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Abstract.
We investigate the stability of a fully-implicit, linearly extrapolated Crank-Nicolson (CNLE)

time-stepping scheme for finite element spatial discretization of the Navier-Stokes equations. Al-
though presented in 1976 by Baker and applied and analyzed in various contexts since then, all
known convergence estimates of CNLE require a time-step restriction. We propose a new linear ex-
trapolation of the convecting velocity for CNLE that ensures energetic stability without introducing
an undesirable exponential Gronwall constant. Such a result is unknown for conventional CNLE for
inhomogeneous boundary data (usual techniques fail!). Numerical illustrations are provided showing
that our new extrapolation clearly improves upon stability and accuracy from conventional CNLE.

Key words. Navier-Stokes, Crank-Nicolson, finite element, extrapolation, linearization, im-
plicit, stability, analysis, inhomogeneous

1. Introduction. The Navier-Stokes (NS) equations (NSE) provide an accurate
description of fluid flow. However, there are many subtle and unresolved questions
regarding existence and smoothness of the NS velocity field u. There are related open
questions regarding the development and implementation of stable, accurate, robust,
and feasible methods for approximating u. Suppressing spatial discretization, the
usual, linearly implicit Crank-Nicolson (CN) method (also called CNLE - CN with
Linear Extrapolation) for the NSE is: given u0, u1, and p1, for each n = 1, 2, . . . find
velocity un+1 and pressure pn+1 satisfying

un+1 − un

∆t
+ (

3

2
un − 1

2
un−1) · ∇un+1/2 − ν∆un+1/2 + pn+1/2 = fn+1/2 (1.1)

∇ · un+1 = 0. (1.2)

Here ∆t > 0 is the time-step, f is body-force term, ν > 0 the kinematical viscosity of
the fluid, and zn+1/2 = 1

2 (zn+1 +zn). Equations (1.1), (1.2) have been widely studied
since proposed and analyzed by Baker in [2], e.g. [3, 17, 20, 6, 25]. Let Ω ⊂ Rd for
d = 2 or 3 be the problem domain. CNLE is generally believed to be comparable
in stability and accuracy to the more expensive, fully implicit, nonlinear CN method
denoted CN-NSE. We show that this is not the case for problems with inhomogeneous
boundary data

u|∂Ω = φ 6= 0 (1.3)

such as simple channel flow with inflow-outflow boundaries. Additionally, we derive a
new, linearly implicit variation of CN that corrects for the subtle problems associated
with solutions to (1.1), (1.2) under (1.3).

CN-NSE is well-known to be unconditionally nonlinearly (energetically) stable,
see e.g. [19] and references therein. We show, however, that within current techniques,
the standard O(∆t2) linear extrapolation in (1.1) does not lead to a (provable) ener-
getically stable numerical discretization in the case of inhomogeneous problem data
for long-time solutions. Specifically, stability has not been proven and known methods
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of proof fail. We propose a new O(∆t2) extrapolation for general data:

un+1 + un

2
· ∇u ≈ ξn(u) · ∇u, ξn(u) := 2(

un + un−1

2
)− un−1 + un−2

2
. (1.4)

We show herein that CNLE approximations {un}n obtained with (1.4) are provably
stable for general data (1.3) so that

max
n
||un+1||2 + ν∆t

∑
n

||∇un+1/2||2 ≤ C(data) <∞.

It is illuminating to introduce the backward-Euler (BE) scheme (stable for general
data) to highlight the difficulties of inhomogeneous CNLE. First, the stability analysis
for homogeneous data relies on the skew-symmetry of the convective nonlinearity in
the NSE:

u|∂Ω = 0, ∇ · u = 0 ⇒
∫

Ω

u · ∇u · u = 0.

Let i = 1 for BE with linear extrapolation (BELE) and i = 2 for CNLE. The energy
difference due to the numerical extrapolation∫

un+1/i ·∇un+1/i ·v ≈
∫
ξn(u)·∇un+1/i ·v, ξn(u) := a0u

n+. . .+an0
un−n0 (1.5)

must be absorbed into the model viscous term ν
∑
n ||∇un+1/i||2 to establish energetic

stability for T →∞. Indeed, we lift the data with an extension operator E(φ) so that

u = u0 + E(φ), u0|∂Ω = 0, E(φ)|∂Ω = φ.

Cross-terms from the nonlinearity pollute the RHS of the resulting estimate upon the
substitution un = un0 + E(φn). The energy estimate for un0 is obtained by testing

either BELE or CNLE with v = u
n+1/i
0 to get

||un+1
0 ||2 + ∆tν

∑
n

||∇un+1/i
0 ||2 + . . .

= −∆t
∑
n

∫
ξn(u0) · ∇E(φn+1/i) · un+1/i

0 + . . . . (1.6)

Suppose that the extension E(φ) satisfies

|
∫
ξn(u0) · ∇E(φn+1/i) · un+1/i

0 | ≤ δ||∇ξn(u0)|| ||∇un+1/i
0 || (1.7)

for some δ > 0. In the continuous-space case, for each δ > 0, there exists E(φ)
satisfying (1.7). Suppose that ξn(u) = un for BELE and ξn(u) = 3

2u
n − 1

2u
n−1 for

CNLE. We apply (1.7) to derive an a priori estimate for u0 from (1.6). One option
is to bound the right-hand side of (1.7) so that

|
∫
ξn(u0) · ∇E(φn+1/i) · un+1/i

0 |

≤ δ

2

{
(||∇un+1

0 ||2 + ||∇un0 ||2), BELE

(||∇( 3
2u

n
0 − 1

2u
n−1
0 )||2 + ||∇un+1/2

0 ||2), CNLE
. (1.8)
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We can absorb δ
2

∑
n(||∇un+1

0 ||2 + ||∇un0 ||2) into ν
∑
n ||∇un+1

0 ||2 in (1.6) for BELE.
However, regardless how small δ is taken, there is no way in general to absorb
δ
2

∑
n ||∇( 3

2u
n
0 − 1

2u
n−1
0 )||2 into ν

∑
n ||∇u

n+1/2
0 ||2 in (1.6) for CNLE. Indeed, in the

extreme case that vn = −vn+1 6= 0, then ||∇vn+1/2||2 = 0 while ||∇vn||2 > 0 so that
no small data restriction on ν or φ 6= 0 will help absorb the latter into the former.
Instead, we restrict linearizations (1.5) to satisfy (1.4). Extrapolation (1.4) allows

the RHS of (1.8)(CNLE) to be replaced by ||∇un+1/2
0 ||2 +

∑2
i=1 ||∇u

n−i+1/2
0 ||2. For

small enough δ > 0, we can now absorb δ
2

∑
n(||∇un+1/2

0 ||2 +
∑2
i=1 ||∇u

n−i+1/2
0 ||2)

into ν
∑
n ||∇u

n+1/2
0 ||2 in (1.6).

A discrete Gronwall lemma can be applied instead of (1.7), but introduces the
factor

C(data) ∝ exp(νq−1
∑
n

||E(φn)||2−qW q,∞), q = 0, or 1

so that the a priori estimate of CNLE solutions in the energy norm grows exponen-
tially with problem data and T . Ultimately the Gronwall constant gives very poor
long-time estimates and, to preserve the applicability of a numerical method, should
be avoided for a priori energy estimates.

We provide a brief overview of extrapolation schemes for CN-NSE with references
in Section 1.1. We formulate the continuous and discrete setting for analysis in Sec-
tions 1.2, 1.3. We consider finite element (FE) spatial discretization in conjunction
with time-stepping for BE (BE-FEM) and CN (CN-FEM). In Section 2 we present
and prove stability of BELE and CNLE (with extrapolations of the form (1.4)) for
inhomogeneous data. In Section 3, we conclude with a numerical investigation in
which we compare CN-FEM (with Newton nonlinear iterations), traditional CNLE in
(1.1), and CNLE with extrapolation (1.4) denoted CNLE(stab). For flow past a 2d
cylinder, for a given time-step, the energy dissipation rate for CNLE(stab) approx-
imations more closely matches CN-FEM (with Newton) than CNLE. In fact, for a
given time-step, CNLE fails to predict the vortex shedding in the wake of the cylinder
(overly diffusive) whereas CNLE(stab) captures the physics properly.

1.1. Motivation of fully implicit, linearizations of the NSE. A central
question in practical computational fluid dynamics concerns the smallest amount of
work permitted to produce a stable and accurate approximation of the flow field. The
method for approximating NS fluid flows is largely influenced by the following:

• stiffness of problem in diffusion-dominated flow regions
• lack of and/or unknown regularity of true NS-solution
• large Re⇒ many mesh points ⇒ extremely large system of ODE’s.

Implicit time-stepping approximations of the NSE are preferred in practice in order
to avoid unnecessary numerical/modeling restrictions on the time-step size. We in-
vestigate in the stability and accuracy of a linearly extrapolated version of the CN
time-stepping scheme for the NSE which eliminates the necessity of multiple, time-
intensive, nonlinear iterations at each time-step.

There are many analyses of CN time-stepping methods for the NSE. Heywood and
Rannacher [19] provide analysis of CN-FEM. The 2nd and 3rd order CNLE methods
are introduced and analyzed in [2, 3]. Multilevel methods based on CNLE (building
on the work in [26] and [10]) are analyzed in [17], [20]. CNLE approximation of a
stochastic NSE is analyzed in [6]. The authors in [25] analyze a stabilized CNLE
method. Each of these analyses requires, explicitly stated or implicitly, a time-step
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restriction of the form

∆t ≤ C(Re, h) (1.9)

to guarantee convergence. A 1st order CNLE is used in [22] in conjunction with
a coupled multigrid and pressure Schur complement schemes for the NSE. Numeri-
cal comparison of various NS time-stepping schemes (excluding CNLE) are provided
in [24]. A CN/Adams-Bashforth (CN-AB) time-stepping, scheme is another linear
variant of CN-FEM. Unlike CNLE, CN-AB is explicit in the nonlinearity and only
conditionally stable [16] (i.e. a time-step restriction of form (1.9) is required for sta-
bility). CN-AB is a popular method for approximating NS flows because it is fast
and easy to implement. Each time-step requires only one discrete Stokes system and
linear solve. For example, it is used to model turbulent flows induced by wind turbine
motion [33], turbulent flows transporting particles in [28], and reacting flows in com-
plex geometries (e.g. gas turbine combustors) [1]. The CN method is also applied, for
example, to a general class of non-stationary partial differential equations encompass-
ing reaction-diffusion type equations including the nonlinear Sobolev equations [29]
and the Ginzburg-Landau model [21]. Time-step restrictions of type (1.9) (where Re
has a different meaning) are implicitly required in the convergence analyses of these
discrete models.

Error estimates for BE time-stepping is analyzed in [11] (semi-discrete) and [34]
(fully-discrete). Although the most stable time-stepping scheme, BE methods are only
∆t-accurate. Higher order backward difference methods like BDF2 are considered the
best choice in general for time-stepping (more stable than CN and ∆t2-accurate),
but introduce artificial dissipation which is avoided by CN methods. See [13] (e.g.
Chapter 3.16) for an overview of the analysis and treatment of many time-stepping
schemes available for approximating NS-flows with a well-documented discussion of
the advantages and disadvantages of each method.

1.2. Continuous function setting. Let a := (a0, a1, . . . , an0
) ∈ Rn0+1 for

some n0 ∈ {0} ∪ N be equipped with the standard lq norm denoted by |a|q for 1 ≤
q ≤ ∞. Fix p ≥ 1. Let Lp(Ω) denote the linear space of all real Lebesgue-measurable
functions u and bounded in the usual norm denoted by ||u||Lp(Ω). Let (·, ·)Ω and
|| · ||Ω be the standard L2(Ω)-inner product and norm. Fix k ∈ R. The Sobolev
space W k,p(Ω) is equipped with the usual norm denoted by ||u||Wk,p(Ω). Identify

|| · ||k,p,Ω := || · ||Wk,p(Ω), H
k(Ω) := W k,2(Ω), || · ||k,Ω := || · ||Wk,2(Ω) with | · |k,Ω

the corresponding semi-norm. Let the context determine whether W k,p(Ω) denotes
a scalar, vector, or tensor function space. For example let v : Ω → Rd. Then,
v ∈ H1(Ω) implies that v ∈ H1(Ω)d and ∇v ∈ H1(Ω) implies that ∇v ∈ H1(Ω)d×d.

Fix φ ∈ H1/2(∂Ω) (an element of the trace of H1(Ω) functions) satisfying
∫
∂Ω
φ ·

n̂ = 0 where n̂ is the outward (relative to Ω) unit normal defined a.e. on ∂Ω. Define

H1
φ(Ω) :=

{
v ∈ H1(Ω) : v|∂Ω = φ

}
, Vφ(Ω) :=

{
v ∈ H1

φ(Ω) : ∇ · v = 0
}
.

Write V (Ω) = V0(Ω). Moreover, the dual space of H1
0 (Ω) is denoted W−1,2(Ω) :=

(H1
0 (Ω))′ and equipped with the norm

||f ||−1,Ω := sup
06=v∈H1

0 (Ω)

< f ,v >W−1,2(Ω)×H1
0 (Ω)

|v|1,Ω
.

Define

L2
0(Ω) :=

{
q ∈ L2(Ω) : (q, 1) = 0

}
.
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For brevity, omit Ω in the definitions above. For example, (·, ·) = (·, ·)Ω, H1 = H1(Ω),
and V = V0(Ω). It is convenient in the analysis of problems with inhomogeneous data
to introduce the following function spaces:

V· :=
{
v ∈ H1 : ∇ · v = 0

}
, H

1/2
0 (∂Ω) :=

{
µ ∈ H1/2(∂Ω) :

∫
∂Ω

µ · n̂ = 0

}
.

There exists an extension operator E : H
1/2
0 (∂Ω) → V· (see e.g. [9], pp. 131-132).

Note that all such extensions satisfy E(0) ∈ V .
Fix time T > 0 and m ≥ 1. Let Wm,q(0, T ;W k,p(Ω)) denote the linear space of

all Lebesgue measurable functions from (0, T ) onto W k,p equipped with and bounded
in the norm

||u||Wm,q(0,T ;Wk,p) :=

(∫ T

0

m∑
i=0

||∂(i)
t u(·, t)||q

Wk,pdt

)1/q

.

Write Wm,q(W k,p) = Wm,q(0, T ;W k,p(Ω)) and Cm(W k,p) = Cm([0, T ];W k,p(Ω)).

1.3. Discrete function setting. Fix h > 0. Let Th be a family of subdivisions
(e.g. triangulation) of Ω ⊂ Rd satisfying Ω =

⋃
E∈Th E so that diameter(E) ≤ h and

any two closed elements E1, E2 ∈ Th are either disjoint or share exactly one face,
side, or vertex. Suppose further that Th is quasi-uniformly regular as h → 0. See [5]
(Definition 4.4.13) for a precise definition and treatment of the inherited properties of
such a space (see Chapter II, Appendix A in [12] for more on this subject in context
of Stokes problem). For example, Th consists of triangles for d = 2 or tetrahedra for
d = 3 that are nondegenerate as h→ 0.

Let Xh,· ⊂ (H1)d and Qh,· ⊂ L2 be a mixed finite element (FE) space. For
example, let Xh,· and Qh,· be continuous, piecewise (on each E ∈ Th) polynomial
spaces. Fix φh ≈ φ so that there exists v ∈ Xh,· satisfying v|∂Ω = φh. Define
Xh,φh

:= Xh,· ∩H1
φh

, Qh := Qh,· ∩ L2
0. The discretely divergence-free space is given

by

Vh,φh
= {vh ∈ Xh,φh

: (qh,∇ · vh) = 0 ∀qh ∈ Qh,·} .

Write Vh = Vh,0, Xh = Xh,0. Note that in general Vh 6⊂ V (e.g. Taylor-Hood
elements). Define the discrete trace space of Xh by

Λh(∂Ω) : =
{
λh : H1/2(∂Ω) : ∃vh ∈ Xh,· such that

λh|∂E∩∂Ω = vh|∂E∩∂Ω ∀E ∈ Th and ∂E ∩ ∂Ω 6= ∅} .

Next define discrete analogues to V· and H
1/2
0 (∂Ω) respectively by

Vh,· : = {vh ∈ Xh,· : (qh,∇ · vh) = 0 ∀qh ∈ Qh,·}

Λh,0(∂Ω) : =

{
µh ∈ Λh(∂Ω) :

∫
∂Ω

µh · n̂ = 0

}
.

Then there exists a discrete extension operator Eh : Λh,0(∂Ω) → Vh,· (see e.g. [14,
32, 4]). Note that all such extensions satisfy Eh(0) ∈ Vh.

We assume that Xh ×Qh satisfies the uniform inf-sup (LBB) condition:

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

|vh|1 ||q||
≥ C > 0 (1.10)
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where C is independent of h → 0. The well-known Taylor-Hood element is one such
example satisfying (1.10).

Set 0 = t0 < t1 < . . . < tn = T < ∞ with constant time-step ∆t = tn − tn−1.
Write zn := z(tn) and zn+1/2 := 1

2 (z(tn+1) + z(tn)). Define

||u||lq([m1,m2];Wk,p) :=

{
(∆t

∑m2

n=m1
||un||qk,p)1/q, q ∈ [1,∞)

maxm1≤n≤m2
||un||k,p, q =∞

for any 0 ≤ n = m1,m1 + 1, . . . ,m2 ≤ N . Write ||u||lq(Wk,p) = ||u||lq([0,N ];Wk,p).
Define the discrete time-derivative

∂n+1
∆t v :=

vn+1 − vn

∆t
.

In order to avoid stability issues arising when FE solutions are not exactly diver-
gence free (i.e. when Vh 6⊂ V ), we introduce the explicitly skew-symmetric convective
term

ch(u,v,w) :=
1

2
((u · ∇v,w)− (u · ∇w,v)) (1.11)

so that

ch(u,v,v) = 0. (1.12)

Fix ai ∈ R for i = 0, 1, . . . , n0 ≥ 0 and n ∈ {0} ∪N. Define the linearization operator
ξn(u) so that

ch(u,v,w) ≈ ch(ξn(u),v,w), ξn(u) := a0u
n + a1u

n−1 + . . .+ an0
un−n0 .

For example,

ξn(u) = 1
2 (3un − un−1) ⇒ ξn(u) = u(·, tn+1/2) +O(∆t2)

ξn(u) = 2un−1/2 − un−3/2 ⇒ ξn(u) = u(·, tn+1/2) +O(∆t2).

2. Stable linearizations when uh|∂Ω 6= 0. Fix body force f ∈ W−1,2 and
kinematical viscosity ν > 0. In this setting, we consider strong NS solutions: find
u ∈ L2(H1

φ) ∩ L∞(L2) and p ∈W−1,∞(L2
0) satisfying

(∂tu,v) + (u · ∇u,v) + ν(∇u,∇v)− (p,∇ · v) = (f ,v), ∀v ∈ H1
0 (2.1)

∇ · u(·, t) = 0 in L2, a.e. t ∈ [0, T ] (2.2)

u(·, 0) = u0 in L2. (2.3)

Next, we pose a FE discretization of (2.1), (2.2), (2.3). BE is the simplest implicit
time-stepping scheme with ∆t-accuracy and excellent stability properties.

Problem 2.1 (BELE). Let uih ∈ Vh,φi
h

be a good approximation of ui for each

i = 0, 1, . . . , n0. For each n = n0, n0 + 1, . . . , N −1, find (un+1
h , pn+1

h ) ∈ Xh,φn+1
h
×Qh

satisfying

(∂n+1
∆t uh,vh) + ch(ξn(uh),un+1

h ,vh)

+ ν(∇un+1
h ,∇vh)− (pn+1

h ,∇ · vh) =< fn+1,vh >, ∀vh ∈ Xh (2.4)

(qh,∇ · un+1) = 0, ∀qh ∈ Qh. (2.5)
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Remark 2.2. Note that ξn(uh) = un+1
h defines BE-FEM and ξn(uh) = unh

defines BELE (see e.g. [11, 18, 13, 34]).

CN methods are ∆t2-accurate (more accurate than BE), but require consistent initial
conditions including pressure. CNLE is a particularly attractive method because it is
∆t2-accurate, implicit in the convective term (a source of stiffness), and linear.

Problem 2.3 (CNLE). Let uih ∈ Vh,φi
h

be a good approximation of ui for each

i = 0, 1, . . . , n0 and pn0

h ∈ Qh be a good approximation of pn0 . For each n = n0, n0 +
1, . . . , N − 1, find (un+1

h , pn+1
h ) ∈ Xh,φn+1

h
×Qh satisfying

(∂n+1
∆t uh,vh) + ch(ξn(uh),u

n+1/2
h ,vh)

+ ν(∇un+1/2
h ,∇vh)− (p

n+1/2
h ,∇ · vh) =< fn+1/2,vh >, ∀vh ∈ Xh (2.6)

(qh,∇ · un+1) = 0, ∀qh ∈ Qh. (2.7)

Remark 2.4. Note that ξn(uh) = u
n+1/2
h defines the CN-FEM method analyzed

in e.g. [19] and ξn(uh) = 1
2 (3unh−un−1

h ) defines the CNLE method of e.g. [2, 15, 25]

and ξn(uh) = 2u
n−1/2
h − u

n−3/2
h defines the CNLE(stab) method proposed here.

We now proceed to establish energetic stability of BELE and CNLE approxima-
tions. We require minimal stability properties of the initial iterates. First define

Fic := ||un0

h ||2 +

{
ν∆t

∑n0

i=0 |uih|21, if n0 ≥ 0 and BELE

ν∆t
∑n0−1
i=0 |u

i+1/2
h |21, if n0 ≥ 1 and CNLE

. (2.8)

The constants K0 in Lemma 2.5 and Theorem 2.7 do not depend on a Gronwall
constant exp(C(T )). For example,

K0 := C(ν1/2Fic + ν3/2(ν∆t

N−1∑
n=n0

||∇Eh(φ
n+1/i
h )||2)1/2 + . . .

. . .+ ν1/2(∆t

N−1∑
n=n0

||∂∆tEh(φ
n+1/i
h )||2−1)1/2 + ν max

n0+1<n<N−1
||Eh(φ

n+1/i
h )||+ . . .

. . .+ ν1/2(∆t

N−1∑
n=n0

||∇Eh(φ
n+1/i
h )||4)1/2 + (∆t

N−1∑
n=n0

||fn+1/i||2−1)1/2)

for some Eh : Λh,0(∂Ω)→ Vh,· and i = 1 for BELE and i = 2 for CNLE.

Lemma 2.5 (BELE Solutions are Bounded). Fix φh ∈ l4(Λh,0(∂Ω)) so that
∂∆tφh ∈ l2(Λh,0(∂Ω)) and f ∈ l2(W−1,2). Suppose that uih ∈ Vh,φi

h
for i = 0, 1, . . . , n0

so that

Fic <∞, as h, ∆t→ 0

where Fic is given in (2.8) and |ch(ξn(vh), Eh(φn+1
h ),vn+1

h )| ≤ ν

4(1 + |a|22)(n0 + 1)1/2
|ξn(vh)|1|vn+1

h |1,

∀ {vnh}Nn=0 ⊂ Vh, ∀n = n0, n0 + 1, . . . , N − 1
(2.9)
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for some extension operator Eh : Λh,0(∂Ω)→ Vh,·. Then

||uh||l∞(n0+1,N ;L2) + ν1/2||∇uh||l2(n0+1,N ;L2) ≤ ν−1/2K0 <∞ (2.10)

for some K0 > 0.
Proof. See Section 2.2.
Remark 2.6. Note that K0 <∞ uniformly as h, ∆t→ 0 is ensured, for example,

for smooth enough t 7→ φh(·, t) under a small data constraint: i.e. either φh, ν−1, or
h (at least refined near ∂Ω where φh 6= 0) is small.

Theorem 2.7 (CNLE Solutions are Bounded). Fix φh ∈ l4(Λh,0(∂Ω)) so that
∂∆tφh ∈ l2(Λh,0(∂Ω)) and f ∈ l2(W−1,2). Suppose that uih ∈ Vh,φi

h
for i = 0, 1, . . . , n0

so that

Fic <∞, as h, ∆t→ 0

where Fic is given in (2.8) and |ch(ξn(vh), Eh(φ
n+1/2
h ),v

n+1/2
h )| ≤ ν

4(1 + |a|22)(n0 + 1)1/2
|ξn(vh)|1|vn+1/2

h |1,

∀ {vnh}Nn=0 ⊂ Vh, ∀n = n0, n0 + 1, . . . , N − 1

for some extension operator Eh : Λh,0(∂Ω)→ Vh,·. If φh = 0, then

||uh||l∞(n0+1,N ;L2) + ν1/2(∆t

N−1∑
n=n0

|un+1/2
h |21)1/2 ≤ ν−1/2K0 <∞ (2.11)

where 0 < K0 <∞ is a constant depending on
{
uih
}n0

i=0
, f , φh, but independent of ν.

If φh 6= 0 and

ξn(u) = b0u
n−1/2 + b1u

n−3/2 + . . .+ bn0−1u
n−n0+1/2

then CNLE solutions satisfy (2.11) where n0 ≥ 1, a0 = b0/2, ai = (bi−1 + bi)/2 for
1 ≤ i < n0, and an0 = bn0−1/2.

Proof. See Section 2.2.
Remark 2.8. As mentioned previously, the result for CNLE for inhomogeneous

data with ξn(v) = a0v
n + . . . + vn−n0 remains an open question. Of course, n0 = 1

with the alternate extrapolation now refers to a 3-step extrapolation rather than a
2-step to preserve O(∆t2) accuracy of CN time-stepping.

2.1. Fundamentals of estimation. The estimates in the following sections
are fundamental to our analysis. Let C > 0 be a generic data-independent constant
throughout (depending, possibly on Ω). Let C∗ > 0 be a generic data-dependent
constant (depending, possibly, on f , φ, u0, ν−1). In the discrete case, C, C∗ are
independent of h, ∆t → 0. The following change of indices formula is required to
resolve double sums in stability and convergence analysis of linearly extrapolated
BE-FEM and CN-FEM.

Lemma 2.9. Let κn, λn ∈ R for all n ∈ N, αi ∈ R for all i = 0, 1, . . . , n0. Then,

N−1∑
n=n0

κn

(
n0∑
i=0

αiλn−i
)

=

N−1∑
n=0

 i1(n)∑
i=i0(n)

αiκn+i

λn (2.12)
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where

i0(n) :=

{
0, n ≥ n0

n0 − n, otherwise
, i1(n) :=

{
n0, n < N − 1− n0

N − n, otherwise
.

Proof. Identity (2.12) follows from a change of indices. We require Young’s
inequality in our analysis: for any a > 0, b > 0, and δ > 0

ab ≤ 1

qδq/q′
aq +

δ

q′
bq
′

(2.13)

The following estimate of the explicitly skew-symmetric convective term is obtained
through application of Hölder’s, Ladyzhenskaya’s, and Sobolev embedding inequali-
ties. See [27] for a comprehensive compilation of associated estimates with proof.

Lemma 2.10. Fix u, v, w ∈ H1 and suppose that (u · n̂)v ·w|∂Ω = 0. Then

|ch(u,v,w)| ≤ C||u||1||v||0,3||w||1. (2.14)

Energetic stability (which leads to existence) of NS solutions with inhomogeneous
data (including general divergence constraint) is investigated in [8, 30, 31, 7]. We
conclude without further proof:

Lemma 2.11 (NSE Solutions are Bounded). Fix φ ∈ C0(H
1/2
0 (∂Ω)) and f ∈

L2(W−1,2). Suppose that

4ν−1 |(w(·, t) · ∇w(·, t), E(φ(·, t)))| ≤ |w(·, t)|21, ∀w(·, t) ∈ V (2.15)

is satisfied where E : H
1/2
0 (∂Ω)→ V· is an extension operator. Then

||u||L∞(L2) + ν1/2||u||L2(H1) ≤ ν−1/2M0 (2.16)

for some 0 < M0 = M0(f , φ) <∞ independent of ν−1.

Remark 2.12. Note that for all φ ∈ W 1,∞(H
1/2
0 (∂Ω)) and for any δ > 0 there

exists an extension Eδ : H
1/2
0 (∂Ω) → V· that satisfies (2.15) as long as Ω is simply

connected. Avoiding the smallness constraint on φ leads to an exponential growth
of ||E(φ(·, t))||k,p ≤ C exp(1/δ) for k ≥ 0, p ≥ 1. Alternatively, we can avoid the
smallness assumption on the extension E(φ) ∈ Vφ by exploiting the Gronwall Lemma.
However, the Gronwall Lemma introduces an exponential dependence of u on ν−1 that
grows as T →∞ render such estimates meaningless over long time intervals.

2.2. Proof of energetic stability.
Proof. [Proof of Lemma 2.5] Fix Eh(φnh) ∈ Vh,φh

. Write unh = wn
h + Eh(φnh) so

that wn
h ∈ Vh. Substitute unh = wn

h + Eh(φnh) into (2.4) and test with v = wn+1
h .

Recall identity (1.12) so that ch(·,v,v) = 0. Then

(∂n+1
∆t wh,w

n+1
h ) + ν|wn+1

h |21 = (fn+1,wn+1
h )− (∂n+1

∆t Eh(φh),wn+1
h )

− ν(∇Eh(φn+1
h ),∇wn+1

h )

− ch(ξn(Eh(φh)), Eh(φn+1
h ),wn+1

h )− ch(ξn(wh), Eh(φn+1
h ),wn+1

h ). (2.17)

Identity (a− b,a) = 1
2 (|a|2 − |b|2 + |a− b|2) gives

(∂n+1
∆t wh,w

n+1
h ) =

1

2∆t
(||wn+1

h ||2 − ||wn
h ||2) +

1

2∆t
||wn+1

h −wn
h ||2. (2.18)
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Apply the duality estimate in W−1,2 ×H1
0 to get

(fn+1,wn+1
h )− (∂n+1

∆t Eh(φh),wn+1
h ) ≤ (||fn+1||−1 + ||∂n+1

∆t Eh(φh)||−1)|wn+1
h |1.

(2.19)
Apply Cauchy-Schwarz inequality to get

|(∇Eh(φn+1
h ),∇wn+1

h )| ≤ |Eh(φn+1
h )|1|wn+1

h |1. (2.20)

Estimate (2.14) gives

ch(ξn(Eh(φh)), Eh(φn+1
h ),wn+1

h ) ≤ C||ξn(Eh(φh))||1||Eh(φn+1
h )||0,3|wn+1

h |1. (2.21)

Application of the above estimates (2.18), (2.19), (2.20), and (2.21) along with Young’s
inequality (2.13) to (2.17) gives

1

2∆t
(||wn+1

h ||2 − ||wn
h ||2) +

1

2∆t
||wn+1

h −wn
h ||2 + ν|wn+1

h |21
≤ 5ν−1||fn+1||2−1 + 5ν−1||∂n+1

∆t Eh(φh)||2−1 + 5ν|Eh(φn+1
h )|21

+ 5Cν−1||ξn(Eh(φh))||21||Eh(φn+1
h )||20,3

+
ν

4
|wn+1

h |21 − ch(ξn(wh), Eh(φn+1
h ),wn+1

h ). (2.22)

Young’s inequality (2.13) gives

(1 + n0)−1/2|ξn(wh)|1|wn+1
h |1 ≤

1

2
((1 + n0)−1|ξn(wh)|21 + |wn+1

h |21). (2.23)

Apply condition (2.9) along with (2.23) to (2.22). Absorb like terms from right into
left-hand sides to get

∆t−1(||wn+1
h ||2 − ||wn

h ||2) + ∆t−1||wn+1
h −wn

h ||2

+
ν

2

(
(
3

2
− 1

2(1 + |a|22)
)|wn+1

h |21 − (
1

2(1 + |a|22)(1 + n0)
)|ξn(wh)|21

)
≤ 5ν−1||fn+1||2−1 + 5ν−1||∂n+1

∆t Eh(φh)||2−1 + 5ν|Eh(φn+1
h )|21

+ 5Cν−1||ξn(Eh(φh))||21||Eh(φn+1
h )||20,3. (2.24)

From the change of indices identity (2.12), we obtain

N−1∑
n=n0

|ξn(wh)|21 ≤
N−1∑
n=n0

n0∑
i=0

(1 + n0)|ai|2|wn−i
h |21

= (1 + n0)

N−1∑
n=0

|wn
h |21

i1(n)∑
i=i0(n)

|ai|2 ≤ (1 + n0)|a|22
N−1∑
n=0

|wn
h |21

so that

(
3

2
− 1

2(1 + |a|22)
)

N−1∑
n=n0

|wn+1
h |21 − (

1

2(1 + |a|22)(1 + n0)
)

N−1∑
n=n0

|ξn(wh)|21

≥ (
3

2
− 1

2(1 + |a|22)
)

N−1∑
n=n0

|wn+1
h |21 −

|a|22
2(1 + |a|22)

N−1∑
n=0

|wn
h |21

≥
N∑

n=n0+1

|wn
h |21 −

|a|22
2(1 + |a|22)

n0∑
i=0

|wi
h|21. (2.25)
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Sum (2.24) from n = n0 to n = N − 1. Apply (2.25) and simplify to get

||wN
h ||2 +

N−1∑
n=n0

||wn+1
h −wn

h ||2 + ν∆t

N−1∑
n=n0

|wn+1
h |21

≤ ||wn0

h ||2 + ν∆t

n0∑
n=0

|wn
h |21 + Cν−1∆t

n0∑
n=0

|Eh(φnh)|41

+ Cν−1∆t

N−1∑
n=n0

(||fn+1||2−1 + ||∂n+1
∆t Eh(φn+1

h )||2−1 + . . .

. . .+ |Eh(φn+1
h )|41 + ν2|Eh(φn+1

h )|21) (2.26)

Apply the triangle inequality with unh = wn
h − Eh(φnh) and (2.26) to get

ν||∇uh||2l2(n0+1,N ;L2) ≤ ||un0

h ||2 + ν||∇uh||2l2(0,n0;L2)

+ ν||∇Eh(φh)||2l2(0,n0;L2) + Cν−1||∇Eh(φh)||4l4(0,n0;L2)

+ Cν−1(||f ||2l2(n0+1,N ;W−1,2) + ||∂n+1
∆t Eh(φh)||2l2(n0+1,N ;W−1,2) + . . .

. . .+ ||∇Eh(φh)||4l4(n0+1,N ;L2) + ν2||∇Eh(φh)||2l2(n0+1,N ;L2)) (2.27)

and

||unh||2l∞(n0+1,N ;L2) ≤ ||un0

h ||2 + ν||∇uh||2l2(0,n0;L2)

+ ν||∇Eh(φh)||2l2(0,n0;L2) + Cν−1||∇Eh(φh)||4l4(0,n0;L2)

+ Cν−1(||f ||2l2(n0+1,N ;W−1,2) + ||∂n+1
∆t Eh(φh)||2l2(n0+1,N ;W−1,2) + . . .

. . .+ ||∇Eh(φh)||4l4(n0+1,N ;L2) + ν||Eh(φh)||2l∞(n0+1,N ;L2) + . . .

. . .+ ν2||∇Eh(φh)||2l2(n0+1,N ;L2). (2.28)

The estimate (2.10) follows from (2.27), (2.28) under the assumed regularity.
Proof. [Proof of Theorem 2.7] The proof of Theorem 2.7 follows the proof in

Lemma 2.5 closely. For CN-FEM, test with vh = wn+1/2 to get

1

2∆t
(||wn+1

h ||2 − ||wn
h ||2) + ν|wn+1/2

h |21
= (fn+1,wn+1

h )− (∂n+1
∆t Eh(φh),w

n+1/2
h )− ν(∇Eh(φ

n+1/2
h ),∇wn+1/2

h )

− ch(ξn(Eh(φh)), Eh(φ
n+1/2
h ),w

n+1/2
h )− ch(ξn(wh), Eh(φ

n+1/2
h ),w

n+1/2
h ) (2.29)

instead of (2.17). The remaining estimates are obtained similar to those in the proof
of Lemma 2.5. The main difference, aside from exchanging indices n+1 with n+1/2,
concerns the legitimacy of estimate (2.25) in the case of CNLE. When φh = 0, there
is no problem because there is no contribution from the nonlinearity. However, for
general φh 6= 0, we require the prescribed form of the linearization ξn(u) = b0u

n−1/2+
b1u

n−3/2 + . . . + bn0−1u
n−n0+1/2 which allows the nonlinearity to be absorbed in a

similar way as shown in (2.25) for BELE. Proceeding as before, we prove (2.11).

3. Numerical investigation. In this section we investigate how CNLE(stab)
approximations with the the alternate extrapolation

ξn(u) = 2un−1/2 − un−3/2

11



 

 

0 0.2 2.2
0

0.2

0.41

 

 

0 0.2 2.2
0

0.2

0.41

 

 

0 0.2 2.2
0

0.2

0.41

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

Fig. 3.1. Flow past cylinder: magnitude of velocity field computed with CN-FEM (newton) at
(top) T = 5, (middle) T = 10, (top) T = 15 with ∆t = 0.005. Notice the distinct and periodic
vortex shedding associated with the von Kàrmàn vortex street.

improves flow statistics and preserves flow integrity from CNLE obtained with the
conventional extrapolation ξn(u) = 3

2u
n − 1

2u
n−1. The energy dissipation rate is

given by

ε(t) := ν|u(·, t)|21.

In the previous discussion, our work suggests that CNLE solutions might have worse
control on the size of ε(t) than CNLE(stab). To be precise, we compare herein the
size of the numerical dissipation rate εncnle for CNLE and CNLE(stab) applied to flow
past a 2d cylinder where

ε
n+1/2
cnle := ν|un+1/2

h |21.

For the problem setup, consider the channel ([0, 2.2] × [0, 0.41]) − Ωs where Ωs is
circular obstacle with diameter = 0.1 centered at (0.2, 0.2). The flow has boundary
conditions:

u(x, y = 0) = u(x, y = 0.41) = u|∂Ωs = 0

u(x = 0, y) = u(x = 2.2, y)
4

0.412
y(0.41− y).

Let the initial data (u0, p0) satisfy the (steady) Stokes problem. For high enough
Reynolds number (albeit below turbulence levels) vortices will begin shedding from
the wake of Ωs at a regular frequency (von Kármán vortex street). This is a similar
experiment performed in [23], but there with time-dependent boundary conditions
and starting from rest.
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Fig. 3.2. Flow past cylinder at T = 10 with ∆t = 0.002: speed-profile and velocity field for
(top) CNLE and (bottom) CNLE(stab). Notice that CNLE suppresses all vortex shedding predicted
by CNLE(stab).

We compare 3 approximate NSE flows obtained with CN-FEM, CNLE, and the
newly proposed CNLE(stab). We solve each problem on the time interval [0, 15] with
Taylor-Hood finite elements on the same mesh. The mesh is generated by Delaunay-
Voronoi triangulation in FreeFem++ and contains 143100 velocity degrees of freedom
(161168 total degrees of freedom) with 128 vertices on ∂Ωs. For CN-FEM, we resolve
the nonlinearity with Newton iterations so that the H1 residual error less than 10−12

at each time step. For CNLE and CNLE(stab), the iterates uih for i = 1, . . . , n0 are
obtained with a fixed point nonlinear iteration so that the H1 residual error less than
10−12.

We present the magnitude of the velocity field of the CN-FEM flow for ν−1 = 1000
computed with ∆t = 0.005 at T = 5, 10, 15 in Figure 3.1. The characteristic vortex
shedding off the back of the cylinder is realized here. We present the magnitude of
the velocity field and vector field of the CNLE and CNLE(stab) flow for the same
conditions at T = 10 computed with ∆t = 0.005 in Figure 3.2. In this case, the
CNLE(stab) method closely models the flow generated by CN-FEM, but the CNLE
method is over-diffused and fails to capture the expected vortex shedding.

The degradation of CNLE flow approximation is clearly seen in the plots displayed
in Figures 3.3, 3.4. In each plot, we plot a statistic measuring the numerical energy

dissipation rate ε
n+1/2
cnle over the time interval [0, 15] for ν−1 = 400, 600, 800, 1000,

1200, 1400. In Figure 3.3 we measure the maximum ε
n+1/2
cnle on the time interval and

in Figure 3.4 we measure the l2(0, T )-norm of ε
n+1/2
cnle . The curve on each plot for

CN-FEM is the bottom-most curve and decreases as ν−1 as expected. The curve
for CNLE(stab) matches CN-FEM when ∆t = 0.001, but deviates slightly starting
at ν−1 = 1200 when ∆t = 0.002. Conversely, the curve for CNLE deviates from
CN-FEM starting at ν−1 = 1400 when ∆t = 0.001, and deviates more significantly
starting at ν−1 = 600 when ∆t = 0.002.

In Figures 3.5, 3.6 we present the behavior of an alternate measure of the nu-
merical dissipation based on εncnle rather than the average un+1/2 natural for the CN
method. Interestingly, the curves for CN-FEM and CNLE(stab) are comparable for

ε
n+1/2
cnle and εncnle but the curve for CNLE deviates from the expectation even more

dramatically for εncnle.

In Figure 3.7 we plot εncnle for CN-FEM (∆t = 0.005), CNLE (∆t = 0.002), and
CNLE(stab) (∆t = 0.002) respectively for ν−1 = 600, 800, 1000 with respect to the
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Fig. 3.3. Flow past cylinder: maximal energy dissipation rate at tn+1/2 vs. ν−1 for CN-FEM
solutions computed with ∆t = 0.005 and CNLE, CNLE(stab) solutions with (top) ∆t = 0.002, and
(bottom) ∆t = 0.001.

numerical time levels over [0, 15]. The curves for CN-FEM and CNLE(stab) match
closely with a relative decrease between each curve with increasing ν−1. Conversely,
the curves for CNLE increases with ν−1.

4. Conclusions. We investigated herein the stability and accuracy of an extrap-
olated Crank-Nicolson time-stepping method for a finite element spatial discretization
of the NSE. We propose a novel, nonstandard linear extrapolation of the convecting
velocity that encourages speed-up from solving the fully nonlinear CN scheme denoted
by CNLE(stab). We prove that CNLE(stab) is energetically stable without a Gron-
wall exponential factor (this result is not achievable under standard techniques for
the inhomogeneous Dirichlet problem for conventional CNLE). The numerical results
in Section 3 confirm that CNLE(stab) is clearly advantageous relative to conventional
CNLE.
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Fig. 3.4. Flow past cylinder: time-averaged energy dissipation rate at tn+1/2 vs. ν−1 for CN-
FEM solutions computed with ∆t = 0.005 and CNLE, CNLE(stab) solutions with (top) ∆t = 0.002,
and (bottom) ∆t = 0.001.
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