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Abstract.

We propose a finite element discretization of the Brinkman equation for modeling non-Darcian
fluid flow by allowing the Brinkman viscosity ν̃ → ∞ and permeability K → 0 in solid obstacles, and
K → ∞ in fluid domain. In this context, the Brinkman parameters are generally highly discontinuous.
Furthermore, we consider non-generic constraints: non-homogeneous Dirichlet boundary conditions
u|∂Ω = φ 6= 0 and non-solenoidal velocity ∇ · u = g 6= 0 (to model sources/sinks). Coupling
between these two conditions makes even existence of solutions subtle. We establish well-posedness
of the continuous and discrete problem, a priori stability estimates, and convergence as ν̃ → ∞
and K → 0 in solid obstacles, as K → ∞ in fluid region, and as the mesh width h → 0. For
non-solenoidal Brinkman flows, we include a small data condition to ensure existence of solutions
(idea applies directly to the steady Navier-Stokes equations). In addition, we propose a pseudo-
skew-symmetrization of the discrete convective term

R

Ω
u · ∇v · w required for analysis of discrete

non-solenoidal Brinkman problem.

1. Introduction. This report considers the approximation of high velocity flow
through complex geometries involving pores. Motivating examples include the flow
through closely placed turbines on a windfarm [12], [24] and the high velocity flow
of helium gas through a packed bed of (tennis-ball sized, uranium fuel) spheres in
a pebble bed nuclear reactor [28], [27]. In both applications, the fluid velocities are
too large to model accurately with Darcy’s equation and the pore geometry is too
complex to approximate by the Navier-Stokes equations (NSE) in the pore region
with no-slip boundary conditions on the solid obstacles. Therefore, appropriate for
this setting, we propose a finite element method for the Brinkman model, beginning
with the equilibrium case.

Problem 1.1. (NS-Brinkman model) For incompressible, viscous fluid flow in
Ω, find velocity uδ and pressure pδ satisfying

−2∇ · (ν̃D
(
uδ
)
) + uδ · ∇uδ + ∇pδ + νK−1uδ = f, in Ω

∇ · uδ = g, in Ω
uδ = φ, in ∂Ω

Here, Ω ⊂ R
d is an open domain for d = 2 or 3 consisting of both the pores and

solid obstacles, D
(
uδ
)

= 0.5(∇uδ +
(
∇uδ

)t
) is the deformation tensor, f represents

body forces, g represents sources and/or sinks in Ω, K is the permeability tensor, ν
is the kinematical viscosity, and ν̃ is the Brinkman viscosity. In particular, we fix
0 < δ << 1 and set ν̃ = 1/δ and K = 1/δ in the solid obstacles in Ω and ν̃ = ν and
K = δ in the purely fluid parts of Ω. See Figure 1.1.

For low Reynolds numbers, the convective term uδ · ∇uδ is negligible; thus, we
also consider the Stokes-Brinkman model.

Problem 1.2. (Stokes-Brinkman model) for uδ and pδ

−2∇ · (ν̃D
(
uδ
)
) + ∇pδ + νK−1uδ = f, in Ω

∇ · uδ = g, in Ω
uδ = φ, in ∂Ω
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Ωf - The Fluid Domain

ν̃ = ν̃f

K = kf

SampleDomain − Ω = Ωf ∪ Ω̄p ∪ Ω̄s

Ωs

ν̃ = ν̃s

K = ks

K = kp

ν̃ = ν̃p

Ωp

Ωp

Ωs

Ωp

Ωp

Ωf

Ωfp = Ωf ∪ Ω̄p
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Ωf

Ωs

Ωs

Ωfs = Ωf ∪ Ω̄s
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Ωp

Ωp

Ωs

Ωs

Ωps = Ωp ∪ Ωs

Fig. 1.1. Sample subdomains Ω∗ ⊂ Ω with parameters ν̃∗, k∗, black regions not part of indicated
Ω∗. (top-left) Problem domain Ωfps = Ω, (top-right) Fluid-Porous domain Ωfp, (bottom-left) Fluid-
Solid domain Ωfs, (bottom-right) Porous-Solid domain Ωps

For model parameters ν̃ and K of order O(1), the numerical analysis of the
Brinkman model fits within the framework for the abstract error analysis of the NSE,
e.g. [11], [32]. However, the targeted applications of the Brinkman model are often
highly non-generic flows involving

• complex geometries, i.e. dense swarm of porous and solid obstacles
• highly discontinuous parameters ν̃ and K
• non-homogeneous boundary conditions, i.e. uδ|∂Ω = φ 6= 0
• general divergence conditions on velocity, i.e. ∇ · uδ = g 6= 0

Thus, we consider herein the numerical analysis associated with the asymptotic limits
and rates of convergence as the discretization parameter h δ tend to 0. The last two
conditions uδ|∂Ω 6= 0 and ∇·uδ 6= 0 in Ω are necessary for many natural and industrial
flows in porous media.

We derive a weak formulation of Stokes and NS-Brinkman models in Section 2.
Note that Hopf proved in [15] that solutions to the steady NSE exist for general
boundary data under certain restrictions on ∂Ω for the case ∇·u = 0. In Section 2.2,
we note coupling between uδ|∂Ω = φ and ∇·uδ = g 6= 0 preventing a general existence
result for nonzero boundary conditions and nonzero divergence. Our analysis is based
on the construction of an extension operator ũ of boundary data φ satisfying the
constraint ∇ · ũ = g. We show that for g ∈ L2 (Ω) and φ ∈ H1/2 (∂Ω) satisfying

• g ≡ 0, or
• g has compact support in Ω,

∫

Ω
g = 0, and g small enough, or

• g has compact support in Ω, and g and φ is small enough
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there exists a solution
(
uδ, pδ

)
∈ H1 (Ω) × L2 (Ω) to the NS-Brinkman Problem 1.1.

Furthermore, we show that the continuous (Section 2.3) and discrete (Section 3.1)
Stokes- and NS-Brinkman models are well-posed (with small data for the nonlinear
problem). We derive a priori estimates for uδ with explicit dependence on ν, ν̃, and
K. For δ > 0, both the continuous and discrete velocities for both Stokes-Brinkman
and NSE-Brinkman are of order O(

√
δ/ν) in H1 in the solid obstacles embedded in Ω

and O(1/ν) in H1 in all Ω; hence, for fixed ν > 0, uδ is uniformly stable with respect
to δ with respect to δ → 0.

For the numerical scheme, we provide a condition for interpolating non-smooth
boundary data used in the analysis of the finite element discretization of the Brinkman
model. We also propose an innovative (explicitly pseudo-skew symmetrized, defined
in Section 3, for general g) discrete form for the convective term u · ∇u . In Section
3.1, we show that the proposed conforming finite element discretization provides a
convergent approximation uδ,h of uδ as h → 0 uniformly with respect to the penalty
parameter δ. In Section 3.2, letting u be a solution to the Stokes problem in the
purely fluid domain Ωf ⊂ Ω with no-slip boundary conditions on the solid obstacles,
we show that the the discrete Brinkman velocity uδ,h converges to u as h, δ → 0 such
that

∥
∥uδ,h − u

∥
∥

H1(Ω)
≤ C

(
δ

ν
+
∥
∥uδ − uδ,h

∥
∥

H1(Ω)

)

Finally, we provide numerical validations of our theory in Section 4.

1.1. Overview of Brinkman flow model. Whereas Darcy’s law assumes that
velocity is proportional to the pressure gradient for a particular porous medium,
Brinkman noted that, in general, the viscous effects must also be taken into account
to model flow accurately through porous media, see [6], [7]. Heuristic generalizations
of Darcy’s law have been considered to model non-Darcy flows in porous media (e.g.
[14], [18], [26], [5]). Along with heuristic developments, theoretical justifications exist
for the Brinkman model as an asymptotic approximation to the NSE, e.g. see [1], [16]
and references therein. Straughan presents several of the most popular non-Darcy
models for flow in porous media in [30] (a well-cited compilation of his and others’
contributions to this theory).

The Brinkman model has been applied to approximate non-Darcian flows in a
variety of contexts; e.g. it is used to model oil filtration flows [17], groundwater flows
[8], forced convective flows in metal foam-filled pipes (used in the cooling of electronic
equipment) [23], gas diffusion through fuel cell membranes [13], Casson fluid flow in
porous media (e.g. blood flow in vessels obstructed by fatty plaques and clots) [9],
and interstitial fluid flow through muscle cells [31] with good accuracy. The Brinkman
equation is also used to model turbulence in porous media in the macroscopic scales
[19] (for a discussion concerning turbulence modeling at the macroscopic versus the
microscopic pore level see [25]).

Numerical analysis of a discretization of the Stokes and NS-Brinkman flow model
is limited. In [33], Xie et.al. provide an innovative numerical analysis of the Stokes-
Brinkman equations with a condition that ensures stable finite element spaces for
the discrete Stokes-Brinkman equation in the limiting condition for high Reynold’s
number. In [2], Angot provides a beautifully detailed error analysis for the continuous
Stokes-Brinkman fluid velocity in fluid-porous and fluid-solid domains compared to
Darcy-Stokes velocities.
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1.2. Approximating Brinkman flow in Ω. Solving the NSE in the pores of Ω
with no-slip boundary conditions at solid interfaces or non-stationary and/or complex
domain boundaries is cumbersome at best and most often simply not feasible [2], [3].
Furthermore, the coupling condition between Stokes flow domains and Darcy flow
domains (used for flow in porous media) is physically unresolved even though the
Beavers-Joseph-Saffman (BJS) interface condition is widely accepted and generally
used in practice [4], [29], [21]. Furthermore, Layton et.al show in [21] that coupled
Stokes-Darcy flow using the BJS interface condition is well-posed, but such a conclu-
sion has not been verified for the nonlinear NS-Darcy coupling. In addition, further
complications arise because Stokes velocity has meaning of a ”pointwise” velocity
and Darcy velocity has meaning of an ”averaged” velocity providing an unresolved
compatability issue between these two velocities, see e.g. [18], [26], [5].

It is exactly these shortcomings in coupling Stokes or NSE with Darcy’s equa-
tions that are the strengths of the Brinkman flow model. To this end, we consider
the penalized Brinkman problem formulated and described in [20] with convergence
analysis in [2]. In particular, when approximating flows in Ω, we want uδ be as small
as possible inside all solid obstacles Ωs ⊂ Ω and recover the no-slip condition on each
solid interface ∂Ωs. This is attained by imposing a large Brinkman viscosity ν̃ and
small permeability k in Ωs. In addition, in the purely fluid region Ωf ∈ Ω, there are
no medium obstacles impeding the flow; thus, the permeability k in Ωf should be
large. Consider a small, parameter 0 < δ << 1 and set

ν̃|Ωs =
ν

δ
, k|Ωs = δ, k|Ωf

=
1

δ

We are interested in the asymptotic behavior of solutions uδ to Problems 1.1 and 1.2 as
δ → 0 and the double asymptotic of approximate solutions uδ,h as δ → 0, h→ 0. This
fictitious domain approach has been analyzed in various contexts for the continuous
Brinkman velocity uδ, see e.g. [2], [3], [19], [22]. The Brinkman approach eliminates
the mathematical and physical problems with the interface couplings. Moreover, it is
simple in implementation and easily adapted to existing computing platforms.

2. Problem formulation. We are interested in fluid flow through a porous
medium Ω, an open and connected domain in R

2 or R
3, refer to Figure 1.1 for an

illustration. Decompose Ω into a purely fluid domain Ωf (no flow obstruction), porous
domain Ωp (some flow obstruction) and purely solid domain Ωs (complete flow ob-
struction)

Ω = Ωf ∪ Ω̄p ∪ Ω̄s

where ∂Ωf , ∂Ωp, and ∂Ωs represent the corresponding boundaries of the indicated
subdomains. We allow ∂Ω to be the union of distinct, connected segments. We assume
that ∂Ωp and ∂Ωs do not intersect with the problem domain boundary ∂Ω, thatΩp

and Ωs consist of open and connected subsets of Ω, and Ωp and Ωs are disjoint and
bounded away from ∂Ω

Ω̄p ∩ Ω̄s = ∅,
(
Ω̄p ∪ Ω̄s

)
∩ ∂Ω = ∅

Lastly, we require that Ωf is necessarily connected such that

∂Ωf = ∂Ω ∪ ∂Ωp ∪ ∂Ωs
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We write Ω∗ for ∗ = f , p, s, fp, fs, ps, and fps such that

Ωfp := Ωf ∪ Ω̄p

Ωfs := Ωf ∪ Ω̄s

Ωps := Ωp ∪ Ωs

Ωfps := Ω

See Figure 1.1 for an illustration.

We assume that ν > 0 is constant in Ω. Also, ν̃ > 0 is piecewise constant and
constant in each subdomain Ωf , Ωp, and Ωs such that ν̃|Ωf

= ν and ν̃|Ωp = ν. We
write

ν̃f := ν̃|Ωf
= ν, ν̃p := ν̃|Ωp = ν, ν̃s := ν̃|Ωs

See Figure 1.1 for an illustration. Moreover, we write

ν̃fp (x) :=

{
ν̃f , x ∈ Ωf

ν̃p, x ∈ Ωp
, ν̃fs (x) :=

{
ν̃f , x ∈ Ωf

ν̃s, x ∈ Ωs
, ν̃ps (x) :=

{
ν̃p, x ∈ Ωp

ν̃s, x ∈ Ωs

and identify ν̃ = ν̃fps (recall, Ωfps = Ω). The permeability tensor K ∈ L∞ (Ω)
d×d

is
generally symmetric and positive definite. We assume that K is a constant scalar on
each subdomain Ωf , Ωp, and Ωs and write

k∗ := K|Ω∗
, ∗ = f , p, s, fp, fs, ps, and fps

and identify K = kfps. Lastly, for ∗ = f , p, s, fp, fs, ps, and fps write

ν̃∗max := max
x∈Ω∗

ν̃ (x) , ν̃∗min := min
x∈Ω∗

ν̃ (x)

k∗max := max
x∈Ω∗

K (x) , k∗min := min
x∈Ω∗

K (x)

and identify ν̃max := ν̃fps
max, ν̃min := ν̃fps

min, kmax := kfps
max, and kmax := kfps

max.

In porous regions Ωp, the Brinkman viscosity kp and ν̃p should have moderate
values. We suppose that kp depends on the domain geometry (e.g. see [5]). It is not
well understood how to select the Brinkman viscosity ν̃ in Ωp. We set ν̃fp = ν which
is a common choice in both engineering practice and analytical theory. See, e.g., [5]
and [18] for more on this subject.

Lastly, assume that f ∈ H−1 (Ω)
d

(the dual space of H1
0 (Ω)

d
consisting of H1-

functions vanishing on ∂Ω), φ ∈ H1/2 (∂Ω)
d
, and g ∈ L2 (Ω). We suppose that g is

localized satisfying

g ≡ 0 in Ω̄f ∪ Ω̄s

and compatible with the boundary data so that ∇ · uδ = g and thus

∫

Ω

g =

∫

∂Ω

φ · n̂ (2.1)

In this context, we consider
(
uδ, pδ

)
satisfying the nonlinear or linear system of equa-

tions, Problem 1.1, 1.2.
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2.1. Weak formulation. Let V ′ denote the dual of any linear space V . Let
∗ = f , p, s, fp, fs, ps, or fps. We write (·, ·)∗ to represent the L2 (Ω∗) inner product
and (·, ·) when ∗ = fps (recall Ωfps = Ω). Let ‖·‖1,∗ represent standard norm for

H1 (Ω∗) and write ‖·‖∗ for the standard L2 (Ω∗)-norm, ‖·‖1 for the standard H1 (Ω)-
norm (∗ = fps), and ‖·‖ for the standard L2 (Ω)-norm. Lastly, let 〈·, ·〉V ′×V represent
the duality pairing for linear space V .

Definition 2.1. Let Ω∗ ⊂ R
d be an open set.

L2
0 (Ω∗) :=

{

q ∈ L2 (Ω∗) :
∫

Ω∗

q = 0
}

, H1
0 (Ω∗) :=

{
v ∈ H1 (Ω∗) : v|∂Ω∗

= 0
}

Write Q := L2
0 (Ω) and X := H1

0 (Ω). For g ∈ L2 (Ω), φ ∈ H1/2 (∂Ω)

Xφ :=
{
v ∈ H1 (Ω) : v|∂Ω = φ

}

Vφ (g) :=
{
v ∈ Xφ :

∫

Ω q (∇ · v) =
∫

Ω gq, ∀q ∈ L2
0 (Ω)

}

V ∗ :=
{

f ∈ X ′ : 〈f, v〉X′×H1

0

= 0, ∀v ∈ V0 (0)
}

V ⊥ :=
{
v⊥ ∈ X :

∫

Ω v
⊥ · v = 0, ∀v ∈ V0 (0)

}

and We write V = V0 (0), Vφ = Vφ (0), and V (g) = V0 (g). Moreover, X ′ =

H−1 (Ω) :=
(
H1

0 (Ω)
)′

is equipped with the following norm

‖f‖−1 = sup
v∈X,v 6=0

〈f, v〉X′×X

‖v‖1

Lastly, we note that Q′ = Q.
If f ∈ L2 (Ω∗) and v ∈ H1 (Ω∗), we abuse notation and identify 〈f, v〉∗ = (f, v)∗

even though H−1 (Ω∗) is not the dual of H1 (Ω∗) (rather, it is the dual of H1
0 (Ω∗)).

Next, we define several (bi/tri)linear functionals:
Definition 2.2. Let ∗ = f , p, s, fp, fs, or fsp. Let u, v, w ∈ H1 (Ω), and

q ∈ L2 (Ω). Define the bilinear and linear forms a∗ (·, ·), b∗ (·, ·), l2 (·) by

a∗ (·, ·) : H1 (Ω) ×H1 (Ω) → R, a∗ (u, v) :=
∫

Ω∗

ν̃∇u : ∇v +
∫

Ω∗

νK−1u · v
b∗ (·, ·) : H1 (Ω) × L2 (Ω) → R, b∗ (v, q) := −

∫

Ω∗

q (∇ · v)
l2,∗ (·) : L2

0 (Ω) → R, l2,∗ (q) := −
∫

Ω∗

gq

Further, define the linear form l1,∗ (·) : H1
0 (Ω) → R,

l1,∗ (v) := 〈f, v〉H−1(Ω∗)×H1

0
(Ω∗) −

∫

Ω∗
ν̃g∇ · v

and trilinear form c∗ (·, ·, ·) : H1 (Ω) ×H1 (Ω) ×H1 (Ω) → R,

c∗ (u, v, w) :=

∫

Ω∗

u · ∇v · w

To derive the variational formulation of Problems 1.1 and 1.2, we notice note that
∇ · ∇ut = ∇(∇ · u). Consequently,

∇ ·
(
D
(
uδ
))

=
1

2

(
∆uδ + ∇∇ · uδ

)
=

1

2
∆uδ +

1

2
∇g

The term ∇g is data and included in l1 (·)). Thus, we have the following weak formu-
lation of the NS-Brinkman equations, Problem 1.1.
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Problem 2.3. (Weak NS-Brinkman) Given f ∈ X ′ and g ∈ L2 (Ω). Find
uδ ∈ Xφ, pδ ∈ Q such that

∀v ∈ X, a
(
uδ, v

)
+ b

(
v, pδ

)
+ c

(
uδ, uδ, v

)
= l1 (v)

∀q ∈ Q, b
(
uδ, q

)
= l2 (q)

Similarly, the following variational formulation of Stokes-Brinkman equations, Prob-
lem 1.2, follows by setting the convective term c (·, ·, ·) = 0 in Problem 2.3.

Problem 2.4. (Weak Stokes-Brinkman) Given f ∈ X ′ and g ∈ L2 (Ω). Find
uδ ∈ Xφ, pδ ∈ Q such that

∀v ∈ X, a
(
uδ, v

)
+ b

(
v, pδ

)
= l1 (v)

∀q ∈ Q, b
(
uδ, q

)
= l2 (q)

Alternatively, we can formulate the variational Brinkman problem in operator
notation.

Definition 2.5. For any u, v ∈ H1 (Ω), w ∈ X, and q ∈ Q, define A ∈
L (X ;X ′), B ∈ L (X ;Q), and C (u) ∈ L (X ;X ′) such that

〈Au,w〉X′×X := a (u, v)
〈Bw, q〉Q×Q := b (w, q) =: 〈B′q, w〉X′×X

〈C (u) v, w〉X′×X := c (u, v, w)

Thus, we can rewrite Problem (2.3): find u ∈ Xφ, p ∈ Q satisfying

Au+B′p+ C (u)u = f (in X ′), Bu = g (in Q)

We can also rewrite Problem (2.4): find u ∈ Xφand p ∈ Q satisfying

Au+B′p = f (in X ′), Bu = g (in Q)

2.2. Calculus on subdomains Ω∗. We often decompose Ω into its physical
components the purely fluid region Ωf , the porous region Ωp, and solid region Ωs. In
doing so, we must be careful in applying Poincaré’s Inequality (since we require that
functions vanish on a set of positive measure on the domain boundary) and duality
pairing (since H−1 (Ω∗) is dual to H1

0 (Ω∗) and not toH1 (Ω∗)). We state these results
in the context of our problem.

Theorem 2.6. (Poincaré’s Inequality) For any w ∈ H1
0 (Ω), there exists C∗

p > 0
such that

‖w‖Ω∗

≤ C∗
p ‖∇w‖Ω∗

, for ∗ = f, fp, fs, fps

We generically write Cp = C∗
p for all ∗.

Note that this result is not applicable in Ωs or Ωp since boundary data is generally
not provided on ∂Ωp or ∂Ωs. Additionally, the functional f ∈ H−1 (Ω∗) acts on
elements from its dual space v ∈ H1

0 (Ω∗). Again, since boundary data is generally
not provided on ∂Ωp or ∂Ωs and

‖f‖−1,∗ = sup
v∈X(Ω∗),v 6=0

〈f, v〉X′×X

‖v‖1,∗

then 〈f, v〉H−1(Ω∗)×H1

0
(Ω∗) ≤ ‖f‖−1,∗ ‖v‖1,∗ only applies when ∗ = fps.
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Next, we collect some basic properties of the divergence operator.
Lemma 2.7. For Ω ⊂ R

d open and connected the divergence operator is an
isomorphism between V ⊥ and L2

0 (Ω). Therefore, there exists β > 0 such that the
inf-sup condition holds:

inf
q∈L2

0
(Ω)

sup
v∈H1

0
(Ω)

〈∇q, v〉
‖q‖ ‖v‖1

≥ β > 0. (2.2)

As a consequence, for any q ∈ L2
0 (Ω) there exists a unique v ∈ V ⊥ ⊂ H1

0 (Ω) satisfying

‖v‖1 ≤ β−1 ‖q‖ (2.3)

Proof. See, for example, page 24, Corollary 2.4 in [11] .

2.3. Decoupling ∇ · u = g and u|Ω = φ. It is necessary to rewrite the general
divergence, nonhomogeneous Brinkman problems 1.2 and 1.1 in terms of a divergence-
free velocity vanishing on the boundary ∂Ω. We compile several well-known results,
e.g. see [11]. Recall that φ ∈ H1/2 (Ω), f ∈ X ′, and g ∈ L2 (Ω) satisfies the compati-
bility condition Eq. (2.1). From from the trace theorem, there exists an extension

∃uφ ∈ H1 (Ω) satisfying uφ|∂Ω = φ (2.4)

and ∃γ > 0 such that ‖uφ‖1 ≤ γ ‖φ‖1/2,∂Ω (2.5)

Furthermore, from the compatibility condition Eq. (2.1) along with application of the
divergence theorem, we have that

∫

Ω
(g −∇ · uφ) = 0. Hence, g−∇·uφ ∈ Q. Lemma

2.6 ensures that ∇ · : V ⊥ → Q defines an isomorphism so that

∃!u0 ∈ V ⊥ ⊂ X satisfying ∇ · u0 = g −∇ · uφ (2.6)

Hence, we consider looking for w ∈ V rather than uδ ∈ Vφ (g) solving Problems
2.3 or 2.4.

Proposition 2.8. Given φ ∈ H1/2 (∂Ω) and g ∈ L2 (Ω) satisfying the compati-
bility condition (2.1), suppose that uφ and u0 are defined as above in Eq.’s (2.4) and
(2.6) respectively. Then writing ũ := uφ + u0,

‖ũ‖1 = ‖uφ + u0‖1 ≤
(

γ +
√
dβ−1

)

‖φ‖1/2,∂Ω + β−1 ‖g‖ (2.7)

Moreover, solving Problems 2.3 and 2.4 for uδ ∈ Vφ (g) is equivalent to solving the
same equations for w ∈ V where

uδ = w + uφ + u0, ∇ · w = 0 in Ω, w|∂Ω = 0 (2.8)

Proof. The proof of the first bound follows by applying bound (2.3) and Lemma
2.6. The problem equivalency is obvious.

Unfortunately, this bound is unsatisfying . In particular, similar to the NSE, we
must control the problematic term

∫

Ω
w · ∇ũ · w, where w ∈ V is as in Eq. (2.8) and

ũ satisfies ũ|∂Ω = φ and ∇ · ũ = g in Ω as in Eq. (2.4). Noting that

∫

Ω

w · ∇ũ · w = −
∫

Ω

w · ∇w · ũ ≤ C ‖∇w‖2 ‖ũ‖L4(Ω) (2.9)
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must be absorbed from the right-hand side to left-hand side (details follow in the next
section), the following proposition is necessary in establishing existence of solutions
to NS-Brinkman, Problem 2.3 for arbitrary data φ ∈ H1/2 (∂Ω). This result builds
upon the subtle and technical work of Leray rigorously compiled by Hopf in [15] and
elegantly presented by Raviart and Girault in [11] and Galdi in [10] and specifically
concerns nonhomogeneous boundary data for the steady Navier-Stokes equations with
divergence-free constraint ∇ · u = 0. Particular care must be taken in a domain with
holes when

∫

∂Ωi

uδ · n̂ = 0 (2.10)

is not required on each connected component of the boundary ∂Ωi ⊂ ∂Ω, i = 1, . . . , l.
We consider another interesting case when sources and sinks are present inside the
computational domain itself, i.e. when ∇ · uδ = g 6= 0.

Proposition 2.9. Let Ω be an open, connected domain with piecewise Lipschitz
boundary ∂Ω and suppose that ∂Ω satisfies the Hopf condition (2.10). Suppose that
φ ∈ H1/2 (∂Ω) and g ∈ L2 (Ω) satisfy the compatibility condition Eq. (2.1) and that
g = 0 in Ωs and Ωf and g 6= 0 in Ωp. Fix ε > 0. (1) There an extension uε

φ ∈ Xφ such

that uε
φ = 0 in Ω̄p and Ω̄s. There also exists u0 ∈ H1

0 (Ωfp) with extension u0 = 0 in

Ω̄s such that ∇ · u0 = g −∇ · uε
φ in Ω. In particular,

ũ = uε
φ + u0 =







uε
φ + u0 in Ωf

u0 in Ωp

0 in Ωs

and

‖u0‖1 ≤ ‖g‖p +
∥
∥∇ · uε

φ

∥
∥

f

(2)If in addition
∫

Ω g = 0, then there exists an extension uε
φ ∈ Vφ such that uε

φ = 0

in Ω̄p and Ω̄s. There also exists u0 ∈ H1
0 (Ωfp) with extension u0 = 0 in Ω̄s such that

∇ · u0 = g. In particular,

ũ = uε
φ + u0 =







uε
φ in Ωf

u0 in Ωp

0 in Ωs

and

‖u0‖1 ≤ ‖g‖p

In both cases, for any ε0 > 0, there exists an ε > 0 such that

∥
∥uε

φ

∥
∥

L4(Ω)
< ε0

Proof. Our proof follows the work of Raviart and Girault for divergence-free ve-
locities and non-homogeneous Dirichlet boundary conditions in [11], page 287, Lemma
2.3 (also see [10]). From Eq. (2.4), there exists an extension uφ of φ ∈ H1/2 (∂Ω)
satisfying ‖uφ‖1 ≤ γ ‖φ‖1/2,∂Ω. In order to localize contributions of problem data, we

consider the cut-off function ψε ∈ C∞ (Ω̄
)

described in [11]. Briefly, ψε is identically
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zero for all points in Ω a certain ε-dependent distance away from ∂Ω and identically
1 a certain ε-dependent distance close to ∂Ω and smoothly connected in between.
Moreover, ‖ψεv‖1 < ∞ for all v ∈ H1 (Ω). For (1), take uε

φ := γεuφ. We can take
ε > 0 small enough to ensure that uε

φ = 0 in Ωp and Ωs. In addition

∫

Ωfp

∇ · uε
φ =

∫

∂Ω

φ · n̂ =

∫

Ωfp

g

and hence g − ∇ · uε
φ ∈ L2

0 (Ωfp). Thus, by Lemma 2.6, there exists a unique u0 ∈
V ⊥ (Ωfp) ⊂ H1

0 (Ωfp) such that ∇ · u0 = g −∇ · uε
φ. We extend u0 = 0 on Ωs. The

bound ‖u0‖1 ≤ β−1||g−∇·uε
φ||fp follows from Lemma 2.6. For (2) refer again to [11]

for the existence of a particular extension u∗φ, such that for any ε > 0,

uε
φ = ∇×

(
ψεu

∗
φ

)

defines another extension of φ satisfying ∇ · uε
φ = 0. Now since g ∈ L2

0 (Ωp), as a

consequence of Lemma 2.6, there exists a unique u0 ∈ V ⊥ (Ωp) satisfying ∇ · u0 = g.
Extend u0 = 0 on Ωf and Ωs. We can take ε > 0 small enough to ensure that uε

φ = 0
on Ωp and Ωs. Let ũ = uε

φ +u0. The bound for u0 follows from Lemma 2.6. The final
result follows from the specially constructed property of γε.

Note that for g ≡ 0 in Ω, the L4-norm of ũ can be made arbitrarily small. However,
for general g ∈ L2 (Ω), then g and φ are coupled via the necessary compatibility
condition Eq. (2.1); hence, there is no obvious way to control the size of ‖ũ‖L4(Ω)

which is required to control the size of the bound in (2.9).
Note that for the Hopf extension, ‖ũ‖L4(Ω) → 0 as ε→ 0, but the bound on ‖ũ‖1

grows exponentially as ε→ 0.

2.4. Continuity and coercivity. We now proceed with some important bounds
on the previously defined functionals required in our proceeding stability and error
analysis.

Lemma 2.10. The linear functionals l1 (·) and l2 (·) are continuous. In particular,
for any v ∈ H1 (Ω) and q ∈ L2 (Ω),

l1 (v) ≤ ‖f‖−1 ‖v‖1 + ν̃max

√
d ‖g‖ ‖∇v‖ , if v ∈ X

l2,∗ (q) ≤ ‖g‖∗ ‖q‖∗ , for ∗ = f , p, s, fp, fs, ps, or fps

Moreover, for ∗ = f , p, s, fp, fs, ps, or fps, if f ∈ L2 (Ω∗), and v = 0 on Γ∗ ⊂ ∂Ω∗
that has positive measure with respect to boundary, then

l1,∗ (v) ≤ ‖f‖∗ ‖v‖∗ + ν̃∗max

√
d ‖g‖∗ ‖∇v‖∗ ≤

(

Cp ‖f‖∗ + ν̃∗max

√
d ‖g‖∗

)

‖∇v‖∗

Proof. Linearity for the functionals is obvious. Continuity follows by a direct
application of the duality for ‖·‖−1-norm result and Cauchy-Schwarz for the others

along with Poincaré and the fact that ‖∇ · v‖ ≤
√
d ‖∇v‖ to obtain ‖·‖1.

Lemma 2.11. The bilinear functional b (·, ·) is continuous. In particular, for
∗ = f , p, s, fp, fs, ps, or fps and for any v ∈ H1 (Ω), q ∈ L2 (Ω)

b∗ (v, q) ≤
√
d ‖∇v‖∗ ‖q‖∗ (2.11)
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Proof. Bilinearity is obvious. Continuity follows by a direct application of Cauchy-
Schwarz inequality and the fact that ‖∇ · v‖ ≤

√
d ‖∇v‖.

Lemma 2.12. The bilinear functional a (·, ·) is continuous and coercive. In par-
ticular, for ∗ = f , p, s, fp, fs, ps, or fps and for any u, v ∈ H1 (Ω)

a∗ (u, v) ≤ ν̃∗max ‖∇u‖∗ ‖∇v‖∗ + ν (k∗min)
−1 ‖u‖∗ ‖v‖∗ ≤ α∗

1 ‖u‖1,∗ ‖v‖1,∗ (2.12)

and

a∗ (v, v) ≥ ν̃∗min

∫

∗ |∇v|
2 + νmin (k∗max)−1 ∫

∗ |v|
2 ≥ α∗

0 ‖v‖2
1,∗ , or

a∗ (v, v) ≥ ν̃∗

min

2Cp
‖v‖2

1,∗ , if v = 0 on Γ∗
(2.13)

where Γ∗ ⊂ ∂Ω∗ has positive measure with respect to boundary and

α∗
1 = max {ν̃∗max, νmax/k

∗
min} , α∗

0 = min {ν̃∗min, ν/k
∗
max} (2.14)

Proof. Bilinearity is obvious. Continuity follows by bounding problem parameters
ν, ν̃, and K and applying the Cauchy-Schwarz inequality. The coercivity condition
follows once again by bounding the problem parameters and, for the second form,
applying the Poincaré inequality.

Lemma 2.13. The trilinear functional c (·, ·, ·) is continuous. In particular, for
∗ = f , p, s, fp, fs, ps, or fps and for any u, v, w in H1 (Ω)

c∗ (u, v, w) ≤ C∗
L ‖u‖1,∗ ‖∇v‖∗ ‖w‖1,∗ (2.15)

where C∗
L > 0 only depends on Ω∗. Moreover,

c∗ (u, v, w) ≤ C∗
L ‖∇u‖∗ ‖∇v‖∗ ‖∇w‖∗ , if u|Γ∗

1
, w|Γ∗

2
= 0 (2.16)

where Γ∗
1, Γ∗

2 ⊂ ∂Ω∗ have positive measure with respect to the boundary. We write
CL = C∗

L for all ∗.
Separately, if ∇ · u = g in Ω∗ and (u · n̂ (v · w)) |∂Ω∗

= 0, then

c∗ (u, v, w) = −c∗ (u,w, v) −
∫

Ω∗

g (v · w) , and hence (2.17)

c∗ (u, v, v) = −1

2

∫

Ω∗

g |v|2 (2.18)

We call c∗ (·, ·, ·) pseudo-skew symmetric. Moreover, if ∇ ·u = 0 in Ω∗, then c∗ (·, ·, ·)
is actually skew-symmetric.

Proof. Trilinearity is obvious. The two continuity bounds are classical results.
To prove the first identity, we make use of Einstein’s tensor notation for indices and
vector/tensor operations: u ·∇v ·w = uivj,iwj . Apply the divergence theorem and the
fact that (u · n̂ (v · w)) |∂Ω∗

vanishes on ∂Ω∗. Skew-symmetry for div-free functions
then follows easily.

We call c∗ (·, ·, ·) pseudo-skew symmetric because the function

(u, v, w) 7→ c∗ (u, v, w) +
1

2

∫

Ω∗

g (v · w)

is skew-symmetric.
Remark 2.14. Note that, b (·, ·) is uniformly continuous; a (·, ·) is uniformly

continuous when, for some C > 0 we restrict ν, ν̃ and ‖K‖L∞(Ω) < C1 < ∞; a (·, ·)
is uniformly coercive when, for some C0 > 0 we restrict ν, ν̃ ≥ C0 > 0. Hence, for
turbulent flows there is a question concerning stability as ν → 0. Xie et.al. in [33]
discuss the numerical aspects of properly selecting stable finite element spaces.
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2.5. Well-posedness of Stokes-Brinkman. First, we establish existence and
uniqueness along with a priori estimates for the weak Stokes-Brinkman equation
before proceeding with the NS-Brinkman equation. We suppose that f ∈ L2 (Ω),
φ ∈ H1/2 (Ω), and that g ∈ L2 (Ω) (g 6= 0 in Ωp and g = 0 in Ωf , Ωs) satisfies
the compatability condition Eq. (2.1) throughout. We are particularly interested in
rigorously tracking the dependence of solutions uδ to Stokes-Brinkman on ν̃, K and
ν. In the next theorem we prove that

∥
∥∇uδ

∥
∥ ≤ O

(
1
ν

)
,

∥
∥uδ
∥
∥

1,s
≤ O

(√
δ

ν

)

Theorem 2.15. (Well-posedness Stokes-Brinkman) There exists a unique
(
uδ, pδ

)
∈

(Xφ, Q) satisfying Stokes-Brinkman, Problem 2.4. Let ũ be an extension of boundary
data φ ∈ H1/2 (Ω) satisfying ∇ · ũ = g ∈ L2 (Ω), e.g. see Proposition 2.8. Then
(
uδ, pδ

)
satisfy

∥
∥∇uδ

∥
∥ ≤ 1

ν

√

Cδ ,
∥
∥uδ
∥
∥

1,s
≤

√
δ

ν

√

Cδ

where

Cδ := Cδ (f, ũ) := C

(

‖f‖2
fp + δ ‖f‖2

s +
ν2

kp
‖ũ‖2

1,fp

)

where the constant C is independent of parameters ν̃, ν, and K.
Proof. Restrict v ∈ V . Then l1 (v) = 〈f, v〉 and we have a (w, v) = 〈f, v〉−a (ũ, v).

By the (bi)linearity and continuity of l1 (·), a (·, ·) along with coercivity of a (·, ·) on
Ω established in Lemmas 2.9 and 2.11 we apply Lax-Milgram theorem to establish
existence and uniqueness of w ∈ V ⊂ X . For such a w, we now note that a (w, v) +
a (ũ, v) − 〈f, v〉 = 0 for any v ∈ V . Thus, Aw +Aũ− f ∈ V ∗. Eq. (2.6) implies that
B = ∇ : Q → V ∗ defines an isomorphism. This establishes existences of a unique
pδ ∈ Q such that Bpδ = Aw + Aũ− L1. Finally, to show that uδ = w + ũ is unique
solution is an easily follows from the coercivity of a (·, ·) on Ω. For the estimates,
since w ∈ V , apply bounds from Lemmas 2.9 and 2.11 and bound on ũ in Eq. (2.7)
and (2.3)

α0 ‖w‖2
1 ≤ a (w,w) = 〈f, w〉 − a (ũ, w)

≤ ‖f‖−1 ‖w‖1 + α1 ‖ũ‖1 ‖w‖1

Divide by ‖w‖1 and α0. To obtain estimate for uδ, apply triangle inequality
∥
∥uδ
∥
∥

1
≤

‖w‖1 + ‖ũ‖1. Finally, to bound pδ, take v ∈ X and solve for pδ

b
(
pδ, v

)
= l1 (v) − a

(
uδ, v

)
≤
(

‖f‖−1 +
√
dν̃max ‖g‖

)

‖v‖1 + α1

∥
∥uδ
∥
∥

1
‖v‖1

To finish, apply the inf-sup condition, Eq. (2.2), to obtain
∥
∥pδ
∥
∥ ≤ β−1 sup

(
b
(
pδ , v

)
/ ‖v‖1

)
.

Fix small δ > 0 and set ν/ν̃s, 1/kf , and ks = δ. Then to summarize, we have
preliminary bounds on uδ and pδ

∥
∥uδ
∥
∥

1
≤ 1

ν ‖f‖−1 +
(

1
νδ + 1

)
‖ũ‖1

∥
∥pδ
∥
∥ ≤ 1

β

(

‖f‖−1 +
√
dν ‖g‖p

)

+ ν
β

∥
∥uδ
∥
∥

1
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The bound for uδ is unsatisfying since it is not uniform as δ → 0. For sharper
bounds, require f ∈ L2 (Ω) and decompose Ω to its components Ω∗. Recall that
‖w‖∗ ≤ Cp ‖∇w‖∗ for ∗ = f , fp and ũ = 0 in Ωs. Applications of Cauchy-Schwarz
and Young’s inequalities provide,

ν ‖∇w‖2
fp + ν̃s ‖∇w‖2

s +
∑

∗=f,p,s

ν

k∗
‖w‖2

∗ = a (w,w) = 〈f, w〉 − a (ũ, w)

≤
∑

∗=f,p,s

(‖f‖∗ ‖w‖∗) +
∑

∗=f,p

(

ν̃∗ ‖∇ũ‖∗ ‖∇w‖∗ +
ν

k∗
‖ũ‖∗ ‖w‖Ω∗

)

≤ C2
P

ν
‖f‖2

fp +
ν

4
‖∇w‖2

fp +
ks

ν
‖f‖2

s +
ν

4ks
‖w‖2

s

+ ν ‖∇ũ‖2
fp +

ν

4
‖∇w‖2

fp +
∑

∗=f,p

ν

k∗

(

‖ũ‖2
∗ +

1

4
‖w‖2

∗

)

Combining terms, and simplifying we have

ν ‖∇w‖2
fp + αs

0 ‖w‖2
1,s ≤

2C2
p

ν
‖f‖2

fp +
2ks

ν
‖f‖2

s + 4αfp
1 ‖ũ‖2

1,fp

Recall ν/ν̃s, 1/kf , and ks = δ. Also, recall that ν < αs
0 = ν/δ and kp < kf = 1/δ

such that

αfp
1 = maxx∈Ωfp

{ν, ν/k (x)} ≤ ν/kp

Then

‖w‖2
1,s ≤ C

(
δ
ν2 ‖f‖2

fp + δ2

ν2 ‖f‖2
s + δ

kp ‖ũ‖2
1,fp

)

‖w‖2
1 ≤ C

(
1
ν2 ‖f‖2

fp + δ
ν2 ‖f‖2

s + 1
kp ‖ũ‖2

1,fp

)

Applying the triangle inequality

‖u‖1,s ≤ ‖w‖1,s + ‖ũ‖1,s

recalling that ũ ≡ 0 in Ωs (for the bound in Ωs) and assuming that kp ≤ 1 (for the
bound in Ω) proves the claim.

2.6. Well-posedness of NS-Brinkman. We shall prove existence using the
Leray-Schauder fixed point theorem. This requires some preliminary notation and
estimates for NS-Brinkman (2.3).

Definition 2.16. Let ũ ∈ H1 (Ω) be an extension of boundary data φ ∈ H1/2 (Ω)
preserving ∇ · ũ = g ∈ L2 (Ω); e.g. consider (1) or (2), Proposition 2.8. Then, we
define
(1) T : X ′ → V such that T (f) := w where w ∈ V solves

∀v ∈ V, a (w, v) = l1 (v) − a (ũ, v)

(2) N : V → X ′ such that N (w) := f + ∇(ν̃g) − ũ · ∇ũ− ũ · ∇w − w · ∇ũ− w · ∇w
(3) F : V → V such that F := T ◦N .
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In order to apply Leray Schauder’s fixed point theorem, we show that F is a
compact linear operator with a fixed point that satisfies NS-Brinkman, Problem 2.3.
We prove this through the proceeding lemmas.

Lemma 2.17. T is a well-defined linear, continuous operator.
Proof. T is clearly linear. Well-posedness and boundedness of T follows from The-

orem 2.14. Since T is a linear and bounded operator, it follows that T is continuous.

Lemma 2.18. For any w ∈ V , then N (w) ∈ H−d/4 (Ω) and N maps V → X ′

continuously.
Proof. The Ladyzhenskaya inequalities imply that there exists

√
CL > 0 such

that ‖w‖L4 ≤ √
CL ‖w‖1. By the Sobolev embedding theorem, Hd/4 (Ω) ↪→ L4 (Ω);

hence, there exists C4,d > 0 satisfying ‖v‖L4 ≤ C4,d ‖v‖Hd/4 for any v ∈ Hd/4 (Ω).
Now fixing v ∈ Hd/4 (Ω) it is straightforward to bound

∫

Ω w · ∇w · v,
∫

Ω ũ · ∇w · v,
∫

Ω
w · ∇ũ · v,

∫

Ω
ũ · ∇ũ · v by

(√
CLC4,d

)
‖w‖1 ‖w‖1 ‖v‖d/4. Dividing each of the

resulting inequalities by ‖v‖d/4 and taking the supremum over all v ∈ Hd/4 (Ω), we

get the desired conclusion. Continuity follows by expanding ‖N (u1) −N (u2)‖−d/4

and successively applying Cauchy-Schwarz, the definition of the negative, fractional
Sobolev norm, and the fact that N is bounded.

Proposition 2.19. F is a compact operator.
Proof. By the Rellich Lemma, H−d/4 (Ω) is compactly imbedded in H−1 (Ω).

Hence, we summarize,

H1 7−→
N , cont.

H−d/4 ↪→
compact

H−1 7−→
T , cont.

H1

Hence, F is compact as a continuous composition of a compact operator.
Before concluding existence, we require the following technical result necessary to

control the size of of the troublesome term arising in proving existence and derivation
of the a priori estimate for uδ.

Proposition 2.20. F is a compact operator.
Proof. By the Rellich Lemma, H−d/4 (Ω) is compactly embedded in H−1 (Ω).

Hence, we summarize,

H1 7−→
N , cont.

H−d/4 ↪→
compact

H−1 7−→
T , cont.

H1

Hence, F is compact as a continuous composition of a compact operator.
Before concluding existence, we require the following technical result necessary to

control the size of of the troublesome term arising in proving existence and derivation
of the a priori estimate for uδ.

Lemma 2.21. Fix ε0 > 0. Consider boundary data φ ∈ H1/2 (∂Ω) and g ∈ L2 (Ω)
satisfying the compatibility condition Eq. (2.1). For ũ defined by (1), Proposition 2.8,
we have that for ε > 0 small enough

‖ũ‖L4(Ω∗) ≤
√

CL

(

‖g‖p + 2
√
d ‖φ‖H1/2(∂Ω)

)

, ∗ = f , p (2.19)

Suppose further that
∫

∂Ω
φ · n̂ = 0 and hence, g ∈ L2

0 (Ω). Then choosing ũ as in (2),
Proposition 2.8, we have that for ε > 0 small enough

‖ũ‖L4(Ωf ) ≤ ε0 +
√

CL ‖g‖p , ‖ũ‖L4(Ωp) ≤
√

CL ‖g‖p
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Proof. Apply Proposition 2.8 and Lemma 2.6.

Based on the definitions and lemmas above, we can conclude the following theo-
rem.

Theorem 2.22. (Well-posedness NS-Brinkman) Suppose that the small data
condition is satisfied

2
√

CL ‖ũ‖L4(Ωfp) ≤
ν

2
(2.20)

where ũ is an extension of boundary data φ ∈ H1/2 (Ω) satisfying ∇ · ũ = g ∈ L2 (Ω);
e.g. consider (1) or (2), Proposition 2.8 with bounds provided in Lemma 2.20. Then
there is at least one pair

(
uδ, pδ

)
∈ (Xφ, Q) satisfying NS-Brinkman, Problem 2.3 and

∥
∥uδ
∥
∥

2

1,s
≤ ν−2δCδ,NSE, or

∥
∥uδ
∥
∥

1,s
≤ O(ν−1

√
δ)

∥
∥∇uδ

∥
∥

2 ≤ ν−2Cδ,NSE, or
∥
∥∇uδ

∥
∥ ≤ O(ν−1)

where

Cδ,NSE := Cδ,NSE (ũ, f) := C

(

δ ‖f‖2
s + ‖f‖2

fp +

(

ν2 +
ν2

kp
+ ‖ũ‖2

1,fp

)

‖ũ‖2
1,fp

)

and the constant C is independent of parameters ν̃, ν, and K. Furthermore, there is at
most one such solution

(
uδ, pδ

)
when the additional small data condition is satisfied:

1
2CL ‖g‖p +

√
CL ‖ũ‖L4(Ωp) + ν−1CL

√
Cδ,NSE ≤ 1

2α
p
0√

CL ‖ũ‖L4(Ωf ) + ν−1CL

√
Cδ,NSE ≤ 1

2ν

ν−1CL

√
Cδ,NSE ≤ 1

2νδ
−3/2

(2.21)

Proof. We prove existence via the Leray-Schauder fixed point theorem. Fix v ∈ V .
Then l1 (v) = 〈f, v〉 and Problem 2.3 becomes

a (w, v) + c (w,w, v) + c (w, ũ, v) + c (ũ, w, v) = 〈f, v〉 − a (ũ, v) + c (ũ, ũ, v)

It is easy to see that a fixed point of the nonlinear, compact operator F is a solution
of this variational problem. Thus, consider the family of fixed point problems: for any
0 < λ ≤ 1, find uλ ∈ X0 satisfying uλ = λF (uλ). Noting that ũ ≡ 0 in Ωs and the
pseudo-skew symmetry of c∗ (·, ·, ·) (Eq. (2.18)), applications of Hölder’s and Young’s
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inequalities provide

ν ‖∇uλ‖2
fp + ν̃s ‖∇uλ‖2

s +
∑

∗=f,p,s

ν

k∗
‖uλ‖2

∗

= λ




∑

∗=f,p,s



l1,∗ (uλ) − c∗ (uλ, uλ, uλ)
︸ ︷︷ ︸

=0





+
∑

∗=f,p

(−a∗ (ũ, uλ) − c∗ (ũ, ũ, uλ) − c∗ (uλ, ũ, uλ) − c∗ (ũ, uλ, uλ))





≤
∑

∗=f,p,s

‖f‖∗ ‖uλ‖∗ +
∑

∗=f,p

(

ν̃∗ ‖∇ũ‖∗ ‖∇uλ‖∗ +
ν

k∗
‖ũ‖∗ ‖uλ‖∗

)

+ CL ‖ũ‖2
1,fp ‖∇uλ‖fp + 2

√

CL ‖ũ‖L4(Ωfp) ‖∇uλ‖2
fp

≤ ks

2ν
‖f‖2

s +
ν

2ks
‖uλ‖s +

3C2
p

ν
‖f‖2

fp +
ν

12
‖∇uλ‖2

fp

+ 3ν ‖∇ũ‖2
fp +

ν

12
‖∇uλ‖2

fp +
∑

∗=f,p

ν

2k∗

(

‖ũ‖2
∗ + ‖uλ‖2

∗

)

+
3C2

L

ν
‖ũ‖4

1,fp +
ν

12
‖∇uλ‖2

fp + 2
√

CL ‖ũ‖L4(Ωfp) ‖∇uλ‖2
fp

Let ũ be one of the extensions in Proposition 2.8 so that we have bounds in Lemma
2.20 and the first small data condition Eq. (2.20) satisfied. Absorbing terms and
simplifying, we obtain

ν ‖∇uλ‖2
fp + αs

0 ‖uλ‖2
1,s

≤ ks

ν
‖f‖2

s +
6C2

p

ν
‖f‖2

fp +

(

6ν +
ν

kp
+

6C2
L

ν
‖ũ‖2

1,fp

)

‖ũ‖2
1,fp

Recall ν/ν̃s, 1/kf , and ks = δ and that ν < αs
0 = ν/δ. Then,

‖∇uλ‖2
fp ≤ C

(
δ
ν2 ‖f‖2

s + 1
ν2 ‖f‖2

fp +
(

1 + 1
kp + 1

ν2 ‖ũ‖2
1,fp

)

‖ũ‖2
1,fp

)

‖uλ‖2
1,s ≤ C

(
δ2

ν2 ‖f‖2
s + δ

ν2 ‖f‖2
fp +

(

δ + δ
kp + δ

ν2 ‖ũ‖2
1,fp

)

‖ũ‖2
1,fp

)

Thus, we have the necessary bound uniform in λ to conclude existence of w ∈ V
to homogeneous, NS-Brinkman via Leray-Schauder. Hence, there exists uδ = w + ũ
satisfying Problem 2.3.

The stability bound for any solution w ∈ V to homogeneous NS-Brinkman is
similar and leads to the same result as for uλ. We recall that uδ = w + ũ. Thus,
the stability bound for uδ follows by application of the triangle inequality,

∥
∥uδ
∥
∥

1,∗ ≤
‖w‖1,∗ + ‖ũ‖1,∗. Noting that ũ ≡ 0 in Ωs we prove the a priori estimate.

To establish uniqueness, suppose w1, w2 are two such solutions. Then subtracting
the corresponding equations for fixed v ∈ V , we get

0 = a (w1 − w2, v) + c (w1, w1, v) − c (w2, w2, v)

= a (w1 − w2, v) + c (w1 − w2, ũ, v) + c (ũ, w1 − w2, v)
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Write w = w1 − w2 and take v = w (indeed, w ∈ V ). Recall that ũ ≡ 0 in Ωs and
g ≡ 0 in Ωf . By rearranging the above equality, decomposing the domains, noting the
pseudo-skew symmetry of c∗ (·, ·, ·) (Eq. (2.18)), and applying Hölder’s and Young’s
inequalities, we obtain

∑

∗=f,p,s

ν̃∗ ‖∇w‖2
∗ +

ν

k∗
‖w‖2

∗

=
∑

∗=f,p,s

−c∗ (w,w2, w) +
∑

∗=f,p

−c∗ (w, ũ, w) − c∗ (ũ, w, w)

=
∑

∗=f,p,s

(−c∗ (w,w2, w)) +
∑

∗=f,p

(−c∗ (w, ũ, w)) − 1

2

∫

Ωp

g |w|2

≤ CL

2
‖g‖p ‖w‖

2
1,p +

∑

∗=f,p

√

CL ‖ũ‖L4(Ω∗) ‖w‖
2
1,∗ +

∑

∗=f,p,s

CL ‖w2‖∗ ‖w‖
2
1,∗

Thus, requiring

CL

2 ‖g‖p +
√
CL ‖ũ‖L4(Ωp) + 1

νCL

√
Cδ,NSE < αp

0√
CL ‖ũ‖L4(Ωf ) + 1

νCL

√
Cδ,NSE < ν

√
δ

ν CL

√
Cδ,NSE < αs

0

is a sufficient condition to ensure w ≡ 0. Note that αs
0 = ν/δ. Now set uδ = w + ũ.

Then uδ ∈ Vφ (g) satisfies the nonhomogeneous, NS-Brinkman. Suppose that there
are two such solutions u1 and u2. Then subtracting the corresponding equations for
fixed v ∈ V , we get a (u1 − u2, v) + c (u1, u1, v) + c (u2, u2, v) = 0. Add/subtract
c (u1, u2, v). Set v = u1 − u2 (indeed, (u1 − u2) |∂Ω = 0 and ∇ · (u1 − u2) = 0).
Write w = u1 − u2. Recall again that g ≡ 0 in Ωfs. Then rearranging, noting the
pseudo-skew symmetry of c∗ (·, ·, ·) (Eq. (2.18)), and applying Hölder’s and Young’s
inequalities, we obtain

∑

∗=f,p,s

ν̃∗ ‖∇w‖2
∗ +

ν

k∗
‖w‖2

∗ =
∑

∗=f,p,s

c∗ (w, u1, w) + c∗ (u2, w, w)

=
∑

∗=f,p,s

(c∗ (w, u1, w)) −
∫

Ωp

g |w|2

≤ CL ‖g‖p

∥
∥uδ
∥
∥

2

1,p
+ CL ‖∇u1‖f ‖∇w‖2

f +
∑

∗=p,s

(

CL ‖u1‖1,∗ ‖w‖
2
1,∗

)

Thus, the following is a sufficient condition to ensure w ≡ 0

1
νCL

√
Cδ,NSE + ‖g‖p < αp

0,
1
νCL

√
Cδ,NSE < ν, δ

νCL

√
Cδ,NSE < αs

0

Hence, the second small data condition Eq. (2.21) is sufficient to ensure uniqueness.
Establishing existence/uniqueness of pδ ∈ Q follows by applying usual techniques
derived from the inf-sup condition.

Note that in the case g ≡ 0, u0 ≡ 0 and thus ‖ũ‖L4(Ω) = ||uε
φ||L4(Ω) can be taken

arbitrarily small. Returning to the application of Leray-Schauder fixed point theorem
in the previous proof, we can apply this result to conclude existence for any data.

Remark 2.23. The question of existence for large data g ∈ L2 (Ω) is an open
problem. The difficulty is that there is an irrevocable coupling between the divergence
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condition ∇ · uδ = g and the boundary data uδ|∂Ω = φ via the compatibility condition
(2.1). By this compatibility condition and Lemma 2.6, we have that for any extension
ũφ ∈ Xφ, there exists a unique ũ0 ∈ V ⊥ ∈ X satisfying ∇ · ũ0 = g − ∇ · ũφ with
only a bound ‖ũ0‖1 available. In other words, even though through the Hopf extension
we can control the size of ‖ũφ‖L4(Ω), we have no obvious way to control the size of

‖ũ0‖L4(Ω) to an arbitrary degree as required in applying the first small data condition

(2.20) in the proof for existence in Theorem 2.21.

3. Convergence and consistency analysis. To derive a mixed finite element
formulation of continuous Brinkman, 2.4 and 2.3, assume that Ω is polygonal with
polygonal subdomains Ω∗ for ∗ = p, s. Let Th be a triangulation of Ω with Eh ∈ Th

triangles for d = 2 or tetrahedra for d = 3. Moreover, we require that any Eh ∈ Th

be such that interior(Eh) is completely contained in Ωf , Ωp, or Ωs.
For non-homogeneous boundary data φ ∈ H1/2 (∂Ω), we consider associated in-

terpolant of this problem data φh satisfying
∫

∂Ω

φ · n̂ =

∫

∂Ω

φh · n̂ (3.1)

which is required in this analysis, explicitly used in proving Lemma 3.7. Accordingly,
we define the following general finite element spaces for our analysis

Xh
φh :=

{

v ∈ C0 (Ω)
d

: ∀Eh, v|Eh
∈ (Pv)

d ∈ Th and v|∂Eh∩∂Ω = φh
}

Qh :=
{
q ∈ L2

0 (Ω) : ∀Eh ∈ Th, q|Eh
∈ Pq

}

for some finite dimensional spaces polynomial spaces Pv and Pq so that Xh
φh ⊂ H1 (Ω)

and Qh ⊂ Q be conforming, finite element subspaces. We write Xh = Xh
0 ⊂ X . For

example, let Xh
φh and Qh be spaces of piecewise polynomials on each element of Th

that satisfy the discrete inf-sup condition

inf
q∈Qh

sup
v∈Xh

b (v, q)

‖v‖1 ‖q‖
≥ βh > 0 (3.2)

The well-known Taylor-Hood mixed finite elements are one such example where Xh

consists of piecewise quadratic elements and Qh piecewise linears. We also define the
discrete analogue to Vφ (g).

V h
φh (g) =

{

v ∈ Xh
φh :

∫

Ω

(∇ · v) q =

∫

Ω

gq ∀q ∈ Qh

}

Write V h
φh for g ≡ 0, V h (g) when φ ≡ 0, and V h with g and φ are 0. We consider the

general case V h
φh (g) /∈ Vφ (g) (which is true for Taylor-Hood elements). We will also

need the following discrete analogue of the convective term.
Definition 3.1. Fix g ∈ L2 (Ω) and u, v, w ∈ H1 (Ω) such that

∫

Ω
(∇ · u) qh =

∫

Ω gq
h for all qh ∈ Qh. Let ch∗ : H1 (Ω) ×H1 (Ω) ×H1 (Ω) → R be such that

ch∗ (u, v, w) :=
1

2
(c∗ (u, v, w) − c∗ (u,w, v)) − 1

2

∫

Ω∗

g (v · w)

By construction, ch∗ (·, ·, ·) is continuous, (explicitly) pseudo-skew symmetric, and
consistent with c∗ (·, ·, ·) in the sense stated in the following lemma.
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Lemma 3.2. Fix g ∈ L2 (Ω). The trilinear functional ch (·, ·, ·) is continuous; in
particular, for u, v, w in H1 (Ω) such that

∫

Ω (∇ · u) qh =
∫

Ω gq
h for all qh ∈ Qh,

ch∗ (u, v, w) ≤ Ch
L ‖u‖1,∗ ‖v‖1,∗ ‖w‖1,∗

where Ch
L = CL

(

1 +
√
d/2
)

. Write generically Ch
L := CL. Moreover,

ch∗ (u, v, v) = −1

2

∫

Ω∗

g |v|2 , ∇ · u = g ⇒ ch (u, v, w) = c (u, v, w)

Proof. Trilinearity of ch (·, ·, ·) is obvious. For continuity, first note that it is clear
that ‖g‖ ≤

√
d ‖u‖1 (indeed, consider ‖g‖ = supq∈Qh ((∇ · u, q) / ‖q‖)). Then,

ch∗ (u, v, w) =
1

2
(c∗ (u, v, w) − c∗ (u,w, v)) − 1

2

∫

Ω∗

g (v · w)

≤ CL ‖u‖1,∗ ‖v‖1,∗ ‖w‖1,∗ +
CL

2

(√
d ‖u‖1,∗

)

‖v‖1,∗ ‖w‖1,∗

The other results are obvious applications of the definition of c∗ (·, ·, ·).
We can now state the discrete NS-Brinkman problem:
Problem 3.3. (Discrete NS-Brinkman) Fix f ∈ X ′ and g ∈ L2 (Ω) satisfying

the compatibility condition Eq. (2.1). Find uδ,h ∈ V h
φh (g), pδ,h ∈ Qh satisfying

∀v ∈ Xh, a
(
uδ,h, v

)
+ b

(
v, pδ,h

)
+ ch

(
uδ,h, uδ,h, v

)
= l1 (v)

∀q ∈ Qh, b
(
uδ,h, q

)
= l2 (q)

Existence of solutions to the discrete NS-Brinkman, Problem 3.3, closely follows
the proof of for the continuous case. We conclude without further proof:

Theorem 3.4. (Well-posedness of Discrete NS-Brinkman) Under small data
conditions of Theorem 2.21, there exists a uniqe solution (uδ,h, pδ,h) ∈ (V h

φh (g) , Qh)
of the Discrete NS-Brinkman, Problem 3.3 that satisfies the same stability bound as
Theorem 2.14 with uδ, pδ, β, and CL replaced by uδ,h, pδ,h, βh, and Ch

L respectively.
Write generically βh = β and Ch

L = CL.
For low Reynold’s numbers, the convective term in NS-Brinkman is negligible.

Hence, taking ch (·, ·, ·) = 0, we consider the discrete analogue of Stokes-Brinkman.
Problem 3.5. (Discrete Stokes-Brinkman) Fix f ∈ X ′ and g ∈ L2 (Ω) satisfying

the compatibility condition Eq. (2.1). Find uδ,h ∈ V h
φh (g), pδ,h ∈ Qh satisfying

∀v ∈ Xh, a
(
uδ,h, v

)
+ b

(
v, pδ,h

)
= l1 (v)

∀q ∈ Qh, b
(
uδ,h, q

)
= l2 (q)

Existence of solutions to discrete Stokes-Brinkman, Problem 3.5, closely follows
the proof of for the continuous case. We conclude without further proof:

Theorem 3.6. (Well-posedness of Discrete NS-Brinkman) There exists a unique
(uδ,h, pδ,h) ∈ (V h

φh (g) , Qh) satisfying discrete Stokes-Brinkman, Problem 3.5. More-
over, any such solution satisfies the same stability bound as the continuous problem
shown in Theorem 2.14 with uδ, pδ, β and CL replaced by uδ,h, pδ,h, βh, and Ch

L

respectively. Write generically βh = β and Ch
L = CL.
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3.1. Convergence analysis of discrete Brinkman. We now derive error
estimates uδ,h obtained from both Problems 3.5 and (3.3). For what follows, let
(
uδ, pδ

)
∈ (Vφ (g), Q) and

(
uδ,h, pδ,h

)
∈
(

V h
φh (g), Qh

)

represent solutions of the con-

tinuous NS-Brinkman (or Stokes-Brinkman) and discrete NS-Brinkman (or Stokes-
Brinkman) problems respectively. We show that these error estimates for the discrete
Brinkman velocity uδ,h relative to the continuous Brinkman velocity uδ are uniform
with respect to penalty parameter δ → 0.

The following lemma is a technical result required in proving the error estimate.
Lemma 3.7.

inf
ṽh∈V h

φh (g)

∥
∥uδ − ṽh

∥
∥

1
≤
(

1 +

√
d

βh

)

inf
vh∈Xh

φh

∥
∥uδ − vh

∥
∥

1

Proof. Fix vh ∈ Xh
φh . By choosing a good approximation φh of boundary data

φ ∈ H1/2 (Ω) via Eq. (3.1), we ensure that ∇ ·
(
uδ − vh

)
∈ L2

0 (Ω). Hence, as a
discrete analogue of Lemma 2.6 implied by the discrete inf-sup condition, there exists

wh ∈
(
V h
)⊥

satisfying ∇ · wh = ∇ ·
(
uδ − vh

)
. Moreover,

∥
∥wh

∥
∥

1
≤ 1

βh
sup

q∈Qh

b
(
wh, q

)

‖q‖ =
1

βh
sup

q∈Qh

b
((
uδ − vh

)
, q
)

‖q‖ ≤
√
d

βh

∥
∥uδ − vh

∥
∥

1

Since ∇ ·
(
wh + vh

)
= ∇ · uδ = g, it follows that v∗h :=

(
wh + vh

)
∈ V h (g). Hence,

∥
∥uδ − v∗h

∥
∥

1
≤
∥
∥uδ − vh

∥
∥

1
+
∥
∥wh

∥
∥

1
≤
(

1 +

√
d

βh

)

∥
∥uδ − vh

∥
∥

1

This inequality holds for arbitrary vh ∈ Xh
φh , the conclusion follows.

We state the following error estimate for Stokes-Brinkman velocities.
Theorem 3.8. (Stokes-Brinkman error estimate) Suppose that

(
uδ, pδ

)
∈ (Xφ, Q)

solves Stokes-Brinkman, Problem 2.4, and uδ,h ∈ Xh
φh solves discrete Stokes-Brinkman,

Problem 3.5. Then,

∥
∥∇
(
uδ − uδ,h

)∥
∥

2 ≤ C

[

inf
qh∈Qh

(
1
ν2

∥
∥pδ − qh

∥
∥

2

fp
+ δ

ν

∥
∥pδ − qh

∥
∥

2

s

)

+ inf
vh∈Xh

φh

((
1 + 1

kp

) ∥
∥uδ − vh

∥
∥

2

1,fp
+ 1

δ

∥
∥uδ − vh

∥
∥

2

1,s

)





∥
∥uδ − uδ,h

∥
∥

2

1,s
≤ C

[

inf
qh∈Qh

((
δ
ν2

∥
∥pδ − qh

∥
∥

2

fp
+ δ2

ν

∥
∥pδ − qh

∥
∥

2

s

))

+ inf
vh∈Xh

φh

δ
((

1 + 1
kp

) ∥
∥uδ − vh

∥
∥

2

1,fp
+
∥
∥uδ − vh

∥
∥

2

1,s

)





where C is independent of ν, K, ν̃.
Proof. Fix vh ∈ V h. Note that

(
q,∇ · vh

)
= 0 for any q ∈ Qh. Then,

a
(
uδ, vh

)
+ b

(
pδ, vh

)
= l1

(
vh
)
, and a

(
uδ,h, vh

)
= l1

(
vh
)
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Fix ũh ∈ V h
φh (g). Let η := uδ − ũh, φh := ũh−uδ,h. Subtracting the above equations,

we get

a
(
φh, vh

)
= −b

(
pδ, vh

)
− a

(
η, vh

)

Take vh = φh (indeed, φh = ũh −uδ,h ∈ V h). Applying Cauchy-Schwarz and Young’s
inequalities, we obtain

∑

∗=f,p,s

ν̃∗
∥
∥∇φh

∥
∥

2

∗ +
ν

k∗
∥
∥φh

∥
∥

2

∗ = −b
(
pδ, φh

)
− a

(
η, φh

)

≤
∑

∗=f,p,s

√
d
∥
∥pδ − p̃h

∥
∥
∗

∥
∥∇φh

∥
∥
∗ + ν̃∗ ‖∇η‖∗

∥
∥∇φh

∥
∥
∗ +

ν

k∗
‖η‖∗

∥
∥φh

∥
∥
∗

≤
∑

∗=f,p,s

3d

2ν̃∗

∥
∥
∥
∥
pδ − p̃δ

h
∥
∥
∥
∥

2

∗
+
ν̃∗

6

∥
∥∇φh

∥
∥

2

∗ +
3ν̃∗

2
‖∇η‖2

∗ +
ν̃∗

6

∥
∥∇φh

∥
∥

2

∗

+
3C2

P ν

2(kf )2
‖η‖2

f +
ν

6

∥
∥∇φh

∥
∥

2

f
+
∑

∗=p,s

ν

2k∗

(

‖η‖2
∗ +

∥
∥φh

∥
∥

2

∗

)

Recall ν/ν̃s, 1/kf , and ks = δ.

ν
∥
∥∇φh

∥
∥

2

fp
+ αs

0

∥
∥φh

∥
∥

2

1,s

≤ 3d

ν

∥
∥pδ − p̃h

∥
∥

2

fp
+ 3dδ

∥
∥pδ − p̃h

∥
∥

2

s
+ 3ν

(

1 + C4
pδ +

C2
p

kp

)

‖∇η‖2
fp +

4ν

δ
‖∇η‖2

1,s

Also, recall that ν < αs
0 = minx∈Ωs {1/δ, ν/δ}. Then,

∥
∥∇φh

∥
∥

2 ≤ C
[

1
ν2

∥
∥pδ − p̃h

∥
∥

2

fp
+ δ

ν

∥
∥pδ − p̃h

∥
∥

2

s

+
(
1 + δ + 1

kp

)
‖∇η‖2

fp + 1
δ ‖∇η‖2

1,s

]

∥
∥φh

∥
∥

2

1,s
≤ C

[
δ
ν2

∥
∥pδ − p̃h

∥
∥

2

fp
+ δ2

ν

∥
∥pδ − p̃h

∥
∥

2

s

+
(
δ + δ2 + δ

kp

)
‖∇η‖2

fp + ‖∇η‖2
1,s

]

Applying the triangle inequality
∥
∥uδ − uδ,h

∥
∥

1
≤
∥
∥φh

∥
∥

1
+‖η‖1 nearly proves the claim.

However, since this holds for any p̃h ∈ Qh but only for ũh ∈ V h
φh (g), we still must

show that this holds for any ũh ∈ Xh
φh . This follows from Lemma 3.7.

We notice that the only problematic term remaining is the term

1

δ

∥
∥uδ − vh

∥
∥

2

1,s

We show that this is bounded with respect to δ → 0.
Theorem 3.9. For a suitable approximation vh ∈ Xh

φh of uδ ∈ Xφ,

1

δ

∥
∥uδ − vh

∥
∥

2

1,s
≤ C <∞

where, C is a generic constant independent of δ.
Proof. From approximation theory we have that

∥
∥uδ − vh

∥
∥

1,s
≤ C

∥
∥uδ
∥
∥

1,s
. From

Theorem 2.14 we have the stability bound
∥
∥uδ
∥
∥

2

1,s
≤ Cδ which proves the claim
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We can also conclude the following error estimate for NS-Brinkman, Problem 3.3.
Theorem 3.10. (NS-Brinkman error estimate) Suppose that the small data con-

dition Eq. (2.21) is satisfied. Then,

∥
∥uδ − uδ,h

∥
∥

2

1,s
≤ C inf

qh∈Qh

(
δ

ν2

∥
∥pδ − qh

∥
∥

2

fp
+
δ2

ν

∥
∥pδ − qh

∥
∥

2

s

)

+ inf
vh∈Xh

φh

[

δ

(

1 +
1

kp
+
Cδ,NSE

ν4
δ

)
∥
∥uδ − vh

∥
∥

2

1,fp
+

(

1 +
Cδ,NSE

ν4
δ3
)
∥
∥uδ − vh

∥
∥

2

1,s

]

and

∥
∥∇
(
uδ − uδ,h

)∥
∥

2 ≤ C inf
qh∈Qh

(
1

ν2

∥
∥pδ − qh

∥
∥

2

fp
+
δ

ν

∥
∥pδ − qh

∥
∥

2

s

)

+ inf
vh∈Xh

φh

[(

1 +
1

kp
+
Cδ,NSE

ν4
δ

)
∥
∥uδ − vh

∥
∥

2

1,fp
+

1

δ

(

1 +
Cδ,NSE

ν4
δ3
)
∥
∥uδ − vh

∥
∥

2

1,s

]

where C > 0 is independent of ν, ν̃, and K.
Proof. Fix vh ∈ V h. Note that

(
q,∇ · vh

)
= 0 for any q ∈ Qh. Then,

a
(
uδ, vh

)
+ b

(
pδ, vh

)
+ ch

(
uδ, uδ, vh

)
= l1

(
vh
)

a
(
uδ,h, vh

)
+ ch

(
uδ,h, uδ,h, vh

)
= l1

(
vh
)

Fix ũh ∈ V h
φh (g). Define η := uδ − ũh, φh := ũh−uδ,h. Expanding the nonlinear term

we obtain:

−ch
(
uδ, uδ, vh

)
+ ch

(
uδ, uδ, vh

)

= −ch
(
η, uδ, vh

)
− ch

(
φh, uδ, vh

)
− ch

(
uδ,h, η, vh

)
− ch

(
uδ,h, φh, vh

)

Subtracting the above equations, we get

a
(
φh, vh

)
= −b

(
pδ , vh

)
− a

(
η, vh

)

− ch
(
η, uδ, vh

)
− ch

(
φh, uδ, vh

)
− ch

(
uδ,h, η, vh

)
− ch

(
uδ,h, φh, vh

)

Take vh = φh (indeed, φh = ũh − uδ,h ∈ V h). Then, applying Hölder’s and Young’s
inequalities and the explicit skew-symmetry of ch∗ (·, ·, ·), we obtain

∑

∗=f,p,s

ν̃∗
∥
∥∇φh

∥
∥

2

∗ +
ν

k∗

∥
∥φh

∥
∥

2

∗

=
∑

∗=f,p,s

−b∗
(
pδ − p̃h, φh

)
− a∗

(
η, φh

)

+
∑

∗=f,p,s

−ch∗
(
η, uδ, φh

)
− ch∗

(
φh, uδ, φh

)
− ch∗

(
uδ,h, η, φh

)
− ch∗

(
uδ,h, φh, φh

)

≤
∑

∗=f,p,s

√
d
∥
∥pδ − p̃h

∥
∥
∗

∥
∥∇φh

∥
∥
∗ + ν̃∗ ‖∇η‖∗

∥
∥∇φh

∥
∥
∗ +

ν

k∗
‖η‖∗

∥
∥φh

∥
∥
∗

+
∑

∗=f,p,s

CL

(∥
∥uδ
∥
∥

1,∗ +
∥
∥uδ,h

∥
∥

1,∗

)

‖η‖1,∗
∥
∥φh

∥
∥

1,∗ + CL

∥
∥uδ
∥
∥

1,∗

∥
∥φh

∥
∥

2

1,∗

+
1

2
‖g‖p

(

CL

∥
∥∇φh

∥
∥

2

fp

)
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We have shown previously that uδ and uδ,h are bounded in H1 in Ω and Ωs (Theorem
2.21) and denoted

∥
∥uδ
∥
∥

1,s
≤

√
δ

ν

√
Cδ,NSE ,

∥
∥∇uδ

∥
∥ ≤ 1

ν

√
Cδ,NSE

Recall ν/ν̃s, 1/kf , and ks = δ. Then,

∑

∗=f,p,s

ν̃∗
∥
∥∇φh

∥
∥

2

∗ +
ν

k∗
∥
∥φh

∥
∥

2

∗

≤
∑

∗=f,p,s

4d

ν̃∗

∥
∥pδ − p̃h

∥
∥

2

∗ +
ν̃∗

16

∥
∥∇φh

∥
∥

2

∗ + 4ν̃∗ ‖∇η‖2
∗ +

ν̃∗

16

∥
∥∇φh

∥
∥

2

∗

+
∑

∗=f,p,s

(
2ν

k∗
‖η‖2

∗ +
ν

8k∗

∥
∥φh

∥
∥

2

∗

)

+
C2

LCδ,NSE

ν2

6

ν
‖∇η‖2

fp +
ν

12

(∥
∥∇φh

∥
∥

2

f
+
∥
∥∇φh

∥
∥

2

p

)

+
C2

LCδ,NSEδ
2

ν2

8

ν
‖η‖2

1,s +
ν

8δ

∥
∥φh

∥
∥

2

1,s
+
CL

2
‖g‖p

∥
∥φh

∥
∥

2

1,p

+ CL
1

ν

√

Cδ,NSE

(∥
∥∇φh

∥
∥

2

f
+
∥
∥∇φh

∥
∥

2

p

)

+ CL

√
δ

ν

√

Cδ,NSE

∥
∥φh

∥
∥

2

1,s

Also, recall that ν < αs
0 = ν/δ and kp < kf = 1/δ such that

αfp
1 = maxx∈Ωfp

{ν, ν/k (x)} ≤ ν/kp

Applying the small data condition (sufficient condition for uniqueness of solutions to
NS-Brinkman), Eq. (2.21), absorbing terms, and simplifying we obtain

αfp
0 ‖φ‖1,fp + αs

0 ‖φ‖1,s

≤ 16dδ
∥
∥pδ − p̃h

∥
∥

2

s
+

(

16
δ

ν
+ 8

ν

δ
+ 32C2

LCδ,NSE
δ2

ν3

)

‖η‖2
1,s

+
16d

ν

∥
∥pδ − p̃h

∥
∥

2

fp
+

(

32ν + 16C2
L

ν

kp
+ 24C2

LCδ,NSE
1

ν3

)

‖∇η‖2
fp

Apply the triangle inequality to obtain estimate for uδ − uδ,h (e.g.
∥
∥uδ − uδ,h

∥
∥ ≤

∥
∥φh

∥
∥+‖η‖). This nearly proves the claim. However, since this holds for any p̃h ∈ Qh

but only for ũh ∈ V h
φh (g), we still must show that this holds for any ũh ∈ Xh

φh . This
follows easily from Lemma 3.7.

3.2. Approximating slow, viscous flow around solid obstacles. We as-
sume that the Stokes equation for fluid flow in Ωf be the true flow velocity:

Problem 3.11. (Stokes) Find (u, p) ∈ Xf,φ ×Q where

Xf,φ :=
{
v ∈ H1 (Ωf ) : v|∂Ω = φ and v|∂Ωs = 0

}

with boundary data u|∂Ω = φ ∈ H1/2 (∂Ω) and u|∂Ωs = 0 such that τ (u, p) ∈ L2 (∂Ωs)
satisfying

∀v ∈ H1 (Ω) ,
∫

Ωf
ν∇u : ∇v −

∫

Ωf
p∇ · v +

∫

∂Ωs
(τ (u, p) · n̂) · v = 〈f, v〉

∀q ∈ L2
0 (Ω) ,

∫

Ωf
q∇ · u = 0
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where

τ (u, p) · n̂ := ν∇u · n̂− pn̂

Note that g ≡ 0 here. Also, we only require velocity test functions to vanish on ∂Ω
and not on ∂Ωs. Hence, we require the inclusion of the boundary integral to properly
model Stokes flow around solid obstacles.

In order to establish well-posedness of solutions to this variational Stokes problem,
we insist that solutions satisfy (u, p) ∈ H2 (Ωf ) ×H1 (Ωf ) and with extension u ≡ 0,
p ≡ 0 on Ωs, that (u, p) ∈ H1

0 (Ω) × L2 (Ω). This will be guaranteed for polygonal
boundaries ∂Ω, ∂Ωs and f ∈ L2 (Ω).

Consider approximations to this flow given by the discrete Stokes-Brinkman equa-
tion,

(
uδ,h, pδ,h

)
∈ H1

0 (Ω) × L2
0 (Ω) solving Problem 3.5. First, we construct a priori

estimates for u in Ωf and uδ,h in Ωs.

Lemma 3.12. For f ∈ L2 (Ω), any solution u of the variational Stokes problem
such that σ (u, p) ∈ L2 (∂Ωs) satisfies

‖∇u‖Ωf
≤ C

1

ν
‖f‖f

Here, C > 0 is a constant depending solely on the domain geometry.

Proof. Taking v = u in the variational Stokes equation, the result follows easily.

Proposition 3.13. Fix 0 < δ << 1. Assume ks
min, ks

max = δ and ν̃s = ν/δ.
Any solution uδ,h of the discrete Stokes-Brinkman problem satisfies

1

δ

∥
∥∇uδ,h

∥
∥

2

s
+
ν

δ

∥
∥uδ,h

∥
∥

2

s
≤ C

(
1

ν2
‖f‖2

f +
δ

ν2
‖f‖2

s +
1

ν
γ ‖φ‖H1/2(∂Ω)

)

Proof. Follows from work in previous section.

We want to exploit the relationship between approximations uδ,h to Stokes-
Brinkman in Ω and solutions to the Stokes equations u in Ωf with extension u|Ωs ≡ 0.
To this end, we reference Angot’s fundamental paper [2] in which he provides a clever
proof to establish a sharp estimate for

∥
∥uδ − u

∥
∥

1
where uδ is the solution to continu-

ous Stokes-Brinkman in Ω. We state the theorem here in a slightly modified form to
extract exact dependency of estimate on problem data.

Theorem 3.14. (Angot) Fix 0 < δ << 1. Assume ks
min, ks

max = δ and ν̃s = ν/δ.
Let (u, p) be a solution of the Stokes problem.

∥
∥uδ − u

∥
∥

1
≤ C

δ

ν

(

‖f‖+ ‖τ‖H1/2(∂Ωs)

)

where we write τ := τ (u, p) and C > 0 is a constant independent of problem data ν,
ν̃, K, f , φ.

Proof. Fix 0 < δ < 1. Let ν̃f = ν, ν̃s = ν/δ, kf = 1/δ, and ks = δ. Start with
the variational Brinkman problem: find uδ ∈ V satisfying a

(
uδ, v

)
= 〈f, v〉 for all

v ∈ V . Subtracting the variational Stokes problem from this, writing w = uδ − u we

24



have
∫

Ωf

|∇w|2 +
1

δ

∫

Ωs

|∇w|2 + δ

∫

Ωf

|w|2 +
1

δ

∫

Ωs

|w|2

=
1

ν

∫

Ωs

f · w − 1

ν

∫

∂Ωs

(τ (u, p) · n̂) · w − δ

∫

Ωf

u · w

≤ 1

ν2

δ

2
‖f‖2

s +
1

2δ
‖w‖2 +

C

ν2

δ

2
‖τ (u, p)‖2

H1/2(∂Ωs)

+
1

2δ
‖∇w‖2

s +
δ

2
‖u‖2

f +
δ

2
‖w‖2

f

Here, we bounded the right-hand side by successive applications of the Cauchy-
Schwarz and Young inequalities. Absorbing terms right to left sides we obtain

∥
∥∇
(
uδ − u

)∥
∥

2

1
≤ Cδ

(
1
ν2 ‖f‖2

+ 1
ν2 ‖τ‖2

H1/2(∂Ωs)

)

∥
∥uδ − u

∥
∥

1,s
≤ Cδ2

(
1
ν2 ‖f‖2

+ 1
ν2 ‖τ‖2

H1/2(∂Ωs)

)

To recover optimal convergence in H1 (Ω) (i.e. to match the O (δ) convergence
rate obtained in H1 (Ωs)), the idea is to avoid Young’s inequality and hence bound
the left-hand side by a factor of ‖w‖1. To this end, Angot considers the following
auxiliary problem: Find (ω, θ), where we write ωs := ω|Ωs , ωf := ω|Ωf

, θs := p∗|Ωs ,
and θf := p∗|Ωf

, satisfying

− ν∆ωs + ∇θs + νωs = fs, ∇ · ωs = 0, in Ωs

τ (ωs, θs) · n̂|∂Ωs = τ (u, p) · n̂|∂Ωs

and

− ν∆ωf + ∇θf = 0, ∇ · ωf = 0, in Ωf

ωf |∂Ω = 0, ωf |∂Ωs = ωs|∂Ωs

The problem in Ωf is obviously well-posed from classical Stokes theory. The well-
posedness of problem in Ωs is more subtle due to the boundary conditions on ∂Ωs.
Considering the variational problem for ωs and ωf and the decomposition uδ = u+
δω− z, a weak formulation for z can be established and through usual techniques, we
can recover an energy equation for z

‖∇z‖2
f +

1

δ
‖∇z‖2

s + δ ‖z‖2
f +

1

δ
‖z‖2

s

= δ

∫

Ωf

∇ω : ∇z + δ

∫

Ωf

u · z + δ2
∫

Ωf

ω · z

≤
(

δ ‖∇ω‖f + δ ‖u‖f + δ2 ‖ω‖f

)

‖∇z‖1,f

We note in addition to Angot’s work, that

‖∇ω‖f ≤ C ‖ωs‖1 ≤ 1

ν
‖f‖s +

1

ν
‖τ (u, p)‖H1/2(∂Ωs)

So, it follows that, with an application of Poincare-Friedrich’s inequality,

∥
∥uδ − u

∥
∥

1
≤ δ ‖ω‖1 + ‖z‖1 ≤ C

δ

ν

(

‖f‖ + ‖τ‖H1/2(∂Ωs)

)
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h
∥
∥uδ,h − uδ

∥
∥

∣
∣uδ,h − uδ

∣
∣
1

Rate (H1)

0.09428 3.2033e-6 4.2548e-3 —
0.04714 4.0143e-7 1.0663e-4 5.3
0.02357 5.0215e-8 2.6674e-5 2.0
0.01179 6.2781e-9 6.6696e-6 2.0

Table 4.1

Convergence rate data for the first experiment

Now we can conclude the following

Theorem 3.15. Let the finite element discretization conform to obstacle bound-
aries such that for any Eh ∈ Th either Eh ∈ Ωf or Eh ∈ Ωs. Let u be a solution of the
Stokes problem in Ωf extend to 0 in Ωs, u

δ a solution of the Stokes-Brinkman problem
in Ω, and uδ,h a solution of the discrete Stokes-Brinkman problem in Ω. Then,

∥
∥uδ,h − u

∥
∥

1
≤ C

δ

ν

(

‖f‖ + ‖τ‖H1/2(∂Ωs)

)

+
∥
∥uδ − uδ,h

∥
∥

1

where bound for
∥
∥uδ − uδ,h

∥
∥

1
is given in Theorem 3.8.

Proof. Apply the triangle inequality and estimate from Theorem 3.14.

4. Numerical results. We consider three distinct numerical experiments in this
section. First, we confirm the convergence rate (h → 0) for NS-Brinkman suggested
in Section 3.1. Next, we demonstrate the robust capability of our proposed FE-
discretization of NS-Brinkman to handle a source and non-homogeneous boundary
conditions (∇ · u 6= 0 and

∫

∂Ω u · n̂ 6= 0). Lastly, we consider flow past a non-uniform
array of solid obstacles to test the rate of convergence (h, δ → 0) for Stokes-Brinkman
to Stokes with no-slip velocity condition imposed at each obstacle interface.

We utilize Taylor-Hood mixed finite elements (piecewise quadratics for velocity
and piecewise linear pressure) for the discretization. Note that the optimal conver-
gence rate for steady Navier-Stokes and Stokes velocity approximations is of order
O(h2) in H1 (Ω) and O(h3) in L2 (Ω). We use a Picard iteration to solve the non-
linear NS-Brinkman equation: i.e. set u(0) = 0, solve for u = u(n+1) lagging the
convective term by u(n) · ∇u(n+1). We use the FreeFem++ software for each of our
simulations.

Experiment 1: For the first experiment, we consider Ω = [0, 1]2 with Ωp =
([0, 0.5] × [0, 0.5]) ∪ ([0.5, 1] × [0.5, 1]), ν = 10−2, δ = 10−2, ν̃p = ν/δ, ν̃f = ν,
Kf = 1/δ, Kp = δ and true velocity and pressure given by

u =

[
0.01πsin(πx)cos(πy)
−0.01πcos(πx)sin(πy)

]

, p = 0.25 (x− 0.5) (y − 0.5)

Note that since the velocity is smooth and K, ν̃ are discontinuous, it follows that f
must be discontinuous.

A uniform triangular mesh is used. The results for this experiment are compiled
in Table 4.1. Notice that the H1-convergence rate is optimal O(h2) supporting the
basic effectiveness of the proposed FE-discretization of the NS-Brinkman equation
and confirming the predictions of the convergence analysis.
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Experiment 2: Now we consider Ω = [0, 2] × [0, 1], ν = 10−2, ν̃s = 1/δ, Kf =
1/δ, Ks = δ. Here, we consider a 0.2×0.2 source g = 1 centered in the domain Ω and
the resulting flow around two square obstacles as shown in Figure 4.1 with imposed
Dirichlet boundary conditions

Fig. 4.1. Experiment 2: (top) problem domain, dark squares represent solid obstacles, (bottom)
NS-Brinkman velocity approximation

u|x=0 = −0.12y(1− y), u|x=2 = 0.12y(1− y), uy=0,1 = 0

A uniform triangular mesh is used. The velocity plot in Figure 4.1 shows the
NS-Brinkman approximation to the proposed flow for Experiment 2 corresponding
with our intuition. To quantify the accuracy of the approximation, we list the L2

norm of uδ,h in Ωs and H1 semi-norm in Ωs and Ω for several combinations of h and
δ-values in Table 4.2. Notice that

∥
∥uδ,h

∥
∥ and

∣
∣uδ,h

∣
∣
1,s

converge at a rate O(δ) for

each indicated h. This is better than the O(
√
δ) suggested by our theory. Also note

that
∣
∣uδ,h

∣
∣
1

remains bounded (relatively constant in fact) with h and δ.
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h
∥
∥uδ,h

∥
∥

s

∣
∣uδ,h

∣
∣
1,s

∣
∣uδ,h

∣
∣
1

δ = 10−5 0.1414 4.6299e-5 2.1236e-6 0.2973
0.07071 4.7124e-5 2.3095e-6 0.2992

δ = 10−10 0.1414 4.6543e-10 2.1334e-11 0.2980
0.07071 4.4738e-10 2.3206e-11 0.2999

δ = 10−15 0.1414 4.6543e-15 2.1335e-16 0.2980
0.07071 4.7377e-15 2.3296e-16 0.2999

Table 4.2

Convergence rate data for the second experiment; δ = 10−15, h = 0.07071

h
∥
∥uδ,h − u

∥
∥ Rate L2

∣
∣uδ,h − u

∣
∣
1

Rate H1

δ = 10−5 0.09428 2.6968e-2 — 1.4324e-0 —
0.04714 1.1757e-2 1.2 8.6499e-1 0.73
0.02357 7.0509e-3 0.74 4.9880e-1 0.79

δ = 10−10 0.09428 2.4180e-2 — 1.4413e-0 —
0.04714 7.9136e-3 1.6 8.8644e-1 0.70
0.02357 2.0529e-3 1.9 4.8989e-1 0.86

δ = 10−15 0.09428 2.4180e-2 — 1.4413e-0 —
0.04714 7.9154e-3 1.6 8.6437e-1 0.74
0.02357 2.0529e-3 1.9 4.8989e-1 0.82

Table 4.3

Convergence rate data for the third experiment

Experiment 3: Lastly, we consider the relation between the velocity field pre-
dicted by Stokes-Brinkman and that predicted by Stokes with no-slip boundary con-
dition imposed at each solid interface. We consider Ω = [0, 2]× [0, 1], ν = 102, f = 0,
g = 0, ν̃s = 1/δ, Kf = 1/δ, Ks = δ. Here, we consider the non-uniform array of
square obstacles as shown in Figure 4.2 with imposed Dirichlet boundary conditions

u|x=0 = y(1 − y), u|x=2 = y(1 − y), uy=0,1 = 0

The Stokes velocity used for comparison is obtained by approximating the Stokes
equation with the Taylor-Hood mixed finite elements for pressure and velocity with
a fine mesh, hmax = 0.018760. The mesh is constructed by FreeFem++ based on the
Delaunay triangulation. We solve Stokes-Brinkman on a coarser, uniform triangular
mesh. As illustrated in Table 4.3, there appears to be a degradation in the convergence
rate of uδ,h → u in L2 as h → 0 for larger δ = 10−5. For δ = 10−10 and 10−15, the
Stokes-Brinkman velocity appears to converge to the Stokes velocity with h→ 0 twice
as fast in the L2 norm than H1 semi-norm, as one would expect. Our results compiled
in Table 4.4 also indicates that uδ,h → 0 in Ωs as δ → 0 at a rate O(δ). This suggests,
once again, a rate of convergence with respect to δ greater than predicted by our
theory.

5. Conclusion. The Brinkman model for fluid flow is simple to implement and
integrate into existing computing platforms. The uniform stability of Brinkman ve-
locities as δ → 0 suggests that the finite element Brinkman approximations are de-
pendably accurate representations of Stokes and Navier-Stokes flows, but avoids the
cumbersome and often times infeasible task of enforcing no-slip boundary conditions
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Fig. 4.2. Experiment 3: Squares in top plot represent outlines of solid obstacles, (top) Stokes
velocity approximation, streamlines , (bottom) Stokes-Brinkman velocity approximation, streamlines

δ = 10−5 δ = 10−10 δ = 10−15
∥
∥uδ,h

∥
∥

s
= 2.0353e-3 2.0983e-08 2.0983e-13

∣
∣uδ,h

∣
∣
1,s

= 7.8208e-5 8.0846e-10 8.0846e-15
Table 4.4

Convergence rate data for the third experiment; h = 0.02357

on all interior solid obstacle boundaries.
We have shown sufficient (non-trivial) conditions require for well-posedness of

non-solenoidal flows (∇ · uδ 6= 0). Moreover, we have shown that the finite element
velocity uδ,h of the NS-Brinkman model converges in H1(Ωs) at a rate O(

√
δ) as

δ → 0 and has optimal convergence behavior (approximation theory) in H1(Ω) as
h → 0 and uniform as δ → 0. Our numerical experiments confirm, for Taylor-Hood
elements, velocity rates of convergence O(δh2) in H1(Ωs) and O(h2) in H1(Ω), both
uniform as δ → 0.

Motivated by the ambitious task of accurately modeling the flow of fluids in gas-
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cooled, pebble-bed nuclear reactors, we are interested in extending the Brinkman
model to the case of compressible fluids and coupling Brinkman flow with the equa-
tions of convective and radiative heat transfer. Our preliminary finite element analysis
for the steady NS-Brinkman provides encouragement for these advances.
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