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Abstract

The equation studied is u00+ n�1
r u

0+ "u u0 = 0; with boundary conditions
u (1) = 0; u (1) = 1. This model equation has been studied by many authors
since it was introduced in the 1950s by P. A. Lagerstrom. We use an elementary
approach to show that there is an in�nite series solution which is uniformly
convergent on 1 � r < 1: The �rst few terms are easily derived, from which
one quickly deduces the inner and outer asymptotic expansions. We also
give a very short and elementary existence and global uniqueness proof which
covers all " > 0 and n � 1.

1 Introduction

The main problem is to investigate the asymptotics as "! 0 of the boundary value
problem

u00 +
n� 1
r
u0 + "uu0 = 0 (1)

with
u (1) = 0; u (1) = 1: (2)

Our interest in this problem, originally due to Lagerstrom in the 1950s [3], was
stimulated by two recent papers by Popovic and Szmolyan [4],[5], who adopt a ge-
ometric approach to the problem, and there are many papers which use methods of
matched asymptotics or multiple scales, with varying degrees of rigor. (The papers
[4] and [5] give lists of references.)
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Our point is that it is possible to give a completely rigorous and relatively short
answer to the problem without making any appeal either to geometric methods or to
matched asymptotics. We can express the solution as an in�nite series, uniformly
convergent for all values of the independent variable, from which one can read o�
the asymptotics as "! 0.

Lagerstrom came up with the problem as a model of viscous 
ow, so his work
centered on n = 2 or 3, but the in�nite series can be obtained for any real number
n. What n controls is the rate of convergence of the series.

We start in section two by showing that the problem does indeed have one and
only one solution for any n � 1 and any " > 0. This is based on a simple shooting
argument plus a comparison principle. The proof is very much shorter than the one
for small " in [4], and gives global uniqueness.

Before proceeding, we make three further remarks. The �rst is that, for any
solution of (1)� (2) ; u0 > 0 on [1;1). For if at any point u0 = 0; then also u00 = 0
and so the solution is constant and could not satisfy both boundary conditions. Our
solutions are therefore monotone, with u0 > 0; 0 < u < 1.

Secondly, there is an obvious distinction between n > 2 and n � 2. If n > 2,
then the problem (1)� (2) has the solution

u = 1� 1

rn�2
; (3)

so that the solution with " small is presumably some sort of perturbation of this.
If n � 2 then there is no such solution. A consequence is that the convergence as
" ! 0 is more subtle when n � 2 then when n > 2. Our analysis will show that
there is little prospect of discussing the behavior for small " if n < 2; but fortunately
we can handle all n � 2.

Finally, our methods are not restricted to Lagerstrom's problem. Hinch, who
gives a clear discussion of the problem in [2], goes on to introduce a \terrible"
problem which he regards as even more complicated than Lagerstrom's. We show
in our �nal section that our methods deal equally well with that, and even with
generalizations of it, with little increase in complexity. We note that it is claimed
in many cases that the method of matched asymptotics, while perhaps de�cient in
rigor, is at least e�cient in execution, but that claim is dubious for this last example.
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2 Existence and uniqueness

Previous existence and uniqueness proofs have been valid only for small "; and give
just local uniqueness. A much stronger result is easily proved.

Theorem 1 There exists a unique solution to the problem (1)� (2) for any " > 0
and n � 1:

Proof: We use a shooting method, by considering the initial value problem

u00 +
n� 1
r
u0 + "u u0 = 0 (4)

u (1) = 0; u0 (1) =c (5)

for each c > 0: It is easy to see that solutions to this problem are positive and
increasing, and exist on [0;1).
We write the equation in the form�

rn�1u0
�0
+ "u

�
rn�1u0

�
= 0; (6)

so that, on integration,

u (r) =

Z r

1

c

sn�1
e�

R s
1 "udtds: (7)

For n � 1; (7) implies that either u (2) � 1 or u (2) � c
"
(1� e�"). Let � =

min
�
1; c

"
(1� e�")

	
Then, for r > 2;

u (r) < c

Z 2

1

1

sn�1
ds+ c

Z r

2

e�"�(s�2)ds: (8)

From this it follows that u (1) is �nite. Also, from (7),

u (r) = c

Z 1

1

1

sn�1
e�

R s
1 "udtds� c

Z 1

r

1

sn�1
e�

R s
1 "udtds;

so that u (r)! u (1) exponentially fast.

From (8) ; we see that u (1) < 1 if c is su�ciently small. Equation (7) further
implies that if u � 1 on [1; 2], then u (2) �

R 2
1

c
sk
e�"ds; and this gives a contradiction

if

c >
e"R 2

1
s�kds

: (9)
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Hence, in this range of c, u (1) > 1.

We therefore know that there are c1 and c2; with 0 < c1 < c2, such that if c = c1
then u (1) < 1; while if c = c2; then u (1) > 1. Further, for any r > R > 0;

u (r) = u (R) + c

Z r

R

1

sn�1
e�

R s
1 "u(t)dt:

If n > 2 the second term is bounded by c
(n�2)Rn�2 ; while if 1 � n � 2; it is bounded

by

c

Z 1

R

e�"�(s�2)ds:

Hence for any n � 1 this term tends to zero as R ! 1; uniformly for c1 � c � c2.
Since u (R) is a continuous function of c; for any R; it follows that u (1) also is
continuous in c. Hence there is a c with u (1) = 1; giving a solution to (1)� (2) :

For uniqueness we again use the form (6) ; which we can integrate to obtain

rn�1u0 (r) = c� 1
2
"rn�1u2 +

" (n� 1)
2

Z r

1

sn�2u2ds: (10)

From this it follows that if c1 > c2; then the corresponding solutions satisfy u1 > u2
on (0;1) . However this does not quite show the desired uniqueness. Suppose that
there are two solutions of (1) � (2) ; say u1 and u2; with u01 (1) = c1 > u02 (1) = c2:
Then from (10),

rn�1 (u01 � u02) = (c1 � c2)�
1

2
"rn�1

�
u21 � u22

�
+
" (n� 1)

2

Z r

1

sn�2
�
u21 � u22

�
ds: (11)

We have shown that u01 ! 0; u
0
2 ! 0; and are assuming that u1 ! 1; u2 ! 1; all

limits being at an exponential rate. Further, c1 > c2; and u1 > u2 > 0 on (1;1).
It follows that as r !1, the left side of (11) tends to zero and the right side to a
positive limit. This contradiction proves uniqueness.

Remark 1. The existence theorem in [4] has one added part. It is shown
there that as " ! 0; the solution tends to a so-called \singular" solution obtained
by taking a formal limit as "! 0: See [4] for details. This limit result follows from
our rigorous asymptotic expansions given below.

Remark 2. There would seem to be no di�culty in extending the existence proof
even to n < 1; but the uniqueness proof does use essentially the fact that n � 1: We
return to this point at the end of section 5.

4



3 The in�nite series (with n � 2)

Starting again with (1), and u (1) = 0; we obtain

rn�1u0 = Be�"
R r
1 u(t)dt (12)

for some constant B. Since u (1) = 1, (12) implies that u0 (r) is exponentially
small as r !1. Hence we can rewrite (12) as

rn�1u0 = Ce�"r�"
R r
1(u�1)dt;

so that

u� 1 = C
Z r

1

1

tn�1
e�"t�"

R t
1(u�1)dsdt:

Setting "r = �, "t = � , and "s = �; we obtain

u (�)� 1 = C"n�2
Z �

1

1

�n�1
e��e�

R �
1(u(�)�1)d�d�; (13)

where we use the arguments � and � to indicate that we mean the rescaled version
of u. Here C is a constant satisfying

�1 = C"n�2
Z "

1

1

�n�1
e��e�

R �
1(u�1)d�d�: (14)

Since for each " there is a unique solution, this determines a unique C; dependent on
". Because u < 1; we see that the � -integral term in (14) tends to in�nity as "! 0;
so

lim
"!0

C"n�2 = 0:

By di�erentiating (3) we are led to expect that C is close to n� 2 for small " if
n > 2.

Since both exponents in (13)have negative exponents, we can immediately say
that if

En�1 (�) =

Z 1

�

1

�n�1
e��d�;

then
ju (�)� 1j < C"n�2En�1 (�) : (15)
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For purposes of future estimates, we make the obvious remark that

En�1 (�) =

8<:
O (�2�n) as �! 0 if n > 2
O (log �) as �! 0 if n = 2
O (�1�ne��) as �!1:

(16)

Hence if n > 2 there is a constant K such that

En�1 (�) � Kmin
�
�2�n; �1�ne��

�
: (17)

The method now is to work from (3:2). As observed before, since u0 (r) is
exponentially small as r !1, the integral term

R1
�
(u� 1) d� converges. Hence,

for given " > 0 and �0 > 0; and any � � �0,

u (�)�1 = C"n�2
Z �

1

1

�n�1
e��

(
1�

Z �

1
(u� 1) d� + 1

2

�Z �

1
(u� 1) d�

�2
� � � �

)
d�;

(18)
where the series in the integrand converges uniformly for �0 � � <1.

In fact, we will need to use this series for all � � ". Thus we need to check its
convergence in this interval. This follows from (15) and (16) ; which imply that for
any � � "; if n � 2; then����Z 1

�

(u (s)� 1) ds
���� < C"n�2 Z 1

"

En�1 (s) ds (19)

and

"n�2
Z 1

"

En�1 (s) ds =

�
o (1) as "! 0 if n > 2
O (1) as "! 0 if n = 2

:

Hence for n > 2 and any C; the series in the integrand of (18) converges uniformly
on [";1):
Now set

� = C"n�2
Z 1

"

En�1 (s) ds:

We note that, if n > 2; then �! 0 as "! 0; while if n = 2; then �! 0 as C ! 0.
We proceed to solve (18)by iteration. Thus, the �rst approximation is, from

(19) ;

u (�)� 1 = C"n�2
Z �

1

1

�n�1
e��d� +O

�
�2
�
;
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and we obtain the second approximation by substituting this back in (18) : Repeating
this, we reach

u� 1 = �C"n�2En�1 + (C"n�2)2
R �
1

1
�n�1 e

�� �R �
1En�1d�

�
d�

+1
2
(C"n�2)

3 R �
1

1
�n�1 e

�� �R �
1En�1d�

�2
d�

� (C"n�2)3
R �
1

1
�n�1 e

�� R �
1
�R �

1
1

sn�1 e
�s �R s

1En�1dt
�
ds
	
d�d� +O (�4) ;

(20)

as �! 0.
To obtain C; we need to be able to evaluate each of these terms for small � (in

particular, for � = "), and this is a matter of integration by parts. Thus, for
non-integral n,

En�1 (�) =

Z 1

�

e��

�n�1
d� = � �

2�n

2� ne
�� +

1

2� n

Z 1

�

e��

�n�2
d�

= � �
2�n

2� ne
�� +

1

2� nEn�2; (21)

and this can be repeated to give En�1 as a sum of terms of the form ck�
ke�� and

En�p; until 0 < n� p < 1. Then

En�p =

Z 1

0

e��

�n�p
d� �

Z �

0

e��

�n�p
d�

= � (p+ 1� n)�
Z �

0

e��

�n�p
d�

and we can then continue to integrate by parts as far as we like. (If n is an integer,
we will reach

R1
�

e��

�
d� , which introduces a logarithm.)

Thus En�1 (�) can be expressed as a sum of terms of the form ck�
ke��, and so

obviously the same is true of E2n�1 , with e
�2� in place of e��. Also,Z �

1
En�1 (�) d� =

Z �

1

�Z 1

�

e��

�n�1
d�

�
d�

=

�
�

�Z 1

�

e��

�n�1
d�

��
j�1 +

Z �

1

e��

�n�2
d�

= �En�1 � En�2; (22)

so that
R �
1En�1d� can be expressed as the same type of sum. Hence the second

term in (20) gives a sum of terms of the form Ek (2�) and the third and fourth terms
a sum involving Ek (3�).
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We now carry the process through in the most interesting cases, n = 2; 3.

4 The case n = 2

When n = 2 we are interested in

E1 (�) =

Z 1

�

1

�
e��d�

= �e�� log �+
Z 1

�

e�� log �d�

= �e�� log �+
Z 1

0

e�� log �d� �
Z �

0

e�� log �d�

= �e�� log �� 
 � � (log �� 1) e�� +O
�
�2 log �

�
; for small �;

= � log �� 
 + �+O
�
�2 log �

�
: (23)

(See, for example, [1], Chapter 1.) Also, for future purposes, using (21) we obtain

E2 (�) =
e��

�
� E1 (�) (24)

=
1

�
+ log �+ (
 � 1)� 1

2
�+O

�
�2 log �

�
as �! 0: (25)

Looking now at (20) ; with � = "; we see that as "! 0;

C log "! �1

and

C =
1

log 1
"

+O

 
1�

log 1
"

�2
!
:

Hence the series in (20) is in powers of 1
log 1

"

:

Also, we will work our approximations (in order to compare the results with those
of Hinch) to order 1

log2( 1")
, so that (for example)

u =
a (r)

log
�
1
"

� + b (r)

log2
�
1
"

� +O�log�3 1
"

�
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for any �xed value of r (� of order "). This, as we shall see, necessitates �nding

C =
1

log
�
1
"

� (1 + A

log
�
1
"

� + B

log2
�
1
"

� +O�log�3�1
"

��)
;

and requires use of all the terms in (20) :

With this in mind, we look at the second term of (20). Thus from (22) ;Z 1

�

E1d� = ��E1 + e��; (26)

so that the second term is

C2
Z �

1

1

�
e��

�
�E1 � e��

�
d� = C2

�Z �

1
e��E1d� �

Z �

1

e�2�

�
d�

�
= C2

��
�e��E1

�
j�1 � 2

Z �

1

e�2�

�
d�

�
= C2

�
�e��E1 (�) + 2E1 (2�)

�
: (27)

From (23), the second term is therefore

C2 (log �+ 
 � 2 log 2�� 2
 +O (�))
= C2 (� log �� 
 � 2 log 2 +O (�)) (28)

as �! 0.

In the third and fourth terms of (20) we need only the leading terms, i.e. we can
ignore the equivalent of 
 + 2 log 2 in (28). Using (26) the third term becomes

1

2
C3
Z �

1

e��

�

�
e�� � �E1

�2
d� =

1

2
C3 (log �+O (1)) as �! 0: (29)

Finally, in the fourth term, the integrand in the � -integral is just the second term,
(as a function of �), so that from (26) ; the fourth term is

M = �C3
Z �

1

e��

�

�Z �

1

�
�e��E1 (�) + 2E1 (2�)

	
d�

�
d�: (30)
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It is seen from (26) that for any � � 1;
R �
0
E1 (�) d� converges. Hence we can

write the inner integral above in the form
R 0
1�

R �
0
; and it follows that

M = �C3
Z �

1

e��

�
fK + r (�)g d�

where K is a constant, r is bounded and r (�) = O (� log �) as � ! 0. It further
follows that

M = C3 (KE1 (�) +O (1)) as �! 0:

We can evaluate K using (26) and (23):Z 1

0

E1 (2�) d� =
1

2

Z 1

0

E1 (u) dv =
1

2
;Z 1

0

e��E1 (�) d� =
�
�
�
e�� � 1

�
E1
�1
0
�
Z 1

0

�
e�� � 1

� e��
�
d�

= lim
�!0

f�E1 (2�) + E1 (�)g = lim
�!0

(log 2� � log �) = log 2: (31)

Hence, from (30), the fourth term of (20) is

C3 fE1 (�) (log 2� 1) +O (1)g = �C3 f(log 2� 1) log �+O (1)g as �! 0: (32)

Now setting � = " and using (28) ; (29), and (32), we obtain that

�1 = �C (� log "� 
 +O (")) + C2 (� log "� 
 � 2 log 2 +O ("))

+
1

2
C3 (log "+O (1))� C3 f(log 2� 1) log "+O (1)g

as "! 0. Hence,

1

log
�
1
"

� = C  1� 


log
�
1
"

�!�C2 1� 
 + 2 log 2
log
�
1
"

� !
+C3

�
3

2
� log 2

�
+O

�
log�4

�
1

"

��
;

(33)
and

C =
1

log
�
1
"

� + A

log2
�
1
"

� + B

log3
�
1
"

� +O 1

log4
�
1
"

�! ;
where

�
 + A� 1 = 0;

B � 
A� 2A+ (
 + 2 log 2) + 3
2
� log 2 = 0:
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Hence,

A = 
 + 1

B = 
2 + 2
 +
1

2
� log 2:

Thus, for �xed r; � of order "; we have, with � = log
�
1
"

�
;

u� 1 =
 
1

�
+

 + 1

�2
+
(
 + 1)2 � 1

2
� log 2

�3

!
(log r + log "+ 
)

+
1

�2

�
1 +

2 (
 + 1)

�

�
(� log r � log "� 
 � 2 log 2)

+
1

�3

�
3

2
� log 2

�
(log r + log ") +O

�
��4
�
;

so that, after cancellation,

u =
log r

�
+

 log r

�2
+O

�
��3
�
:

This is the \inner expansion". For the \outer expansion", i.e. �xed �; r of order 1
"
;

we have

u� 1 = �E1 (�)
�
1

�
+

 + 1

�2

�
+
1

�2
�
2E1 (2�)� e��E1 (�)

�
+O

�
��3
�
:

These results are in accordance with those of Hinch and of others on this problem.

5 The case n = 3

Here we are interested in (from (23) and (24))

E2 (�) =
e��

�
� E1 (�) =

1

�
+ log �+ (
 � 1)� 1

2
�+O

�
�2 log �

�
as �! 0:

Thus, the �rst term on the right of (20) evaluated at � = " is

�C
�
1 + " log "+ (
 � 1) +O

�
"2
��
as "! 0:
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The second term is

(C")2
Z �

1

1

� 2
e��

�Z �

1
E2d�

�
d�

= (C")2
��
�E2 (�)

Z �

1
E2 (�) d�

��
1
+

Z �

1
E22d�

�
= (C")2

�
�E2 (�)

Z �

1
E2 (�) d� +

Z �

1
E22d�

�
:

From (24) we see thatZ �

1
E22d� = �

1

�
+ log2 �+O (log �) as �! 0;

while from (22) ; Z �

1
E2d� = �E2 � E1 = 1 + log �+ 
 +O (� log �) ;

E2

Z �

1
E2d� =

1

�
log �+


 + 1

�
+O

�
log2 �

�
:

In all, the second term is

(C")2
�
�1
�
log �� 
 + 2

�
+O

�
log2 �

��
:

It is readily veri�ed that the third and fourth terms in (20)giveO
n
C3"3

�
1
�
log2 �

�o
;

which is negligible. Thus, evaluating (20) at � = ", we have

�1 = �C"
�
1

"
+ log "+ 
 � 1

�
+ (C")2

�
�1
"
log "� 
 + 2

"

�
+O

�
C3"2 log2 "

�
;

so that
C = 1� 2" log "� " (2
 + 1) +O

�
"2 log2 "

�
:

Then, for �xed r; � of order "; we have

u� 1 = �" (1� 2" log "� " (2
 + 1))
�
1

"r
+ log "+ log r + 
 � 1

�
+ "2

�
� 1
"r
(log "+ log r)� 
 + 2

"r

�
+O

�
"2 log2 "

�
;
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u = 1� 1
r
� " log "

�
1� 1

r

�
� "

�
log r +

log r

r

�
+ " (1� 
)

�
1� 1

r

�
+O

�
"2 log2 "

�
:

For �xed �; r of order "�1; we have

u� 1 = �" (1� 2" log "� " (2
 + 1))E2 (�)

+ "2
�
E1 (�)E2 (�)� �E22 (�)�

Z 1

�

E22d�

�
+O

�
"3
�
: (34)

Again, these results are in agreement with those of Hinch, and others, although (34)
gives one term further.

Remark 3. It is of interest to consider what happens when n < 2; since, at
least for n � 1, there still exists a unique solution. The equation (20) is still valid
at � = ", but since En�1 (�) is no longer singular at � = 0 for n < 2, (20) with
� = " becomes merely an implicit equation for C"n�2. This tells us that C ! 0,
since "n�2 ! 1, but we no longer get an asymptotic expansion. In particular, it
is no longer obvious that C is unique. Of course, we know this from Theorem 1 if
n � 1: For n < 1, this uniqueness may fail.

6 Hinch's terrible problem

In [2], Hinch introduces a further extension of Lagerstrom's problem. This is

u00 +
n� 1
r
u0 + u02 + "u u0 = 0; (35)

with
u (1) = 0; u (1) = 1:

Existence for any n � 1 and any " > 0 can be proved as before. We focus here on
the asymptotics. In Hinch's work it is seen that the method of matched asymptotic
expansions is more complicated in this case than in the standard Lagerstrom model.

We can in fact treat a generalization which causes no further di�culties,

u00 +
n� 1
r
u0 + f (u)u02 + "u u0 = 0; (36)
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with the same boundary conditions.

As remarked in the introduction to the paper, the solution will necessarily have
u0 > 0 so that conditions on f (u) are necessary only for 0 � u � 1. We require only
that f be continuous and positive in this interval.

Then (36) can be written as

(rn�1u0)
0

rn�1u0
+ f (u)u0 + "u = 0;

so that

log
�
rn�1u0

�
= �F (u)� "

Z r

1

udt+ A

for some constant A; where

F (u) =

Z u

0

f (s) ds:

This becomes

eF (u)u0 =
C

rn�1
e�"r�"

R r
1(u�1)ds;

or, on integration,

G (u)�G (1) = C
Z r

1

1

tn�1
e�"t�"

R t
1(u�1)dsdt;

where

G (u) =

Z u

0

eF (u)dv:

In order to keep the manipulations simple and e�ect comparisons, we will consider
the case considered by Hinch, where f (u) = 1; F (u) = u; G (u) = eu � 1: Then,
with "r = �, "t = � , we have

eu � e = C"n�2
Z �

1

1

�n�1
e��e�

R �
1(u�1)d�d�; (37)

and writing

u� 1 = u� 1
eu � e (e

u � e) ;

we get

eu � e = C"n�2
Z �

1

1

�n�1
e��e�

R �
1

u�1
eu�e (e

u�e)d�d�: (38)
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As in section 3, we can integrate by parts, and since 0 � u�1
eu�e � 1 in 0 � u < 1;

we will develop a convergent series as before. To get the �rst three terms (necessary
to give Hinch's accuracy when n = 2), we have from (38) that

eu � e

= C"n�2
Z �

1

1

�n�1
e��

(
1�

Z �

1

u� 1
eu � e (e

u � e) d� + 1
2

�Z �

1

u� 1
eu � e (e

u � e) d�
�2
+ � � �

)
d�:

(39)

As before, since eu � e ! 0 exponentially fast as � ! 1; the series in the
integrand converges uniformly for large � , so that (39) is valid for large �: But
again we need to extend it down to � = ". From (37)we have

eu � e � C"n�2En�1 (�)

and so the convergence proof is the same as that preceding (20) :

Before proceeding further with n = 2, we make a couple of remarks about the
simpler case n > 2. Then, as we saw in subsection 5, only two terms are necessary
to give the required accuracy, and then (39) gives

eu � u = C"n�2
Z �

1

e��

�n�1

�
1�

Z �

1

u� 1
eu � e (e

u � e) d� + � � �
�

and since u�1
eu�e appears in what is already the highest order term, we can replace it

by its limit as u! 1; i.e. 1
e
: Thus we get, to the required order,

eu � e = �C"n�2En�1 �
�
C"n�2

e

�Z �

1

e��

�n�1

Z �

1
(eu � e) d�d�:

This, apart from the factor 1
e
; is the same equation as we dealt with in section 5

(with eu� e in place of u� 1), and the solution can be written down from there. (If
we had a general function f in place of 1; we would get

eF (u) � eF (1) = �C"n�2En�1 �
C"n�2

eF (1)f (1)

Z �

1

e��

�n�1

�Z �

1

�
eF (u) � eF (1)

�
d�

�
d�:)

Turning now to the case n = 2; and F (u) = u; we need three terms on the right
of (39) : Thus,

u� 1
eu � e =

1

e
� 1

2e2
(eu � e) +O (eu � e)2 as u! 1: (40)
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We follow the method used just before (20) and obtain from (39) that

eu � e = �C"n�2En�1 +
1

e

�
C"n�2

�2 Z �

1

1

�n�1
e��

�Z �

1
En�1d�

�
d�

+
1

2e2
�
C"n�2

�3 Z �

1

1

�n�1
e��

�Z �

1
E2n�1d�

�
d� +

1

2e2
�
C"n�2

�3 Z �

1

1

�n�1
e��

�Z �

1
En�1d�

�2
d�

� 1

e2
�
C"n�2

�3 Z �

1

1

�n�1
e��

Z �

1

�Z �

1

1

sn�1
e�s
�Z s

1
En�1dt

�
ds

�
d�d� +O

�
�4
�

= �C"n�2En�1 + F1 + F2 + F3 + F4 +O
�
�4
�
; say.

As before, if n > 2 then this is valid for any C as "! 0; uniformly in � � "; while if
n = 2; it is valid as C ! 0:
For n = 2 we can continue to follow the argument in section 4. Thus, as �! 0;

F1 =
1

e
C2 (� log �� 
 � 2 log 2 +O (�))

F3 =
1

2e2
C3 (log �+O (1))

F4 = �
1

e2
C3 [(log 2� 1) log �+O (1)] :

The term F2 did not appear before. Only the highest order term is needed for our
expansion and this is

� 1

2e2
C3
�Z �

1

1

�
e��d�

�Z 1

0

E21d�:

Now Z 1

0

E21d� =
�
�E21

�1
0
+ 2

Z 1

0

�
e��

�
E1d�

= 2

Z 1

0

e��E1d� = 2 log 2; from (31) :

Thus,

F2 =
1

e2
C3E1

�
log 2 +O

�
� log2 �

��
= � 1

e2
C3 ((log 2) log �+O (1)) ;
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and, evaluating at � = "; we have

1� e = C (log "+ 
 +O ("))

� 1
e
C2 (log "+ 
 + 2 log 2 +O (")) +

1

2e2
C3 log " (�2 log 2 + 1� 2 log 2 + 2) +O

�
C3
�
;

e� 1
log 1

"

= C

 
1� 


log
�
1
"

�!� 1
e
C2

 
1� 
 + 2 log 2

log
�
1
"

� !

+
1

2e2
C3
�
3� 4 log 2 +O

�
C"

log "

�
+O

�
C2"

log "

�
+O

�
C3

log "

��
:

Hence if

C =
e� 1
log
�
1
"

� + A

log2
�
1
"

� + B

log3
�
1
"

� +O�log�4�1
"

��
;

then

�
 (e� 1) + A� (e� 1)
2

e
= 0;

A =
e� 1
e

(
e+ e� 1) ;

B � A
 + (e� 1)
2

e
(
 + 2 log 2)� 2A (e� 1)

e
+
1

2e2
(e� 1)3 (3� 4 log 2) = 0:

We can of course calculate B; but in fact its value will be be irrelevant to the level
of approximation that we take.

Then, for �xed r (� of order " ), we have, with l = log
�
1
"

�
;

eu � e = (e� 1)
�
1

l
+

 + 1� 1

e

l2
+
B= (e� 1)

l3

�
(log "+ log r + 
)

+
1

e
(e� 1)2

(
1

l2
+
2
�

 + 1� 1

e

�
l3

)
(� log "� log r � 
 � 2 log 2)

+
1

2e2
(e� 1)3

l3
(3� 4 log 2) (log "+ log r) +O

�
l�3
�

= 1� e+ (e� 1) log r
l

+

 (e� 1) log r

l2
+O

�
l�3
�
: (41)

(Note that the de�nitions of A and B were such that u = 0 at r = 1 up to
and including order l�2; so that to that order there can be only terms in log r; not

17



constant terms. We do not need the explicit value of B.) To obtain u; we have to
invert, so that

u = log

�
1 +

e� 1
l

log r +

 (e� 1)
l2

log r +O
�
l�3
��
:

For �xed �; r of order "�1; we have

eu�e = �e� 1
l

�
1 +


 + 1� 1
e

l

�
E1 (�)+

(e� 1)2

el2
�
2E1 (2�)� e��E1 (�)

�
+O

�
l�3
�
:

Thus

u� 1 = 1

e
(eu � e)� 1

2e2
(eu � e)2 + � � �

= �e� 1
e

�
1 +


 + 1� 1
e

l

�
E1 (�)

l
+
(e� 1)2

e2
(2E1 (2�)� e��E1 (�))

l2

� (e� 1)
2

2e2
E21 (�)

l2
+O

�
l�3
�
: (42)

Again, these results are consistent with those of Hinch, except that Hinch has an
algebraic mistake which in (42) replaces 
 + 1� 1

e
by 
 � 1 + 1

e
.

7 Remark on \switchback"

Starting with Lagerstrom, the terms involving log " in the inner expansions have
been considered strange, and di�cult to explain. They are often called \switchback"
terms, because, starting with an expansion in powers of ", one �nds inconsistent
results which are only resolved by adding terms of lower order, that is, powers of
" log ". The recent approach to the problem by geometric perturbation theory ex-
plains this by reference to a \resonance phenomenon", which is too complicated for
us to describe here [4],[5].

In our work, the necessity for such terms is seen already from the equation (13)
and the resulting expansion (18) :

u (�)�1 = C"n�2
Z �

1

1

�n�1
e��

(
1�

Z �

1
(u� 1) d� + 1

2

�Z �

1
(u� 1) d�

�2
� � � �

)
d�:

18



In the existence proof it was seen in (9) that C = O (1) as "! 0. On the right of (18)
the �rst term is simply C"n�2En�1 (�) ; and the simple expansions given for E1 and
E2 show immediately the need for the logarithmic terms. There is no \switchback",
because the procedure does not start with any assumption about the nature of the
expansion.
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