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Abstract

We develop a local flux mimetic finite difference method for second order elliptic
equations with full tensor coefficients on polyhedral meshes. To appade the ve-
locity (vector variable), the method uses two degrees of freedom per euge in
two dimensions and degrees of freedom pergonal mesh face in three dimensions.
To approximate the pressure (scalar variable), the method uses oee défreedom
per element. A specially chosen quadrature rule fodth@roduct of vector-functions
allows for a local flux elimination and reduction of the method to a cell-centered fi
nite difference scheme for the pressure unknowns. Under certaimpssns, first-
order convergence is proved for both variables and second-@rdeergence is proved
for the pressure. The assumptions are verified on simplicial meshes &otieufar
quadrature rule that leads to a symmetric method. For general polyhedshkese
non-symmetric methods are constructed based on quadrature rulesetishbamn to
satisfy some of the assumptions. Numerical results confirm the theory.

Keywords: mimetic finite differences, multipoint flux approximatiarell centered
discretization, tensor coefficient, error estimates

AMS Subject Classification: 65N06, 65N12, 65N15, 65N30

1 Introduction

The mimetic finite difference (MFD) method has been succdlgstmployed for solving

problems of continuum mechanics [36], electromagneti&, [§as dynamics [17], and
linear diffusion on polygonal and polyhedral meshes in kb#h Cartesian and polar co-
ordinates [27, 39, 35]. The MFD method mimics essential @riogs of the continuum
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equations, such as conservation laws, solution symmetmesthe fundamental identities
and theorems of vector and tensor calculus. For secona-etiijgtic problems, which
are considered in this paper, the MFD method mimics the Gdiusggence theorem, pre-
serves the null space of the gradient operator, and keepdfbit relationship between
the gradient and the divergence operators. This leads tonansyric and locally conser-
vative finite difference scheme. However, the resultinghtgic system is of saddle-point
type and couples the velocity (vector variable) and thesanes(scalar variable) unknowns.
The elimination of the velocity unknowns results in a cahtered discretization scheme
with a non-local stencil. In this paper we develop a MFD mdittiat can be reduced to a
cell-centered scheme withl@cal stencil.

A close relationship between the MFD method and the mixedefieiement (MFE)
method with the lowest order Raviart-Thomas elementg [RU] has been established in
[8]. There, it is shown that the spaces of discrete mimetirekes of freedom on triangles
and quadrilaterals are isomorphic to the,paces; moreover, the MFD method can be
viewed as a MFE method with a quadrature rule for calculatwegvelocity mass matrix.
This relationship is explored in [8, 10, 9] to establish aengence and superconvergence for
the MFD approximations on simplicial and quadrilaterahedats. An alternative approach
for analyzing the MFD method is developed in [15, 16], whdre ¢rror in appropriate
discrete norms is estimated. The main advantage of thi®appis that the analysis applies
to more general polyhedral meshes.

The MFE method, like the MFD method, leads to a saddle-paioblpm. Several
approaches have been proposed to handle this issue, mglhgbridization [6] and re-
duction to cell-centered finite differences (CCFD) [41, 43347, 37]. These methods,
however, either lead to a more expensive face-centeredikié]; or limited to diagonal
tensor coefficients [41, 43, 7, 37], or exhibit deteriomatmf convergence for discontin-
uous coefficients [4, 3]. More recent works [28, 29, 44] dsalrelationships between
the MFE method and the multipoint flux approximation (MPFAgthod introduced by the
petroleum reservoir simulation community [2, 1, 20], sedll9, 33, 11] for closely re-
lated methods. The MPFA method, which is formulated as afimtume method, utilizes
sub-edge fluxes and reduces to a cell-centered pressumaecheough local flux elimi-
nation. Papers [29] and [44] study the convergence pragseadi the MPFA method and
related MFE methods with broken R&nd BDM, [13] spaces, respectively. More recently
[30] analyzes the convergence of a non-symmetric MPFA nietimogeneral quadrilateral
grids.

In this paper, we employ a MPFA-type construction and amalyspired by [15] to
develop new cell-centered discretization methods on alydd meshes for diffusion prob-
lems with full tensor coefficients. To approximate the vélgowve use two degrees of
freedom per mesh edge in two dimensions amtégrees of freedom per mesh face (which
is n-gon) in three dimensions. To approximate the pressure se®ne degree of freedom
per element. This choice of unknowns is similar to that in Mi@FA method. A spe-
cially chosen quadrature rule for tHe-product of vector-functions couples the velocity
unknowns into small groups around mesh vertices and allowtheir local elimination,



thus reducing the method to a cell-centered finite diffeeescheme for the pressure un-
knowns.

Under a few constructive assumptions, we prove first-ordevergence for both the ve-
locity and the pressure variables, as well as second-ougersonvergence for the pressure
variable in discretd.? norms. For simplicial meshes, we emplogyanmetricquadrature
rule introduced in [38] and similar to the vector inner prodused in [44], and prove that
the constructive assumptions hold. These results can baded to smooth quadrilateral
and hexahedral meshes. For general polyhedral meshestevel¢égchniques from [16] to
construcinon-symmetricuadrature rules that satisfy a consistency assumptiodiaodss
sufficient conditions on the mesh and tensor coefficient undech the optimal conver-
gence rate can be proved.

The proposed new method compares favorably with existindgpMiethods, since it
reduces to a cell-centered scheme and is therefore moreeffi©n the other hand, our
approach is more general than the one in [29, 44, 30] for MPRA r&lated methods,
since the analysis there relies on finite element technigodss limited to simplicial and
guadrilateral meshes. We estimate the errors directlygmtirms of the discrete mimetic
spaces without the use of finite element polynomial exterssiexcept in the pressure su-
perconvergence proof. In terms of computational cost, cethod is comparable to finite
volume methods [21]. However, the latter are either limitediagonal tensor coefficients,
or require certain orthogonality properties of the grid][2# need to be augmented with
face-centered pressures [23], which increases their cost.

The paper outline is as follows. The new MFD method is dewedop Section 2. In
Section 3, we prove convergence estimates for the pressditha velocity variables under
certain assumptions. In Section 4, we develop symmetricmandsymmetric methods on
simplicial and general grids, respectively. Results of niicaéexperiments confirming the
theoretical estimates are presented in Section 5.

2 Mimetic finite difference method

Let X; and X, be Hilbert spaces and I&}; and L, be two linear operatorg;;: X; — Y,
1 = 1,2, which satisfy some fundamental identity:

I(Ly, Lo fr1,f2) =0 Ve X1, fo e Xo.

Suppose that discrete approximation spakes Yi,, ¢ = 1,2, and the discrete operator
L4, are given. The idea of the mimetic discretization is to findsamrte operatof,;, such
that a discrete analog of the fundamental identity holds, i.

Th(Lips Lops fins fon) =0 Vfin € Xun, fon € Xop. (2.1)

This implies that operator§; and.L, cannot be discretized independently from each other.
For a givenZ, ;, formula (2.1) is the implicit definition of the operatge .



Let Q C R? be a polygonald = 2) or polyhedral { = 3) domain with the Lipshitz
continuous boundary and Igt € L?*(2). We consider the second-order elliptic problem
written as a system of two first order equations

= —KVp in

_ n O (2.2)

u
u
subject to appropriate boundary conditions. For simplieite consider the homogeneous
Dirichlet boundary condition (see [25] for more general hdary conditions)

p=0 on Of. (2.3)

The coefficientC is a symmetric and uniformly positive definite tensor sgirgf the fol-
lowing assumption.

[A1l] There exist positive constantg andk; such that for any: € Q2

kot < ETK(x)€ < ki€7¢ Ve e R4 (2.4)

Following the terminology established in porous media i@pgibns, we refer tp as
the pressure, ta as the velocity, and t& as the permeability tensor.

In the problem of interest (2.2), the operators Afe= div and£, = KV, the spaces
areX; = H(div;Q), Y, = L*(Q), Xo = H}(Q) andY; = (L?*(Q2))?, andZ is the Green’s
formula,

Z(Ly, Lo, p) :/pdivﬁder/ﬁ-/C_l(lCVp)dx:O. (2.5)
Q Q

Note that, due to the homogeneous Dirichlet boundary camd{f.3), there is no bound-
ary integral in the above equation. For other types of bonndanditions, appropriate
boundary integrals need to be added to (2.5).

2.1 The local flux MFD method

The MFD method has four steps. First, we define degrees odldrafor the pressure
and the velocity. Second, we discretize the easiest of tbeopyerators; depending on the
chosen degrees of freedom, it could be either of them. Theddiscretize the Green’s
formula using quadrature rules for each of the integral2iB)( Some minimal approxi-
mation properties for these quadratures are required teph@ optimal convergence rates.
Fourth, we derive a discrete formula for the other operator.

Let 2, be a conforming shape-regular partition (see [18]) of thematational domain
into polygonal elements. Let

h = max hg,
EeQy

whereh g is the diameter of elemett. In two dimensions, we split each edge into tsud-
edgesausing the mid-point. In three dimensions, we split each fatteseveral quadrilateral
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facets for instance, by connecting the face center of mass withettgee midpoints. To
simplify the presentation, we shall refer to the sub-edgefaeets. The boundaries of
facets are marked by thin lines in Fig. 1.

We denote the area (volume in 3D) of an elemeridy |£|. Similarly, for each facet,
we denote bye| its length (area in 3D). Let. be a unit normal vector assigned to a facet
e. To distinguish between faces (edges in 2D) and facets, ak\shite é(e), or simplyeé
for the mesh face (edge in 2D) containing faeeLet 7i; be a unit normal vector assigned
toe.

For each element, we denote byn; the number of its vertices and lay; the number
of its facets. In the followingg EZ denotes either the union of all edges (faces in 3D) or the
union of all facets of, depending on the context. L&f; be a unitexternalnormal vector
to OF.

With each vertex of an elemertf we associate a corner that is formed by all facets
sharing the vertex. Letdenote a mesh corner. The minimal angle between facetsrigrmi
the corner is denoted byy..

Let pr be the radius of the largest sphere that can be inscribed 8imilarly, letp; be
the radius of the largest disk contained in facaVe make the following mesh regularity
assumption.

[A2 ] Partition (2, consists of non-degenerate elements and it is shape-reguke sense
that there exist positive constantsandp, independent of and such that for every
E € Qy, every face of F, and every cornet of E,

PE Z P*hE, Pe Z p*hE and T — Vx Z Ve 2 V- (26)

The discrete pressure spagg consists of one degree of freedom per element approxi-
mating the pressure value at the center of mass. The dinmeo&ig, equals the number of
elements)V,. Forq € Q,, we shall denote by (or (q) ) its (constant) value on element
E.

The discrete velocity spack,, is similar to the one used in the MPFA methods [2, 1,
19, 20] and consists of one degree of freedom per facet ajppatixg the average normal
flux ﬁ fe u- 1. Location of velocity degrees of freedom is shown in Fig. he @imension
of X, equals the total number of facet¥,y. Forv € X, we shall denote by the
restriction ofv to elementE, and byv5 (or (v)$) its (constant) value on facet We
shall writevy € Xg ), whereXg ), is the restriction ofX,, to £. Similarly, v. will be the
restriction ofv to cornerc, andvt (or (v)<) will be its value on facet.

The choice of velocity degrees of freedom as normal fluxesnalifor a simple dis-
cretization of the divergence opera®@ZV : X, — @,. Integratingdiv « over element,
applying the divergence theorem, and using ttgaapproximate%' [, 7., we let

(DIVu)y = ﬁ S Jel g (- n). 2.7)

e€cOF



Figure 1:Velocity degrees of freedom marked by solid circles for a triangle (= 3, kg = 6)
and a tetrahedrom{z = 4, kg = 12). The boundaries of the facets are marked by thin lines.

Note thatri, - 71 is eitherl or —1. Similar formula appears in other locally conservative
methods, like the finite volume, MPFA, and MFE methods. Tteeesal difference in the
proposed method will be in the discretization of the firstagon in (2.2).

The following interpolants will be used in the analysis. Bayq € L'(f2), we define
¢’ € Q) such that

1
(e = — / qz)dz  VE € Q. (2.8)
1E] Jg
We define the following space
V={v: 7€ (L*(Q) s>2, divie L*(Q)}.

For anyv € V, we defines’ € X}, such that
1
(17])% = ﬂ /27 M. ds VE €, Ve COFE. (2.9)
€ e

Note that the edge integral in (2.9) is well defined for any V, see e.g. [14].

Let us now discretize each integral in the Green’s idenfit$). Introducingp = p’
andq = ¢ from Q,, the first integral is approximated with the central-poinadrature
rule:

/Qp(fﬁ) g)dz~ > [p,dlgr =[P, dlo, [P, dlor=I|Elpege.  (2.10)

EeQy,

To discretize the second term in (2.5), we introduce %’ andv = ¢’ in X}, and write
formally a quadrature rule:

/QIC_lﬂ'(ac) () de ~ Z [u, vlx.g = [u, v]x, (2.11)

EEQ}I,
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where

[u, V]X,E = Z[u, V]X,E,ca [u, V]X,E,c = Z (Mc)e,e’ UeE’U%/. (212)

celR e, e’ €c

Let M. be the matrix with entrie§M.). ... The size ofM, equals the number of facets
that form the corner. Letting (-, -) be the usual dot product, we have

[uv V}X,E,c = <Mcucu Vc> .
Similarly,
[117 V]X,E = <MEUE7VE> )

whereMp is a matrix of sizeé:x. Itis clear from (2.12) thaM  is block-diagonal with as
many blocks as there are cornershnhaving a blockM, for each corner. We assume
the following.

[A3] For each elemenkt, M is positive definite and there exist two positive constaints
andqa; independent of such that

aol B|§76 <TMEpE < a|E|€T¢ Ve e REE (2.13)
and
EMEMp € < 2|EPeTe Ve e Rjbe, (2.14)

Note that (2.13) is equivalent to stating that the symmeataic of Mg, Mg, = %(ME +
M%), is positive definite and satisfies the same inequalities.sé)mently,HM};/igH <

Vo El|€]|, which implies| Mg £|| < aq|E|||€]|, where|| - || denotes the Euclidean norm
in }*=. Condition (2.14) gives a similar bound dvz, and therefore also bounds the
non-symmetric pariy g ,,, of matrix Mg:

Mpn €]l = [Mg& = Mg, &]| < [[Mp&l| + [[Mps Sl < 20| B[]

We approximateC by a positive definite piecewise constant tensothat is equal to
the mean valuéC; of K on £. Now, we restrict the admissible set of quadrature rules
(2.13)—(2.14) by the following assumption.

[A4] For everyE in Q,, every linear function!, and everw € X, the following discrete
Green’s formula holds:

(KeVa")' Vixe = ~[(DIVV)g, (¢)]oe+ Y lelvha' (@),  (2.15)

ecOFE

wherez, is the center of mass ef, a subset of edge (face in 3B(e) satisfying
€] > o], (2.16)

whereo, is a positive constant, independent ok.
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If the matrix M g is symmetric, assumption (2.14) follows from (2.13). In gexl, we
do not assume symmetry of matiM . This allows us to formulate and analyze new
MPFA-type MFD methods. It also allows to consider problenitk won-symmetric tensor
KC. A symmetric matrixXM g satisfying assumption&3 andA4 can be built for simplicial
meshes, see Section 4.1. The analysis there can be extendatbrmly refined quadrilat-
eral and hexahedral meshes. The construction of non-symemeditricesM i satisfying
assumption&3 andA4 on general polyhedral grids is discussed in Section 4.2.

AssumptionA4 resembles the one used in [16]; however, the peiris no longer the
center of mass of and only (2.16) is required to hold. This provides more fléiybin the
construction of the matrid . In Section 3, we show that assuming (2.16) is enough to
prove optimal convergence estimates.

With the discrete divergence and quadrature rules for aqumating L2 inner products
defined, the discrete gradient operator is derived from therete Green’s formula (cf.

(2.5))
[a, DIV V]g + [v, GRADq]x =0  Vqe @y, Vv e X, (2.17)

Note that the homogeneous Dirichlet boundary conditioB)(.incorporated into the def-
inition of operatolGRAD . Other types of boundary conditions could lead to an aduktio
boundary integral in (2.17), see [25].

Lemma 2.1 If (2.13) in AssumptioA3 holds, then formula (2.17) gives a unique definition
for operatorGRAD .

Proof.Let D andM be the matrices associated with quadrature rules (2.10(2ahd)
through the usual dot produgt, -):

P, dl¢ =(Dp, q) and  [u, v]x = (Mu, v). (2.18)

HereD is a diagonal matrixD = diag{|E1|,...,|En,|}, andM is a Nx x Nx matrix
assembled from the element matridds;. Formula (2.17) is equivalent to

DIVTD + MT'GRAD =0,

where, by abuse of notatio®ZV andGR.AD denote the matrices associated with the
discrete operators. Since

(Mu, v) = Z (Mg ug, vg),

EeQy,

the left inequality in (2.13) implies tha¥l is nonsingular. Therefor6 R AD is defined
uniquely as
GRAD = -MT(DZV)"D. (2.19)



O

In Section 2.3 we show that the operatdR.AD has a local stencil. The local flux
MFD method reads: finda; € X, andp; € @} such that

u, = —QRAD Pnh,

DIVu, = f, (2.20)

wheref = f7.

2.2 Well-posedness of the method

The following lemma is an immediate result of the definitidmatrix M .

Lemma 2.2 If (2.13) in Assumptio3 holds, then
alB| Y Wsl* < [ve, velxe < ol E] ) |vgl? (2.21)
ecOFE ecokE

forany &l € 0, and anyvy € Xg .

The definitions (2.8) and (2.9) of the interpolants and termdjence theorem imply the
following simple result.

Lemma 2.3 Letv € V. Then for every elemettt € €2, we have
(DIV ') = (div ). (2.22)
We are now ready to prove the solvability of (2.20).

Lemma 2.4 Let (2.13) in AssumptioA3 hold. Then, the discrete problem (2.20) has a
unique solution.

Proof.It is convenient to rewrite (2.20) in the equivalent vaoatl form
[uh,v]X - [ph,DIVV]Q = 0, Vv e Xy,
[DIVUh>Q]Q = [faq]Qv vq6 Qha

where we have used the discrete Green’s formula (2.17).em23) is a square system,
it suffices to show uniqueness for the homogeneous problattingf = 0, v = uy, and
q = psx, We conclude thalu,, u,]x = 0. Hence, due to (2.21y, = 0.

Next, we construcv € X, such thatbZVv = p,. Letp, be a piecewise constant
function such thap,|r = (pn)e. Let B be an open ball containing and letp,, be the
extension opy, by zero onB. Consider the auxiliary problem

(2.23)

A¢ :ﬁh in B,

$=0 on OB. (2.24)



Sincep, € L?(B) anddB is smooth, by elliptic regularity [34)p € H?*(B). Therefore
Vo € (HY(Q))? C VY, then(Ve)! is well defined. Using (2.22), we have that

DIVv = DIV (Vo) = (divVe) = (pr)! = pa.

Therefore taking = (V¢)! in (2.23) impliespy, p»]o = 0 andp;, = 0. O

2.3 Reduction to a cell-centered scheme

The matrixM introduced in Section 2.1 satisfies

(Mu,v) = Z Z (M.u, ve) ;

Eth CEE

thereforeM is a block-diagonal matrix with as many blocks as there arshmedes.
Each block ofM has nonzero entries that describe the interaction of negdp velocity
unknowns on all facets sharing a mesh node. In two dimenssach block is a tridiagonal
cyclic matrix. For instance, the block corresponding toittierior node shown on the left
picture in Fig. 2 is & x 5 matrix.

Recall the formula foGRAD (2.19). Due to the special structure of mathX, its
inverse is also a block-diagonal matrix and can be easilyptted. As the product of
sparse matrices, the discrete gradient operator is alssesf@ntrary to other MFD meth-
ods). Substituting the first equation in (2.20) into the secone, we get a cell-centered
discretization with a local stencil:

—DIV GRADp;, = £. (2.25)

Examples of the stencils for the operatfR AD and DIV GRAD are shown in Fig-
ure 2(a) and Figure 2(b), respectively.
The matrix for problem (2.25) appears on the right in the ittign

[-DIV GRADp,q)o = (DDIVM ' (DIV)'Dp,q).

As shown in the proof of Lemma 2.7V Tq = 0 impliesq = 0. Therefore, the resulting
algebraic system has a positive definite matrix whevi}l satisfy (2.13) in Assumption
A3. When the matricedl are symmetric, the coefficient matrix of problem (2.25) is
symmetric and positive definite.

3 Convergence analysis
Throughout the pape(; andC; denote generic positive constants which are independent

of h but may depend on various constants appearing in assuraptiesi7 and (3.2). To
prove optimal convergence estimates we need additionahgsgons on the tensdt.
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a.GRAD stencil b. DTV GRAD stencil

Figure 2: Stencils for operator§ RAD and DIV GRAD on a triangular mesh. On the left,
the equation for the velocity unknown at the position marked by a solid circtevies pressure
unknowns at the positions marked by squares. On the right, the presatked by a solid square
is coupled with the pressures marked by squares.

[A5] We assume that € (WL (Q2))?x,
The Taylor’'s theorem and Assumptié® imply that

max \Kij(z) = K| < Chg ||Kijl|1,00,8, 1<4,5<d, (3.1)
where|| - ||1.« is the norm in the Sobolev spaggl . Using AssumptiorAl and (3.1), it
can also be shown that there exists a constandepending ok, and the constant in (3.1)
such that

max\IC;jl(a:) — IC;}Z.].\ < Cx hg||Kl1 00,8 1<i,5<d, (3.2)

zeE

where||||1 0.z = max
1<i,j<d

We shall use repeatedly the following approximation refl® Lemma 4.3.8]. For
every element, if ¢ € W;”“(E), p > 1, there existg™, a polynomial of degree at most
m, such that

111100, -

¢ — ¢m|W]§(E) < Chg+1_k|¢|wgn+1(E), E=0,....m+1. (3.3)
In particular, ifp € H?(E), then there exists a linear functipfy such that

lp = pElleeey < Chplpleey, o —pellme < Chelplae.  (34)

We will also make use of the trace inequality [5]:

HXH%%) <C (h;31HXH%2(E) + hg ’Xﬁ{l(lg)) vx € H'(E), (3.5)
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wheree is any edge (face in 3D) df. The constant’ depends only on constants appearing
in AssumptionA2. Applying (3.5) to the differencg — p}, and using (3.4), we have

lp— plEH%Q(é) +hE|V(p - plE)H%Q(é) < Chy ||p||§{2(E)- (3.6)

The estimate also holds for any faestf £.
The error estimates are derived in the mesh dependent norms:

1/2 1/2 1 12
lalo =la. i and vl = v VY= (G MY v)

It is easy to see thdtv||x is indeed a norm, since (2.13) in Assumptid8 implies that
M, = (M + M") is symmetric and positive definite. Moreover, if both (2.28) (2.14)
hold, the following Cauchy-Schwarz type inequality is true:

(0%
[w, v]x < Q—;WU\HXHIVH\X Vu, v e Xy (3.7)

3.1 Optimal velocity estimate

In this section we prove the optimal estimate for the vejocit

Theorem 3.1 Let pairs(p, @) and (py, uy,) be the solutions of problems (2.2) and (2.20),
respectively, and let € H?*(©2). Under assumption8l - A5, there exists a constaiit
independent ok such that

la" = unllx < Chlpllmo)-
Proof.Letv = u;, — @!. Lemma 2.3 implies that
DIVv =DIV(u, — i) = f' - fl =0.
Then, using the discrete Green’s formula (2.17), we get
@ — unll% = —[@" — s, vlx = [(KVp), v]x — [GRAD ps, vlx = [(KVp)', v]x.

Let p! be a discontinuous piecewise linear function satisfying)(8n every element
E. Adding and subtracting term&Vp')! and(KVp')!, we have

[ﬁf — uy, V]X — [(]Cvp)f _ (]Cvpl)I’ V]X + [(Kvpl)l B (Evp1)17 V]X
+ [(KVpY Vix =1 + I + .
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Terms similar to/; and I, appear in [15]. Using the Cauchy-Schwarz inequality (3.7),
(2.21), (3.6), and assumptioAd andA2, we bound!; as follows:

1/2
< <a1 S <<<fcvp—fcwl>f>g)2|E|> Ivilx

EeQy, ecOF

(0%
|h] < a—;IH(/CVp = kVp) Vil

. ) 1/2 (3.8)
« -
= (oa > (g [x50- - i.as) |E|> Ivix
0 EeQy, ecOF €
< Chllpllaz@Ivilx-
For termI,, using an argument similar to (3.8), we have
9 1/2
< (m > ¥ (g foc-0wp ) \E\) Ivix
EeQy, ecOF € 3.9
" (3.9)
<Ch (Z HVpEHiz(E)> Ivilx,
EeQy,
where we have used (3.1) in the last inequality. Using (3&have
IVpEllLzm < VPl + V(P = el < Cllplme),
which, combined with (3.9), implies that
|| < Chllpll a2 IV lx- (3.10)

To estimate the remaining term, we use AssumpfidrandDZ) v = 0 to obtain

Iy = Z Z le| pp(ze) v

EeQy ecOFE

Recall that the point. is the mid-point ofe?, a subset of edge (face in 3B)e), such that
(2.16) holds. For the linear functigs,, we get

EC_ |/pE

13



Using the continuity op, (2.16), the approximation result (3.6), and (2.21), weehav

e el 1 s
> o /eo(pE p)d

EeQy) ecOF

<ot DD leloil Ipk — Pl (3.11)

E€Qy), ecOF

1/2
<C Y hp <|E| > IU%IQ) 1Pl < Chlplle Ivix

EeQy, e€OFE

13| =

Combining estimates faf, /5, and/3;, we prove the assertion of the theorem. O

3.2 Optimal pressure estimate

To prove optimal convergence for the pressure variable, isedinow that amf-supcon-
dition holds. Let us define the mesh dependégpt norm:

IV lG, = IvIX + 1DZV v;.

Lemma 3.1 If AssumptiorA2 and (2.13) in AssumptioA3 hold, then there exists a posi-
tive constants independent ok such that for anyy € Q,

DIVv, q
sp PRV gy, (312)
vexpvz0 |1Vl

Proof.Let q € @}, and letq be the piecewise-constant function which is equdldp: on
E. We shall construct € (H'(Q2)) such thatliv ¢ = ¢ and

100z e < Cillallzze), (3.13)
where( is a positive constant independent/of Let ¢ € H?(B) be the solution to the
auxiliary problem (2.24) from Lemma 2.4, but with a right kasideg, the extension of
by zero onB. Letv = V¢. By constructionlivi = ¢ in €2 and by elliptic regularity [34]

10z @pe < N0l gyye < Cuilldllezsy = Chllallzz o)
implying (3.13).
Letv = #/. Using (2.21), (3.5), and Assumpti#®, we get

v.Vixe < alBl ) il
ecOFE

C 3 e (& 1Moy + bl ey

ecoF

IN

(3.14)
< O (10 e + b 1511y

ecOE

IN

ool e
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Therefore, using (3.13),
IVIE < Calllm e < CRCallall?.
Further, Lemma 2.3 implies
DIVv = (divd)! = ¢’ =q.

The last two estimates imply that
Ivllaw < 4/1+ CPCs llalle,

thus the assertion of the lemma follows with= 1/+/1 + C3Cs. O
We will need the following result.

Lemma 3.2 Let Assumptior2 hold. For any element and anys € (H'(E))4, let o,
be its L? projection on the space of constant vector functionstbnThen there exists a
constant” independent ok such that

17— Tl x.e < Che |0l m gy (3.15)

Proof. The proof follows from the argument used in the derivatio314) and the.?
projection bound
10 = Goll(z2(mpye < Chullv]l (), (3.16)

which follows from (3.3). O

Theorem 3.2 Let (p, @) and (py, uy) be the solutions of problems (2.2) and (2.20), re-
spectively, and lep € H?*(2). Under assumptions\l - A5, there exists a constardt
independent ok such that

Ip" = Pullo < Chllpllme).
Proof.Using Lemma 3.1, we have

1 DIV v, p' — pilo
Ip" —pullo < - sup
6 veXy,v#0 |||V“|dw

(3.17)

To estimate the nominator, we first add and subtfatt’ wherep! is the discontinuous
piecewise linear approximation tosatisfying (3.4), and then apply Assumptids:

DIV v, p! —prlg = [DIVv, (p—pY)g + [DIVv, (p) g + [upn, v]x
= DPIVv. (p=p)o+ Y D lelpilz)vp
Ee€Q);, ecOF
— Y (KeVpp)', vixe + [, vx
EeQy,

= [4+I5—[6+[7.
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The terml, is estimated using (3.4):

L] < CR* |V]|aio Pl 2000 - (3.18)
The second term is estimated as the similar term in the priobheorem 3.1

;] < Ch|v]x [Ipllg2@)- (3.19)
The last two terms are treated by adding and subtra¢tingp' )’ and(KVp)’:

Iy—I; = [(KVpY)' = (KVp")’, vix + [(KVp") = (KVp), v]x + [@" — w, v]x
= Ig + 15 + I
The first two terms appeared in the proof of Theorem 3.1; theze
15|+ 1167] < ChIvlix Ipllazc0)- (3.20)

The termI§; is estimated using (3.7) and Theorem 3.1.:
c o .
17| < a—;llluf —wpflx [Vllx < Chlplla@ vl (3.21)

The proof is completed by combining (3.17)—(3.21). O

3.3 Superconvergence of the pressure

In this section we prove a second-order convergence estifoathe pressure variable. We
make two additional assumptions which will allow us to gettiee the approach developed
in [15] to non-symmetric discretizations.

[A6] We assume that for ever¥ in €2, there exist a lifting operatdR z from X, x to
H(div; E) such that

div (RE(VE)) =DIVvg Vvg € Xh,E) (322)
HRE<VE)||(L2(E))d <C “|VE|||X,E Vvg € Xh,E7 (323)

and
Ri((0))E) = T (3.24)

for every constant vectar,. Moreover, for any edge (face in 3@)shared by ele-
mentst; and E5, we assume that

REl (VEl) ’ ﬁé = REZ (VEQ) ’ ﬁé VVEZ' S Xh,Ew L= 17 2. (325)

Note that the lifting operator is never appear in the methoplementation. It is a
useful tool to prove convergence estimates; therefore,nkereeed to prove its existence.
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[A7 ] Let R(Eﬁ), 1 = 1,2, be two (possibly different) lifting operators satisfyiAgsumption
AB6. Defineo(K~1; 4, ¥) as follows:

op(K @, 5) = (@) e, (T)p]xp — /E KRY (@) - R (7)) da.

We assume that
lop(K™" a@, 0)| < Chip ||| (1 )y 0]l (11 (y)a (3.26)
forall v, @ € (H'(E))".

For a givenk, og(K~!; 4, v) is the bilinear form with respect toandv. The following

lemma illustrates some of the properties of the lifting tamensR(bf), i = 1,2. For each
edge (face in 3Dg, we define the spacg,(¢é) of polynomials of degreet [.

Lemma 3.3 Let AssumptiorA4 hold and the lifting operatorgzg), i = 1,2, satisfy as-
sumptionsA6 - A7. For any element, letvg € X, r and assume that for each edge (face
in 3D) ¢ there exist an integdrsuch that

Furthermore, letx., e C ¢, be the quadrature points for exact integration of polyralsi
in P,.1(€) with corresponding weightg|, i.e.,

/pl+1(3)d3 = lelpii(ze)  Vpisa € Piya(@).
€ e€é

Let, be a constant vector ana, = /. Then,
/ ICElR(Elv)(UQE) . R(Q)(VE) dz = [1107E7 VE}X,E VVE € Xh,E~ (327)
E

Proof.Note thatiiy = Kz V¢! for some linear functio!. Then, Assumptioi6, integra-
tion by parts, and Assumptiodd give

/ Ka'RY (wop) - RO (vp)de = — / P! div(RY (vp)) do + Y / ol rads
E E €

EcOE "V €

— —DIVVE/ o' dr + Z le| ! (ze)vs
E

ecOFE
= [(]CEVSOI)]; VE]X,E-
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This proves the assertion of the lemma. O

An example of the above lemma is whegr- 0 andz, is the center of mass of facet
Another technique for proving (3.27) for simplicial meslae®l a particular inner product
on X}, g is shown in the next section.

In the theorem below we employ a duality argument to derivepgsconvergence esti-
mate for|lp’ — pu .

Theorem 3.3 Assume that problem (2.2) i§%-regular and f € H'(2). Let the pairs
(p, w) and (py, u,) be the solutions of problems (2.2) and (2.20), respectivélpder
assumptioné\1 - A7, there exists a constant independent of such that

Ip" = prlle < C B (Il sy + ol 20y + 11l @)-

Proof. Note that under Assumptiof5, H?2-regularity holds ifQ2 be a convex domain
[24]. 4
Let R®(v) be such thaR®(v)|z = RV (vg), i = 1,2. Let g, be the piecewise
constant function such thas |z = pL — (pr)e- We consider the following auxiliary
problem
—divKkVy = gq in Q,
p =0 on of),

The H?-regularity assumption implies that
el < Cllanllz2@) = Clip" = palle- (3.28)

Let7 = —KVp, v = #l. Using Lemma 2.3, the first equation in (2.23), Assumption
A6, and integration by parts, we get

Ip" = pulle, = [DIVv, pr—1'lg
= Jup, V]x — / pdiv (RO (v)) do
Q
= [up, v]x + / KKV p-RO(v)dx
Q

= [, - vlx+ > op(Kd 6)+ / KYRY @) — @) RP(v) dz
EeQy, Q

To estimate/;, we first definew = u), — @!. Then, using the definition of and adding
and subtracting the ternf& V')’ and(KV')?, we have

Ji o= [w, (KVe) — (KVe)]x + [w, (KVe') — (KVe ) ]x + [w, (KVe')]x
= Ju+ Ji2 + Jis,
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whereg, is the piecewise linear approximation ¢osatisfying (3.4) on every elemeft,
andC is the piecewise constant approximationtialefined in Section 2. The termj,,
Ji2, and ;3 are estimated similarly to terms, I, and I3 that appeared in the proof of
Theorem 3.1. We have

|1l < Chllwlxllellm@-

Applying Theorem 3.1 and regularity result (3.28), we get
[ 71| < C R bl llp” — prlle- (3.30)
To estimate/,, we use (3.26), Assumptiohb, and (3.28):
| Jo| < CR2[|d| sy 110 (i e < CR® [l Ip" = pallo- (3.31)

To estimate/;, we add and subtract then integrate by parts and use Assump@n

Jz = / KYRW (") — @) (RP () — ¥) dx + / KYRW (@) — @) ¥ da
Q Q

= Jy — / (RW (i) — #0) Vo dr = Jgy + / @ div(RW () — @) dz
Q Q

= J31+/(f1—f)90dif
Q

= J31+/Q(fl—f)(90—901) dr = J31 + J3a. (3.32)

Let i@, be theL? projection ofi on the space of piecewise constant vector functions. The
triangle inequality, (3.24), (3.23), (3.15), and (3.16piynthat
IR (@) = illz2@pe < I1RW(@") = dioll 22y + 17 — ol (z2(ce

< Ol —dgllx + 1@ — ol 220y

The bound of| R (57) — 7| (12(q) is similar. Therefore
[ Ja1| < CR2 || (s pyell 9l e < CPA |l @pyallp” — Prlles (3.33)

where we have used Assumptidd and (3.28) for the last inequality.
The scalar version of the approximation property (3.16¢githe estimates

17 = Fllzz) < Chllfllme (3.34)
and
lp = ¢z < Chllllmi@ < Chlp' = palle- (3.35)
Inserting estimates (3.33)-(3.35) into (3.32) and conmgrthe resulting estimate with
(3.29)—(3.31), we complete the proof of the theorem. O
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4 Analysis of particular quadrature rules

In this section we consider symmetric and non-symmetriclcatare rules (2.12). We show
that on simplicial meshes a symmetric quadrature exists#isfies the assumptions made
above. For general polyhedral meshes, a convergent nomsyim method can be build
whenever AssumptioA3 holds.

4.1 Symmetric methods

Throughout this section we assume that the meshes satesfgltbwing condition:
each corner of 0, is formed by exactly facets

Note that in 2D all meshes satisfy this condition. We give gplieit symmetric formula
for matricesM.. in (2.12) which define element matricd%;, and verify assumption&a3,
A4, A6, andA7 for simplicial meshes.

Givenvg € Xg,, letvg(c) € R¢ be a vector associated with corneof E such that
its normal component on any facethat forms the corner is equal t. Since each corner
is formed by exactlyl non-planar facets, the vecto(c) is uniquely determined. If the

cornerc is formed by facets;, . . ., e; with normalsri,, then
() = N7 (v, ..., vi)T, N, = [fley; .57, - 4.1)

We refer tovz(c) as therecoveredvector.
For every cornet of E, using the recovered vectors, we define

o . _ 1
[, V]x e = ypwy up(c) - Up(c), B = ] > e, (4.2)
cel

wherew, are positive weights. In this section, we choose equal wejgh = |E|/mg,
mg IS the number of vertices df, implying vz = 1. With the above definition, the corner
quadrature rule matri¥1,. in (2.12) can be written as

_1B

M., NGNS T (4.3)
mg

The next lemma shows that -]y build from (4.2) satisfies Assumptighs.

Lemma 4.1 Let assumption&1 and A2 hold. Then, AssumptioA3 is satisfied for the
matrix M defined through (2.12) and (4.2).

Proof.According to (2.12), it is sufficient to show (2.13) for evegrner of£. Using (4.3)
and assumption&l andA2, it is easy to see that the left inequality in (2.13) holdshwit

1 1
= in A (N 'NCT) > :
ao meg ]{31 rclélEr'l ( ¢ ¢ ) meg k’l
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a a2 21 a2
a. New edge points

b. New face points

Figure 3:Auxiliary edge and face points.

Similarly, the upper bound in (2.13) holds with

1 1
max A\pq. (NSNS T) <

.9
mpg ]{,‘0 ceElR mg k?() i (’7*)

] =

Bound (2.14) is trivially satisfied, sindel ; is symmetric. This proves the assertion of the
lemma. a

Remark 4.1 SinceM  is symmetric, it can be shown easily, using Lemma 4.1 ,[that
is an inner product inX},.

We proceed with verifying AssumptioA4 for (4.2) and simplicial meshes. In two
dimensions, for each edge with end pointsanda,, we define two new points

1 1
a1z = §(2a1 + az) and  a» = g(al + 2a) (4.4)

which are interior points of the two facets, see Figure 3(@}three dimensions, for each
face (which is a triangle) with vertices, a, andas, we define three new points

1 1 1
123 = 1(2% +as+as), a1 = Z(al +2as + a3), a2 = 1(611 + az + 2a3), (4.5)

which are interior points of three facets, see Figure 3(lmteNhat thel new points are the
projections of the center of massg, onto the edge (face in 3D) along directions parallel
to the other/ edges. We use notatian for the new point inside facet

Lemma 4.2 Let ), be a simplicial partition. Then Assumptié® holds with pointse,
defined by4.4)in 2D and(4.5)in 3D.
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Proof. According to (2.12), the matrid z corresponding t¢, -] x x is block diagonal
with d + 1 blocks. Thus, to prove (2.15), it is sufficient to show it feeey cornerc of E.
Recall that cornee is formed by facets;, ..., e;. Assume for simplicity that the normal
vectorsri,, are outward ta¥. Let vx(c) be the vector recovered at cornerNote that on

simplicial meshess, = 12, Since the constant vectdfq' is recovered exactly, (2.15)
reduces to

d—i(,cglgE(C)) ) (’Cqul) = ; |€z| (ql(x@i) — ql(ng)) UeEi. (4.6)

Using formula (4.1) for the recovered vectgs(c), (4.6) is equivalent to

d
E S
%Vql = ; leil e, ¢' (e, — 1) (4.7)
To prove (4.7), recall that points, are defined by (4.4) in 2D and (4.5) in 3D. Let us
consider the triangular elemehAtshown in Fig. 4. The shaded triangieis congruent to
FE and|E| = d/(d + 1)|E|. The pointsz,,, z., andzg are the mid-points of the edges of

LTE

C Te,

Figure 4:The congruent triangle8 and £ (shaded).

E. This implies that (2.16) holds with, = 4/3. Using that the midpoint quadrature rule is
exact for linear functions and applying the Green'’s forntaléhe right hand side of (4.7),
we get

d

S 1 . 1 E
; lei| 7o, @' (Te, — x5) = pi /aE ipq'(s—ap)ds = E/EVQI dr = F’l A\
implying (4.7). The same argument proves (4.7) for a tetfeddeslement. a

Now we verify assumption&6 andA7. Consider the lowest order Brezzi-Douglas-
Marini mixed finite element space BDMonsisting of piecewise linear vector functions
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with continuous normal components [13]. A BQOMector is uniquely defined by the values
of its normal component atpoints on each edge (face in 3D). I:Iég)(vE) = R(EQ) (vgp) =
Re(ve) be the BDM interpolant satisfying for each facet

Re(ve)(e) - e = v,

wherec is the corner associated with This lifting operator preserves constant vector
functions and has a continuous normal component acrossimtestaces [13]. Note that

DIV vy = Z| | v |E| Z ZvE ) - i,

eEBE ecoFE cof é

wherevg(c) is the vector recovered at corneand the last sum includes only corners asso-
ciated withé. By constructionyz(c) = Rg(vg)(c). Since, the last sum is the quadrature
rule for exact integration of linear functions, we get

DIV vEg = | Z /RE vp) - fipds = div(Re(vEg)).
eEOFE

ThusRg(ve) satisfies (3.22). The definition ® (v ) easily implies (3.23). Therefore
AssumptionA6 holds.
The following lemma verifies Assumptiohy.

Lemma 4.3 Let tensorkC satisfy Assumptiod5 and let the lifting operatorR z be the
BDM; interpolation operator defined above. Then, AssumpAidrmolds.

Proof.Let#, @ € (H'(E))?. Let®, g be theL? projection of on the space of constant
vector functions on®, vor = (4¢)g, andug = (u’)g. Similarly, we definei, z and
uy . Then, definition on the inner product (4.2) & ; and the quadrature rule for exact
integration of linear functions give

|E| Z’CElRE(V07E)(C)‘RE(uE)<C):/L;}]CElRE(VQ’E)'RE<uE)dSC.

[VO,Ea UE]X,E = ﬁ
ceE

The above identity implies that
op(Kgh top, @) =0  Vie (H'(E))™ (4.8)

Using the definition ofrz(K~!; 0, @), we write

O'E(’Cfl; 177 ﬁ) = O-E(ICE‘I’ 17, 2_[) +/ (ICE‘I _ ]C—l) RE(VE) . RE<uE) dx
E

(4.9)
= L+ L.
Using (4.8), then (3.15) and (3.16), we bouRdas follows:
|| = |op(Kg5 ¢ = to.g, 4 — do.e)| < W 4l @ e |0l e (4.10)
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The integrall; can be broken into three integrals
I = /E (IC; - ’C_l) Re(ve — Vo) Re(ug)dz
+ /E (ICJ.E1 — /Cfl) Re(Vor) - Re(ugp —ugg)de
+ /E (Kg' =K Y Re(vor) - Re(wog) dae = Iny + Iy + Ins.
Using (3.2), (3.23), and (3.15), we bound the first two inddgr

| To1 + Too| < Chi||5]| g iyye |l e (i) (4.11)

To bound the third integral, we use property (3.24), the tlaat the constant tenséiy is
the mean value of’ on £, then estimates (3.1) and (3.2):

‘123| = /(K — ’CEVCElgO,E . Kﬁll_b;O’E dx
E
= / (K = K)Ky'toz - (K™ = Kp') tig p dz (4.12)
E
< Chglloll ezl (w2 ey)e-
A combination of (4.9)—(4.12) completes the proof of the hean a

Remark 4.2 The analysis developed in this section can be extended toronty refined
guadrilateral and hexahedral meshes via a mapping to a egfeg element, using tech-
niques developed in [29, 44].

4.2 Non-symmetric methods

In this section we consider unstructured polygonal andhpedyal meshes. We give explicit
formula for matricesM.. in (2.12) such that AssumptioA4 is automatically satisfied.
Analysis of sufficient conditions for assumptiofA3, A6 andA7 will be the topic of future
research.

The derivation of matriXVI,. follows essentially the path developed in [16]. It is suf-
ficient to verify AssumptiorA4 for d + 1 linearly independent basis functionsi (E),
for example,1 andx;, i = 1,...,d, where(xy,...,x,) denote the Cartesian coordinate
system inf?. Note that both sides of (2.15) are zero whgn= 1. For¢' = x;, the
right-hand side of (2.15) is a linear functional efand therefore it can be represented
asr! v, wherer; € X, . The entries ofr; are thei-th coordinates of théy vectors
Tey = TEs-- s Tey, — TE, wheree,, ..., e, are the facets o). Thus, we getl linear
equations for the unknown matriM z:

1\/[E*1’12‘:I'i7 1= 1,...,d, (413)
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wheren; = (KVx;)L. If we defineky x d matricesN andR as
Np = ng;...;ng and Rg=[r; ... ;14
then (4.13) can be written in the compact form
MgN; = Rp. (4.14)

We refer to [16] for more detalils.

The matrixM g is block diagonal with as many blocks as there are cornefs et us
consider a particular cornerof £. Without loss of generality, we assume that. . ., e,
are the facets that form this corner. It follows from (4. 14gtt

M.N, = R., (4.15)

whereN, andR. arek, x d matrices formed by:. rows of matriceN; andR ;, respec-
tively. When the corner is formed by exactly! facets,

N, = N7Kp,
whereN, = [ii,;...; 7, |. In this case, the solution to (4.15) is
M, = RcNgl- (416)

If k. > d, matrixN” has a non-empty null space. I8t be a matrix with columns that
span this null space, i.&NTD, = 0. Then,

o~ -1 .
M. = R, <NCTNC> N” + D,U.D7, (4.17)

whereU. is an arbitrary symmetric positive definite matrix of size- d. This implies that
there exists a family of solutions to (4.15) which is desedloy (k. — d)(k. — d + 1)/2
parameters.

Finding sufficient conditions for AssumptioA3 is a non-trivial task (see e.g., [30]
where MPFA methods on quadrilateral meshes are analyzedg she geometry ofy
is coupled with the tensor properties of the permeabilitgfitccient r. The proposed
methodology is reduced to analysis of o&lyx k. matrices.

We consider in more detail the two-dimensional case, where d = 2. We introduce
some additional notation as shown in Fig. 5. kgti = 1, 2, be the vector pointing from
pointz g to pointz., . Lett,, i = 1, 2, be the unit vectors tangential to facet&nd pointing
to the corner. Then, the2 x 2 matricesR,. andIN.. have the following structure:

R = [@y; @y, N, = [le,; 7oy, and N '=

(& c

—— [ta; 1)
sin v,
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Figure 5: Geometric interperation of rows of the matriBesN,. and columns of the matrix
N

Now, formula (4.16) implies that

K5t alkKg'h
M, = ) - (4.18)
alKy'ty, alkp't

For a mesh consisting of parallelograms, formula (4.18médes théC-orthogonality
result from [1] derived for a trasmissibility matrix. Whehis collinear withés_;, i = 1,2,
al K't; = 0 describes a mesh orthogonal in a metric.

Lemma 4.4 Letd = 2, K be a scalar tensor, anf;, be a centroidal Voronoi polygonal
mesh. If the points, are defined as the intersection of a dual Delaunay mesh witedbes

of the Voronoi mesh, then the matridek. defined by (4.16) are diagonal and Assumption
A3 holds.

Proof.The diagonality oiVI.. follows from the definition of the centroidal Voronoi mesh
—the vectors,;, i = 1, 2, are orthogonal to facets. AssumptionA3 then follows from the
non-degeneracy of the Voronoi mesh. a

We also note that, for general meshes, the flexibility in dwations of points:, can be
exploited in the construction of a matiM ; satisfying Assumptio3. We conclude this
discussion with the following result, which is a corollarfytbeorems 3.1 and 3.2.

Theorem 4.1 Let the matrixM.. in (2.12) be given by (4.16) or (4.17). Let Assumption
A3 hold for that matrix. Let pair§p, @) and(py, u,) be solutions of problems (2.2) and
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(2.20), respectively, and € H?*(©2). Under assumptionAl1, A2 and A5, there exists a
constant”' independent of such that

l@" — willx < Chlplla2o

and
Ip" = prllo < Chllplla@)-

Verifying assumptiongA6 and A7 requires construction of appropriate interpolation
operators on polygonal and polyhedral elements. This cbaldlone by extending the
results from [31, 32] on piecewise Raviart-Thomas spacegetteprise BDM spaces.

5 Numerical experiments

In this section, we present results of numerical experisiasing quadrature rules defined
in (4.2). As we mentioned in Section 2, the velocity unknown be eliminated from the
discrete system resulting in a cell-centered discrebmatiith a symmetric positive definite
matrix. This problem is solved with the preconditioned cggte gradient (PCG) method.
In the numerical experiments, we used one V-cycle of thebatge multigrid method [42]
as a preconditioner. The stopping criterion for the PCG ntkthdhe relative decrease in
the residual norm by a factor af—'2.

Let us consider the 2D problem (2.2) in the unit square wighkimown analytical solu-
tion

p(z, y) = 23y* + zsin(2ray) sin(27y)

and the tensor coefficient

e (U 1?2 +y*  —xy
—xy (x+1)2)

In thefirst set of experiments, we consider the sequence of smootlytli@nmeshes
generated from uniform square meshes by splitting eachreaedl into four equal trian-
gles; see Figure 6. The convergence rates are shown in TdbteHe discretel.? norms
defined earlier, as well as for the discréi® norms defined as the maximum component
absolute values of the algebraic vectors. We use a lineagssign algorithm to estimate
the convergence rates. We observe second-order convergaec(superconvergence) of
the pressure variable and first-order convergence rateedfitk variable in the discrett?
norms.

In the secondset of experiments, we take the meshes generated above gndbpe
randomly the positions of the mesh nodes. More preciselymoee each of the mesh
nodes into a random position inside a square of BjZecentered at the node; see Figure 6.
The convergence rates are shown in Table 2. As in the first peawe observe second-
order convergence of the pressure and first-order conveegdithe flux. Both experiments
confirm the theoretical results proved in the previous sasti
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Figure 6: Examples of meshes used in first (top left), second (top right), third (bdtéijn and
fourth (bottom-right) experiments. The meshes in the top row correspand-td /8. The meshes
in the bottom row correspond to= 1/16.

In thethird set of experiments we consider a sequence of smooth guadsilaneshes.
On each refinement level the mesh is obtained from a square vieethe mapping

x 1= X + 0.1sin(27x) sin(27y), (5.1)

see the bottom picture in Figure 6. The discrete and L? norms of the errors are shown
in Table 3. The convergence rates are close to those fogtrianmeshes. The slight
reduction in convergence rates is due to slower convergemcearse meshes.

In thefourth set of experiments, we consider a sequence of polygonalamexiéshes.
A polygonal median mesh (see the bottom-right picture in Bjgis built in two steps.
First, we generate the Voronoi tessellation for the set aftsaiven by (5.1). Second, we
move each interior mesh node to the center of mass of a tedaghed by the centers of
three Voronoi cells sharing the node. The results are showrable 4. We observe the
second-order convergence of the pressure and the first-@vdeergence of the flux.
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Table 1: Convergence rates in the first set of experiments.

Uh [ llp" = pulle lIp" = pallo | l@" —unllx " — will
8 2.22e-3 3.82e-3 2.08e-2 2.17e-1
16 5.50e-4 1.04e-3 9.96e-3 1.11e-1
32 1.37e-4 2.73e-4 4.91e-3 5.62e-2
64 3.43e-5 7.12e-5 2.45e-3 2.82e-2
128 8.59¢e-6 1.83e-5 1.22e-3 1.42e-2
Rate 2.00 1.93 1.02 0.98

Table 2: Convergence rates in the second set of experiments.

1h | o' = pallo 1" = palleo | 1 = wallx [ — wnlloc
8 2.25e-3 4.21e-3 2.89e-2 2.17e-1
16 5.65e-4 1.05e-3 1.42e-2 1.11e-1
32 1.42e-4 3.26e-4 7.70e-3 5.65e-2
64 3.54e-5 9.25e-5 3.83e-3 3.44e-2
128 8.85e-6 2.49e-5 1.94e-3 1.70e-2
Rate 2.00 1.83 0.97 0.90

Tables 3 and 4 provide a qualitative comparison of symmetnid non-symmetric
methods, since meshes in both sequences have roughly tleensemier of elements and
these elements are distributed with the same mapping (5H9.non-symmetric method
provides more accurate fluxes which is due to the fact thatithgsion A4 does not hold
exactly for quadrilateral meshes.

6 Conclusions

We have developed a local flux mimetic finite difference mdthshich reduces to cell-
centered finite differences for the pressure. The methoslfaset fluxeswhich are elimi-
nated from the algebraic system by solving small local systeor each mesh vertex. The
method is defined on general polyhedral meshes. We presalysanshowing optimal
convergence for both variables and superconvergence éqorissure variable under cer-
tain constructive assumptions on thé quadrature rule. Our analysis is based on discrete
space arguments and does not rely on finite element polyhextiensions, with the ex-
ception of the pressure superconvergence proof. A symemeteihod that satisfies these
assumptions is developed for simplicial meshes. The aisalygxtendable to uniformly
refined quadrilateral and hexahedral meshes. A non-synomeathod is developed for
general polyhedral grids. Both methods satisfy the commgtassumptiorA4 by con-
struction. The symmetric method satisfies the coerciviguagptionA3. The validity of

29



Table 3: Convergence rates in the third set of experiments.

Uh [ llp" = palle lIp" = pall | l@" —unllx " — will
8 5.24e-3 1.81e-2 4.54e-1 3.81e-0
16 1.25e-3 6.80e-3 2.48e-1 2.61e-0
32 3.95e-4 1.87e-3 1.27e-1 1.44e-0
64 9.99e-5 4.84e-4 6.37e-2 7.47e-1

128 2.50e-5 1.23e-4 3.19e-2 3.80e-1

Rate 1.91 1.82 0.96 0.85

Table 4: Convergence rates in the fourth set of experiments.

/n | lIp" —palle 0" — Pallso | 18— wnllx [ — upllso
8 1.40e-2 2.71e-2 1.73e-1 8.18e-1
16 2.67e-3 6.17e-3 5.88e-2 3.77e-1
32 5.74e-4 1.33e-3 2.92e-2 2.09e-1
64 1.33e-4 3.12e-4 1.53e-2 1.39%e-1

128 3.19e-5 7.88e-5 7.90e-3 8.44e-2

Rate 2.19 2.12 1.08 0.80

this assumption for the non-symmetric method depends osttape regularity of the grid
and the anisotropy of the tensor permeability coefficient.
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