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Abstract. Intracellular transport in eukarya is attributed to motor proteins that transduce
chemical energy into directed mechanical motion. Nanoscale motors like kinesins tow organelles and
other cargo on microtubules or filaments, have a role separating the mitotic spindle during the cell
cycle, and perform many other functions. The simplest description gives rise to a weakly coupled
system of evolution equations. The transport process, to the mind’s eye, is analogous to a biased
coin toss. We describe how this intuition may be confirmed by a careful analysis of the cooperative
effect among the conformational changes and potentials present in the equations.

1. Introduction. Motion in small live systems has many challenges, as famously
discussed in Purcell [25]. Prominent environmental conditions are high viscosity and
warmth. Not only is it difficult to move, but maintaining a course is rendered diffi-
cult by immersion in a highly fluctuating bath. Intracellular transport in eukarya is
attributed to motor proteins that transduce chemical energy into directed mechanical
motion. Proteins like kinesin function as nanoscale motors, towing organelles and
other cargo on microtubules or filaments, have a role separating the mitotic spindle
during the cell cycle, and perform many other functions. Because of the presence of
significant diffusion, they are sometimes referred to as Brownian motors. Since a spe-
cific type tends to move in a single direction, for example, anterograde or retrograde
to the cell periphery, these proteins are sometimes referred to as molecular rachets.
How do they overcome the issues posed by Purcell to provide the transport necessary
for the activities of the cell?

There are many descriptions of the function of these proteins, or aspects of their ther-
modynamical behavior, beginning with Ajdari and Prost [1], Astumian and Bier, cf.
eg. [2], and Doering, Ermentrout, and Oster [6], Peskin, Ermentrout, and Oster [23].
For more recent work, note the review paper [26] and [27] Chapter 8. The descrip-
tions consist either in discussions of stochastic differential equations, which give rise to
the distribution functions via the Chapman-Kolmogorov Equation, or of distribution
functions directly. In [5], we have suggested a dissipation principle approach for motor
proteins like conventional kinesin, motivated by Howard [12]. The dissipation prin-
ciple, which involves a Kantorovich-Wasserstein metric, identifies the environment of
the system and gives rise to an implicit scheme from which evolution equations follow,
[3], [14], [16], [19], [20]. and more generally [29]. Most of these formulations consist, in
the end, of Fokker-Planck type equations coupled via conformational change factors,
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typically known as weakly coupled parabolic systems. Our own is also distinguished
because it has natural boundary conditions. To investigate transport properties, our
attention is directed towards the stationary solution of such a system, as we explain
below.

A special collaboration among the potentials and the conformational changes in the
system must be present for transport to occur. To investigate this, we introduce the
n−state system we shall study. Suppose that ρ1, ..., ρn are partial probability densities
defined on the unit interval Ω = (0, 1) satisfying

d

dx
(σ
dρi
dx

+ ψ′iρi) +
∑

j=1,...,n

aijρj = 0 in Ω

σ
dρi
dx

+ ψ′iρi = 0 on ∂Ω, i = 1, ...n,

ρi = 0 in Ω,
∫

Ω

(ρ1 + · · ·+ ρn)dx = 1.

(1.1)

Here σ > 0, ψ1, ..., ψn are smooth non-negative functions of period 1/N , and A = (aij)
is a smooth rate matrix of period 1/N , that is

aii 5 0, aij = 0 for i 6= j and∑
i=1,..,n

aij = 0, j = 1, ..., n. (1.2)

We shall also have occasion to enforce a nondegeneracy condition

aij 6≡ 0 in Ω, i, j = 1, ..., n. (1.3)

The conditions (1.2) mean that P = 1 + τA, for τ > 0 small enough, is a probability
matrix. The condition (1.3), we shall see, ensures that none of the components of ρ
are identically zero passive placeholders in the system. In this context, the poten-
tials ψ1, ..., ψn describe interactions among the states, the elements of the protein’s
structure, and the microtuble track and the matrix A describes interchange of activ-
ity among the states. The system (1.1) are the stationary equations of the evolution
system

∂ρi
∂t

=
∂

∂x
(σ
∂ρi
∂x

+ ψ′iρi) +
∑

j=1,...,n

aijρj = 0 in Ω, t > 0,

σ
∂ρi
∂x

+ ψ′iρi = 0 on ∂Ω, t > 0, i = 1, ...n,

ρi = 0 in Ω,
∫

Ω

(ρ1 + · · ·+ ρn)dx = 1, t > 0.

(1.4)

Before proceeding further, let us discuss what we intend by transport. In a chemi-
cal or conformational change process, a reaction coordinate (or coordinates) must be
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specified. This is the independent variable. In a mechanical system, it is usually evi-
dent what this coordinate must be. In our situation, even though both conformational
change and mechanical effects are present, it is natural to specify the distance along
the motor track, the microtubule, here the interval Ω, as the independent variable.
We interpret the migration of density to one end of the track during the evolution as
evidence of transport.

We shall show in Section 4 that the stationary solution of the system (1.1), which we
denote by ρ], is globally stable: given any solution ρ(x, t) of (1.4),

ρ(x, t) → ρ](x) as t→∞ (1.5)

So the migration of density we referred to previously may be ascertained by inspection
of ρ]. In the sequel, we simply set ρ = ρ].

If the preponderance of mass of ρ is distributed at one end of the track, our domain
Ω, then transport is present. Our main result, stated precisely later in Section 3, is
that with suitable potentials ψ1, ..., ψn and with favorable coupling between them and
the rate matrix A, there are constants K and M , independent of σ, such that

n∑
i=1

ρi(x+
1
N

) 5 Ke−
M
σ

n∑
i=1

ρi(x), x ∈ Ω, x < 1− 1
N

(1.6)

for sufficiently small σ > 0. So from one period to the next, total mass decays
exponentially as in Bernoulli trials with a biased coin.

In summary, transport results from functional relationships in the system (1.1) or
(1.4). The actual proof is technical, as most proofs are these days, and a detailed
explanation of the conditions we impose is given after Theorem 3.2, when the notations
have been introduced. Here we briefly consider the main elements of our thinking.
We also refer to [10] for a more extended discussion.

To favor transport, we wish to avoid circumstances that permit decoupling in (1.1),
for example,

Aρ = 0, where ρ = (ρ1, ..., ρn),

since in this case the solution vector is periodic. Such circumstances may be related
to various types of detailed balance conditions. In detailed balance, we would find
that

aijρj = ajiρi for all i, j = 1, ..., n,

implying that Aρ = 0. For example, if it is possible to find a solution ρ of (1.1) that
minimizes the free energy of the system

F (η) =
∑
i=1···n

∫
Ω

{
ψiηi + σηi log ηi

}
dx,

then Aρ = 0.
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But avoiding these situations is not nearly sufficient. First we require that the po-
tentials ψi have some asymmetry property. Roughly speaking, to favor transport to
the left, towards x = 0, a period interval must have some subinterval where all the
potentials ψj are increasing. In addition every point must have a neighborhood where
at least one ψi is increasing. Some coupling among the n states must take place.

Now we explain the nature of the coupling we impose, the properties of the matrix A.
As mentioned above, in any neighborhood in Ω, at least one ψi should be increasing to
promote transport toward x = 0. Density tends to accumulate near the minima of the
potentials, which correspond to attachment sites of the motor to the microtubule and
its availability for conformational change. This typically would be where the matrix
A is supported. In a neighbohood of such a minimum, states which are not favored for
left transport should have the opportunity to switch to state i, so we impose aij > 0
for all of these states. The weaker assumption, insisting only that the state associated
with potential achieving the minimum have this switching opportunity, is insufficient.
This is a type of ergodic hypothesis saying that there must be mixing between at least
one potential which transports left and all the ones which may not. Our hypothesis is
not optimal, but some condition is necessary. One may consider, for example, simply
adding new states to the system which are uncoupled to the original states. In fact,
it is possible to construct situations where there is actually transport to the right by
inauspicious choice of the supports of the aij as we show in Section 5.

Here we only consider (1.1) although many other and more complex situations are
possible. One example is a system where there are many conformational changes, not
all related to movement. For example, one may consider the system whose stationary
state is

d

dx
(σ
dρi
dx

+ ψ′iρi) +
∑

j=1,...,n

aijρj = 0 in Ω i = 1, ...m,

∑
j=1,...,n

aijρj = 0 in Ω i = m+ 1, ...n,

σ
dρi
dx

+ ψ′iρi = 0 on ∂Ω, i = 1, ...m,

ρi = 0 in Ω,
∫

Ω

(ρ1 + · · ·+ ρn)dx = 1.

(1.7)

One such example is in [10]. We leave additional such explorations to the interested
reader. In Chipot, Hastings, and Kinderlehrer [4], the two component system was
analyzed. As well as being valid for an arbitrary number of active components, our
proof here is based on a completely different approach.

We take this opportunity to thank our collaborators Michel Chipot and Michal Kowal-
czyk for their help. We also thank Bard Ermentrout, Michael Grabe, William Troy,
and Jonathan Rubin, and the Mathematical Biology Seminar of the University of
Pittsburgh for generosity of spirit and their interest.
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2. Existence. There are several ways to approach the existence question for
(1.1). In [4], we gave existence results based on the Schauder Fixed Point Theorem
and a second proof based on an ordinary differential equations shooting method. The
Schauder proof extends to the current situation, and to higher dimensions, but the
shooting method was limited to the two state case. Here we offer a new ordinary
differential equations method proof which is of interest because it separates existence
from uniqueness and positivity, showing that existence is a purely algebraic property
depending only on the second line in (1.2),

∑
i=1,..,n

aij = 0, j = 1, ..., n, (2.1)

while positivity and uniqueness rely on the more geometric nature of the inequalities.
We shall prove Theorem 2.1 below, followed by a brief discussion of a stronger result
whose proof is essentially the same. Recall that Ω = (0, 1).

Theorem 2.1. Assume that ψi, aij ∈ C2(Ω), i, j = 1, ..., n and that (2.1) holds. Then
there exists a (nontrivial) solution ρ = (ρ1, ..., ρn) to the equations and boundary
conditions in (1.1). Assume furthermore that (1.2) and (1.3) hold. Then ρ is unique
and

ρi(x) > 0 in Ω and ρi ∈ C2(Ω), i = 1, ..., n.

Proof. Introduce

φi = σ
dρi
dx

+ ψ′iρi in Ω, i = 1, ..., n

Our system may be written as the system of 2n ordinary differential equations, where
(2.1) holds,

σ
dρi
dx

= φi − ψ′iρi, i = 1, ..., n

dφi
dx

= −
∑

j=1,...,n

aijρj , i = 1..., n.
(2.2)

Let Φ denote the 2n× 2n fundamental solution matrix of (2.2) with Φ(0) = 1. Let Ψ
be the 2n× n matrix consisting of the first n columns of Φ. Then

Ψ =
(
R
S

)
,

where R and S are n× n matrix functions with R(0) = 1 and S(0) = 0. We wish to
obtain a solution
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(
ρ
φ

)
= Φc

such that φ(0) = φ(1) = 0. To have φ(0) = 0, we need the last n components of c to
be zero, so

(
ρ
φ

)
= Ψd

where d is the vector consisting of the first n components of c. We then need the last
n components of Ψ(1)d to be zero, namely

S(1)d = 0. (2.3)

Now in this setup, we have φi(0) = 0, i = 1, ..., n, for each column of S and from
(2.1),

∑
i=1,...,n

dφi
dx

(x) = 0, x ∈ Ω,

whence

∑
i=1,...,n

φi(x) = 0, x ∈ Ω.

But this simply means that for each j

∑
i=1,...,n

Sij(x) = 0

so the sum of the rows of S is zero for every x ∈ Ω, i.e., det S(x) = 0, and so S is
singular. Hence we can find a (nontrivial) solution to (2.3).
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Now we assume (1.2) and (1.3). If the solution is positive, it is the unique solution.
This follows a standard argument. Suppose that ρ is a positive solution and that ρ∗

is a second solution. Then ρ+µρ∗ is a solution for any constant µ and ρ+µρ∗ > 0 in
Ω for sufficiently small |µ|. Increase |µ| until we reach the first value for which some
ρi has a zero, say at x0 ∈ Ω. For this value of i we have that for f = ρ+ µρ∗, fi has
a minimum at x0 and

− d

dx
(σ
dfi
dx

+ ψ′ifi)− aiifi =
∑

j=1,...,n
j 6=i

aijfj = 0 (2.4)

σ
dfi
dx

+ ψ′ifi = 0 (2.5)

By an elementary maximum principle, [24], cf. also [4], we have that fi ≡ 0.

We now claim that f ≡ 0. Choose any fj and assume that it does not vanish iden-
tically. Using the maximum principle as before, fj > 0. Now choose a point x0 such
that aij(x0) > 0. Substituting onto (2.4) we now have a contradiction because fi ≡ 0.
Thus there is at most one solution satisfying (1.1).

It now remains to show that there is a positive solution. We employ a continua-
tion argument. Note that there is a particular case where ψ′i(x) ≡ 0 for all i and
aii(x) = 1− n, and aij(x) = 1 for j 6= i. The solution in this case is ρi(x) = 1

n , with
our normalization in (1.1). For the moment, it is convenient to use a different nor-
malization in terms of the vector d found above: choose the unique d = (d1, ..., dn)T

satisfying maxi di = 1.

For the special case above with

ψ′i = 0, aii = 1− n, and aij = 1, i 6= j,

we find that d = (1, ..., 1)T . To abbreviate the system in vector notation, let ψ′0 and
ψ′ be the diagonal matrices of potentials ψ′i = 0 and ψ′i, respectively, and let A0 and
A denote the matrices of lower order coefficients. For each λ, 0 5 λ 5 1, we solve the
problem

σ
d2ρ

dx2
+

d

dx
((λψ′ + (1− λ)ψ′0)ρ) + (λA+ (1− λ)A0)ρ = 0 in Ω

σ
dρ

dx
+ (λψ′ + (1− λ)ψ′0))ρ = 0 at x = 0, 1.

(2.6)

For λ = 0, (2.6) has a unique solution satisfying maxi ρi(0) = 1 and this solution is
positive. As long as the solution is positive, the argument given above shows that it
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is unique. As we increase λ from 0, the solution is continuous as a function of λ, since
the vector d will be continuous as long as it is unique.

Let Λ denote the subset of λ ∈ [0, 1] for which there is a positive solution of (2.6).
To show that Λ ⊂ [0, 1] is open, consider λ0 ∈ Λ and a sequence of points in Λc, the
complement of Λ, convergent to λ0. For each of these there is a non-positive solution
of (2.6), and we may assume that the initial conditions d are bounded. Hence a
subsequence converges to the initial condition for a non -positive solution with λ = λ0,
which contradicts the uniqueness of the positive solution.

To show Λ is closed, again suppose the contrary and that λ̂ is a limit point of Λ not in
Λ. Now some component ρ̂i must have a zero, and ρ̂i = 0 in Ω. Then by the maximum
principle used above, ρ̂i ≡ 0. We now repeat the argument above to conclude that
ρ̂j ≡ 0 in Ω for all j = 1, ..., n. But this is impossible because we have imposed the
condition that maxi ρ̂i(0) = 1. This implies that Λ is open, so Λ = [0, 1].

Renormalizing to obtain total mass one completes the proof.

Condition (1.3) is more restrictive than necessary for uniqueness and positivity of the
solution. For an improved result, recall that Pτ = 1+τA, τ > 0 small is a probability
matrix when (1.2) is assumed. A probability matrix P is ergodic if some power P k

has all positive entries. In this case it has an eigenvector with eigenvalue 1 whose
entries are positive, corresponding to a unique stationary state of the Markov chain it
determines, and other well known properties from the Perron-Frobenius theory. Such
matrices are often called irreducible and sometimes even ”regular”. We may now state
an improvement of Theorem 2.1

Theorem 2.2. In Theorem 2.1 replace condition (1.3) with∫ 1

0

Pτ (x)dx

is ergodic. Then the conclusions of Theorem 2.1 hold.

We outline the changes which must be made to prove this result. The previous proof
relied on showing that if for some i, ρi ≡ 0, then ρj ≡ 0 for every j. This followed
from the maximum principle and the feature of the equations that each consituent
was nontrivially represented near at least one point x0 ∈ Ω. But suppose that aij ≡ 0
for some j. In this case we could have ρj > 0 and this has no effect on ρi.

Under the assumption that
∫ 1

0
Pτ (x)dx is ergodic, some nondiagonal element in the

ith row of A is not identically zero. This means that there is a π(i) 6= i such that
ρi ≡ 0 implies that ρπ(i) ≡ 0. We may repeat this argument since ergodicity implies
that the permuation π can be chosen so that πm(i) cycles around the entire set of
integers 1, ..., n.

This completes the proof of existence of a unique solution of the stationary system
with maxi di = 1. This solution is also positive. Renormalizing to obtain total mass
1 completes the proof.
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3. Transport. As we observed in the existence proof of the last section, the
condition (1.1) implies that ∑

i=1,...,n

d

dx
(σ
dρi
dx

+ ψ′iρi) = 0

so that ∑
i=1,...,n

(σ
dρi
dx

+ ψ′iρi) = γ = const.

In the case of interest of kinesin-type models, the boundary condition of (1.1) implies
that γ = 0. In other words, ∑

i=1,...,n

(σ
dρi
dx

+ ψ′iρi) = 0 (3.1)

A simulation of typical behavior in a two species system is given in Figure 3.1.

Theorem 3.1. Suppose that ρ is a positive solution of (1.1), where the coefficients
aij , i, j = 1, ..., n and the ψi, i = 1, ..., n are smooth and 1/N-periodic in Ω. Suppose
that (1.2) holds and also that the following conditions are satisfied.

(i) Each ψ′i has only a finite number of zeros in Ω.
(ii) There is some interval in which ψ′i > 0 for all i = 1, ..., n.
(iii) In any interval in which no ψ′i vanishes, ψ′j > 0 in this interval for at least one

j.
(iv) If I, |I| < 1/N , is an interval in which ψ′i > 0 for i = 1, .., p and ψ′i < 0 for

i = p + 1, .., n, and a is a zero of at least one of the ψ′k which lies within
ε of the right- hand end of I, then for ε sufficiently small, there is at least
one index i, i = 1, ..., p, for which aij > 0 in (a − η, a) for some η > 0, all
j = p+ 1, .., n.

Then, there exist positive constants K,M independent of σ and depending on the
potentials ψi, i = 1, ..., n and the coefficients aij , i, j = i, ..., n such that

n∑
i=1

ρi(x+
1
N

) 5 Ke−
M
σ

n∑
i=1

ρi(x), x ∈ Ω, x < 1− 1
N

(3.2)

for sufficiently small σ.

Note that (3.1) holds under the hypotheses of the theorem. Also note that from (iv),
where aij > 0, j = p+ 1, ..., n, necessarily, aii < 0 according to (1.2). We shall prove
Theorem 3.2 below. For this, it is convenient to consider a single period interval
rescaled to be [0, 1]. Theorem 3.1 then follows by rescaling and applying Theorem 3.2
to period intervals.

Theorem 3.2. Suppose that ρ is a positive solution of (1.1), where the coefficients
aij , i, j = 1, ..., n and the ψi, i = 1, ..., n are smooth in [0, 1]. Suppose that (1.2) holds
and also that the following conditions are satisfied.
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(i) Each ψ′i has only a finite number of zeros in [0, 1].
(ii) There is some interval in which ψ′i > 0 for all i = 1, ..., n.
(iii) In any interval in which no ψ′i vanishes, ψ′j > 0 in this interval for at least one

j.
(iv) If I is an interval in which ψ′i > 0 for i = 1, .., p and ψ′i < 0 for i = p+ 1, .., n,

and a is a zero of at least one of the ψ′k which lies within ε of the right-hand
end of I, then for ε sufficiently small, there is at least one i, i = 1, ..., p, for
which aij > 0 in (a− η, a) for some η > 0, j = p+ 1, .., n.

Then, there exist positive constants K,M independent of σ and depending on the
potentials ψi, i = 1, ..., n and the coefficients aij , i, j = i, ..., n such that

n∑
i=1

ρi(1) 5 Ke−
M
σ

n∑
i=1

ρi(0), (3.3)

for sufficiently small σ.

The conclusion of the Theorem 3.2 is that the magnitude of the solution ρ,
∑n
i=1 ρi,

is much smaller at x = 1 than at x = 0, or in terms of the Theorem 3.1, that
it is bounded above by an exponentially decreasing function for small σ. There is
no suggestion that

∑n
i=1 ρi is itself exponentially decreasing and it is not. Indeed,

the core of the mathematical argument is that
∑
ρi is exponentially decreasing on

intervals where all ψ′i are positive, while not significantly increasing in the remainder
of [0,1]. The

∑
ρi may increase, even exponentially, in regions within δ of a zero

of a ψ′i, but because the total length of these intervals is very small, the increase is
outweighed by the decrease elsewhere. The argument in intervals where the signs of
the ψ′i are mixed is more delicate and relies on the coupling, as spelled out in (iv),
the nonvanishing of some aij near the minima of ψi, and we briefly describe it below.

First let us assess how, essentially, the constants K,M depend on the parameters,
especially the potentials ψi, by examining an interval where ψ′i > 0 for all i. Such an
interval exists by condition (ii) of the theorem. Let [a, b] be such an interval and set

q(x) = min
i=1,...,n

ψ′i(x).

From (3.1),

d

dx
(ρ1 + · · ·+ ρn)(x) 5 − 1

σ
q(x)(ρ1 + · · ·+ ρn)(x)

so that by integrating,

(ρ1 + · · ·+ ρn)(b) 5 e−
1
σ

R b
a
qds(ρ1 + · · ·+ ρn)(a)

If there are several such intervals, we just combine the effects and this is the essence
of how K,M (particularly M) depend on the ψ′i. In other words, a Gronwall type
argument is successful here.

Now let us try to explain the role of the coupling. This comes into play when condition
(iv) of the hypotheses hold. Suppose that ν ∈ {1, ..., p} is a favorable index in the
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interval I and consider the νth equation

σρ′′ν + ψ′νρnu
′ + ψ′′νρν + aννρν +

n∑
j 6=ν

aνjρj = 0, (3.4)

Equation (3.4) represents a balance between ρν and the other ρj . As seen in the
sequel, since the items in the Σ are nonnegative, they may be discarded and (3.4) can
be employed to find an upper bound for ρν on I, because ψν is increasing. We can
then exploit (3.4) to impede the growth of the unfavorable ρj , j = p+1, ..., n. Namely
{ρj} cannot be too large without forcing ρν negative. But this can only be assured if
the coupling is really there, namely if aνj > 0. This is the motivation for the ergodic
type hypothesis in (iv).

Proof of Theorem 3.2.

Since each ψ′i has only finitely many zeros, we can enclose these zeros with intervals of
length 2δ, where δ > 0 and small will be chosen later. The remainder of [0,1] consists
of a finite number of closed intervals Jm,m = 1, ...,M , in which no ψ′i vanishes and
so we have that ψ′i = k(δ) > 0 or ψ′i 5 −k(δ) < 0 for each i and some positive k(δ).
From (iii), k(δ) may be chosen so that in at least one Jm, ψ′i = k(δ) for all i.

First we establish the exponential decay which governs the behavior of the solution.
This will be a simple application of Gronwall’s Lemma. Consider an interval I0 = Jm
for one of the m′s where ψ′i ≥ k(δ) for all i. Suppose that

sup
I0

{
inf
i
ψ′i(x)

}
= K0,

where, of course, K0 is independent of δ for small δ. So there is a point x0 ∈ I0 where

ψ′i(x0) = K0, i = 1, ..., n,

and

ψ′i(x) =
1
2
K0, |x− x0| < L0, i = 1, ..., n,

for

L0 =
1
2

K0

maxi=1...n{sup[0,1] |ψ′′i |}

Hence, from (3.1),

d

dx

n∑
i=1

ρi 5 −K0

2σ

n∑
i=1

ρi in |x− x0| < L0,

so that

n∑
i=1

ρi(x0 + L0) 5 e−
1
σK0L0

n∑
i=1

ρi(x0 − L0).
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Since
∑n
i=1 ρ

′
i 5 0 in I0, we have that

(
n∑
i=1

ρi)(ξ∗) 5 e−
1
σK0L0(

n∑
i=1

ρi)(ξ) where I0 = [ξ, ξ∗] (3.5)

Indeed, we could extend I0 to an interval in which we demand only that all ψ′i = 0.

Next consider an interval, say I1 of length 2δ centered on a zero a of one of the ψ′i.
From (3.1) we have that ∣∣∣∣∣ ddx

(
n∑
i=1

ρi

)∣∣∣∣∣ ≤ K1

σ

n∑
i=1

ρi in I1

where

K1 = max
i=1..n

sup
05x51

|ψ′i|,

so that (
n∑
i=1

ρi

)
(a+ δ) 5 e

1
σ 2K1δ

(
n∑
i=1

ρi

)
(a− δ) (3.6)

There may be N such intervals, but over them all the exponential growth is only
2
σNK1δ, and we can choose δ sufficiently small, which does not affect K0, L0 so that

2NK1δ < K0L0

Finally, with δ so chosen, we consider an interval I2 = [α, β] where, say,

ψ′i = k(δ), i = 1, ..., p, and
ψ′i 5 −k(δ), i = p+ 1, ..., n.

(3.7)

We may assume that there is some overlap, that the endpoints α, β of I2 are in 2δ
intervals considered above. In the interval I2, we shall bound ρ1, ...ρp on the basis of
(3.7) above. We shall then argue that ρp+1, ..., ρn are necessarily bounded or, owing
to the coupling of the equations, the positivity of ρ1, ..., ρp would fail.

Write the equation for ρ1 in the form

σρ′′1 + ψ′1ρ
′
1 + ψ′′1ρ1 + a11ρ1 +

n∑
j=2

a1jρj = 0, (3.8)

so that

d

dx

(
ρ′1e

1
σ (ψ1(x)−ψ1(α)

)
= − 1

σ

{
(a11 + ψ′′1 )ρ1 +

n∑
j=2

a1jρj

}
e

1
σ (ψ1(x)−ψ1(α)),

12



and carrying out the integration,

ρ′1(x) = ρ′1(α)e
1
σ (ψ1(α)−ψ1(x) − 1

σ

∫ x

α

{
(a11 + ψ′′1 )ρ1 +

n∑
j=2

a1jρj

}
e

1
σ (ψ1(s)−ψ1(x))ds

(3.9)
Now the a1j , j = 2, and the ρi are all non negative, so we may neglect the large sum
and find a constant K2 for which

ρ′1(x) 5 ρ′1(α)e
1
σ (ψ1(α)−ψ1(x)) +

K2

σ

∫ x

α

ρ1(s)e
1
σ (ψ1(s)−ψ1(x))ds (3.10)

Note that for small σ,∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds 5

∫ x

α

e
k(δ)
σ (s−x)ds 5

σ

k(δ)
(3.11)

Integrating (3.10),

ρ1(x)− ρ1(α) 5 ρ′1(α)
∫ x

α

e
1
σ (ψ1(α)−ψ1(s))ds+

K2

σ

∫ x

α

∫ t

α

ρ1(s)e
1
σ (ψ1(s)−ψ1(t))dsdt

5 K(δ)σ|ρ′1(α)|+K(δ)
∫ x

α

max
[α,t]

ρ1dt,

so,

max
[α,x]

ρ1 5 ρ1(α) +K(δ)σ|ρ′1(α)|+K(δ)
∫ x

α

max
[α,t]

ρ1dt.

We may now use Gronwall’s Lemma to obtain

ρ1(x) 5 K(δ)
{
ρ1(α) + σ|ρ′1(α)|

}
, α 5 x 5 β (3.12)

If we insert this into (3.10), we obtain

ρ′1(x) 5 |ρ′1(α)|+K(δ)
{
ρ1(α) + σ|ρ′1(α)|

}
, α 5 x 5 β (3.13)

Similar estimates hold for ρ2, ..., ρp.

Our attention is directed to ρp+1, ..., ρn. Our first step is lower bounds for ρ′1, ..., ρ
′
p,

for which it suffices to carry out the details for ρ′1. We can use (3.12) to modify our
formula (3.9). Using (3.11),

ρ′1(x) = ρ′1(α)e
1
σ (ψ1(α)−ψ1(x)) − 1

σ
max
I2

ρ1(max
I2

|a11 + ψ′′1 |)
∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds

− 1
σ

max
[α,x]

(ρ2 + · · · ρp + ρp+1 + · · ·+ ρn) max
15i5n,i 6=1

max
I2

a1j

∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds

So, since by (3.12) we have bounds for ρ2, ..., ρp, we can write

ρ′1(x) = ρ′1(α)e
1
σ (ψ1(α)−ψ1(x)) −K(δ)

{
ρ1(α) + σ|ρ′1(α)|

}
−K(δ) max

[α,x]
(ρp+1 + · · ·+ ρn),

α 5 x 5 β
(3.14)
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Similarly for ρ′2, ..., ρ
′
p.

With our technique we can handle only the sum ρp+1 + · · · + ρn and not individual
ρi, p+ 1 5 i 5 n. From (3.1), and taking into account (3.12), (3.14), and the signs of
the ψ′i,

d

dx
(ρp+1 + · · ·+ ρn) = − d

dx
(ρ1 + · · ·+ ρp)−

1
σ

(ψ′1ρ1 · · ·+ ψ′pρp)

− 1
σ

(ψ′p+1ρp+1 + · · ·+ ψ′nρn)

= −K1(δ)
σ

p∑
i=1

(ρi(α) + σ|dρi
dx

(α)|)

+
K2(δ)
σ

n∑
i=p+1

ρi in I2 (3.15)

Let

C(α) =
p∑
i=1

(ρi(α) + |dρi
dx

(α)|),

which means (3.15) assumes a fortiori the form

d

dx
(ρp+1 + · · ·+ ρn) = −K1(δ)

σ
C(α) +

K2(δ)
σ

(ρp+1 + · · ·+ ρn). (3.16)

We assert that

ρp+1 + · · ·+ ρn 5
K1(δ)
K2(δ)

C(α), α 5 x 5 β − δ. (3.17)

Suppose the contrary and that

A > 1 and

(ρp+1 + · · ·+ ρn)(x∗) >
AK1(δ)C(α)

K2(δ)
for some x∗ ∈ [α, β − δ].

(3.18)

This continues to hold in [x∗, β], since at a first x ∈ I2 where it fails, (3.16) would
imply that ρp+1 + · · ·+ ρn were increasing, which is not possible. Indeed, integrating
(3.16) between points x∗, x ∈ I2 with x∗ < x, we have that

(ρp+1 + · · ·+ ρn)(x) = (ρp+1 + · · ·+ ρn)(x∗)e
K2(δ)
σ (x−x∗) +

K1(δ)
K2(δ)

C(α)(1− e
K2(δ)
σ (x−x∗))

=
AK1(δ)
K2(δ)

C(α)e
K2(δ)
σ (x−x∗) +

K1(δ)
K2(δ)

C(α)(1− e
K2(δ)
σ (x−x∗))

= (A− 1)
K1(δ)
K2(δ)

C(α)e
K2(δ)
σ (x−x∗) +

K1(δ)
K2(δ)

C(α), x∗, x ∈ I2 (3.19)
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Now let us suppose, without loss of generality, that (iv) holds for i = 1, that is, we
can find a K3(δ) > 0 such that

n∑
i=p+1

a1jρj = K3(δ)(ρp+1 + · · ·+ ρn) in [β − δ, β] (3.20)

Keep in mind that

e
K2(δ)
σ (x−x∗) = e

K2(δ)
σ

1
4 δ = e

K4(δ)
σ for β − 1

4
δ 5 x 5 β.

Then we have from (3.9)

dρ1

dx
(x) 5

dρ1

dx
(α)e−

1
σ (ψ1(x)−ψ1(α)) +

K(δ)
σ

C(α)
∫ x

α

e
1
σ (ψ1(s)−ψ1(x))ds

− (A− 1)K1(δ)K3(δ)C(α)
K2(δ)

e
1
σK4(δ)

5
dρ1

dx
(α)e−

1
σ (ψ1(x)−ψ1(α)) +K(δ)C(α)

− (A− 1)K1(δ)K3(δ)C(α)
K2(δ)

e
1
σK4(δ), for β − 1

4
δ 5 x 5 β

Above, ψ1(x) > ψ1(α), so the exponential in the first term on the right may be
neglected. From the trivial inequality

0 5 ρ1(x) = ρ1(α) +
∫ x

α

ρ′1(s)ds

5 C(α) +
∫ x

α

ρ′1(s)ds,

we have that

0 5
ρ1(x)
C(α)

5 1 +
∫ x

α

(1 +K(δ))ds−
∫ β− 1

8 δ

β− 1
4 δ

(A− 1)
K1(δ)
K2(δ)

K3(δ)e
K4(δ)
σ )ds

5 1 + (1 +K(δ))(β − α)− (A− 1)
K1(δ)
K2(δ)

K3(δ)e
K4(δ)
σ

1
8
δ (3.21)

for β − 1
8
δ 5 x 5 β

Since A > 1, the above cannot hold for small σ depending only on δ because the
extreme right hand side of (3.21) becomes infinite as σ → 0. This proves (3.17). Note
that the size of σ determined by (3.21) depends on the geometrical features of the
potentials ψi, i = 1, ..., n, but not on C(α), that is, the magnitude of the solution ρ.

The theorem now follows by concatenating the three cases.
15
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Fig. 3.1. Transport in a two species system with period sixteen. The abcissa shows the total
density ρ1 + ρ2. In this computation, ψ2 is a one-half period translate of ψ1 and the support of the
aij , i, j = 1, 2 is a neighborhood of the minima of the ψi, i = 1, 2. The simulation was executed with
a semi-implicit scheme. Additional details are given at the conclusion of Section 5

4. Stability of the stationary solution. In this section we discuss the trend
to stationarity of solutions of the time dependent system (1.4). We have the stability
theorem

Theorem 4.1. Let ρ(x, t) denote a solution of (1.4) with initial data

ρ(x, 0) = f(x) (4.1)

satisfiying

fi(x) = 0, i = 1, ..., n, and
∑

i=1,...,n

∫
Ω

fidx = 1.

Then there are positive constants K and ω such that

|ρ(x, t)− ρ0(x)| 5 Ke−ωt as t →∞, (4.2)

where ρ0 is the stationary positive solution obtained in Theorem 2.1.

Thus the stationary positive solution is globally stable. One proof of this was given
in [4] for n = 2, and this proof may be extended to general n. A proof based on
monotonicity of an entropy function is given in [22]. A different type of monotonicity
result showing that the solution operator is an L1-contraction is given in [11]. Here we
outline a different way of viewing the problem based on inspection of the semigroup
generated by the operator, written in vector form,
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Sρ = σ
∂2ρ

∂x2
+

∂

∂x
(ψ′ρ) +Aρ (4.3)

with natural boundary conditions. All the methods known to us are based on ideas
from positive operators via Perron-Frobenius-Krein-Rutman generalizations or on
closely related monotonicity methods.

We need the result that (4.3) has a real eigenvalue λ0, which is simple and has an
associated positive eigenfunction, and that all other eigenvalues λ satisfy Re λ < λ0.

This is a standard result (see, for example, Zeidler [30]) obtained using the ideas of
positive operators, but to assist the reader and for completeness we give a sketch of
the proof. We define eS by writing the solution of (1.4) in terms of (4.3) as

ρ(x, t) = etSf(x). (4.4)

This is consistent with the notions of exponent, since

e(t+s)S = etSesS

just expresses the fact that the solution at time t + s is just the solution after time
s followed by a further time t. We note that eS is a positive operator, since f = 0
implies ρ ≥ 0, making use of the maximum principle, [24], and it is compact, since
it is essentially an integration. And so eS has a real eigenvalue, eλ0 , which is simple
and has a positive eigenfunction. Further, it is simple to see, for example by solving
the equation explicitly, that if S has an eigenvalue λ, then eS has an eigenvalue eλ

and vice versa. Thus S has a real eigenvalue λ0, which is simple and has a positieve
eigenfunction. Further, the fact that all the other eigenvalues eλ of eS have |eλ| < eλ0

implies that all other eigenvalues λ of S have Re λ < λ0, as required.

We assume that the positive initial data f is normalized so that∑
i=1,...,n

∫
Ω

fidx = 1, (4.5)

as in (1.1).

Now form the Laplace transform

ρ̂ (x, λ) =
∫ ∞

0

e−λtρ (x, t) dt, Reλ > 0

and (4.4) gives

ρ̂ (·, λ) = (λI − S)−1
f, (4.6)

and ρ̂ is analytic in λ for Reλ > 0, but (4.6) allows us to extend this into the left
half plane except for an isolated singularity at λ = 0, for in our problem the fact that

17



we have a positive stationary solution implies that the real eigenvalue λ0 is given by
λ0 = 0. The usual inversion formula gives

ρ(x, t) =
1

2πi

∫ γ+i∞

γ−i∞
eλtρ̂(x, λ)dλ, γ > 0 (4.7)

Now for finite γ and ν, with ν large, and with λ = γ + iν,

||(λI − S)−1|| = O(
1
ν

). (4.8)

For we can write

−(Tρ)i = σ
d2ρi
dx2

+
d

dx
(ψ′iρi) + (Aρ)i

= σ
d

dx
(e−

1
σψiφ′i)− (a′φ)i

= −(Mφ)i
where φi = e

1
σψiρi and a′ij = aije

− 1
σψi

The boundary conditions here are

φ′i(0) = φ′i(1) = 0, i = 1, ..., n.

Now consider

λI − S = λI + T = λI +M

and

((M + λI)φ, φ) =
∑

i=1,..,n

∫
Ω

[(M + λI)φ]i φ̄idx. (4.9)

The first term in M is self adjoint, which gives a real contribution, and the second
contribution in (4.9) is certainly

O

{ ∑
i=1,...,n

∫
Ω

|φi|2dx
}
.

Thus if ν is sufficiently large,

im((M + λI)φ, φ) =
1
2
ν
∑

i=1,...,n

∫
Ω

|φi|2dx,

from which (4.8) follows easily.

Given the initial data f, we write

f = cρ0 + ρ∗,

where ρ∗ is orthogonal to the positive eigenfunction, say ρ∗0, of the adjoint operator
of S. This determines c uniquely, since

c(ρ0, ρ
∗
0) = (f, ρ∗0),
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and (ρ0, ρ
∗
0) 6= 0 inasmuch as ρ0,i > 0, ρ∗0,i > 0. Then by the Fredholm alternative, we

can solve, for any small λ,

(S − λI)φ = ρ∗,

uniquely if we insist that the solution is orthogonal to ρ0. Then (S − λI)−1
ρ∗ is

bounded, and

(S − λI)−1
f = c (S − λI)−1

ρ0 +O (1)

= −λ−1cρ0 +O (1)

as λ→ 0, showing that the pole of (S − λI)−1 at λ = 0 has residue −cρ0 so we can
now move the line of integration in (4.7) from γ > 0 to γ < 0. The contribution from
the pole is cρ0 and the contribution from large λ is small by (4.8). Further, once this
move is made, the contribution from the vertical line is of the form O(e−ωt). In all,
therefore,

ρ (x, t) = cρ0 +O
(
e−ωt

)
,

as required. Note that c = 1 since∑
i=1,...,n

∫
Ω

ρidx =
∑

i=1,...,n

∫
Ω

ρ0,idx.

5. Discussion and some conditions for “reverse” transport. We now in-
vestigate what may happen if the conditions on the ψi in Theorem 3.1 are satisfied
but those on the aij are not. In particular, we note that condition (iv) of Theorem 3.1
requires that if a is the minimum of one of the ψk, then some aij has support contain-
ing an interval (a− η, a) to the left of a. We will show that without this condition,
aij can be found such that the direction of transport is in the opposite direction from
that described in Theorem 3.1. We remark that the necessity of some positivity con-
dition on the aij to get transport is obvious, for if the aij are all identically zero, for
example, or satisfy conditions that permit the functional F of the introduction to be
minimized, then the solutions of (1.1) are periodic. What we look for in the following
example is a situation in which there is transport, but in the opposite direction from
that predicted by Theorem 3.1 even though the conditions on the ψi in that theorem
are satisfied.

In constructing our example, we will specialize to n = 2, a two state system. We also
reverse direction. By this we mean that conditions (ii) and (iii) in Theorem 3.1, for
n = 2, will be replaced by

(ii′) There is some interval in which ψ′i < 0 for i = 1, 2

(iii′) In any interval in which neither ψ′i vanishes, ψ′j < 0 in this interval for at least
one j
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Fig. 5.1. A period interval showing potentials and conformation coefficients which do not satisfy
the hypothesis (iv′) of Corollary 3.2.

For (iv) we substitute a simpler condition which could be used in Theorem 3.1 as
well, as it implies (iv) .

(iv′) There is a neighborhood of each local minimum of ψ1 or ψ2 in which aij 6= 0
for all (i, j).

Figure 5.1 shows potentials satisfying (ii′) and (iii′).

We then have the following corollary of Theorem 3.1:

Corollary 5.1. If the hypotheses of Theorem 3.1 when n = 2 are satisfied, except
that (ii′), (iii′) and (iv′) replace (i), (ii) and (iii), then there exist constants K1,K2

independent of σ such that

2∑
i=1

ρi (x) ≤ K1e
−K2

σ

2∑
i=1

ρi

(
x+

1
N

)
, for x ∈ Ω, x ≤ 1− 1

N
.

We will now construct an example for the case N = 1 where conditions (i), (ii′) and
(iii′) are satisfied, but not condition (iv’). Our example is constructed initially using
δ- functions for the aij , and with this class of rate coefficients we are able to show
that there is a c > 0 such that for sufficiently small σ,

ρ1 (1) + ρ2 (1) < e−
c
σ (ρ1 (0) + ρ2 (0)) . (5.1)
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Fig. 5.2. Reverse transport computed using the potentials and conformation coefficients shown
in Figure 5.1. The simulation was done with XPP [7].

At the end we briefly discuss a slightly weaker form of reverse transport which we can
then obtain for continuous coefficients.

Assume that ψ1 has a minimum at y1 = 0 followed by a maximum at z1 ∈ (0, 1) and
then a second minimum at 1, with ψ1 (0) = ψ1 (1). Further assume that ψ2 has a
minimum at y2 ∈ (z1, 1) followed by a maximum at z2 ∈ (y2, 1), and ψ2 (0) = ψ2 (1).
Finally assume that ψ′i 6= 0 except at the minima and maxima specified above. Then
0 = y1 < z1 < y2 < z2 < 1. There is no point where both ψ′1 = 0 and ψ′2 = 0 and
so when the aij are all non-zero on [0, 1] , transport will be to the right as given in
Corollary 5.1.

But we will now choose new aij to give transport to the left. Obviously, condition
(iv′) must be violated. Choose a point x1 ∈ (y1, z1) and a point x2 ∈ (y2, z2) . Then

0 = y1 < x1 < z1 < y2 < x2 < z2 < 1 (5.2)

We consider the system

(σρ′1 + ψ′1ρ1)
′ = (δ (x− x1) + δ (x− x2)) (ρ1 − ρ2)

(σρ′2 + ψ′2ρ2)
′ = (δ (x− x1) + δ (x− x2)) (ρ2 − ρ1) ,

(5.3)

with boundary conditions

σρ′i + ψ′iρi = 0 at x = 0, 1, for i = 1, 2. (5.4)
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We wish to find further conditions which imply the inequality (5.1) for some c > 0
and sufficiently small σ.

We follow the technique in [4] , and let φi = σρ′i + ψ′1ρi. Adding the equations in
(5.3) shows that φ1 + φ2 is constant, and applying the boundary conditions shows
that φ1 + φ2 = 0. This leads to the system

σρ′1 = φ− ψ′1ρ1

σρ′2 = −φ− ψ′2ρ2

φ′ = (δ (x− x1) + δ (x− x2)) (ρ1 − ρ2) ,
(5.5)

where φ = φ1 = −φ2.

Having obtained (5.5) under the conditions φi = 0 at x = 0, 1, we now weaken these
conditions, assuming only that φ1 + φ2 = 0. In this way, the same analysis applies to
any period interval of the functions ψi, thus showing that if N > 1, decay occurs in
each period interval. Therefore in (5.5) it is not assumed that φ (0) or φ (1) vanish.
The only assumption made is that ρi > 0 on the entire interval, for i = 1, 2.

Observe that φ takes a jump of amount ρ1 (xj)− ρ2 (xj) at each xj . Further, φ is
constant in the intervals [0, x1), (x1, x2) , (x2, 1]. Let φj = φ (yj). Then

ρi (xj) = ρi (yj) e
ψi(yj)−ψi(xj)

σ + (−1)i−1
φj

∫ xj

yj

1
σ
e
ψi(s)−ψi(xj)

σ ds,

i = 1, 2. Hence,

ρ1 (xj)− ρ2 (xj) = ρ1 (yj) e
ψ1(yj)−ψ1(xj)

σ − ρ2 (yj) e
ψ2(yj)−ψ2(xj)

σ

+ φj

∫ xj

yj

1
σ

(
e
ψ1(s)−ψ1(xj)

σ + e
ψ2(s)−ψ2(xj)

σ

)
ds

For i = 1, 2 let

ai =
ψi (y1)
σ

, bi =
ψi (x1)
σ

, ci =
ψi (x2)
σ

Ai =
∫ x1

0

1
σ
e
ψi(s)
σ ds, Bi =

∫ x2

x1

1
σ
e
ψi(s)
σ ds, Ci =

∫ 1

x2

1
σ
e
ψi(s)
σ ds.

(5.6)

Since ψi (0) = ψi (1) , we eventually obtain (computation facilitated by Maple)

ρ1 (1) = k11ρ1 (0)− k12ρ2 (0) + k13φ(0)
ρ2 (1) = −k21ρ1 (0) + k22ρ2 (0)− k23φ(0)
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where

k11 = 1 + e−b1B1 + e−b1C1 + e−c1C1 + e−b1−c1B1C1 + e−b1−c2B2C1

and k12, ..., k23 are similar expressions in terms of the constants defined in (5.6) .

As in [4], we solve each of the inequalities ρ1 (1) > 0, ρ2 (1) > 0 for φ(0), and
substitute the result into the other of these two relations. We find that

ρ1 (1) ≤ k11k23 − k21k13

k23
ρ1 (0) +

k13k22 − k12k23

k23
ρ2 (0) ,

ρ2 (1) ≤ k11k23 − k13k21

k13
ρ1 (0) +

k13k22 − k12k23

k13
ρ2 (0) .

The desired decay relation (5.1) follows by showing that under certain additional
conditions the four fractional coefficients

k11k23 − k21k13

k13
,
k11k23 − k21k13

k23
,
k13k22 − k12k23

k13
,
k13k22 − k12k23

k23
(5.7)

tend to zero exponentially as σ → 0.

Further Maple computation (checked with Scientific Workplace) shows, for example,
that

k11k23 − k21k13 =
A2

ea2
+
B2

ea2
+
C2

ea2
+A2

B1

ea2eb1
+A2

C1

ea2eb1
+A2

B2

ea2eb2
+A2

C1

ea2ec1

+A2
C2

ea2eb2
+B2

C1

ea2ec1
+A2

C2

ea2ec2
+B2

C2

ea2ec2
+A2B1

C1

ea2eb1ec1
+A2B1

C2

ea2eb1ec2

+A2B2
C1

ea2eb2ec1
+A2B2

C2

ea2eb2ec2

Many cancellations have occurred, eliminating terms in which four or five integrals
are multiplied. Similar formulas are obtained for the other expressions in (5.7) .

In estimating the integrals, first consider B1. We will say that f ∝ g if there are
positive numbers α and β such that for sufficiently small σ, α < f

g < β. We then
have

B1 =
∫ x2

x1

e
ψ1(s)
σ ds ∝ σke

ψ1,max
σ ,

for some k > 0 and with ψ1,max = ψ1 (z1) = maxx ψ1 (x). Also, for possibly different
values of k,

A1 ∝ σkeb1 , A2 ∝ σkea2 ,

B2 ∝ σk
(
eb2 + ec2

)
, C1 ∝ σk (ec1 + ea1) , C2 ∝ σke

ψ2,max
σ
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From (5.6) and (5.2) , we see that the for small σ the two largest terms among
A1, A2, B1, B2, C1, C2, e

a1 , ea2 , eb1 , eb2 , ec1 , ec2 , are B1 and C2.

For the moment we let di = ψi,max
σ and set

A1 = eb1 , A2 = ea2

B1 = ed1 , B2 = eb2 + ec2

C1 = ec1 + ea1 , C2 = ed2

We will find also that to get the desired backward transport, we need to take x2 near to
the maximum of ψ2. Therefore for now we will set x2 = z2, so that c2 = d2. Finally,
we can without loss of generality assume that a1 = 0. The additional conditions we
will give for backwards transport for small σ are that the inequalities (5.8) and (5.9)
below hold and that x2 is sufficiently close to y2.

We then have

k11k23 − k21k13 =
1
eb1

+
2
ec1

+
3
ea2

eb2 +
1
eb1

ec1 +
3
eb1

ed1 +
4
ea2

ed2 +
4
eb2

ed2

+
1
ea2

eb2

ec1
+

1
eb1ec1

ed1 +
1

ea2ec1
ed2 +

1
eb2ec1

ed2 + 6

and similar expressions for k22k13 − k12k23, k13, and k23.

We now assume that d1 > max {b1, c1} , a1 = 0 < min {b1, c1} , and d2 > max {a2, b2}.
We compare terms pairwise wherever possible, eliminating the term which is neces-
sarily smaller as σ → 0. This results in the asymptotic relations

k11k23 − k21k13 ∝
3
eb1

ed1 +
4
ea2

ed2 +
4
eb2

ed2

k22k13 − k12k23 ∝ 6ed1 + 4
eb1

eb2
ed2

k13 ∝ 4ed1 + 2
ea2

eb2
ed1

k23 ∝
2

ea2ec1
ed1ed2 +

1
eb2ec1

ed1ed2

From these we conclude that the four fractions in question are exponentially small as
σ → 0 if in addition to the previous assumptions we have

d2 − a2 < d1 − b1 < d2 − b2. (5.8)

and

d1 > b1 + c1. (5.9)
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(If a1 6= 0 this becomes d1 + a1 > b1 + c1.)

By continuity we see that these inequalities will also suffice if c2 is sufficiently close
to d2. The conclusions also hold with the factors σk included in the asymptotic
expressions, since these don’t affect the exponential limits.

Finally we wish to obtain a result with continuous functions for the aij . Here we
don’t have a limit result as σ → 0. But suppose that ε > 0 is given, and for the
equations (5.3)− (5.4), we choose σ so small that for any positive solution,

n∑
i=1

ρi (1) < ε
n∑
i=1

ρi (0) .

Then for this σ, the same inequality will hold for continuous functions aij sufficiently
close in L1 norm to the δ-functions in (5.3)− (5.4).

In this paragraph we discuss the simulation parameters for Figure 3.1. Simulations,
of which this is a sample, were executed with a semi-implicit scheme and run in
Maple. In this case, for potentials we took ψ1(x) = ψ0

1(24x) and ψ2(x) = ψ0
2(24x)

with ψ0
1(ξ) = 1

4 (cos(π( 2ξ
ξ+1 ))2 and ψ0

2(ξ) = ψ0
1(ξ − 1

2 ). The matrix elements were
−a11 = a12 = a21 = −a22 with a12(x) = a0(24x) where a0(ξ) = 1

2 (cos 2π(ξ − 1
4 ))6.

The diffusion constant σ = 2−7.
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