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Steady state analysis of a continuum model for super-infection.
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Abstract A large system of N strains of parasite and a single host is analyzed as a function of the degree

of virulence in the strains when there is super-infection (more virulent strains can infect hosts that are

already infected). When a small amount of local mutation is allowed, steady state solutions converge

to a continuous distribution as the number of strains increases. The resulting nonlinear-nonautonomous

integro-differential equatoon is reduced to a fourth order boundary value problem and the existence of

positive solutions is proven.

Keywords Superinfection · virulence · boundary value problem

1 Introduction.

In a series of papers Nowak and his collaborators [6,7,1,4,9] explored the question of how it is possible

for virulent parasites to evolve. Intuitively, if a parasite is to become successful, it should attenuate the

severity of the infection in order to maximize the time in which others can be infected. The key idea

that these theorists develop is superinfection through which it is meant that a more virulent strain can

take over a host infected by a less virulent strain. Two factors are important in determining the success

of a parasite: the rate at which it can infect the host and the rate at which the host is removed from

the general population (called the virulence). The former helps the spread of the infection while the

latter impedes it. One of the key observations made by Nowak et al is that the rate of infection and the

virulence covary. Nowak et al develop a large system of coupled ordinary differential equations (ODEs)

(summarized and reviewed in [8]) and by making some simplifying assumptions on the dependence of

the rate of infection on the virulence they simplify their general model and from this reduce the study

of equilibria to a Lotka-Volterra equation. In this paper, we take a different approach. We first explore

simulations as the number of strains increases. From observations of these simulations, we develop a

continuum model for superinfection based on the discrete models. Simulation of the continuum equations

shows the convergence to a steady state which satisfies a nonlinear integral equation. We convert the

integral equation to a system of nonlinear differential equations and arrive at a four-dimensional non-

autonomous boundary value problem (BVP). We numerically solve this, showing how solutions change

with the parameters. The main part of the paper consists of an existence proof for solutions to the

BVP. In section 2, we discuss the Nowak et al model for superinfection and show some simulations for

large numbers of strains and use this to develop the continnum model. We reduce the steady states to
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a boundary value problem for which we show some different numerical solutions. In section 3, we prove

the existence result.

2 Superinfection.

Here, we briefly review the ideas behind superinfection. Consider the standard model for infection [3]:

dx

dt
= k − ux − βxy

dy

dt
= y(βx − u − v).

Here x is the host and y is the parasite. The host (or susceptible) population has a constant death rate u

and a constant immigration rate k. The parasite (or infected) population has an additional death rate v

which characterizes the virulence of the infection. β determines how easily the parasite infects the host.

Starting from an uninfected population, (x, y) = (k/u, 0), the parasite can take hold in the population if

dy/dt is positive for small values of y, that is, (βk/u − u − v) > 0. This last expression is often written

as

R :=
β

u + v

k

u
> 1.

The parameter R is called the basic reproductive ratio. If there are two strains of parasite, say, y1, y2 with

respective reproductive ratios, R1, R2, then no coexistence is possible and the strain with the highest R

wins.

In order to allow for coexistence, which is seen in nature, Nowak and May [6] introduce a parameter

s which allows for the more virulent strain to invade a less virulent one. Let vi denote the virulence of

strain i with v1 < v2 . . . < vn and let βi be the infectivity of strain i. Then Nowak and May propose:

dx

dt
= k − ux − x

n
X

j=1

βjyj

dyi

dt
= yi(βix − u − vi + sβi

i−1
X

j=1

yj − s
n

X

j=i+1

βjyj). (1)

The parameter s determines the degree of superinfection possible. Nowak and May suggest that βi =

b(vi) where b(v) is a monotonically increasing function of v. The virulence values, vi are taken from

a distribution, in their model, the distribution is uniform on the interval, vmin < v < vmax. Unless

otherwise noted, we take vmin = 0 and vmax = A = 5 in our simulations. In their simulations, they

take b(v) = cv/(d + v) with c = 8, d = 1. To analyze the discrete equations, they replace the equation

for x with one in which the immigration of uninfected hosts exactly balances the infection. This means

that the sum x +
P

i yi is constant. Additionally, they consider the limit as d → 0 in b(v) so that all the

parasites have the same degree of infectivity. Under these conditions, the equations reduce to a large set

of Lotka-Volterra equations for which there are a number of methods of analysis. They show that the

steady states for this tend to a particular form and then find them. In a later paper we will relax these

assumptions and prove a result about convergence of the initial value problem to steady states (Chen et

al, in preparation).

Figure 1A shows a simulation of the discrete model (1) after a very long transient for three values of N,

the number of strains of the parasite. In order that the steady state of x (the remaining hosts) tend to the

same value as N changes, we multiply the sums in the equations by a constant, ∆ := (vmax − vmin)/N.

(This is equivalent to rescaling yi. Indeed, let yi = ∆Yi and Yi satisfies (1) with the sums multiplied by

∆. ) This figure indicates that the steady state does not seem to approach a smooth limiting distribution

for the infected hosts; instead there seem to be “numerical instabilities” with the steady state flipping

between two curves. The general shape of the distribution shows something resembling a smooth envelope,
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Fig. 1 (A) Steady states, yi for the scaled model with s = 1, 0 < v < 5 and b(v) = 8v/(v + 1) for three values
of N. The solutions do not appear to be tending to a smooth solution. (B) Addition of a small “mutation” in the
form of diffusion with µ = 0.0001 leads to convergence to a smooth steady state, shown here for N = 200. The
smooth solution is close to the diffusion-free steady state. (C) Comparison of the solution to the discrete problem
for N = 200 and the solution to the boundary value problem.

with no infected hosts below a critical value and then a gradual rise with a sharp fall off. Nowak and

May find similar behavior for a fixed N = 50 and varying values of s.

In order to regularize the steady state shape, we introduce a small change in their model. We allow for

the parasites to spontaneous mutate to their nearest neighbors while infecting the host. That is, we allow

for spontaneous transitions from yj to yj+1, yj−1. While it is unknown to us whether such mutations

occur in reality, this small change does not affect the qualitative picture and regularizes the stationary

state. Figure 1B shows an example with N = 200 and a mutation rate of µ/∆2 with µ = 0.0001. We

note that even smaller values still regularize the steady state solutions, as do larger values. The figure

shows that the steady state distribution still has the same essential features: a gradual increase and an

abrupt decline in the density of parasitized hosts plotted against the virulence.

With this scaling, the steady state equations are

0 = k − ux −
n

X

i=1

b(vi)yi∆

0 = µ
yi+1 − 2yi + yi−1

∆2
+ yi(b(vi)x − u − vi + sb(vi)i

i−1
X

j=1

yj∆ − s
n

X

j=i+1

b(vj)yj∆).

We let yi = y(vi) and proceed to the continuum limit as N → ∞ to obtain the following nonlinear

integro-differential equation:

0 = k − ux − x

Z A

0
b(v)y(v) dv (2)

0 = µ
d2y(v)

dv2
+ y(v)(b(v)x − u − v + sb(v)

Z v

0
y(v′) dv′ − s

Z A

v

b(v′)y(v′) dv′). (3)
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In addition, we have the boundary conditions

dy(v)/dv = 0

at v = 0, A. Here, we have assumed that the virulence is uniformly distributed in the interval [0, A]. This

is not necessary, but simplifies the resulting analysis. This integro-differential equation can be converted

to a pure differential equation by making the following definitions:

z(v) :=

Z A

v

b(v′)y(v′) dv′

w(v) :=

Z v

0
y(v′) dv′.

With this change of variables, we obtain the boundary value problem:

µ2y′′(v) = y(v)(u + v − xb(v) + sz(v) − sw(v)b(v))

z′(v) = −b(v)y(v)

w′(v) = y(v)

subject to the following boundary conditions

y′(0) = 0

y′(A) = 0

z(A) = 0

w(0) = 0

x =
k

u + z(0)
.

With this boundary value problem (BVP), we are in a position to study steady states as various

parameters vary such as the maximum virulence or the amount of superinfectivity, s. Figure 1C shows

the solution to the BVP for s = 1, vmax = A = 5, µ = 0.0001 along with the steady state for the discrete

model with N = 200. The agreement is almost exact. Let us first suppose there is no superinfection. The

maximum value of vb(v) (recall this is related to the basic reproductive rate) occurs at v = c which for

this paper is c = 1. Thus in absence of mutation (µ = 0) and superinfection, the steady state solution to

the discrete model has yj = 0 except for the j corresponding to v = 1. With diffusion, this maximum is

smoothed out. Figure 2B shows that for vmax := A = 1 and small mutation (in this and all remaining

figures, µ = 0.0001), the steady-state density y(v) is monotonic. However, if vmax increases, then there

is an interior maximum centered around v = 1 as can be seen in the rest of the curves in figure 2B. (Note

the horizontal axis is scaled to 1 for the BVP.) The fraction of the population remaining uninfected

remains essentially constant independent of the maximum virulence as seen in figure 2A.

Figure 3A, in contrast, shows that the uninfected population actually increases with superinfection,

s. Furthermore, as s increases, the nice Gaussian peak around v = 1 becomes skewed toward greater

virulence with a maximum moving toward the right. The small “bump” on the density for s = 0.5, 1

disappears with larger µ and the density has just a single maximum.

The remainder of this paper is devoted to the analysis of the BVP. We prove that there exists a

solution for any reasonable values of the parameters.
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Fig. 2 Solutions to the BVP as vmax varies. (A) X, the fraction of uninfected population, remains essentially
constant independent of the maximum virulence with no superinfection (s = 0) (B) Steady state densities for
s = 0 at several values of vmax with µ = 0.0001.
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Fig. 3 Solutions to the BVP as s varies for vmax = 5. (A) Uninfected population increases with superinfection.
(B) Infected distribution for several values of s.

3 Existence proof.

We consider the boundary value problem

µ2y′′ = (1 + v + sz − xb (v) − swb (v)) y (4)

z′ = −b (v) y (5)

w′ = y (6)

y′ (0) = 0, w (0) = 0 (7)

y′ (A) = 0, z (A) = 0, x =
1

1 + z (0)
(8)

where y, z, w are functions of v on 0 ≤ v ≤ A and

b (v) =
cv

1 + v

for some c > 0. We look for a solution (x, y, z, w) with y > 0 on [0, A].

First we consider the case s = 0 :

µ2y′′ = (1 + v − xb (v)) y (9)

z′ = −b (v) y (10)

x =
1

1 + z (0)
(11)

y′ (0) = y′ (A) = 0 (12)

z (A) = 0. (13)
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We prove:

Theorem 1 Choose c so large that the unique solution to

µ2y′′ = (1 + v − b (v)) y

y (0) = 1, y′ (0) = 0

satisfies y (v) < 0 for some v ∈ (0, A). Then the problem (9)− (13) has a solution with y > 0 on [0, A].

Remark 1 The existence of such an c can be shown by a polar coordinate transformation y = r cos θ, y′ =

r sin θ, as in [Coddington and Levinson, chapter 8]. There is a c0 > 0 such that the hypotheses of the

Theorem are satisfied by any c > c0. Alternatively, we can fix c and A so that b (v) > 1 + v for some

v ∈ [0, A] and then choose µ sufficiently small.

Proof Suppose that x ∈ (0, 1), and y is positive on [0, A] and satisfies (9) and (12). Let z0 = 1−x
x and

choose k > 0 so that
Z A

0
b (v) ky (v) dv = z0.

Setting z (v) = z0 −
R v
0 b (s) ky (s) ds gives a solution (x, ky, z) to (9) − (13) .

To solve (9) and (12) for some x ∈ (0, 1) , consider for each x the initial value problem consisting of

(9) and initial conditions

y (0) = 1, y′ (0) = 0. (14)

The hypothesis on c insures that if x = 1 then y > 0 on some maximal interval [0, v1), with

v1 < A and y (v1) = 0, y′ (v1) < 0. On the other hand, if x is sufficiently small, then xb (v) < 1 + v for

all v ∈ [0, A] , insuring that y′ > 0 on (0, A]. In particular, y′ (A) > 0, y (A) > 0.

Since, for x = 1, y′ (v1) < 0, the implicit function theorem insures that v1 (defined by y (v1) = 0) is a

continuous function of x on some interval 1−ε < x ≤ 1. Further, since a nontrivial solution of (9) cannot

satisfy y (v) = y′ (v) = 0 for any v, we must have y > 0 on [0, v1) and y′ (v1) < 0. Define v1 (x) for all

x ∈ [0, 1] as follows: v1 (x) = inf {v > 0 | y (v) = 0 or v = A}. Then v1 (x) is a continuous function of

x, and y′ (v1 (0)) > 0, y′ (v1 (1)) < 0. Hence there is an x0 ∈ (0, 1) such that y′ (v1 (x0)) = 0, y (v) > 0

on [0, v1 (x0)]. Therefore v1 (x0) = A and this proves the Theorem.

Remark 2 The value of x is easily seen to be unique. The theorem, while easy to prove, does not

follow immediately from a standard result, in Coddington and Levinson, for instance, because b (0) = 0.

However the main reason for presenting this proof is to give a simple example of the method we will use

when s > 0.

We now consider s > 0. In this case, it is convenient to reverse direction in the independent variable

of the problem, letting t = A − v, y (v) = Y (t) , z (v) = Z (t) , w (v) = −P (t) .

We then look for a solution (x, Y, Z, P ) , with Y > 0, for the following problem:

µ2Y ′′ = (1 + A − t − xb (A − t) + s (Z + b (A − t)P ))Y (15)

Z′ = b (A − t)Y (16)

P ′ = Y (17)

Y ′ (0) = 0, Z (0) = 0, (18)

Y ′ (A) = 0, P (A) = 0 (19)

x =
1

1 + Z (A)
(20)



7

Consider also the linear initial value problem

µ2Y ′′ = (1 + A − t − b (A − t)) Y

Y (0) = 1, Y ′ (0) = 0.
(21)

Theorem 2 Choose c so large that the unique solution to (21) satisfies Y (t) = 0 for some t ∈ (0, A).

Then the problem (15) − (20) has a solution with Y > 0 on [0, A].

Remark 3 The choice of c in Theorem 2 differs, in general, from the c chosen in Theorem 1, even

when s is very small. This is because of the reverse in direction. This may give the impression that the

solution found does not tend to that of Theorem 1 as s → 0. However this neglects the possibility that

for small s, xc may be close to its value when s = 0.

More generally, this also raises the question of whether the solutions to (4) − (8) vary continuously

with s. While this seems likely from numerical results, we have not proved it, mainly because we cannot

prove the uniqueness of the solution for a given s.

Proof The reason for reversing direction in the problem is that (15)−(18) has an important monotonicity

property.

Lemma 1 For given x ∈ [0, 1] , consider the solution (Y, Z, P ) of (15) − (18) with further initial condi-

tions Y (0) = Y0 > 0, P (0) = P0. Then Y, Z and P are each monotone increasing functions of Y0 and

of P0 as long as Y > 0. That is, if Y 1
0 ≥ Y 2

0 and P 1
0 ≥ P 2

0 ,with
“

Y 1
0 , P 1

0

”

6=
“

Y 1
0 , P 2

0

”

, and Y 2 > 0

on some interval [0, T ] , then Y 1 > Y 2, Z1 > Z2, and P 1 > P 2 on (0, T ]. Further, as long as Y > 0,

Y ′ is an increasing function of Y0 and of P0 at any point where Y ′ ≥ 0, in the following sense: If

Y 1
0 ≥ Y 2

0 and P 1
0 ≥ P 2

0 , with
“

Y 1
0 , P 1

0

”

6=
“

Y 1
0 , P 2

0

”

, and if for some t1 ∈ (0, A), Y 2 > 0 on [0, t1] and

Y 1′ (t1) ≥ 0, then Y 1′ (t1) > Y 2′ (t1). (It is not required that Y 1′ ≥ 0 on [0, t1] .)

Proof Let ρ = Y ′

Y and

r (t) = 1 + A − t − xb (A − t) + s (Z + b (A − t) P )

Then r (t) is an increasing function of Z and P for 0 ≤ t < A, and

ρ′ =
r (t)

µ2
− ρ2 (22)

ρ (0) = 0.

Suppose that
“

Y 1, Z1, P 1
”

and
“

Y 2, Z2, P 2
”

satisfy (15) − (18) with Y 1 (0) = Y 1
0 > Y 2 (0) = Y 2

0 > 0,

P 1 (0) = P 2 (0) .

Then ρ′1 (0) = ρ′2 (0) and

µ2ρ′′1 (0) = −1 + xb′ (A) + 2sb (A)Y 1 (0) − sb′ (A) P 1 (0) > µ2ρ′′2 (0) .

Hence, ρ1 > ρ2 on some interval (0, T ). Since

Y (t) = Y0e
R

t

0
ρ,

it is also clear that Y 1 > Y 2 on (0, T ] . Also, Z1 > Z2 and P 1 > P 2 on (0, T ]. If there is a first T in

(0, A) such that ρ2 is bounded on [0, T ] and ρ1 (T ) = ρ2 (T ) , then ρ′1 (T ) ≤ ρ′2 (T ) , but this contradicts

(22). This proves monotonicity of Y, Z, and P . For the statement about monotonicity of Y ′ we use the

monotonicity of ρ and Y and the relation Y ′ = ρY . A similar argument holds if P 1
0 > P 2

0 , completing

the proof.
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We will also need to consider a family of linear initial value problems. For each x ∈ [0, 1] and P0 ≤ 0,

consider the problem

µ2U ′′ = (1 + A − t − xb (A − t) + sb (A − t)P0) U

U (0) = 1, U ′ (0) = 0
(23)

Lemma 2 As long as U > 0, U is a monotone decreasing functions of x, for each given P0, in the same

sense as in the statement of Lemma 1 . In addition, as long as U > 0, U ′ is also monotone decreasing

in x at each point where U ′ ≥ 0, again in the same sense as in lemma 1 . Finally, in a similar way, U

is monotone increasing in P0 for each x ∈ [0, 1] , as long as U > 0.

Proof We see that if x1 > x2, then U ′′
1 (0) < U ′′

2 (0), so U ′
1 < U ′

2 and U1 < U2 on some interval (0, T ).

Letting σi =
U ′

i

Ui
, we also see that σ′

1 (0) < σ′
2 (0) and therefore we can choose T so that σ1 < σ2 on

(0, T ). From here the proof is almost the same as the proof of Lemma 1.

We now define, for each P0 ≤ 0, a minimum value of x to be considered, setting

x̄ (P0) = sup
˘

x ∈ [0, 1] | x = 0, or U > 0 on [0, A] and U ′ (A) ≥ 0
¯

.

Note that if c is chosen as in the statement of Theorem 2, then x̄ (0) ∈ (0, 1) . It is also easy to see that

there is a P ∗
0 < 0 such that 0 < x̄ (P0) < 1 if P ∗

0 < P0 ≤ 0 but x̄ (P0) = 0 if P0 ≤ P ∗
0 . Further, x̄ (P0) is

continuous, and Lemma 2 implies that it is strictly increasing in P0 in the interval [P ∗
0 , 0].

Lemma 3 If P ∗
0 ≤ P0 ≤ 0 and x = x̄ (P0) , then for the solution of (23) , U > 0 on [0, A] and

U ′ (A) = 0.

Proof If U becomes negative in (0, A), or U ′ (A) > 0, then x can be increased by a small amount and

still gives the same behavior. (Note that if U (A) = 0, and U ′ (A) ≥ 0, then necessarily U ′ (A) > 0, and

U = 0 somewhere in (0, A) .) This contradicts the definition of x̄ (P0) in the given range of P0. Hence,

U ′ (A) = 0 and U > 0 on [0, A), implying that U (A) > 0.

From the definition of x̄ (P0) it is obvious that for P0 ≤ 0, if x̄ (P0) < x ≤ 1, then either U becomes

negative or U ′ (A) < 0.

Our method from this point has three main steps:

1. Show that for each P0 ≤ 0 and each x ∈ (x̄ (P0) , 1], there is a unique Y0 such that if Y (0) = Y0,

P (0) = P0, and (Y, Z, P ) satisfies (15) − (18) , then Y > 0 on [0, A] and Y ′ (A) = 0.

2. Show that for each P0 ≤ 0 there is an x ∈ (x̄ (P0) , 1) such that the solution of (15) − (18) with

Y (0) chosen as in step 1, satisfies

x =
1

1 + Z (A)
.

3. Show that there is a P0 and a value of x chosen as in step 2 such that the corresponding solution

also satisfies P (A) = 0.

The following result carries out step 1.

Lemma 4 For each P (0) = P0 ≤ 0 and x ∈ (x̄ (P0) , 1], there is a unique Y0 = Y0 (x, P0) such that the

solution to (15) − (18) with P (0) = P0 and Y (0) = Y0 (x, P0) satisfies Y > 0 on [0, A] and Y ′ (A) = 0.



9

Proof From the definition of x̄ (P0) it is seen that for the solution of (23) , either U becomes negative

or U ′ (A) < 0. Let r0 (t) = 1 + A − t − xb (A − t) + sP0 and set

M = max
0≤t≤A

r0 (t) .

As before, set

σ =
U ′

U
.

If x ∈ (x̄ (P0) , 1], then either σ () is continuous on [0, A] and σ (A) < 0, or there is a t ∈ (0, A) with

σ2 (t) > M
µ2 . We observe that for (15) − (18) , limY (0)→0 Y (t) = 0 uniformly in [0, A] . It follows that

limY (0)→0 Z (t) = limY (0)→0 (P (t) − P0) = 0. With ρ = Y ′

Y , it follows that for sufficiently small Y (0) ,

ρ must have the same behavior as σ, showing that either Y = 0 somewhere in (0, A) , or else Y ′ (A) < 0.

On the other hand, suppose that Y (0) = Y0 is large. Then there is an interval [0, T ] in which

Y ≥ 1
2Y0. We can assume that 0 < T ≤ 1

2 . Also,

µ2Y ′′′ = r′ (t)Y + r (t) Y ′

where

r (t) = 1 + A − t − xb (A − t) + sZ + sb (A − t)P )

r′ (t) = −1 + xb′ (A − t) + s
`

2b (A − t) Y − b′ (A − t) P
´

.

Then

r (t) ≥ −xb (A − t) + sb (A)P0 ≥ −2K

where K depends on P0, x, and b, but not on Y0. We are taking P0, x, and b as fixed in this proof.

Also, we can choose Y0 so large that, for some K1 > 0 independent of Y0,

r′ (t) ≥ K1Y0

on [0, T ] . It follows that there is are numbers L > 0 and δ > 0 such that if Y0 > L, and Y ≥ 1
2Y0 on

[0, T ] , then

Y ′′′ ≥ δY 2
0 − 2K

˛

˛Y ′
˛

˛ (24)

on [0, T ]. Also,

Y ′ (0) = 0

Y ′′ (0) ≥ −2KY0
(25)

From these inequalities, taking note of the Y 2
0 term in (24) , it is easy to show that for sufficiently large

Y0, Y ≥ 1
2Y0 as long on [0, A] as the solution exists, and if Y exists on [0, A] , then Y ′ (A) > 0. Further,

if Y fails to exist on [0, A] , then this is because Y and Y ′ tend to infinity at some t1 ∈ (0, A].

We now define two subsets of the interval 0 < Y0 < ∞ as follows:

Λ1 =
˘

Y0 > 0| Y (t) = 0 for some t ∈ (0, A) or Y > 0 on (0, A) and Y ′ (A) < 0
¯

Λ2 =

(

Y0 > 0| Y > 0 on [0, A] and Y ′ (A) > 0, or there is a t1 ∈ (0, A] such that

Y > 0 on [0, t1) and lim
t→t

−

1

Y (t) = ∞

)

.

We have shown that each of these sets is nonempty. It is clear from their definitions that they are disjoint.

Since we cannot have Y (t) = Y ′ (t) = 0 for some t ∈ (0, A], Λ1 is open.
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To see that Λ2 is open, we observe that if Y > 0 on [0, A] and Y ′ (A) > 0, then these inequalities

also hold for nearby Y0. If, on the other hand, lim
t→t

+

1

Y (t) = ∞, then Z + bP must be unbounded.

Because

Z (t) =

Z t

0
b (A − s)Y (s) ds > b (A − t) (P (t) − P0)

Z must be unbounded. Also, Z is increasing. Hence Y ′′ > 0 near t1, and this also holds for nearby Y0,

from which the openness of Λ2 follows.

Since the half line Y0 > 0 is connected, it cannot be the union of Λ1 and Λ2. Hence there is a

Y0 (x, P0) such that Y solves (15) − (18) and Y ′ (A) = 0. The uniqueness of Y0 (x, P0) follows from

Lemma 1.

From now on we will assume in (15) − (18) that Y (0) is chosen as in Lemma 4. The uniqueness of

Y0 (x, P0) insures that it depends continuously on these variables.

Lemma 5 If P ∗
0 ≤ P0 ≤ 0, then limx→x̄(P0)+ Y0 (x, P0) = 0.

Proof Suppose instead that

lim sup
x→x̄(P0)

+

Y0 (x, P0) = η > 0.

Consider the solution U0 of

µ2U ′′ = (1 + A − t − x̄ (P0) b (A − t) + sb (A − t) P0) U

U (0) = η, U ′ (0) = 0.

By 3, U ′
0 (A) = 0. Consider the solution of (15) − (18) with x = x̄ (P0) , P (0) = P0, and Y (0) = η. We

find that

Y ′′′ (0) > U ′′′
0 (0)

and it follows as in the proof of Lemma 1 that Y ′ (A) > 0. This contradicts the definition of Y0 (x, P0) .

Corollary 1

lim sup
x→x̄(P0)+

z (A) = 0.

Corollary 2 For x − x̄ (P0) positive and sufficiently small,

x <
1

1 + z (A)
.

On the other hand, if x = 1, then x > 1
1+z(A)

.

We now apply a topological result of McLeod and Serrin [5] This result implies that for any P̄ < 0

there is a continuum Γ = ΓP̄ contained in the (x,P0) plane, in the region P̄ ≤ P0 ≤ 0, x̄ (P0) < x < 1

and connecting the horizontal lines P0 = 0 and P0 = P̄ , such that if (x, P0) ∈ Γ, then x = 1
1+z(A)

.

Remark 4 It is easy to prove that such an x exists for each P0. If we could prove for each P0 that x

is unique, we would not have to resort to the McLeod Serrin result. We have not been able to do so

because we have not been able to prove a monotonicity of solutions of (15) − (18) with respect to x, for

fixed P0 and choosing Y0 as in Lemma 4.
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From now on we assume that
˛

˛P̄
˛

˛ is large and (x, P0) is chosen in ΓP̄ . Clearly if P0 = 0 then

P (A) > 0.

On the other hand, consider P (A) = P̄ . We can integrate the equations in (15) − (18) to obtain

µ2Y ′ (A) = P (A) − P0 − AP0 +

Z A

0
P (s) ds − xZ (A) + sZ (A)P (A) .

Since

xZ (A) =
Z (A)

1 + Z (A)
< 1,

and
Z A

0
P (s) ds > AP0

we see that for sufficiently large −P0, if P (A) ≥ 0 then Y ′ (A) > 0, a contradiction. Hence for P̄

sufficiently large (and negative), and P0 = P̄ , P (A) < 0. It follows that for some P0 ∈
`

0, P̄
´

the

solution of (15)−(18) with P (0) = P0 and with x and Y0 chosen as above, all of the conditions (15)−(20)

are satisfied. This proves Theorem 2.

We end with a result about the qualitative behavior of the solutions found in Theorems 1 and 2.

Theorem 3 For given c and µ, and sufficiently large A, the solutions found in the theorems above are

non-monotonic.

Proof The proof uses the Sturm oscillation theorem. We first note that the c in the statement of Theorem

2 (where b (v) = cv
1+v ) can be chosen independently of A for large A. This is because in equation (21),

for large A , in the interval A − 2 ≤ t ≤ A − 1,

b (A − t) =
c (A − t)

1 + A − t
≥

c

3
.

Hence, in this interval,

1 + A − t − b (A − t) ≤ 3 −
c

3

µ2Y ′′ +
“ c

3
− 3 + f (t)

”

Y = 0

for some f (t) ≥ 0. Hence for sufficiently large c, depending on µ but not A, and A > 2, the solution

Y of (21) must have a zero in [A − 2, A − 1] . Thus we can fix c and let A increase and still satisfy the

hypotheses of Theorem 2.

Now consider a solution (x, Y, Z, P ) of (15) − (20) , with Y > 0 on [0, A]. Then

µ2Y ′′ (A) = (1 + sZ (A)) Y (A) > 0.

Since Y ′ (A) = 0, it follows that Y ′ < 0 in some interval (A − ε,A). Also,

Y ′ (0) = 0,

µ2Y ′′ (0) = (1 + A − xb (A) + sb (A) P (0)) Y (0) .

We show that Y is non-monotonic by showing that for large enough A, Y ′′ (0) > 0, and hence Y ′ > 0

on some interval (0, ε) . We do this by showing that P (0), while negative, is bounded independent of

large A. We see from the proof of Theorem 2 that P (0) ≥ P ∗
0 , where P ∗

0 is defined just before Lemma
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2, in terms of the solution U of (23) . P ∗
0 has the property that if x = 0 and P (0) > P ∗

0 , then U > 0

on [0, A] and U ′ (A) > 0. Write the ode of (23) in the form

U ′′ + q (t)U = 0,

where

q (t) =
1

µ2
(t − A − 1 + xb (A − t) − sb (A − t)P0)

With x = 0, in the interval [A − 1, A] , q (t) ≥ 1
µ2 (−2 − sb (1) P0) , so if

−sb (1) P0 ≥ 2 + π2µ2,

then the Sturm theorem says that U must vanish on [A − 1, A] . This gives the required lower bound

on P ∗
0 , independent of A, and so for sufficiently large A, Y ′′ (0) > 0.

4 Discussion and conclusions.

We have studied a continuously varying virulence model for superinfection, motivated by work of Nowak

and May. By adding a small amount of “mutation”, we find that steady state solutions to the superinfec-

tion model converge, with suitable scaling, to a continuous integro-differential equations. We converted

this to a boundary value problem and for a specific choice of the contact rate, b(v), we are able to prove

existence of the solutions. Furthermore Theorem 3 shows that if vmax = A is large enough, there is an

interior maximum in the steady state density of the infected population as seen in the numerics. It is

clear from the proof that the particular choice of b(v) is not that crucial. All we require is that it can

be chosen sufficiently large so that certain inequalities hold (see theorem 1). The small mutation rate is

necessary in order to get smooth steady states. In a related paper, (in preparation, with X. Chen), we

study the µ = 0 case as an initial value problem and characterize the approach to steady states.
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