
SECOND ORDER IMPLICIT FOR LOCAL EFFECTS AND EXPLICIT FOR
NONLOCAL EFFECTS IS UNCONDITIONALLY STABLE
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Abstract. A family of implicit-explicit second order time-stepping methods is analyzed for a system of ODEs motivated
by ones arising from spatial discretizations of evolutionary partial differential equations. The methods we consider are
implicit in local and stabilizing terms in the underlying PDE and explicit in nonlocal and unstabilizing terms. Unconditional
stability and convergence of the numerical scheme are proved by the energy method and by algebraic techniques. This is
the first solution to the problem of finding a scheme for (1.1) that is (provably) unconditionally stable and treats the Cu
term explicitly. First order schemes were known in [2, 10] and [10] gives a second order scheme stable provided all operators
commute.
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1. Introduction. In this report we consider the system of ordinary differential equations of the form

u′(t) +Au(t)− Cu(t) +B(u)u(t) = f(t), (1.1)

in which A,B(u) and C are n× n matrices, u(t) and f(t) are n-vectors, and

A = AT � 0, B(u) = −B(u)T , C = CT < 0 and A− C � 0. (1.2)

Here � and < denote the positive definite and positive semidefinite, respectively. The key properties
motivating the analysis are that A is sparse and that although C is not sparse, the action of C on a vector
is inexpensive to calculate. This structure is motivated by multiscale discretizations of turbulence, but
can also arise from closed-loop control problems and ensemble calculations. Given this structure of (1.1),
the simplest scheme that is computationally feasible is explicit in the global, unstable part of (1.1), that
is, Cu. Our study extends the work in [2], where the implicit-explicit [3, 1, 4, 16, 17] first order method

un+1 − un
∆t

+Aun+1 − Cun +B(un)un+1 = fn+1 (1.3)

was proved to be unconditionally stable. Here we analyze the stability of a family of three level, second
order time stepping schemes:

(θ + 1
2 )un+1 − 2θun + (θ − 1

2 )un−1

∆t
(1.4)

+ (A− C)
1
2A(A− C)−

1
2 (θun+1 + (1− θ)un)− (A− C)

1
2C(A− C)−

1
2 ((θ + 1)un − θun−1)

+B(En+θ)(A−C)−
1
2

(
θA(A−C)−

1
2un+1 +

(
(1−θ)A−(θ + 1)C

)
(A−C)−

1
2un + C(A−C)−

1
2 θun−1)

)
= fn+θ,

where En+θ = (θ + 1)un − θun−1 is an explicit second order approximation of un+θ. The parameter
θ ∈ [ 1

2 , 1], yielding for θ = 1
2 the IMEX Crank-Nicolson with linear extrapolation

un+1 − un
∆t

+ (A− C)
1
2A(A− C)−

1
2
un+1 + un

2
− (A− C)

1
2C(A− C)−

1
2
(

3
2un −

1
2un−1

)
(1.5)

+B(En+θ)(A− C)−
1
2

(
1
2A(A− C)−

1
2un+1 +

(
1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1

)
= fn+1,
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while θ = 1 corresponds to BDF2 with linear extrapolation

3un+1−4un+un−1

2∆t
+ (A− C)

1
2A(A− C)−

1
2un+1 − (A− C)

1
2C(A− C)−

1
2 (2un−un−1) (1.6)

+B(En+θ)(A− C)−
1
2
(
A(A− C)−

1
2un+1−2C(A− C)−

1
2un+C(A− C)−

1
2un−1

)
= fn+1.

In Theorem 2.3 we prove by energy methods that, under assumptions (1.2), the methods (1.4) are also
unconditionally stable.

Remark 1.1. Unfortunately, in its present form, the method proposed is more appropriate for spectral
methods, where the evaluation of (A− C)−

1
2 is undemanding. Nonetheless, it is the first attempt to solve

the open problem (see Remark 1.3 below) of proving by energy estimates the unconditional stability of
second-order schemes in the general case of non-commuting matrices [2, 10].

Remark 1.2. If the matrices A and C commute, then the computation of the inverse matrix (A−C)−
1
2

is replaced by an extra solve of a linear system at each time step. Indeed, the method (1.4) becomes

(θ + 1
2 )un+1 − 2θun + (θ − 1

2 )un−1

∆t
+ θAun+1 +

(
(1− θ)Aun − (θ + 1)C

)
un + θCun−1 (1.7)

+B(En+θ)
(
θA(A−C)−1un+1 +

(
(1−θ)A−(θ + 1)C

)
(A−C)−1un + θC(A−C)−1un−1)

)
= fn+θ,

and therefore it can be written as:

(i) solve for vn+1:

(A− C)
( (θ + 1

2 )vn+1 − 2θvn + (θ − 1
2 )vn−1

∆t
+ θAvn+1 +

(
(1− θ)Avn − (θ + 1)C

)
vn + θCvn−1

)
+B(En+θ)

(
θAvn+1 +

(
(1−θ)A−(θ + 1)C

)
vn + θCvn−1)

)
= fn+θ,

(ii) solve for un+1:

(A− C)vn+1 = un+1.

Remark 1.3. There is a an open question in J.-G. Liu’s paper [10] on the stability proof, using energy
estimates, for the second order IMEX scheme for the pressure projections equation formulation applied to
the Stokes equation. The approximation uses second order Adams-Bashforth on the pressure term and
Crank-Nicholson for the discretization of the viscous term, namely

vn+1 − vn

∆t
− ν∆

vn+1 + vn

2
+ νB

3vn − vn−1

2
= 0.

Here B = ∂y(∆N∆ − I)∂y denotes the pressure operator, and is dominated by −∆, see [10, observations
(3.9)-3.10], therefore falling under our assumptions. Moreover, B commutes with the Laplacian ∆, also
allowing a proof by normal modes. Taking θ = 1

2 , A := −ν∆, C := −νB, B = 0, with the proper
adjustments of notation, Theorem 2.3 gives a positive answer to the problem in [10].

Open problem 1. Is there a second-order unconditionally stable method that does not necessitates
the evaluation of the inverse matrix (A− C)−

1
2 ?

We remark that the study of (1.1) can be partially motivated by the following problems.
Turbulent dispersion The basic model of the turbulent dispersion is that it is dissipative in the mean

(see [15]). A more accurate formulation is that its dissipative effects are focused on the smallest resolved
scales (see [9]). This physical idea has led to algorithms for numerical stabilization of transport-dominated
phenomena based on eddy diffusivity acting only on the smallest resolved scales (e.g., [11, 6, 5]). The
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natural realization of this idea for spatial discretizations of convection diffusion equations is, diffusive
stabilization on all scales and then antidiffusing on the large scales. This leads to the system of ODEs

·
uij(t) + b · ∇huij − (ε0(h) + ν)∆huij + ε0(h)PH(∆hPH(uij)) = fij , (1.8)

where standard notation is used: ∆h is the discrete Laplacian, ε(h) is the artificial viscosity parameters
and PH denotes a projection onto a coarser mesh. The system (1.8) fits exactly the form (1.1), (1.2), where
C is provided as the matrix arising from ε0(h) term.

Spatial regularization Consider a regularizing operator Gh : X → Vh that satisfies 〈Gh(v), v〉 ≤ ‖v‖2.
Such examples include the discrete differential and discrete Stokes differential filters, nonlinear filters, VMS
regularization operator, and approximate deconvolution operator (see e.g. [13] and references therein for
more details). Then (1.1) can be obtained by spatial discretization of

u′(t) + u · ∇u− (ν + ε(h))∆u+ ε(h)∆Gh(u) +∇π = f,
∇ · u = 0, in Ω× (0, T ).

Lions’ hyperviscosity model [14]

u′(t) + u · ∇u− ν(∆ + ε(−∆)α)u+ ε(−∆)αu+∇π = f,
∇ · u = 0, in Ω× (0, T ).

Nonlinear viscosity models: modified NSE of Ladyzhenskaya [12] and Smagorinsky (with p = 3):

u′(t) + u · ∇u−∇ · (ν∇u+ εδ|∇u|p−2∇u) +∇ · (εδ|∇u|p−2∇u) +∇π = f,
∇ · u = 0, in Ω× (0, T ).

Nonlinear spectral eddy-viscosity models of turbulence [7]

u′(t) + u · ∇u− (ν∆+ε(−∆)αQ)u+ε(−∆)αQu+∇π = f,
∇ · u = 0, in Ω× (0, T ).

and

u′(t) + u · ∇u− (ν∆u+ εQ∇ · (|∇Qu|p−2∇Qu)) + εQ∇ · ((|∇Qu|p−2∇Qu)) +∇π = f,
∇ · u = 0,

in Ω × (0, T ), where Q is a high-pass filter, erasing all the low-frequency modes of the input (damping is
applied only to the high frequency part of the solution).

2. Stability Analysis. In what follows, we use the same notation for the inner product in Rn×n and
R2n×2n, namely 〈·, ·〉. First let note that by multiplication with

(A−C)−
1
2

(
θA(A−C)−

1
2un+1+

(
(1−θ)A−(θ+1)C

)
(A−C)−

1
2un+θC(A−C)−

1
2un−1

)
,

the diffusive term in (1.4) gives〈
(A− C)

1
2

(
θA(A− C)−

1
2un+1 +

(
(1− θ)A− (θ + 1)C

)
(A− C)−

1
2un − θC(A− C)−

1
2un−1

)
,

, (A−C)−
1
2

(
θA(A−C)−

1
2un+1+

(
(1−θ)A−(θ+1)C

)
(A−C)−

1
2un+θC(A−C)−

1
2un−1

)〉
= ‖θA(A− C)−

1
2un+1 +

(
(1− θ)A− (θ + 1)C

)
(A− C)−

1
2un − θC(A− C)−

1
2un−1‖2, (2.1)
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while the convective term vanishes. Next we define the symmetric positive matrix F ∈ Rn×n by

F = (A−C)−
1
2
(
θ(2θ−1)A+θ(2θ+1)C

)
(A−C)−

1
2 , (2.2)

and the symmetric matrix G ∈ R2n×2n as follows

G=

−(A−C)−
1
2

(
θ(2θ+3)

4 A− θ(2θ+1)
4 C

)
(A−C)−

1
2 −(A−C)−

1
2

(
(θ+1)(2θ−1)

4 A+ (1−θ)(2θ+1)
4 C

)
(A−C)−

1
2

−(A−C)−
1
2

(
(θ+1)(2θ−1)

4 A+ (1−θ)(2θ+1)
4 C

)
(A−C)−

1
2 −(A−C)−

1
2

(
θ(2θ−1)

4 A+ θ(−2θ+3)
4 C

)
(A−C)−

1
2

 .

(2.3)

We denote by
∥∥∥[u
v

]∥∥∥2

G
the following scalar function of the 2n vector

[u
v

]
:

∥∥∥[u
v

]∥∥∥2

G
=
〈[
u
v

]
, G
[
u
v

]〉
, (2.4)

whose values could be negative.

Lemma 2.1. Under the assumption (1.2), for any vectors u, v ∈ RN , we have

〈[u
v

]
, G
[u
v

]〉
= 2θ+1

4 uTu+ −2θ+1
4 vT v (2.5)

+ (θ+1)(2θ−1)
2 (u− v)T (u− v)+ θ

2 (u− v)T (A−C)−
1
2C(A−C)−

1
2 (u− v)

≥ 2θ+1
4 ‖u‖

2 − 2θ−1
4 ‖v‖

2.

Proof. The identity (2.5) follows from algebraic manipulations, while the inequality yields from the
positive-definiteness of (A−C)−

1
2C(A−C)−

1
2 .

We note that for θ = 1
2 the matrix G defined in (2.3) is symmetric and positive definite, and therefore

the expression defined in (2.4) is a G-norm.

Lemma 2.2. Let un satisfy (1.4) for all n ∈ {2, . . . , T∆t}. Then

1
∆t

〈(
θ + 1

2

)
un+1 − 2θun +

(
θ − 1

2

)
un−1 ,

, (A−C)−
1
2

(
θA(A−C)−

1
2un+1+

(
(1−θ)A−(θ+1)C

)
(A−C)−

1
2un+θC(A−C)−

1
2un−1

)〉
=

1
∆t

∥∥∥[un+1

un

]∥∥∥2

G
− 1

∆t

∥∥∥[ un
un−1

]∥∥∥2

G
+

1
4∆t
‖un+1−2un+un−1‖2F. (2.6)

Proof. The form of G-matrix (2.3) and the G-stability result (2.6) follows from standard calculations,
see e.g. [8, Chapter V.6] and references therein.

Theorem 2.3. Assuming that (1.2) holds, let un satisfy (1.4), with u0, u1 given, and θ ∈ [ 1
2 , 1]. Then
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the following equality holds

1
∆t

∥∥∥[ uN
uN−1

]∥∥∥2

G
+

1
4∆t

N−1∑
n=1

‖un+1 − 2un + un−1‖2F (2.7)

+
N−1∑
n=1

‖θA(A− C)−
1
2un+1 +

(
(1− θ)A− (θ + 1)C

)
(A− C)−

1
2un + θC(A− C)−

1
2un−1‖2

=
1

∆t

∥∥∥[u1

u0

]∥∥∥2

G

+
N−1∑
n=1

〈
fn+θ, (A−C)−

1
2

(
θA(A−C)−

1
2un+1+

(
(1−θ)A−(θ+1)C

)
(A−C)−

1
2un+θC(A−C)−

1
2un−1

)〉
,

and the energy estimate

‖uN‖2 + 1
2θ+1

N−1∑
n=1

‖un+1 − 2un + un−1‖2F (2.8)

+ 2
2θ+1∆t

N−1∑
n=1

‖θA(A−C)−
1
2un+1 +

(
(1− θ)A− (θ + 1)C

)
(A−C)−

1
2un + θC(A−C)−

1
2un−1‖2

≤
(

2θ−1
2θ+1

)N‖u0‖2 + 2
∥∥∥[u1

u0

]∥∥∥2

G
+ ∆t

N−1∑
n=1

‖(A−C)−
1
2 fn+θ‖2.

Proof. The estimate (2.7) is a straightforward consequence of (2.1) and Lemma 2.2. Using the Cauchy-
Schwarz and Young inequalities, we have that the forcing term in (2.7) can be bounded as follows〈
fn+θ, (A−C)−

1
2

(
θA(A−C)−

1
2un+1+

(
(1−θ)A−(θ+1)C

)
(A−C)−

1
2un+θC(A−C)−

1
2un−1

)〉
≤ 1

2
‖(A−C)−

1
2 fn+θ‖2 +

1
2
‖θA(A−C)−

1
2un+1+

(
(1−θ)A−(θ+1)C

)
(A−C)−

1
2un+θC(A−C)−

1
2un−1‖2,

which gives∥∥∥[ uN
uN−1

]∥∥∥2

G
+

1
4

N−1∑
n=1

‖un+1 − 2un + un−1‖2F

+
∆t
2

N−1∑
n=1

‖θA(A−C)−
1
2un+1 +

(
(1− θ)A− (θ + 1)C

)
(A−C)−

1
2un + θC(A−C)−

1
2un−1‖2

≤
∥∥∥[u1

u0

]∥∥∥2

G
+

∆t
2

N−1∑
n=1

‖(A−C)−
1
2 fn+θ‖2.

Using (2.5) we obtain

‖uN‖2 +
1

2θ + 1

N−1∑
n=1

‖un+1 − 2un + un−1‖2F

+
2

2θ + 1
∆t

N−1∑
n=1

‖θA(A−C)−
1
2un+1 +

(
(1− θ)A− (θ + 1)C

)
(A−C)−

1
2un + θC(A−C)−

1
2un−1‖2

≤ 2θ − 1
2θ + 1

‖uN−1‖2 +
4

2θ + 1

∥∥∥[u1

u0

]∥∥∥2

G
+

2
2θ + 1

∆t
N−1∑
n=1

‖(A−C)−
1
2 fn+θ‖2,

which by induction completes the proof.
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3. Consistency and convergence. With Etn+θ = (θ + 1)u(tn) − θu(tn−1), corresponding to En+θ

the explicit approximation of u(tn+θ), the local truncation error for (1.4) is

τn+1(∆t) =
(θ + 1

2 )u(tn+1)− 2θu(tn) + (θ − 1
2 )u(tn−1)

∆t
− u′(tn+θ)

+ (A−C)
1
2A
(
θ(A−C)−

1
2u(tn+1) + (1− θ)(A−C)−

1
2u(tn)− (A−C)−

1
2u(tn+θ)

)
− (A−C)

1
2C
(
(θ + 1)(A−C)−

1
2u(tn)− θ(A−C)−

1
2u(tn−1)− (A−C)−

1
2u(tn+θ)

)
+
(
B(Etn+θ)−B(u(tn+θ))

)
(A−C)−

1
2

(
A(A−C)−

1
2 (θ(A−C)−

1
2u(tn+1)+(1−θ)(A−C)−

1
2u(tn)

)
− C

(
(θ+1)(A−C)−

1
2u(tn)−θ(A−C)−

1
2u(tn−1)

))
+B(u(tn+θ))

[
(A−C)−

1
2

(
A(θ(A−C)−

1
2u(tn+1)+(1−θ)(A−C)−

1
2u(tn)

)
− C

(
(θ+1)(A−C)−

1
2u(tn)−θ(A−C)−

1
2u(tn−1)

))
− (A−C)−

1
2u(tn+θ)

]
.

Theorem 3.1. Assume that (1.2) holds and f ∈ C1([0, T ]), u ∈ C2([0, T ]). Then the local truncation
error is O(∆t2), the methods (1.4) are convergent, and if e0 = e1 = 0 the global error satisfies

‖eN‖2 ≤
4

2θ + 1
exp( 2θ−1

2θ+1 + 8
2θ+1Tκ‖(A− C)−

1
2 ‖2)‖(A− C)−

1
2 ‖2U2∆t4,

where

U = max
[tn−1,tn+1]

‖u′′(t)‖2
θ
(
θ3 + (1 + θ)3

)
3

+ max
[tn−1,tn+1]

‖(A−C)−
1
2A(A−C)−

1
2u′(t)‖2

θ(1− θ)
2

+ max
[tn−1,tn+1]

‖(A−C)−
1
2C(A−C)−

1
2u′(t)‖2

2θ3 + θ2 + 1
2

+ max
[tn−1,tn+1]

∥∥∥ ddtB(u(·))
∥∥∥

2
max

[tn−1,tn+1]
‖u(·)‖2

max{θ(1− θ), 2θ3 + 2θ2 + 1}
2

+ max
[tn−1,tn+1]

∥∥∥ ddtB(u(·))
∥∥∥

2
max

[tn−1,tn+1]
‖(A−C)−

1
2A(A−C)−

1
2u′(·)‖2

θ(1− θ)
2

∆t2

+ max
[tn−1,tn+1]

∥∥∥ ddtB(u(·))
∥∥∥

2
max

[tn−1,tn+1]
‖(A−C)−

1
2C(A−C)−

1
2u′(·)‖2

2θ3 + θ2 + 1
2

∆t2

+ max
[tn,tn+1]

‖B(u(·))‖2 max
[tn,tn+1]

‖(A−C)−
1
2A(A−C)−

1
2u′(·)‖2

θ(1− θ)
2

+ max
[tn,tn+1]

‖B(u(·))‖2 max
[tn−1,tn+1]

‖(A−C)−
1
2C(A−C)−

1
2u′(·)‖2

2θ3 + θ2 + 1
2

.

Proof. Using the Taylor expansion around tn+θ := tn + θ∆t we obtain

‖τn+1(∆t)‖2 ≤ U∆t2 (3.1)
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which proves the consistency of methods (1.4). The error en = u(tn)− un satisfies

(θ + 1
2 )en+1 − 2θen + (θ − 1

2 )en−1

∆t
(3.2)

+ (A−C)
1
2A(A−C)−

1
2 (θen+1 + (1− θ)en)− (A−C)

1
2C(A−C)−

1
2 ((θ + 1)en − θen−1)

+B(En+θ)(A−C)
1
2

(
A(A−C)−

1
2
(
θen+1 + (1− θ)en

)
− C(A−C)−

1
2
(
(θ + 1)en − θen−1

))
= τn+1(∆t)

−
(
B(Etn+θ)−B(En+θ)

)
(A−C)−

1
2

(
A(A−C)−

1
2
(
θu(tn+1) + (1− θ)u(tn)

)
− C(A−C)−

1
2
(
(θ + 1)u(tn)− θu(tn−1)

))
.

From (2.8) we have

‖un‖2 ≤ Λ1 :=
(
‖u0‖2 + 2

∥∥∥[u1

u0

]∥∥∥2

G
+ T‖(A−C)−

1
2 ‖2 max

t∈[0,T ]
‖f(t)‖2

) 1
2 ∀n = 1, . . . , N,

also from (1.1) we obtain

‖u(t)‖2 ≤ Λ2 :=
(
‖u(0)‖2 +

∫ T

0

‖(A− C)−1f(s)‖2ds
) 1

2
,

and let define

Λ3 = max
n=1,...,N

‖(A−C)−
1
2

(
A(A−C)−

1
2
(
θu(tn+1)+(1− θ)u(tn)

)
− C(A−C)−

1
2
(
(θ + 1)u(tn)−θu(tn−1)

))
‖2.

The last term in the RHS of (3.2) writes(
B(Etn+θ)−B(En+θ)

)
(A−C)−

1
2

(
A(A−C)−

1
2
(
θu(tn+1) + (1− θ)u(tn)

)
− C(A−C)−

1
2
(
(θ + 1)u(tn)− θu(tn−1)

))
=
∫ 1

0

d

ds

[
B(sEtn+θ + (1− s)En+θ)

]
ds(A−C)−

1
2

(
A(A−C)−

1
2
(
θu(tn+1) + (1− θ)u(tn)

)
− C(A−C)−

1
2
(
(θ + 1)u(tn)− θu(tn−1)

))
=
∫ 1

0

∇u
[
B(u)(A−C)−

1
2

(
A(A−C)−

1
2
(
θu(tn+1) + (1− θ)u(tn)

)
− C(A−C)−

1
2
(
(θ + 1)u(tn)− θu(tn−1)

))]
|u=sEtn+θ+(1−s)En+θ

ds
(
Etn+θ − En+θ

)
,

which since B(·) is C1 implies

‖
(
B(Etn+θ)−B(En+θ)

)
(A−C)−

1
2

(
A(A−C)−

1
2
(
θu(tn+1) + (1− θ)u(tn)

)
− C(A−C)−

1
2
(
(θ + 1)u(tn)− θu(tn−1)

))
‖2

≤ 2κ(‖en‖2 + ‖en−1‖),∀n,

where

2κ = max
s∈[0,1],‖U1‖2≤2Λ1,‖U2‖2≤Λ3,‖V2‖2≤2Λ2

‖∇u
[
B(sV2 + (1− s)U1)U2

]
‖2.
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Multiplying (3.2) by (A−C)−
1
2

(
A(A−C)−

1
2
(
θen+1 + (1− θ)en

)
−C(A−C)−

1
2
(
(θ+ 1)en− θen−1

))
and

taking the sum from n = 1 to N − 1 we obtain∥∥∥[ eN
eN−1

]∥∥∥2

G
+

1
4

N−1∑
n=1

‖en+1 − 2en + en−1‖2F

+
∆t
2

N−1∑
n=1

‖θA(A− C)−
1
2 en+1 +

(
(1− θ)A− (θ + 1)C

)
(A− C)−

1
2 en + θC(A− C)−

1
2 en−1‖2

≤
∥∥∥[e1

e0

]∥∥∥2

G
+ ∆t

N−1∑
n=1

‖(A− C)−
1
2 τn+1(∆t)‖2 + κ‖(A− C)−

1
2 ‖2∆t

N−1∑
n=1

(‖en‖2 + ‖en−1‖2).

(3.3)

Using again (2.5), after some calculation we get

‖eN‖2 +
1

2θ + 1

N−1∑
n=1

‖en+1 − 2en + en−1‖2F

+
2

2θ + 1
∆t

N−1∑
n=1

‖θA(A− C)−
1
2 en+1 +

(
(1− θ)A− (θ + 1)C

)
(A− C)−

1
2 en + θC(A− C)−

1
2 en−1‖2

≤ 4
2θ + 1

(∥∥∥[e1

e0

]∥∥∥2

G
+ ∆t

N−1∑
n=1

‖(A− C)−
1
2 τn+1(∆t)‖2

)
+ Θ∆t

N−1∑
n=0

‖en‖2,

where

Θ = max
{ 2θ − 1

(2θ + 1)∆t
+

4
2θ + 1

κ‖(A− C)−
1
2 ‖2, 8

2θ + 1
κ‖(A− C)−

1
2 ‖2
}
.

Therefore, from the discrete Grönwall lemma, we deduce the following error estimate

‖eN‖2 +
1

2θ + 1

N−1∑
n=1

‖en+1 − 2en + en−1‖2F

+
2

2θ + 1
∆t

N−1∑
n=1

‖θA(A− C)−
1
2 en+1 +

(
(1− θ)A− (θ + 1)C

)
(A− C)−

1
2 en + θC(A− C)−

1
2 en−1‖2

≤ 4
2θ + 1

exp( 2θ−1
2θ+1 + 8

2θ+1Tκ‖(A− C)−
1
2 ‖2)

(∥∥∥[e1

e0

]∥∥∥2

G
+ ∆t

N−1∑
n=1

‖(A− C)−
1
2 τn+1(∆t)‖2

)
.

Finally, the convergence result follows from the consistency bound (3.1).

4. Numerical verification of Theorem 2.3. We give two numerical tests that confirm the theory.
In all test cases, the initial conditions are

u0 = (1, 1)T and u1 = (1, 1)T ,

and the matrices A and C are

A = (ν + ε)
(

1 0
0 100

)
, C = ε

(
1 0
0 100

)
,

where

ν = 0.001, ε = 0.01.
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The time interval is [0, 50], and we take f = (0, 0)T .
Test 1. In the first case the matrix B is

B(En+θ) = ‖En+θ‖
(

0 10
−10 0

)
,

With the time steps

∆t = 0.25 and ∆t = 0.125,

both methods CN-AB2 (θ = 1
2 ) and BDF2-AB2 (θ = 1) are observed to be stable, see Figures 4.1 and 4.2,

respectively.
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Fig. 4.1: Crank-Nicolson-AB2 method (1.5).

Test 2. In the second case the matrix B is

B(En+θ) = ‖En+θ‖
(

0 100
−100 0

)
,

where

ν = 0.001, ε = 0.01.

With the time steps

∆t = 0.25 and ∆t = 0.125,

both methods CN-AB2 (θ = 1
2 ) and BDF2-AB2 (θ = 1) are observed to be stable, see Figures 4.3 and 4.4,

respectively.
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