = 1, 2. (7)

In equation, (7), gi(vi) ≡ ε(h∞(vi) − hi)/τh(vi) and critical points where
ḣ1 = ḣ2 = 0 correspond to periodic (tonic spiking) solutions of the full system
(1)-(4) for the two cells [23]. Based on equations (7), hi-nullclines, Ni, were
computed numerically, and four dynamic regimes were identified: symmetric
bursting, asymmetric bursting, asymmetric spiking, and symmetric spiking
[2]. Figure 2 illustrates the regions in (gton, gsyn) parameter space on which
these regimes were found to arise, while Figure 3 shows phase portraits for
system (7) representative of each regime.
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Here we briefly describe the regimes found and analyzed by Best et al. [2].
Let O denote the region in the h1−h2 plane, such that for each (h1, h2) ∈ O
the fast subsystem (5) has a stable periodic orbit L(h1,h2). Numerically, the
boundary bd(O) of O inside the relevant square [0, 1] × [0, 1] is observed to
consist of two curves, with reflection symmetry across the line {h1 = h2}. In
each Figure 3A-C, the region O is above and the right of these two curves,
which are solid and black. Consider (gton, gsyn) fixed such that no stable
critical point exists for (h1, h2) outside of O.

In the symmetric bursting regime (Figure 3A), ḣ1 < 0 and ḣ2 < 0 for all
(h1, h2) ∈ O. Hence, trajectories starting in O leave through bd(O). Outside
of O, si ↓ 0 on the fast timescale, such that the two cells decouple, and each
cell evolves along the lower branch of S (Figure 1) until one cell reaches the
lower knee of S and jumps back to O, pulling the other cell with it due to
the resumption of synaptic excitation. This cycle repeats, yielding burst-
ing dynamics consisting of alternating phases of fast system quiescence and
phases of fast subsystem oscillations. In simulations, trajectories approach
{h1 = h2} as time advances.

In asymmetric bursting (Figure 3B), unlike the previous case, there are
curves in O where ḣ1 or ḣ2 changes sign, which form the nullclines Ni of
(7) in O. By symmetry, they intersect at a point, call it PO, in {h1 = h2}.
With (h1, h2) fixed at PO, the fast subsystem exhibits a stable oscillation,
and there is no net drift of (h1, h2) over each period, such that this represents
a stationary state of the full system (in the singular limit, which perturbs to
a dynamically equivalent nearby state for ε sufficiently small). However, PO
can be shown to be a saddle point for system (7). Trajectories near the stable
manifold of PO, namely the line {h1 = h2}, that approach a neighborhood of
PO cross the h2-nullcline and are kicked out along the unstable manifold of
PO until they reach bd(O) and exit O. As in symmetric bursting, this exit
decouples the cells, leading to a silent phase followed by reinjection into O.
Bursting dynamics, with a relatively long active phase due to passage near
the saddle PO, results.

In the asymmetric spiking regime (Figure 3C), there are two additional
intersection points of N1,N2, located off of {h1 = h2} but equivalent under
reflection across {h1 = h2}, and these are stable critical points of system
(7). Corresponding to each of these, the full system exhibits a stable state
in which the fast variables undergo large amplitude oscillations while the
slow variables periodically drift around the critical point, representing tonic
spiking solutions with h2 > h1 and with h1 > h2, respectively.
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Finally, symmetric spiking (Figure 3D) results after a pitchfork bifurca-
tion for system (7) occurs. This bifurcation destroys the two previously stable
critical points and stabilizes the one on {h1 = h2}, yielding tonic spiking in
which h1 ≈ h2.

3 Self-coupled cell: one-dimensional map

In this section, we derive a one-dimensional map representing the dynamics
of a self-coupled cell given by (1-4), directly following [19]. We subsequently
analyze its properties and consider the dynamics of the map, with particular
attention to transitions between bursting and spiking.

3.1 Derivation of the one-d map

Consider the slow equation (2) for a fixed gsyn. Define t(T ) such that d
dt

=
1

τh(V )
d

dT
. Then, t(T ) =

∫ T

0
τh(V (ξ))dξ and equation (2) simplifies to

dh

dt
= ε(h∞(V )− h). (8)

As noted in subsection 2.1, the fast subsystem has a family of stable periodic
orbits, P , for each h within a range, which we can denote as (hL, hR), where
the SNPO bifurcation that gives birth to P (Figure 1) occurs at h = hR. For
any η ∈ (hL, hR), let Pη denote the corresponding member of P and let Ση

denote a local section transversal to Pη in (V, n, s) space. Without loss of
generality, we can choose Ση as a surface of constant n at the minimum of
V along P , since ṅ 6= 0 there, assuming the minimum occurs at V < θsyn,
such that ṡ < 0. Indeed, if ṅ = V̇ = 0 and ṡ < 0 at a point, then d2V/dt2 =
−(∂Isyn/∂s)ṡ < 0, contradicting the fact that the point is a minimum of V .
In fact, ṅ < 0 must hold there, since n∞(V ) is monotone increasing. Since
the curve of minima in V along P is differentiable by the implicit function
theorem, Σ := ∪η∈(hL,hR)Ση is a local transversal to P .

For any (V (0), n(0), s(0)) ∈ Ση for η ∈ (hL, hR), define

ts(η) = min{t > 0 : (V (t), n(t), s(t)) ∈ Σ and ṅ < 0}.

Define the first return map by

P (η) = h(ts(η)). (9)
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Adding εh on both sides of equation (8), multiplying it by its integrating
factor eεt, and integrating from 0 to ts(η) yields

eεts(η)h(ts(η))− h(0) = ε

∫ ts(η)

0

h∞(V )eεtdt.

Substitution of (9) then gives an equation for the first return map for the
self coupled case,

P (η) = e−εts(η)η + ε

∫ ts(η)

0

h∞(V )eε(t−ts(η))dt, hL < η < hR. (10)

To complete the definition of the map, let hL denote the h value such
that the family P ends as h → h+

L (i.e., as h approaches hL from above),
either in a homoclinic orbit (such that hL = hHC) or in a second saddle
node bifurcation of periodic orbits. We note that for h < hL, the unique
stable state of the fast subsystem is the critical point (V ∗(h), n∗(h), s∗(h))
on the lower branch of the critical manifold S. Trajectories that approach a
neighborhood of this branch evolve under the slow flow

ḣ = ε(h∞(V ∗(h))− h) > 0

until h = hSN is reached and the active phase is resumed. Hence, for η ≤ hL,
we set P (η) = hSN . This assignment completes the definition of the map
P (η) for η ∈ (hl, hR), for any choice of hl < hL.

Now, define a function [19],

F (η) =

∫ ts(η)

0
h∞(V (t))eε(t−ts(η))dt∫ ts(η)

0
eε(t−ts(η))dt

. (11)

Some algebraic manipulations allow us to write equation (10) as

P (η) = e−εts(η)(η − F (η)) + F (η), (12)

with P (η) = η if and only if F (η) = η. Hence, it becomes helpful to analyze
F (η), to gain insight about the form of P (η).

3.2 Properties of the one-d map

First, assume that the curve of periodic orbits P ends in a homoclinic orbit
H at h = hHC . The function F (η) can be seen to have several properties for
η ∈ (hHC , hR):
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1. F (η) is a smooth function with 0 < F (η) < 1,

2. F (η) is a monotone decreasing function,

3. F (η) → h∞(VHC) as η → h+
HC ,

4. for ε sufficiently small, dF
dη
→ −∞ as η → η+

HC .

All of these properties can be inferred from numerical simulations (see Figure
4). Properties 1, 3, and 4 are also supported by analytical calculations, as
detailed in Appendix B.

Alternatively, if P ends in a saddle node of periodic orbits as h decreases,
the periods along the family remain finite. In this case, of the properties
of F (η) mentioned above, only the first two still hold, as can be observed
numerically.

The enumerated properties of F (η) yield corresponding properties of
P (η). Specifically, if the homoclinic termination occurs, then

1. there exists η0 ∈ (hHC , hSN) such that 0 < dP/dη < 1 and P (η) < η
both hold for η ∈ [η0, hSN ] and ε sufficiently small,

2. P (η) → h∞(VHC) as η → h+
HC , since, in equation (12), e−εts(η) → 0 and

F (η) → h∞(VHC) as η → h+
HC , and

3. dP/dη → −∞ as η → h+
HC .

The first property can be seen, as in [19], by fixing η ∈ (hHC , hSN) and
using continuous dependence on ε to write

t(η) = t0(η)+O(ε), (V (t), n(t), s(t)) = (V0(t), n0(t), s0(t))+O(ε), 0 ≤ t ≤ t(η),

where (V0(t), n0(t), s0(t)), t > 0 is the periodic solution of the fast subsystem
with h = η, with period t0(η). Substitution into (12) and Taylor expansion
yields

P (η) = (1− εt0(η))η + εt0(η)F (η) + O(ε2)

Hence, we can bound t0(η) by choosing η above hHC and then fix ε sufficiently
small such that the desired property holds.
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The third property follows from differentiating equation (12) with respect
to η, which gives

dP

dη
= e−εts(η) +

dF

dη

(
1− e−εts(η)

)
+ e−εts(η)ε

dts(η)

dη
(F (η)− η). (13)

As η → h+
HC , ts(η) → ∞, dF/dη → −∞, and e−εts(η)dts(η)/dη =

−e−εts(η)(σ/(η−ηHC)) → 0, while F (η) remains bounded, yielding the desired
result.

From continuity of the map, the above properties yield a fixed point on
(hHC , hSN) for ε sufficiently small, assuming that P ends in a homoclinic
orbit. A more detailed analysis of the transition between the linear region
and the homoclinic orbit is given elsewhere for an analogous system [19]. If
P does not end in a homoclinic orbit, then the periods along P may stay
relatively small and dP/dη may fail to become negative as η → h+

HC , and
correspondingly a fixed point of the map P may fail to exist.

3.3 Dynamics of the one-d map

The properties stated in the previous subsection provide constraints on the
form P can take. For any fixed parameter values, we can assign P to one of
four classes, such that maps within the same class give rise to qualitatively
similar dynamics. These four classes are illustrated schematically in Figure
5; note that we assume that P has at most one local minimum point based on
numerical observations. The four classes are distinguished by two properties:
(i) whether the minimum value of P (η) lies above or below hL, the h-value
at which P terminates, and (ii) whether or not there exists η∗ > hL such
that P ′(η∗) = 0.

Importantly, we use property (i) to classify the dynamics associated with
a parameter set as bursting or spiking. That is, if P (η) < hL, then the
trajectory leaves the active phase and P 2(η) = hSN , corresponding to reset
after passage through the silent phase, results. Alternatively, if P (η) > hL for
all η, then the solution must remain in the active phase for all time. Thus,
a necessary condition for bursting is that the minimum value of P (η) lies
below hL. Technically, this condition is not sufficient to ensure that bursting
is observed, since trajectories may not be forced close to η values near the
minimum of P , yet numerics suggest that such exceptions occur only within
small transitional parameter ranges, if at all.
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We noted in subsection 3.2 that when P ends in a homoclinic orbit, there
exists η∗ > hL, as stated in property (ii). If P ends in a SNPO, then such η∗

will exist if and only if the period T (η) grows sufficiently large as η → h+
L .

Figure 5 shows an example from each class, with the corresponding form of
dynamics indicated by a cobwebbing trajectory and a text label.

When P terminates in a homoclinic orbit, only the regimes shown in Fig-
ure 5A,B are possible. When the termination is in a SNPO, however, all four
regimes could occur if T (η) were sufficiently large near ηL; otherwise, only
those in Figure 5C,D are possible. From continuity with respect to parame-
ters, it is clear that there are two pathways from spiking with a homoclinic
termination, as seen with gsyn small and gton above some threshold, to burst-
ing: either η∗ can pass below ηL, corresponding to a switch from Figure 5A to
Figure 5B, or the local minimum of P can be lost, after which limη→h+

L
P (η)

can pass from above h+
L to below it. We can describe each pathway in more

precise mathematical terms, such as in the following proposition.

Proposition 3.1 Suppose that for some small gsyn ≥ 0 the cell is spiking
and P terminates in a homoclinic orbit. The onset of bursting occurs, as
gsyn increases through g∗syn, if the following conditions hold: For each gsyn ∈
(g∗syn− ξ, g∗syn + ξ) and 0 < ξ � 1, there exists η∗(gsyn) ∈ (hHC , hR) such that

1. dP
dη

(η∗(gsyn), gsyn) = 0,

2. P (η∗(g∗syn)) = hHC, and

3. dP
dgsyn

(η∗(g∗syn), g∗syn) < 0.

Other pathways between dynamic regimes are similar, and these pathways
help determine the types of dynamics occuring between pure tonic spiking
and bursting, as analyzed elsewhere [32, 19]. On the other hand, a direct
transition between spiking with a critical point of P and bursting with no
critical point of P (Figure 5A and C), or between bursting with a critical point
of P and spiking with no critical point of P (Figure 5B and D), generically
will not occur through variation of a single parameter, as they would require
simultaneous changes in both properties (i) and (ii).

We conclude this section with some numerical results, obtained using a
combination of XPPAUT [9] and MATLAB [17]. Figure 6 shows an example
of each regime from Figure 5, generated by varying gsyn with fixed gton.
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Table 1 shows the values hL and the minimum value of the map for the
cases in Figure 6, confirming that all four regimes really are represented.
Results of cobwebbing, implemented numerically for two of the regimes, are
shown in Figure 7. In Figure 8, the voltage time course generated by the full
system (1-4) is displayed, illustrating a full agreement with the predictions
of the map analysis. Interestingly, the two bursting solutions (top right and
bottom left) exhibit very different burst duration and intraburst frequency.
For the upper right case, P ends in an orbit of long (possibly infinite) period,
manifested in Figure 6 and Figure 5B by the sharp slope of P near its point of
discontinuity. Hence, spikes slow near the end of the active phase, yielding
the slowed intraburst frequency. Similarly, spike frequencies within tonic
spiking solutions depend on the proximity of the fixed point to hL and on
whether hL corresponds to a homoclinic point or SNPO.

gsyn hL P (ηmin)
0.10 0.2680692 0.26819
0.11 0.26588065 0.26579
0.47 0.07978 0.07976
0.48 0.07368 0.073686

Table 1: Values of hL computed with AUTO [9] and the lowest value of P (η).

In summary, we have used the approach in [19] to derive a one-dimensional
map from a four-dimensional system of ordinary differential equations, rep-
resenting a single, self-coupled preBötc cell. Certain properties of this map
determine the possible pathways for transitions between bursting and spiking
as parameters are varied. Numerical simulations show that all of the iden-
tified dynamic regimes can be realized by varying gsyn. In the next section,
we derive a two-dimensional map for a pair of coupled cells, as a tool for
analytically characterizing transitions between different forms of dynamics
in that system.

4 Two coupled cells: two-dimensional map

Consider equations (1-4) for i, j = 1, 2 and j = 3−i, describing the dynamics
of a coupled pair of cells. As discussed in subsection 2.2, numerical simula-
tion of averaged slow equations can be used to study activity patterns, and
transitions between activity patterns, generated by this system. To get an
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analytical handle on the system’s dynamics, we generalize the approach from
the previous section to derive and study a two-dimensional map.

As in the one-d case in subsection 3.1, we assume that the fast subsystem
has a family of periodic orbits P , now a two-parameter family parameterized
by h1 and h2 on which both cells exhibit large-amplitude oscillations, that
is stable on some connected open set H ⊂ [0, 1]× [0, 1] in (h1, h2)-parameter
space. Analogously to the one-d case, we can define a section Σ that is
transverse to the family, which for concreteness we can choose to intersect P
along the curve of minima of V1. If we fix (h1, h2) ∈ H and integrate equations
(1-4) from an initial condition on Σ with ṅ1(0) < 0 and let c = sign(ṅ2(0)),
then the time of first return to Σ can be defined as

Ts(h1, h2) = min{T > 0 | Φ(T ) ∈ Σ and ṅ1 < 0 and sgn(ṅ2(T )) = c}.
(14)

As in section 3.1, the two-dimensional first return map P(η1, η2) can be
defined on H and expressed as

P(η1, η2) =

[
P1(η1, η2)
P2(η1, η2)

]
=

[
e−α1(Ts)(η1 − F1) + F1

e−α2(Ts)(η2 − F2) + F2

]
(15)

where Ts = Ts(η1, η2) from equation (14) and

αi(Ts) = ετ̄h(Vi)Ts, τ̄h(Vi) = 1
Ts

∫ Ts

0
τh(Vi(ξ))dξ,

Fi = Fi(η1, η2) =
∫ Ts
0 gi(V1(T ),V2(T ))eαi(T )dT

eαi(Ts)−1
, gi(V1, V2) = εh∞(Vi)τh(Vi)

for i = 1, 2. Note that the coupling between the two cells does not appear
explicitly in the expressions above but is present implicitly and will affect
the behavior of each component of the map.

At least part of the boundary of the region H on which both cells oscillate
corresponds to a fast subsystem bifurcation curve along which the family
P of stable periodic orbits terminates. Trajectories that cross this curve
may continue to exhibit large-amplitude oscillations in one component only
or may feature silent phases in which neither component undergoes such
oscillations. The former case may arise in certain transitional regimes and is
beyond the scope of this work. In the latter case, the trajectory may approach
a stable critical point in the silent phase, such that quiescence results, or the
trajectory may eventually be reinjected into the active phase by crossing
a saddle-node bifurcation curve. Fixing an initial condition (h1, h2) in the
silent phase selects a unique saddle-node reinjection point, up to O(ε), due
to the fast-slow nature of the flow of system (1-4).
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4.1 Iterated map approach

Numerically, one could iterate the two-d map P given in (15) by fixing
(h1, h2) ∈ H, choosing the intersection point of the corresponding periodic
orbit P(h1, h2) with Σ as an initial condition for system (1)-(4), and inte-
grating to the first return to Σ. It is not at all clear how to treat the two-d
map (15) analytically, however.

We find it useful to consider sections P1(η1, η2), for fixed η2, and P2(η1, η2),
for fixed η1, of the full two-d map P. That is, to generate the P1(η1, η2) sec-
tion, we fix η2 and we vary η1 over a range of values, say Ξ(η2) := [ηmin

1 , ηmax
1 ],

such that (η1, η2) ∈ H for each η1 ∈ Ξ(η2). For each choice of η1 ∈ Ξ(η2), we
choose an initial condition φ = (V1, n1, s1, V2, n2, s2) such that for (h1, h2) =
(η1, η2), φ is the point P(h1, h2) ∩Σ. We integrate equations (1-4) from this
initial condition until a return to Σ occurs and take the value of h1 at this
return as P1(η1, η2). An analogous approach yields P2(η1, η2) for fixed η1. If
(η1, η2) /∈ H, then we assume that both cells enter the silent phase and take
Pi(η1, η2) = ηSN

i , where (ηSN
1 , ηSN

2 ) is the point on the saddle-node reinjection
curve determined by initial condition (η1, η2) in the silent phase.

This use of sections allows us to visualize the iteration process simulta-
neously in the (η1, P1(η1, η2)) and (η2, P2(η1, η2)) planes. The key point is,
since both η1 and η2 are updated in each iteration, we must choose a new
section after each iteration to use for the subsequent iteration. An individ-
ual section that is a function of ηi is not equivalent to the one-d map P (η)
generated for the self-coupled cell with η = ηi, because the timing of the
synaptic input to the cell during the oscillation in the two-cell network may
differ from the timing in the self-coupled case. Nonetheless, each section is
qualitatively similar to the one-d maps studied in section (3), which allows
us to catalogue possible dynamic regimes and transitions between them for
the two-cell system.

The iteration process is illustrated schematically in Figure 9. The panels
all show the P1 component of P, although the subscript is omitted; the
other component would be updated in parallel in a similar way and is not
shown. The upper two panels show the section P1(η1, η

1
2), with η2 = η1

2

fixed, as well as the first iteration step, which takes η1
1 to η2

1 := P1(η
1
1, η

1
2).

The value η2
2 is given by P2(η

1
1, η

1
2). In the left panel in the second row,

a new section P1(η1, η
2
2) is shown together with P1(η1, η

1
2) and the second

iteration step, yielding η3
1 := P1(η

2
1, η

2
2). Similarly, the right panel in the

second row and the panels in the third row show subsequent updates to P1
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and iterations of P1. Note that different sections are defined on different
intervals of η1, since ηmin

1 depends on η2, as discussed above. Interestingly,
η5

1 < P1(η
5
1, η

5
2) ≡ η6

1. Hence, the cobwebbing process reverses direction,
and moves toward successively larger values of η1, starting in the right panel
of the third row of Figure 9. Finally, η7

1 lies to the left of the domain of
P1(η

6
1, η

6
2) (i.e., η7

1 < ηmin
1 (η6

2)), such that cell 1 exits the active phase after
the seventh iteration. Assuming that cell 2 exists the active phase at the same
iteration, P1(η

7
1, η

7
2) is set to be the η1 value on the saddle-node reinjection

curve determined by silent phase initial condition (η7
1, η

7
2).

We can use linear interpolation to connect the points (ηj
1, P1(η

j
1, η

j
2)) in

the (η1, P1(η1))-plane. We take the curve obtained in this way as the orbit
generated by what we call the iterated map, and we denote it by Γ1 = Γ1(η1).
In an analogous way, we obtain the orbit generated by the iterated map
Γ2 = Γ2(η2). For the schematic example, Γ1 is illustrated in the bottom right
panel of Figure 9. Based on the construction of Γ1, a crossing of the identity
line corresponds to a switch from a regime in which η1 is decreasing on
successive iterates of P to a regime in which η1 is increasing. In terms of the
flow of the underlying system of differential equations, the h1-nullcline must
therefore be crossed. Thus, a period where h1 hardly changes occurs, and
the linear interpolation between small steps in h1 produces an appearance of
smoothness. A numerical example of Γ1 and Γ2 is shown in Figure 10, and
the apparent smoothness in crossing the identity line is evident in the right
panel.

Note that the map Γ := (Γ1, Γ2) does not correspond precisely to the
dynamics of system (1-4), but it gives a good approximation by continuity
in initial conditions for ε small, such that η changes by a small amount on
each iteration. By construction, Γ depends quantitatively on the choice of
initial condition (η1

1, η
1
2), but, after initial transients, the qualitative form of

Γ does not depend on this choice and in fact can be used to classify possible
dynamics of the two-cell system. To perform this classification, it is useful
to consider possible intersections of components of Γ with the identity line.
To do this, we start from the observation that the sections Pi(η1, η2) are
qualitatively similar to the one-d map P (η) analyzed in section 3. A second
important observation is that

∂Pi/∂ηj < 0 (16)

for i 6= j ∈ {1, 2}. This second observation is consistent with the bifurcation
results in [2]. In brief, a decrease in the initial value of hj weakens the input
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from cell j to cell i during the ensuing oscillation. This weakened input causes
the average voltage of cell i to be lower during this oscillation, yielding a less
negative change of hi (less inactivation) over the course of the oscillation,
regardless of the initial value of hi. Thus, Pi(ηi, ηj) becomes larger for each
ηi as ηj decreases.

The simplest form of Γ is one for which both components do not in-
tersect the identity line, meaning that η1 and η2 both decrease throughout
the active phase, as in the symmetric bursting (SB) case described in sub-
section 2.2 (Figure 11, upper left panel). Alternatively, the simplest pos-
sible way that Γ1 can intersect the identity line is if there exists η∗1 such
that limη1→(η∗1)+ Γ1(η1) = η∗1 and Γ1(η1) is an increasing function of η1 with
Γ1(η1) < η1 for all η1 > η∗1, as shown in Figure 11, upper right panel. For
such a point to exist, there must be a finite or infinite sequence (ηj

1, η
j
2) such

that ηj+1
1 = P1(η

j
1, η

j
2) < ηj

1 and ηj+1
2 = P2(η

j
1, η

j
2) for all j, and both ηj

1 → η∗1
and P1(η

j
1, η

j
2) → η∗1 hold as j increases. By property (16), there must ex-

ist η∗2 such that ηj
2 → η∗2 as j increases as well, to achieve the convergence

of P1, since η2 is constrained to a finite domain, such that ∂P1/∂η2 has a
strictly negative upper bound. In summary, in this case, Γ has a fixed point,
the coordinates of which both of its components approach from above, and
this point is also a stable fixed point of P, yielding symmetric spiking (SS)
dynamics.

A third possibility is that Γ1 has a portion of its graph below the identity
line and a portion above the identity line. We shall refer to the portion
below the identity line as the lower branch of the iterated map and denote
it by LB and the portion of the map above the identity line as the upper
branch and denote it by UB. In this case, interpolation yields a point η∗1
such that Γ1(η

∗
1) = η∗1, connecting its LB and UB, which we call a branch

point of Γ1. When Γ1 has a branch point, Γ2 may or may not have one, and
vice versa. Moreover, for either i, the UB of Γi, when it exists, may meet
the identity line in a fixed point η∗i , such that Pi(η

j
1, η

j
2) → η∗i (Figure 11,

bottom row left), or in a second branch point, or neither (Figure 11, bottom
row right). We assume here that multiple branch points do not occur. If
UB terminates in a fixed point for some i, then Γj also has a fixed point for
j 6= i, by similar convergence arguments to those used above, although Γj

need not have a branch point. Again, fixed points of Γ correspond to stable
fixed points of P, and in fact the relation is reciprocal, since convergence of
P yields convergence of Γ by construction.

In summary, intersection points of Γi(ηi) with the identity line may be
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(i) fixed points that Γi approaches below (above) the identity line as ηi

decreases (increases), in which case they are shared by Γj, j 6= i, and
correspond to stable fixed points of P, or

(ii) branch points, which do not correspond to stable fixed points of P and
do not imply anything about Γj for j 6= i.

Interestingly, if Γi has a branch point, then for iterates after the branch point
is crossed, property (16) implies that Pj(η

j
1, η

j
2) decreases as j increases, since

ηj
i increases. Nonetheless, Γj may still develop a branch point, if Pj has a

region of negative slope.

4.2 Dynamic regimes and transitions between them

Each qualitatively distinct form of the iterated map Γ corresponds to a spe-
cific form of dynamics of the slow averaged equations (7). A key observation
is that ηi can change from decreasing to increasing, and a branch point of a
component Γi can exist, if and only if the slow averaged variable hi crosses
its nullcline. That is, both of these effects occur if and only if the direction
of net change in hi over a single oscillation cycle switches from negative to
positive. Moreover, as we have discussed, if Γi has a fixed point, then Γj also
has a fixed point, corresponding to a stable fixed point of P, which implies
the existence of a stable equilibrium point of the slow averaged equations
(7) in the oscillatory region O where the fast subsystem has stable periodic
orbits.

Based on these observations, we can enumerate the possible dynamic
regimes that can be achieved by the possible forms of Γ that we have identi-
fied. It turns out that all possible dynamic regimes fit within the nomencla-
ture from [2], as reviewed in subsection 2.2 of this paper.

1. If Γ1, Γ2 take the form shown in Figure 11, upper left panel, then
the slow averaged dynamics yield no nullcline crossings or equilibrium
points and symmetric bursting (SB) results.

2. If one or both of the Γi take the form in Figure 11, lower right panel,
then at least one of the slow averaged variables crosses its nullcline,
but the absence of fixed points implies that bursting still occurs. This
case is asymmetric bursting (AB).
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3. If one of the Γi takes the form in Figure 11, lower left panel, then the
other component must have a fixed point, as in the upper right and
lower left panels of Figure 11. In either case, the resulting form of
dynamics is asymmetric spiking (AS), since at least one slow averaged
variable crosses its nullcline and the trajectory of (7) converges to a
stable equilibrium point.

4. Finally, if both of the Γi take the form in Figure 11, upper right panel,
then the trajectory of system (7) converges to a stable equilibrium point
without a nullcline crossing, yielding symmetric spiking (SS).

We have identified two key types of points, branch points and fixed points,
in the iterated map Γ. Based on these ideas, we can reason out what are
the possible codimension-1 transitions (i.e., transitions that can be achieved
by varying a single parameter) between dynamic regimes within the two-cell
network. In doing so, it also can be helpful to think about the components
Pi of the original map P. The following list specifies the most obvious such
transitions, and after we describe these, we will address two additional subtle
cases.

1. Starting from the SB regime, the codimension-1 events that can occur
are the development of a fixed point and the development of a branch
point. The former would establish SS dynamics, corresponding to the
existence of a fixed point without a branch point, while the latter would
establish AB dynamics, corresponding to the existence of a branch
point without a fixed point, at least on some small parameter interval.

To understand these events in terms of the Pi, we need to distinguish
how the sections of P behave near the termination of the family P of
fast subsystem periodic orbits. Assume first that the periods of the
orbits in P become large near termination, such that

P1(η1, η2) > η1, P2(η1, η2) > η2 (17)

hold for each pair of sections P1, P2 of P for all (η1, η2) sufficiently close
to the termination curve.

Now, in the SB regime, there exists an iteration index i such that
ηi+1

1 = P1(η
i
1, η

i
2) lies outside the domain of P1(η1, η

i+1
2 ) (i.e., ηi+1

1 <
ηmin

1 (ηi+1
2 )), and hence cell 1 enters the silent phase; further, we have

assumed that cell 2 enters the silent phase on the same iteration as cell
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1. By continuous variation of a single parameter, we could in theory
vary P such that ηi+1

1 > ηmin
1 (ηi+1

2 ). We have P1(η1, η
i+1
2 ) > η1 for η1

near ηmin
1 (ηi+1

2 ), by (17). In particular, P1(η
i+1
1 , ηi+1

2 ) > ηi+1
1 , a branch

point of Γ1 is generated, and AB dynamics results.

Alternatively, suppose that instead of (17), we have P1(η1, η2) < η1

and P2(η1, η2) < η2 for each pair of sections of P. Since no branch
points can form, the only alternative regime to SB is SS, and this can
be achieved by variation of a parameter to generate a stable fixed point
of P.

2. Starting from the AB regime, a one-parameter transition to the SB
regime is theoretically possible, by reversing the arguments given above.
Variation of a single parameter could instead give rise to a fixed point,
which would yield the AS regime, since the branch point present in AB
would still be there.

3. From the AS regime, loss of the fixed point due to modulation of a single
parameter would give a switch to the AB regime, corresponding to the
reverse of the previous case. The SS regime can also be achieved by
variation of a single parameter, if this variation causes the fixed point
to collapse onto the branch point. In fact, the codimension-1 nature
of the AS to SS transition may be easier to appreciate in terms of the
dynamics of the slow averaged differential equations (7), where this
transition corresponds to a pitchfork bifurcation within the oscillatory
region O (see [2] and Figure 3).

4. From the SS regime, as we have already seen, transitions to AS and to
SB are both possible codimension-1 events.

In fact, the above list includes exactly those transitions that were clearly
distinguished in previously published simulation results on the two-cell ode
model [2]. However, there was some ambiguity in that work relating to the
two most subtle cases, namely direct transitions between SB and AS and
between SS and AB.

The transition between SB and AS can in fact be achieved as a codimension-
1 event, in theory. Consideration of the two-d map is advantageous for un-
derstanding this transition, relative to the dynamics of the ode. In the AS
regime, both components of Γ have fixed points, while at least one has a
branch point. Without loss of generality, suppose that component Γ1 has
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a branch point. Variation of a single parameter could cause a change in
the forms of the relevant Pi yielding a switch from ηi+1

1 > ηmin
1 (ηi+1

2 ) to
ηi+1

1 < ηmin
1 (ηi+1

2 ) for some i. Thus, the active phase would terminate at
iteration i + 1, and the fixed point, which would still be present in the dy-
namics of (7), would not show up in the new Γ, by construction. The (i+1)st
iteration could come after the crossing of the branch point, in which case AB
would result, or, if the (i + 1)st iteration had been the first one for which η1

became increasing, then the branch point could disappear, yielding SB. In
terms of the dynamics of (7), this form of transition would correspond to a
movement of the nullclines such that trajectories that had crossed a nullcline
and been attracted to a stable fixed point off of {h1 = h2} in the AS regime
would instead leave from O without crossing a nullcline and being pushed
away from {h1 = h2} after the transition to the SB regime. The stable fixed
point off of {h1 = h2} would remain, but trajectories would enter the active
phase outside of its basin of attraction under the flow of (7). In fact, this
transition would yield a region in parameter space for which some trajectories
in the active phase oscillatory region O would leave O through its boundary
and others would still be attracted to the remaining stable fixed points off of
{h1 = h2}. Such a situation is suggestive of bistability, but in fact reset from
the silent phase could push trajectories toward only one of these outcomes,
such that bistability would not be guaranteed.

The SS to AB transition, corresponding to replacement of a stable fixed
point of Γ with a branch point of at least one of the Γi, is also theoretically
possible through continuous variation of a single parameter. To understand
why, it is in this case most convenient to think in terms of the dynamics of the
differential equation system (7). Recall that from the SB regime, a transition
to the SS regime will occur if variation of a parameter causes a stable fixed
point of (7) to enter the fast subsystem oscillatory region O through the
boundary point of O on the line {h1 = h2}. If we turn this transition around,
it suggests that an SS to SB transition will occur if parameter variation causes
such a fixed point to leaveO through its boundary, bd(O). The state resulting
from such a modulation, however, depends on the slopes of the nullclines of
(7) relative to those of the components of bdO at {h1 = h2}. If the nullclines
do not intersectO after the fixed point leaves, then SB can result. If, however,
a part of one nullcline lies in O above {h1 = h2}, and by symmetry a part
of the other nullclines lies in P below {h1 = h2} even after the fixed point
leaves, then AB results. In terms of maps, the corresponding idea is that
the disappearance of a fixed point of Γ might or might not be accompanied
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by the appearance of a branch point of one of its components, depending
on details of the slices of the two-d map P made relevant by variation of a
parameter. In simulations, we have not previously found clear evidence of a
transition from SS to AB, but much room for exploration remains.

5 Discussion

We have taken the model introduced by Butera et al. [3, 4] for a single,
self-coupled neuron in the pre-Bötc, which yields quiescence, bursting, and
tonic spiking as particular parameters are varied, and applied a previously
developed derivation method [19] to obtain a one-dimensional map, P , rep-
resenting its dynamics. The one-d map tracks the evolution of the slow
inactivation variable h for the persistent sodium current from one oscillation
to the next while the cell is spiking, with an appropriate reinjection into the
active phase if the cell falls silent. Certain properties of the map can be
established analytically, and others numerically, and we have used these to
delineate the possible forms of dynamics the model can produce as well as
the possible codimension-one (i.e., attainable through variation of a single pa-
rameter) transitions between dynamic regimes (Figures 5, 6). In particular,
it is known that depending on parameter values, the oscillations exhibited
by the model may terminate, as h is decreased, in a homoclinic bifurcation
or a saddle-node bifurcation of periodic orbits for the fast subsystem con-
sisting of the equations for the other variables in the model. Our analysis
shows how the nature of this termination mechanism affects the form of the
map and affects its dynamics. We have also shown numerically that all of
these forms of dynamics can be obtained by varying the conductance of the
synaptic current representing the neuron’s self-excitation, gsyn (Figure 8).

In the case of a coupled two-neuron network, as analyzed previously by
numerical simulations [4] and through fast-slow decomposition, averaging and
numerical bifurcation analysis [2], a conceptually similar derivation yields a
two-dimensional map, Γ(η1, η2) = (Γ1(η1, η2), Γ2(η1, η2)), on the persistent
sodium inactivation variables for the two neurons. Establishing the prop-
erties of two-d maps and analyzing their dynamics is generally a difficult
undertaking. We have noted that for each fixed ηj, the component Γi, i 6= j,
treated as a function of ηi, is analogous to the one-d map P . We have ex-
ploited this feature to generated an iterated map that can be used to approx-
imate orbits of Γ. This approach allows us to constrain the possible forms of
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dynamics that the two-neuron network can produce and the codimension-one
transitions between them, as we did in the one-cell case. Interestingly, the
possible dynamics match those seen previously [2], providing an analytical
confirmation that the earlier bifurcation analysis based on fast-slow decom-
position and averaging covered the relevant dynamic regimes. Our analysis
of transitions establishes exactly which switches between dynamic regimes
are possible and hence is more comprehensive than numerical explorations
alone.

We do make certain simplifying assumptions in our analysis. In partic-
ular, we assume that the two-cell network does not enter a regime in which
one cell exhibits multiple oscillations while the other is silent. We also do not
explore chaotic dynamics, which will arise during at least some transitions
between regular dynamic regimes [32, 33, 20, 18, 11]. Further, we neglect the
possible influence of noise on system dynamics. Of course, noise is present
in all neuronal systems. Because we focus on codimension-one transitions
between regimes and structurally stable forms of dynamics, our qualitative
results will persist in the presence of small noise. Noise can affect times
of transitions between phases in bursting dynamics (e.g., [31, 22]) and, at
stronger levels, can induce even more significant dynamic effects [13].

In past work, an increase in simulation speed, relative to differential equa-
tion models, has been cited as a motivation for the development of map-based
representations of neuronal network dynamics. The derivation that we follow
is theoretically attractive relative to phenomenogical approaches, in that it is
an analytical reduction that preserves model dynamics, but it does not yield
this efficiency advantage at the network level, since it requires integration of
differential equations, unlike the phenomenological approach [29]. Possibly
other reduction methods [5] or a combination of analytical and phenomeno-
logical steps can be used to achieve both ends in future work. Another
challenge is the difficulty of analyzing maps of dimension greater than one.
Overcoming this difficulty, perhaps through an iterative approach as we have
employed here for our two-cell network and corresponding two-d map, will be
necessary to broaden the applicability of maps for the mathematical analysis
of neuronal networks.
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6 Appendix A

The model for pre-Bötc cells introduced by Butera et al. [3, 4], for a network
of two reciprocally cells indexed by i = 1, 2, takes the form

v′i = (−INaP (vi, hi)− INa(vi, ni)− IK(vi, ni)− IL(vi)− Iton(vi)− Isyn(vi))/Cm

n′i = (n∞(vi)− ni)/τn(vi)

h′i = (h∞(vi)− hi)/τh(vi),

s′i = αs(1− si)s∞(vi)− si/τs.
(18)

In system (18), the intrinsic ionic currents are INaP = ḡNaP mP,∞(vi)hi(vi −
ENa), INa = ḡNam

3
∞(vi)(1 − ni)(vi − ENa), IK = ḡKn4

i (vi − EK), and IL =
ḡL(vi−EL), while the input currents are Iton = gton(vi−Esyn), corresponding
to a constant conductance drive, and Isyn = gsynsj(vi − Esyn) for j = 3 − i,
denoting synaptic input from the other cell. For x ∈ {mP , m, h, n, s}, the
function x∞(v) takes the form x∞(v) = {1+exp[(v−θx)/σx]}−1, and for x ∈
{h, n}, the function τx(v) takes the form τx(v) = τ̄x/ cosh[(v−θx)/2σx]. Most
parameter values for the model appear in the table below. The parameters
gton and gsyn were varied in [4] within the ranges 0 − 1.2nS and 0 − 12nS,
respectively, to study their impact on system dynamics. Identical values were
also used in [2] except that a parameter ε was specifically factored out of τ̄h,
as was done in equation (2) in this paper, and similar values were used in
[27, 8].

parameter value parameter value parameter value parameter value

gNaP 2.8 nS ENa 50.0 mV θm,P -40 mV σm,P -6 mV
τ̄h 10000 msec θh -48 mV σh 6 mV

gNa 28 nS θm -34 mV σm -5 mV
gK 11.2 nS EK -85.0 mV

τ̄n 10 msec θn -29 mV σn -4 mV
gL 2.8 nS EL -65.0 mV Cm 21 pF Esyn 0 mV
αs 0.2 msec−1 τs 5 msec θs -10.0 mV σs -5 mV
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7 Appendix B

Here we consider the properties of

F (η) =

∫ ts(η)

0
h∞(V )eε(t−ts(η))dt∫ ts(η)

0
eε(t−ts(η))dt

,

as stated in subsection 3.2. The first property follows immediately from the
definition of F (η), since h∞(V ) ∈ (0, 1). For properties 3 and 4, assume that
P ends in a homoclinic orbit at h = hHC .

Consider the fast subsystem dynamics for h = hHC , which we assume
exists. Choose local transversals Σs, Σu to the stable and unstable manifolds
of the homoclinic point (VHC , nHC , sHC) ofH, respectively, in a neighborhood
of that point, and let t0s denote the time of passage along H from Σu to Σs.
Write the numerator of equation (11) as∫ ts(η)

0

h∞(V )eε(t−ts(η))dt =

∫ t0s

0

h∞(V )eε(t−ts(η))dt +

∫ ts(η)

t0s

h∞(V )eε(t−ts(η))dt.(19)

The two terms on the right hand side correspond, respectively, to the dy-
namics away from and close to the homoclinic point. The first integral in
(19) can be written as∫ t0s

0

h∞(V )eε(t−ts(η))dt = eε(t0s−ts(η))

∫ t0s

0

h∞(V )eε(t−t0s)dt (20)

In the second integral, since V changes slowly near the homoclinic point,
h∞(V ) ' h∞(VHC). Thus, equation (19) becomes∫ ts(η)

0
h∞(V )eε(t−ts(η))dt ≈ eε(t0s−ts(η))

∫ t0s
0

h∞(V )eε(t−t0s)dt+

h∞(VHC)
∫ ts(η)

t0s
eε(t−ts(η))dt.

Based on these expressions, the equation for F (η) can be written, up to
a small error that shrinks with ε, as

F (η) =
e−ε(ts(η)−t0s)A(η) + h∞(VHC)

(1− e−εts(η))
(21)

where A(η) = εt0sF0(η)− h∞(VHC) and

F0(η) = ε

∫ t0s
0

h∞(V )eε(t−t0s)dt

(1− e−εt0s)
. (22)
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From these expressions it is clear that, since ts(η) →∞ as η → h+
HC , property

3 holds.
Now, differentiating (21) with respect to η yields

dF

dη
= ε

e−ε(ts(η)−t0s)
[
t0s

dF0

dη

(
1− eεts(η)

)
− dts(η)

dη

(
A(η) + h∞(VHC)e−εt0s

)]
(1− e−εts(η))2

.

(23)

In (21), ts(η)− t0s can be written as

ts(η)− t0s =

∫ Ts(η)

0

τh(V )dξ −
∫ T 0

s

0

τh(V )dξ =

∫ Ts(η)

T 0
s

τh(V )dξ. (24)

where Ts(η) and T 0
s are defined similarly to ts(η) and t0s, respectively. Again

using τh(V ) ≈ τh(VHC) near the homoclinic point yields

ts(η)− t0s ≈ τh(VHC)(Ts(η)− T 0
s ) ≈ −(log(d(η − ηHC)))µτh(VHC) (25)

where µ−1 is the positive eigenvalue of the matrix of linearization of the fast
subsystem near the homoclinic point [19] and d = |f ′(hHC)| 6= 0, where f(h)
is the split function that measures the distance between the branches of the
stable and unstable manifolds corresponding to the fast subsystem at h near
hHC [19, 15].

Let σ = εµτh(VHC).Then,

e−ε(ts(η)−t0s) ≈ (d(η − ηHC))σ. (26)

Note that when ε → 0, (d(η − ηHC))σ → 1. Near the homoclinic, we also
have

ε

∫ ts(η)

t0s

h∞(V )eε(t−ts(η))dt ≈ h∞(VHC)(1− (d(η − ηHC))σ). (27)

Thus, we can write (23) as

dF
dη

=

ε[d(η − ηHC)]σ
[
t0s

dF0

dη

(
1− e−εts

)
− dts

dη

(
εt0sF0 + h∞(VHC)(e−εt0s − 1)

)]
(1− e−εts(η))2 .

(28)
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Consider equation (28). Equation (26) implies that dσ(η − ηHC)σ > 0.
Clearly, t0s > 0 and 1− e−εts(η) > 0, while we know 0 < F (η) < 1. Differenti-
ating ts(η) with respect to η, up to first order terms, yields

dts
dη

= −µτh(VHC)

η − ηHC

= − σ

ε(η − ηHC)
< 0 (29)

for η > hHC . Note that dts
dη
→ −∞ as η → h+

HC . Moreover, equation (22)

reveals that dF0/dη is finite, since t0s is a finite constant, h∞(V ) is a smooth
function, and the family P of periodic orbits varies smoothly with η. Hence,
the dts(η)/dη term dominates the numerator of F (η) in equation (28) as
η → h+

HC .

To establish property 4, we next show that the term multiplying dts(η)
dη

in

equation (28) is negative. Recall that

F0(η) =
ε
∫ t0s

0
h∞(V )e−ε(t−t0s)dt

1− e−εt0s
< h∞(VHC)

ε
∫ t0s

0
e−ε(t−t0s)dt

1− e−εt0s
= h∞(VHC)

if V (t) > VHC , since h∞(V ) is a non-increasing function of V . Thus,

εt0sF0(η) + h∞(VHC)(e−εt0s − 1) = εt0sF0(η)− εt0sh∞(VHC) + O(ε2) < 0

for ε sufficiently small. Since dts(η)
dη

< 0 as well, the dominant term on the

right hand side of (28) is negative, as desired. Finally,

(η − ηHC)σ dts(η)

dη
= −σ(η − ηHC)σ−1

ε
→ −∞ (30)

as η → η+
HC , which gives property 4. 2
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Figure 1: Bifurcation diagrams for the fast subsystem (5), with respect to
parameter h, with h-nullcline superimposed. Left: Diagram for gsyn = 0 and
gton = 0.2, similar to that shown in [2]. Here p0 is a stable critical point for
the full system (1-4), corresponding to the quiescent state. The star indicates
a homoclinic point at h = hHC < hAH , where hAH is the h-value at which
an Andronov-Hopf (AH) bifurcation occurs. Right: A configuration, with p0

now occurring at h < hHC and unstable, predicted to give tonic spiking for
small ε.
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Figure 2: Boundaries for different regimes of activity on the parameter space
(gton, gsyn)[2] (Copyright (c)2005 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved )
.
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Figure 3: The four dynamic regimes discussed in the text for gsyn = 3 and
gton = 0.56, gton = 0.83, gton = 0.87 and gton = 0.91, respectively. Note the
difference in scales in different panels; in particular, panel D shows a zoomed
view of a small neighborhood of PO. Figure reproduced from [2](Copyright
(c)2005 Society for Industrial and Applied Mathematics. Reprinted with permis-
sion. All rights reserved )
.
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Figure 4: F (η) for gton = 0.025 and gsyn = 0.1 (equivalent to gton = 0.70 and
gsyn = 2.8, on the original system).
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Figure 5: The four possible forms of the map P and associated dynamic
regimes that can be achieved by varying gsyn, gton. Here, S corrsponds to
spiking and B to bursting. Superscript ∗ denotes that there exists an η∗ > hL

such that P ′(η∗) = 0. In the S∗ regime, note that minη>HL
P > hL, such

that trajectories cannot leave the active phase.
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Figure 6: P (η) for gton = 0.025 (equivalent to gton = 0.70 in [3, 4]), for a single
self-coupled cell, with gsyn = 0.10 (top, left) and gsyn = 0.11 (top,right), near
the transition from spiking to bursting, and with gsyn = 0.47 (bottom,left)
and gsyn = 0.48 (bottom, right), near the transition from bursting back to
spiking. In each panel, the horizontal dashed line represents the level of η
where P terminates (η = hL in the text) and the termination mechanism is
indicated (P (η∗) = hHC forhomoclinic, P (η∗) = hp

SN for SNPO). The part of
P corresponding to reset in the silent phase (P (η) = hSN) has been omitted
from the bottom two panels.
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Figure 7: Cobwebing of the maps on Figure 6 for gton = 0.025 (equivalent
to gton = 0.70 in [3, 4]), for a single self-coupled cell and gsyn = 0.1 and
gsyn = 0.11, implemented numerically.
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parameter sets used to generate Figure 6, showing that the transition from
spiking to bursting and bursting to spiking occurs as the map predicts.
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