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Dedicated to the memory of Professor Ion Cucurezeanu

Abstract. In this note we give a generalization of a mean value problem

which can be viewed as a problem related to Volterra operators. This problem

can be seen as a generalization of a result concerning the zeroes of a Volterra
operator in the Banach space of continuous functions with null integral on a

compact interval.

1. Introduction

Mean value theorems have always been an important tool in mathematical analy-
sis. It is worth mentioning the pioneering contributions of Fermat, Rolle, Lagrange,
Cauchy, Darboux and others. A variation of Lagrange’s mean value theorem with
a Rolle type condition was given by Flett [5] in 1958 and it was later extended in
[17] and generalized in [13, 14].

Theorem 1.1. Let f : [a, b] → R be a continuous function on [a, b], differentiable
on (a, b) and f ′(a) = f ′(b). Then there exists c ∈ (a, b) such that

f ′(c) =
f(c)− f(a)

c− a
.

For instance, Trahan [17] extended Theorem 1.1 by replacing the condition
f ′(a) = f ′(b) with (f ′(a) − m)(f ′(b) − m) > 0, where m = f(b)−f(a)

b−a . Moreover,
Meyers [11] proved in the same condition, f ′(a) = f ′(b) that there exists c ∈ (a, b)
such that

f ′(c) =
f(b)− f(c)

b− c
.

Riedel and Sahoo [16] removed the boundary assumption on the derivatives and
proved the following

Theorem 1.2. Let f : [a, b]→ R be a differentiable on [a, b]. Then, there exists a
point c ∈ (a, b) such that

f(c)− f(a) = (c− a)f ′(c)− 1
2
· f
′(b)− f ′(a)
b− a

(c− a)2.
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Moreover, Theorems 1.1 and 1.2 were used in [3] and [7] in proving Hyers-Ulam
stability results for Flett’s and Sahoo-Riedel’s points. Another results of Flett-type
appears also in [15],

Theorem 1.3. If f : [a, b]→ R is a twice differentiable function such that f ′′(a) =
f ′′(b), then there exists c ∈ (a, b) such that

f(c)− f(a) = (c− a)f ′(c)− (c− a)2

2
f ′′(c).

Theorems 1.1 and 1.3 have been generalized by Pawlikowska [14]. Moreover,
Molnarova [13] gave a new proof for the generalized Flett mean value theorem
of Pawlikowska using only Theorem 1.1. Furthermore, Molnarova establishes a
Trahan-type condition in the general case. For more details, see [13]. We also point
out other contributions in this direction in [1, 2, 3, 7, 10].

In [6] it is proved that a Volterra operator has at least one zero in the space of
functions having the integral equal to zero without assuming differentiability of the
function. The same problem is also discussed in [12] in the setting of C1 positive
functions with nonnegative derivative. More exactly, in [12] it is showed that for
f, g real-valued continuous functions on [0, 1], the problem∫ 1

0

f(x)dx
∫ c

0

φ(x)g(x)dx =
∫ 1

0

g(x)dx
∫ c

0

φ(x)f(x)dx,

has a solution c ∈ (0, 1) for a class of weight functions. As stated above, the same
problem has been studied in [6] for a “smaller” class of weight functions. Curiously,
both ideas of proofs from [6] and [12] can be found in [10, page 6.],

In this paper, assuming differentiability, we prove a more general result from the
one provided in [6] and [12] by employing an extension of Flett’s theorem (Theorem
1.1). The main result and some consequences are given in the section that follows.

2. Main results

The following lemma is an extension of Theorem 1.1 from the previous section.

Lemma 2.1. Let u, v : [a, b] → R be two differentiable functions on [a, b] with
v′(x) 6= 0 for all x ∈ [a, b] and

u′(a)
v′(a)

=
u′(b)
v′(b)

.

Then there exists c ∈ (a, b) such that

u(c)− u(a)
v(c)− v(a)

=
u′(c)
v′(c)

.

Proof. Define w : [a, b]→ R by

w(x) =

{
u(x)−u(a)
v(x)−v(a) , if x 6= a
u′(a)
v′(a) , if x = a

Clearly, w is continuous on [a, b], and by Weierstrass theorem w attains its bounds.
If w does not attain its bounds simultaneously in a and b, then it follows that there
exists x0 ∈ (a, b) extremum point. By Fermat’s theorem, we have w′(x0) = 0; i.e.,

u(x0)− u(a)
v(x0)− v(a)

=
u′(x0)
v′(x0)

.
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If w attains its bounds in a and b, then we have the following situations:

w(a) ≤ w(x) ≤ w(b) (2.1)

or
w(b) ≤ w(x) ≤ w(a) (2.2)

for all x ∈ [a, b]. We can assume without loss of generality that (2.1) holds. More-
over, possibly replacing u by −u and v by −v, we can also admit that v′(x) > 0,
x ∈ [a, b]. This enables us to establish the following inequality:

u(x) ≤ u(a) + w(b)(v(x)− v(a)),

for all x ∈ [a, b]. Now, for all x ∈ [a, b] we obtain

u(b)− u(x)
v(b)− v(x)

≥ u(b)− u(a)− w(b)(v(x)− v(a))
v(b)− v(x)

=
u(b)− u(a)
v(b)− v(a)

= w(b).

Passing to the limit as x to b, we obtain

w(a) =
u′(a)
v′(a)

=
u′(b)
v′(b)

= lim
x→b,x<b

u(b)− u(x)
v(b)− v(x)

≥ w(b).

This implies in view of (2.1) that w is a constant, and therefore w′ = 0. �

Remark. Since v′(x) 6= 0 for all x, v is a diffeomorphism. Let u(v−1(x)) =
U(x), v(a) = A, v(b) = B. Then we have U ′(x) = u′(v−1(x))/v′(v−1(x)) so the
constraint reads U ′(A) = U ′(B). Thus, by Flett’s mean value theorem (Theorem
1.1),

U(C)− U(A)
C −A

= U ′(C),

for some C ∈ (A,B). But if C = v−1(c),

U(C)− U(A)
C −A

=
u(c)− u(a)
v(c)− v(a)

= U ′(C) =
u′(c)
v′(c)

.

This remark yields an alternative proof of Lemma 2.1. The Volterra operator
is defined for a function f(t) ∈ L2([0, 1]) (the space of Lebesgue square-integrable
function on [0, 1]), and a value t ∈ [0, 1], as

V (f)(x) =
∫ x

0

f(t)dt.

It is a well-known that V is a bounded linear operator between Hilbert spaces, with
Hermitian adjoint V ∗(f)(x) =

∫ 1

x
f(t)dt.

This operator has been studied intensively in the last decades because it is the
simplest operator that exhibits a range of phenomena which can arise when one
leaves the normal or finite-dimensional cases. Moreover, the Volterra operator is
well-known as a quasinilpotent, but not nilpotent operator with no eigenvalues.

For a continuous real-valued function Ψ and φ : [0, 1] → R differentiable with
φ′(x) 6= 0 for all x ∈ (0, 1). Let VΨ be the function mapping given by VΨ(t) =∫ t
0

Ψ(x)dx and similarly define

VφΨ(t) =
∫ t

0

φ(x)Ψ(x)dx.

Let

C̃1([a, b]) := {φ : [a, b]→ R : φ ∈ C1([a, b]);φ′(x) 6= 0, x ∈ [a, b], φ(a) = 0}.
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Denote Cnull([a, b]) the space of continuous functions having null integral on the
interval [a, b].

Now, we are ready to prove the main results of this note.

Theorem 2.2. Let f ∈ Cnull([a, b]) and g ∈ C1([a, b]), with g′(x) 6= 0 for all
x ∈ [a, b]. Then there exists c ∈ (a, b) such that

Vgf(c) = g(a) · V f(c).

Proof. The conclusion asks to prove the existence of c ∈ (a, b) such that∫ c

a

f(x)g(x)dx = g(a)
∫ c

a

f(x)dx.

Let us consider the functions u, v : [a, b]→ R given by

u(t) =
∫ t

a

f(x)g(x)dx− g(t)
∫ t

a

f(x)dx,

v(t) = g(t), for all t ∈ [a, b].

Now, it is easy to see that u′(t) = −g′(t)
∫ t
a
f(x)dx. By the Lemma 2.1, there exists

c ∈ (a, b) such that
u(c)− u(a)
v(c)− v(a)

=
u′(c)
v′(c)

,

which is equivalent to∫ c
a
f(x)g(x)dx− g(c)

∫ c
a
f(x)dx

g(c)− g(a)
=
−g′(c)

∫ c
a
f(x)dx

g′(c)

which finally reduces to∫ c

a

f(x)g(x)dx− g(c)
∫ c

a

f(x)dx = −g(c)
∫ c

a

f(x)dx+ g(a)
∫ c

a

f(x)dx,

and the conclusion follows. �

Remark. In the same setting as Theorem 2.2 if we apply Meyers [11] mean value
theorem we obtain the existence of c ∈ (a, b) such that

(b− c)u′(c) = u(b)− u(c)

which is equivalent to

−(b− c)g′(c)
∫ c

a

f(x)dx =
∫ c

a

f(x)g(x)dx− g(c)
∫ c

a

f(x)dx,

(g(c)− (b− c)g′(c))
∫ c

a

f(x)dx =
∫ c

a

f(x)g(x)dx,

and this can be rewritten as

(g(c)− g′(c)(b− c))V f(c) = Vgf(c).

Corollary 2.3. If f ∈ Cnull([a, b]) and g ∈ C̃1([a, b]), then there is c ∈ (a, b) such
that ∫ c

a

f(x)g(x)dx = 0.

The above corollary is evident from Theorem 2.2.
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Theorem 2.4. If f, g are continuous real-valued functions on [0, 1], then there
exists x0 ∈ (0, 1) such that

Vφf(x0)
∫ 1

0

g(x)dx− Vφg(x0)
∫ 1

0

f(x)dx

= φ(0) ·
(
V f(x0)

∫ 1

0

g(x)dx− V g(x0)
∫ 1

0

f(x)dx
)

Proof. Let us consider the functions u, v : [0, 1]→ R,

u(t) = (φ(t)V f(t)− Vφf(t))
∫ 1

0

g(x)dx− (φ(t)V g(t)− Vφg(t))
∫ 1

0

f(x)dx,

v(t) = φ(t).

Clearly, these two functions satisfy the conditions from the Lemma 2.1, and thus,
there exists x0 ∈ (0, 1) such that

u(x0)− u(0)
v(x0)− v(0)

=
u′(x0)
v′(x0)

,

which is equivalent to∫ x0

0

φ(x)f(x)dx
∫ 1

0

g(x)dx−
∫ x0

0

φ(x)g(x)dx
∫ 1

0

f(x)dx

= φ(0)
(∫ x0

0

f(x)dx
∫ 1

0

g(x)dx−
∫ x0

0

g(x)
∫ 1

0

f(x)dx
)
,

which is rewritten as

Vφf(x0)
∫ 1

0

g(x)dx− Vφg(x0)
∫ 1

0

f(x)dx

= φ(0) ·
(
V f(x0)

∫ 1

0

g(x)dx− V g(x0)
∫ 1

0

f(x)dx
)
.

�

Corollary 2.5 ([6]). If φ(0) = 0, then there exists x0 ∈ (0, 1) such that∫ 1

0

f(x)dx · Vφg(x0) =
∫ 1

0

g(x)dx · Vφf(x0),

The above corollary follows immediately from Theorem 2.4.

Corollary 2.6 ([9]). If f, g : [0, 1] → R are two continuous functions, then there
exists x1 ∈ (0, 1) such that∫ 1

0

f(x)dx
∫ x1

0

xg(x)dx =
∫ 1

0

g(x)dx
∫ x1

0

xf(x)dx.

The proof of the above corollary follows by applying Corollary 2.5 wiht φ(x) = x.
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3. Discussion and some examples

In the proof of Theorem 2.2 we considered the auxiliary function ϕ : [0, 1]→ R,

ϕ(t) =
∫ t

0

φ(x)f(x)dx− φ(t)
∫ t

0

f(x)dx.

If we apply Theorem 1.1 for f ∈ Cnull([0, 1]), then there exists c ∈ (0, 1) such that
ϕ(c)− ϕ(0) = cϕ′(c) which is equivalent to∫ c

0

φ(x)f(x)dx = (φ(c)− cφ′(c))
∫ c

0

f(x)dx.

One can remark that this result is completely different from Theorem 2.2. On the
other hand, if we consider f ∈ C([0, 1]) such that∫ 1

0

φ(x)f(x)dx = φ(1)
∫ 1

0

f(x)dx,

then by Rolle’s theorem there exists c̃ ∈ (0, 1) such that ϕ′(c̃) = 0,∫ c̃

0

f(x)dx = 0.

Now, we present some examples that follow as consequences from Theorem 2.2 on
interval [0, 1].

Example 3.1. If we replace functions f, g by their squares in Theorem 2.4, we
have the equality∫ x0

0

φ(x)f2(x)dx
∫ 1

0

g2(x)dx−
∫ x0

0

φ(x)g2(x)dx
∫ 1

0

g2(x)dx

= φ(0)
(∫ x0

0

f2(x)dx
∫ 1

0

g2(x)dx−
∫ x0

0

g2(x)dx
∫ 1

0

f2(x)dx
)
.

This equality actually says that given any two continuous functions f, g we have

‖f‖L2
φ(0,x0)‖g‖L2(0,1) − ‖g‖L2

φ(0,x0)‖f‖L2(0,1)

= φ(0)(‖f‖L2(0,x0)‖g‖L2(0,1) − ‖g‖L2(0,x0)‖f‖L2(0,1)),

where the quantities are the norms in their respective spaces of (weighted) square
integrable functions. Moreover, if φ(0) = 0 we recover [12, Example 3].

Example 3.2. For i 6= j consider f(x) = Pi(x)Pj(x), where Pi, Pj are orthogonal
functions on [0, 1]; i.e., ∫ 1

0

Pi(x)Pj(x)dx = 0.

Now, by Theorem 2.2, there is a point cij ∈ (0, 1) such that∫ cij

0

Pi(x)Pj(x)φ(x)dx = φ(0)
∫ cij

0

Pi(x)Pj(x)dx.

If φ(0) = 0 we obtain
∫ cij
0

Pi(x)Pj(x)φ(x)dx = 0 which is precisely [12, Example
4].
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