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Abstract

In this paper we discuss a new concept of a constitutive kinetic equation which
represents a quasicontinuum analog of the conventional continuum mechanical con-
cept of a kinetic relation. Kinetic relations link the velocity of the defect with the
driving force and are widely used to model dynamical response of dislocations,
cracks and phase boundaries. To illustrate the difference between kinetic relations
and kinetic equations we consider a prototypical model of an overdamped defect in
a one-dimensional lattice where all computations can be done explicitly. We show
that in the strongly discrete limit the minimal kinetic equation is in fact a system
of two ordinary differential equations involving the coordinate of the defect and
another internal parameter describing the configuration of the core region.

1 Introduction

Kinetic relations associating a particular value of velocity with a given value of
the driving force are widely used in continuum mechanics for the constitutive
description of propagating lattice defects (e.g. phase boundaries, dislocations,
cracks, etc. (Gurtin, 1999; Maugin, 1993). These, usually algebraic, relations
form independent postulates which serve as closing macroscopic conditions.
Since kinetic relations represent the vanishing core regions of the defects, they
contain in a condensed form all information regarding the complex physi-
cal behavior at the microscale. In practice, kinetic relations are either taken
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from experiment or from the solutions of auxiliary microscale problems. In
the macroscopic continuum description the core regions of the defects are
represented by singularities, so that all the details of their interaction with
localized inhomogeneities are lost. For instance, the velocity oscillations due
to lattice discreteness and the corresponding pinning-depinning phenomena
that generate intermittency become averaged out (Kardar, 1998).

To partially recover the missing information we propose to replace an algebraic
relation between the macroscopic velocity of the defect and the corresponding
macroscopic driving force by a kinetic equation linking the time derivatives of
the effective parameters describing the microconfiguration of the core region
with their local values and the value of the macroscopic driving force. Our ap-
proach can be viewed as an example of a multiscale (quasicontinuum) method
aimed at bridging macroscopic continuum description outside the singularities
with a more detailed atomistic resolution of the core regions (Tadmor et al.,
1996; Li and E, 2005; Arndt and Luskin, 2008).

To illustrate the main idea of the approach we begin with a simple zero-
dimensional example. Consider an overdamped dynamics of a material point
in a one-dimensional configurational space:

v 0d(v,G(1))
or =" v @

where v is a variable defining the microstate of the system, G(¢) is the slowly
varying macroscopic driving force depending on slow time ¢. The fast time
is defined as 7 = t/e where ¢ << 1 is a small parameter. We assume that
the energy landscape ®(v, ) is periodic in v. The periodicity reflects micro-
inhomogeneities due to lattice structure or imitates some other regular distri-
bution of obstacles. We suppose that there exists an algebraic relation between
the driving force G' and the macroscopic velocity

ov . /e Qv
V(t) = <8_7'>T = lime a—TdT. (2)
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It can be written as V' (t) = V(G(t)), and we interpret it as the macroscopic
kinetic relation. For instance, if G prescribes a tilt of the simplest periodic
energy landscape

®(v,G) = Gp cosv — G, (3)
we obtain (e.g. Gruner et al., 1981)

0 |G| < Gp

sgn(G — Gp)/G? — G% |G| > Gbp.

In the realistic situations the microscopic description of the type (1) is very
complex because it involves a huge number of variables and is too detailed.

V(@) = (4)



In contrast, the macroscopic description of the type (4) is too schematic and
cannot be trusted when one deals with the problems where slow and fast
time scales cannot be separated. This point is often overlooked, and kinetic
relations, implying adiabatic elimination of microscopic variables, are used in
situations where both G and V' are changing fast, as, for instance, in the cases
of nucleation and depinning.

In this paper we propose to take a step back from the macroscopic level and
return to the mesoscopic level where the algebraic kinetic relations can be
replaced by the differential kinetic equations. These equations can be viewed as
a low parametric representation of the full-scale atomistic (molecular dynamic)
description of the type (1) which involves some specially selected collective
variables characterizing the location of the defect and the structure of the
core region. Kinetic equations are expected to describe the response of the core
of the defect to relatively fast changes of the macroscopic driving force and
when these changes are slow the kinetic equation must reduce to the kinetic
relation. An example of such approach is provided by the rate and state-
dependent constitutive laws in the theory of friction, where the set of internal
state variables is assumed to satisfy differential constitutive relations (e.g. Rice
and Ruina, 1983; Ruina, 1985). When such state variables are eliminated, one
obtains in macroscopic variables an integral kinetic relation with nonlocal time
dependence. This nonlocal kinetic relation becomes local only in the limit of
sufficiently slow variation of the macroscopic parameters.

In what follows we present a detailed adaptation of these ideas to the case
of martensitic phase transitions. Martensitic phase boundaries are particu-
larly convenient for the demonstration of the main principles of our approach
because these plane defects can be already adequately represented by one-
dimensional models. To emphasize ideas we consider the simplest case of an
isolated phase boundary with overdamped dynamics. At the microscale, the
analysis of the steady propagation of a phase boundary requires a study of
a dynamical system with an infinite number of degrees of freedom. At the
macroscale the same defect can be modeled by a jump discontinuity whose
evolution is determined from the conventional kinetic relation.

We pose the question of whether an intermediate description is possible when
the interface is equipped with a small number of “mesoscopic” degrees of free-
dom whose dynamics reproduces the main effects of discreteness. An example
of such a description in the theory of dislocations is provided by the represen-
tation of a static defect as an effective particle in equilibrium Peierls-Nabarro
(PN) landscape (Braun and Kivshar, 2004). The static PN landscape is ob-
tained by relaxing all microscopic variables other than one collective variable
interpreted as the macroscopically observable location of the core. The idea
of static PN landscape for a dislocation was extended to dynamics in the case
when the discrete system is close to the continuum one. In this restricted set-



ting the dynamic PN landscape can be represented as the appropriately tilted
static PN landscape (Hobart, 1965, 1966; Pokrovsky, 1981; Ishimori and Mu-
nakata, 1982; Ishibashi and Suzuki, 1984; Willis et al., 1986; Lazutkin et al.,
1989; Flach and Kladko, 1996). Such approach, however, cannot be used in
the strongly discrete case, when the dislocation core is narrow and the con-
tinuum approximation is not adequate (Joos, 1982; Furuya and de Almeida,
1987). In order to deal with the strongly discrete case it was proposed to trace
the dynamics of the so-called “active points”, which leads to the study of a
low-dimensional dynamical system (Kladko et al., 2000; Carpio and Bonilla,
2003). So far the approach of “active points” has been applied to the modeling
of dislocations only in the immediate vicinity of the depinning point.

In the present paper we extend the approach of “active points” to fast motions
of martensitic phase boundaries and develop a systematic concept of a dynamic
PN (DPN) landscape. Potentially, we search for a finite-dimensional center
manifold type reduction of the original infinite-dimensional dynamical system,
however in this paper we restrict our attention to the approximation of the
traveling wave solutions only. The key to our approach is the assumption that
during each period dynamics of only a few elastic elements located inside the
core region around the phase boundary has to be resolved fully. The other
elastic elements further away from the core region remain confined to their
respective potential wells and their small adjustment to changing conditions
can be treated as instantaneous. In contrast to the approach of kinetic relations
here we need to follow not only the location but also the internal configuration
of the front. Such extension of the scope is necessary because the core region
of the defect is not translated with the center of mass as a rigid object but is
instead experiencing periodic configurational deformations.

We apply this idea to an exactly solvable discrete lattice model with piece-
wise quadratic interaction potential. Using as a benchmark the exact trav-
eling wave solution of the discrete problem for the steadily moving phase
boundary (Truskinovsky and Vainchtein, 2005, 2008), we construct a sim-
ple two-dimensional dynamical system which generates a remarkably good
approximation for the kinetics of the full infinite-dimensional system. The
application of the obtained kinetic equations for the solution of the particu-
lar macroscopic boundary value problems involving strongly inhomogeneous
media will be given elsewhere.

The paper is organized as follows. In Section 2 we formulate the singular
macroscopic problem which requires a microscopic closure. To provide such a
closure we turn to a specific microscopic model, represented by an overdamped
chain with the interaction of nearest and next to nearest neighbors. In Section
3 we obtain an analytical traveling wave solution of the microscopic problem
and extract from it the macroscopic kinetic relation. The construction of the
classical static PN landscape and its utility for the modeling of dynamics are



discussed in Section 4. In Section 5 we build the simplest one-dimensional
kinetic equation which gives rise to the simplest one-dimensional DPN land-
scape. We show, however, that the resulting one-dimensional kinetic equation
is only adequate in the immediate vicinity of the depinning point. In Section
6 we replace it by a two-dimensional kinetic equation which works well in a
larger interval of admissible velocities.

2 Macroscopic and microscopic models

Let u(z,t) be the one-dimensional continuum displacement field. The macro-
scopic energy of a bar undergoing martensitic phase transition can be written

" £ = /[ +¢uz] (5)

Here the energy density ¢(u;) is represented by a double-well potential which
will be specified later.

The dynamic equation corresponding to the energy (5) is

Ut = (a-(uac))acy (6)

where u; = du/0t is the macroscopic velocity and u, = du/dz is the macro-
scopic strain and 6 (u;) = ¢'(u;). On discontinuities, the equation (6) is usually
supplemented with the appropriate jump conditions. Let f_ and f, denote the
values of f(x) to the left and to the right of the interface, and introduce the
notations [f] = f+ — f- for the jump and {f} = (f; + f-)/2 for the average
of f across the dlscontlnmty. Then the parameters on a discontinuity must
satisfy the classical Rankine-Hugoniot jump conditions

[ur-]+ VIue] =0, V]ur] +[6(us)] = 0. (7)
The entropy inequality, which is also typically assumed to hold, takes the form
R =GV >0, (®)
where R is the rate of energy dissipation and
=[] = {6(ua) Hua] 9)
is the configurational (driving) force.

Imposing the entropy inequality is sufficient for local uniqueness in the case of
supersonic discontinuities (shock waves). In the case of subsonic phase bound-
aries, in order to obtain a unique solution one must specify the rate of en-
tropy production as well. This is usually done phenomenologically through



the kinetic relation G = G(V) between the driving force and the velocity
(Truskinovsky, 1987; Abeyaratne and Knowles, 1991). The specification of the
microscopic model allows one in principle to compute the function G(V') from
the microscopic traveling wave solution (Truskinovsky, 1982; Slemrod, 1983).

As an example of a microscopic theory generating a particular kinetic rela-
tion consider an infinite chain of particles, connected to their nearest neigh-
bors (NN) through viscoelastic springs and to their next-to-nearest neighbors
(NNN) by elastic springs ( see Figure 1). Suppose that in the undeformed
configuration the NN and NNN springs have lengths € and 2¢, respectively.
Let u,(t) denote the displacement of nth particle at time ¢ with respect to the
reference configuration. The deformation of nth NN spring is measured by its
strain

W, = Un — Un-1 (10)

€
For the viscoelastic NN springs we assume the following constitutive relation:
fNN(w7 ’UJ) = (M\IN(w) + Swa (11)

where £ > 0 is the viscosity coefficient accounting for dissipation which may
be due to the presence of internal degrees of freedom that are not accounted
for in this model. To generate domain boundaries we need ¢xyx(w) to be at
least a double-well potential; to obtain explicit solutions, we shall also assume
that this function is biquadratic:

%KwQ, w < w,

onn(w) = (12)

%K(w—a)Q—l-Ka(wc— g), w > W,

One can see that under these assumptions the NN elastic units can be in two
different phases, depending on whether the strain is below (phase I) or above
(phase II) the critical value w.. The parameter a measures the transformation
strain. To simplify the calculations, we assumed that the elastic moduli in the
NN phases are the same and that the NNN interactions are linearly elastic:

fann () = 271 (13)

1
Here we defined w,, = 5 (wp41+wy,) as the strain in the NNN spring connecting
(n+ 1)th and (n — 1)th particles.

The dynamics of the chain is governed by the following system of equations

peiiy, =K[wn11 — wy — 0(wyy1 — we)a + 0(w, — w,)al

) . 14
+ Y(Wnto + Wny1 — Wy — Wy_1) + E(Wp1 — Wy), (14)

where p is the mass density of the chain and #(z) is a unit step function. To
ensure stability of the chain in the undeformed configuration, we must require



bi-stable viscoelastic unit linear spring

Tl

Fig. 1. The discrete microstructure with viscoelastic nearest and elastic
next-to-nearest-neighbor interactions.

that

E=K+4y>0, (15)
where F is the homogenized macroscopic elastic modulus; following Truski-
novsky and Vainchtein (2003, 2004), we also assume that the NNN interactions
are of ferromagnetic type, meaning that v < 0.

There are two time scales associated with this problem: the time scale of
inertia, Ti, = e4/p/F, and the viscosity time scale, Tyisc = £/FE. In this paper
we consider the overdamped limit when Ty >> Ty, i.e.

£>> s\//TE. (16)

We can now rescale the problem using 7. as the time scale and letting

U w W

t=1tE U=—— W=, W= 1
/5’ u AE’ w A’ w A 7 ( 7)
where we defined the macroscopic transformation strain
aK
A=—. 18
= (18)

Dropping the bars on the new variables, we obtain the dimensionless equations
for the overdamped dynamics of the chain:

’lj)n — ’(j]n+1 = 6(wn+1) — &(wn) + D(wn+2 + Wnp+1 — Wy — wn_l), (19)
where
o(w)=w-—0(w—w,) (20)
is the homogenized stress-strain law. The dimensionless parameter
Y
D=—-=2>0 21
T >0, ()

measures the relative strength of NN and NNN interactions. In what follows
it will also be interpreted as a measure of coupling of the bistable units.

Observe that equation (19) can be “integrated”, yielding

Wy, = D(wpy1 — 2w, + wy—1) — 6(wy,) + 0. (22)



Here the integration constant o has the meaning of the applied force. One can
see that equation (22) resembles the discrete overdamped Frenkel-Kontorova
equation which is used in many applications (Féath, 1998; Keener, 1987; Carpio
and Bonilla, 2003; Kresse and Truskinovsky, 2007); a subtle but important
distinction of equation (19) is that the coupling coefficient D is independent
of €.

To place the microscopic equation (22) in the gradient flow framework of (1)
we can rewrite it as

w = -VW(w;G), (23)

where w € R*™ is the vector of strains, the gradient is taken with respect to
w, and

W = f: (%wz—(wn—wc)O(wn—wc)+D(wn+1—wn)2—(0M+G)wn>, (24)

n=—oo

is the dimensionless energy of the system. Our main goal will be to approx-
imate the infinite-dimensional dynamical system (23) by a finite-dimensional
reduced dynamical system of the type

v=-aVo(v;G), (25)

where a is the effective mobility matrix and the gradient is taken with respect
to the order parameter v € RX. The integer-valued parameter K defines
the dimensionality of the reduced system. After the solution of the vector
equation (25) is known, the approximation of the discrete field (23) should
be recoverable from the relations w, = w,(v1,...,vk) describing adiabatic
relaxation of the ‘non-order-parameter’ variables.

In what follows, instead of attempting a general reduction of (23) to (25)
we focus only on the approximation of the particular solutions of (23) of the
type wy(t) = w(n — V(G)t) describing propagating phase boundaries. Here
the unknown function V(G) defines the conventional kinetic relation, which
should, of course, be compatible with (23).

3 Traveling wave solution of the microscopic problem

To construct a benchmark traveling wave solution of the system (22) we as-
sume that

wa(t) =w(n), n=n-Vt, (26)

where V' is the dimensionless velocity of the front, which represents a mov-
ing phase boundary. Suppose that our solution describes an isolated phase



boundary that leaves phase II behind, i.e.
w(n) <w, forn>0, wmn) >w, forn<0 (27)
Under these assumptions, (22) reduces to
Vuw'(n) = D(w(n+1) —2w(n) + win — 1)) +w(n) =0(-n) +o (28
At infinity the solution must tend to uniform-strain equilibria of (19):
w(n) — we asz — +oo. (29)
Finally, for consistency, we must also require that

w(0) = w,. (30)

Since the equation (28) is linear, we can be solve it using Fourier transform
(see Carpio and Bonilla, 2003; Fath, 1998; Truskinovsky and Vainchtein, 2008,
for details). We obtain
ikn
c+1+ > —F—forn<0
“ v kA
w() = w5~ Eu( V) (31)

o— —_— for n > 0,
kes;(V) kAk(k, V) 7

where ST(V) = {k : A(k,V) = 0, Imk = 0} are the sets of roots of the
dispersion relation

A(k,V) =1+ 4Dsin*(k/2) — Vik = 0.

Continuity of w(n) at n = 0 gives the relationship between the applied stress
and velocity of the traveling wave:

41 1 1 Z 1
g =0Mpm = =0M — % — )
2 kes+(v)kAk(k’ V) 2 kA (k, V)
where
on = we — 1/2 (33)
is the Maxwell stress. The difference between applied and Maxwell stresses
is equal to the driving force G = o — oy (see Truskinovsky and Vainchtein,
2005), and we thus obtain the desired kinetic relation
1 1
GV)=- T

(34)
2 keSHV

The structure of the kinetic relation for different values of D is illustrated
in Figure 2. One can see that at D = 0 (no NNN interactions) the driving



Fig. 2. Kinetic relation for different values of D.

force (34) must be constant for all V' > 0 and equal to the spinodal value
G = G5 =1/2; at V = 0 it can take any value between 0 and Gs. In the other
limit of D = oo the driving force becomes equal to zero at all values of V. In
between these limits the complex roots in the set ST(V') tend to infinity at
large V' and the kinetic curves approach the common limit corresponding to
D = 0 so that G tends to Gs. At D > 1/12 the large-velocity discrete kinetics
is well approximated by the formula (Truskinovsky and Vainchtein, 2008)

B 1%
2,/V2+4D - 1/3

G(vV)

which describes the kinetics of the overdamped viscosity-capillarity model gov-
erned by the partial differential equation w; = (D — 1/12)w,, — 6(w) + o.

For later comparison we need to know in more detail the zero-velocity asymp-
totics of the kinetic relation (34). As V' tends to zero from above, the driving
force approaches the Peierls threshold G(0+) = Gp. To compute the function
Gp(D) we recall that at V' = 0 the continuous variable n = n — V't takes dis-
crete values, and the strain profile (31) becomes discontinuous at every integer
7n. The differential equation reduces to a system of finite-difference equations,
and we can replace the continuous Fourier transform by its discrete analog
(Celli and Flytzanis, 1970; Kresse and Truskinovsky, 2003; Slepyan, 1982;
Truskinovsky and Vainchtein, 2005). Both this procedure and direct solution
of the difference equations yield the following family of equilibrium solutions,
with a phase boundary at n = m (Fath, 1998; Hobart, 1965; Truskinovsky
and Vainchtein, 2003):

exp(A(n —m —1/2))

G+1- n<m
e 2 cosh(A\/2) ’
wy'(G) = om + e exp(—A(n —m —1/2)) S (35)
2 cosh()\/2) =

10



parameterized by the driving force G = 0 — oy;. Here

1
AND) = h{1l+—]. 36
(D) = arccos ( +2D> (36)
The admissibility constraints
wy > w, forn < m, wp <w, forn>m+1 (37)

determine the constraints on G; the set of driving forces satisfying these con-
straints constitutes the trapping region. One can show that for D > 0 the
strain profile (35) is monotone, so the constraints (37) can be replaced by
wyr > we and w;?,; < w.. The trapping region is then given by

G| < Gb, (38)

where . 3 .
Gp(D)=—-tanh > = — — . 39
p(D) = 3 tanh 5 9v/1+ 4D (39)

is the desired expression for the Peierls threshold (see also Braun et al., 1990;
Truskinovsky and Vainchtein, 2003).

The general behavior of the traveling wave solutions in the range of small veloc-
ities V' is known from the studies of discrete reaction-diffusion equation (see,
for example, Carpio and Bonilla, 2003; Fath, 1998, and references therein).
Thus one can show that in the limit V' — 04 the traveling wave solution
approaches the staircase profile:

A2 o
wV 0t (n) = we+ m —tanh(\/2) (0(77)+Z[9(77+p)+9(77—p)]6_)‘p> _

p=1
(40)
Direct evaluation shows that for n < n < n + 1 the limiting solution is given
by the saddle-point equilibrium (35) corresponding to G = Gp and m = 0:

w0 (n) = ;' Gr)

Note that in this solution the Oth NN spring has the critical strain: w, ' (Gp) =
We.

As we increase V, the staircase structure smoothens out. The small-V solutions
represent a singular perturbation of the solution w"=%"(n) characterized by
the opening of the thin boundary layers which scale with V. During each
period T' = 1/V the dynamics can be visualized as an approach toward the
closest “virtual attractor” s™(G) = w™ (G), where the expression (35) for
the equilibrium state is used formally for “forbidden” values of G outside the
trapping region (38) where the constraints (37) are violated (Fath, 1998).

This corresponds to extending the parabolas beyond the critical strain w,.

11



The virtual state satisfies the inequalities s]' > w, for n < m and s} < w, for
n > m + 1. In particular, s = w, + G — Gp > w, for G > Gp. The virtual
attractor is never reached, because as soon as one of the strains reaches the
value w,, the system deviates toward the next virtual state, and so on.

Now suppose that G > Gp and that it is the Oth spring which has the critical
strain. Then the closest virtual attractor is s.. Following Fath (1998), we set

w, = s}l — dw,
and obtain the system of linear equations
Swy = D(0wny1 — 20wy, + Swp_1) — Swy, (41)

which describes the approach toward the virtual attractor. Consider the fol-
lowing initial condition:

1 1—(G+hHeM n<o
wn(0) =w, — =+ G+ ( 2)

’ (5-Ge™  nx1,
which sets wy(0) = w, and minimizes the energy with respect to all other NN
strains. Notice that the Oth strain starts exactly at the critical value as the
descent toward s. begins. Recalling (35) and the fact that s. (G) = w?(G), we
get

Swn(0) = 52 (G) — wn(0) = (G + Gp)e ™", (42)

Using the Green’s function for (41) derived by Fath (1998), we obtain the
solution of (41) subject to the initial condition (42):

Swn(t) = (G + Gp)Tn(2Dt)e~(1+2D) (43)
where -
Sa(r) = > e AT (7)
in terms of the Bessel function I,(r) = L i e™*?cos(nf)df. The solution

(43) is valid until ¢ = 1/V, when w; reaches the critical strain: w(1/V) =
$1(G) — 0w(1/V) = w,. This yields a new approximate kinetic relation

14+ 67(1+2D)/VEI(2D/V)

G(V)= Gp ™ e~ (+2D)/Vs, (2D /V)

(44)

At small D the approximation is very good for all V' and yields the correct
large-V asymptotics (G — 1/2). Observing that at small V/

VVe2D/V

Y1(2D)V) &~ S OTED
PV

12



we obtain that up to the terms of order Ve=2/V

G — Gp ~ YV xR(L/V) (45)
47D

This small-V asymptotics, first obtained by Fath (1998) using a different initial
condition, is due to the degenerate nature of the bilinear model; for smoother
6(w) the scaling is known to be parabolic, G — Gp ~ V2 as in a typical
saddle-node bifurcation (Carpio and Bonilla, 2003).

4 Classical PN landscape

We begin the development of the systematic reduction procedure by trying to
approximate kinetic relations around V' = 0 where the kinetic equation type
description has been traditionally attempted in terms of the tilted Peierls-
Nabarro (PN) energy landscape. For the present model the static PN land-
scape was first obtained by Truskinovsky and Vainchtein (2003), and we begin
with a brief review of the construction.

We recall that at |G| < Gp the phase boundary can occupy an infinite set of
stable equilibrium states given by (35). In order to link these stable states one
can choose a particular path involving non-equilibrium intermediate config-
urations. For instance, consider two equilibrium configurations, one with the
phase boundary located at n =7 — 1 and the other one at n = i. Suppose for
determinacy that 0 < G < Gp and assume that phase II is located behind the
phase boundary. Consider all paths connecting the two equilibria along which
the sth NN spring is the only one that changes phase, while all other springs
stay in their respective phases. As the 1th NN spring crosses the critical value
of strain w, to switch phases, each path goes through an energy barrier.

Among all such paths, we can select the energetically preferred PN path that
involves the minimal energy barrier. This is achieved by minimizing the energy
of the chain with respect to all strains wy with k& # ¢ for a given w;:

G+1,k<i-1
(14 2D)wy, — D(wgy1 + wg—1) = om + (46)
G, k>1+1.

Note that this amounts to adiabatic elimination of all degrees of freedom
except the strain of the ¢th NN spring, which can be viewed as an order
parameter along the path. One can show (Truskinovsky and Vainchtein, 2003,
2004) that the resulting path necessarily goes through the saddle point in the
energy landscape (where w; = w,), and hence the energy barrier is minimal.

13



G =0.5Gp
G =Gp
G =1.2Gp

Fig. 3. One-dimensional energy landscape ®(v; G) at D = 0.5 and different G. The
classical static PN landscape corresponds to G < Gp. The dynamic potential above
the Periels threshold G > Gp was constructed using the K = 1 approximation.

Solving equations (46) at £k < ¢ — 1 and & > i + 1 and requiring that the
corresponding solutions, when extended to k& = 7, both equal w;, we obtain

G+1+AD(w; —oy—G—1), k<i
Wy, = oM + ) (47)
G+ e~ Mk—i) (wz — oM — G), k> 1.

Along the path the order parameter w; increases from its value in the first

minimum,

. exp(—A/2)

wp,=w N Q) =0y + G+ ——"T"2 <,
t i (@) =om 2cosh(A\/2) —

to the one in the second minimum:

, exp(—A/2
wU:wg(G):aM—i-G—i-l—%()\//z)) > w,

while going through the saddle point w; = w., where the energy along this
path reaches its maximal value (due to the nonsmoothness of the biquadratic
potential at w = w,, the local maxima of the energy landscape correspond to
singular points). We now proceed to construct a path that connects not just
two but all equivalent equilibrium points and can be viewed as an advance
of an isolated phase boundary. To this end we replace the order parameters
w; which were operative in each consecutive segment of the path by a global
order parameter v defined implicitly by

exp(—2/2)

W] = W (l/) =om+G+ 72C08h()\/2)

+ (v — [v]) tanh(\/2), (48)
where [v] denotes the integer part of v (the largest integer less than v). At the
integer values of v we have wy,) = wr,, and as v approaches [v]+ 1 from below,
wyy) linearly increases to wy. The function w*(v) is periodic with period 1 and
has jump discontinuities at ¥ = [v]. One can see that v can be interpreted as
the macroscopic location of the interface (the particle in our effective model)
as it moves through the lattice.

14



Using (48) and recalling (47), we obtain the one-parameter solution path
parametrized by v:

(49)

G+1+et-MD(w ) —oy—G—1), k <[V
Wy = Op +
k>lv

G+ e D (W (v) — om = G), [v].
The next step is to evaluate the energy W along the path (49). For the infinite

system we need to use the renormalized quantity ®(v;G) = W(v) — W(0).
Substituting (49) in (24), we obtain for 0 < G < Gp :

O(v;G) = Gp(v—[V)? - GV]— (G—-Gp +2(v— [V])GP)O(V— [v] — G — G).

2Gp

(50)
The minima of ®(v; G) are located at the integer values of v and correspond to
stable equilibrium states, while the singularities at ¥ = v; represent unstable
equilibria where w;(v;) = w, (see Fig. 3).

The energy barrier separating the equilibria at ¥ = ¢ and v = ¢ + 1 is inde-
pendent of ¢ and equals

(Gp — G)?

B =) - o) = —~

At G = Gp the lower bound of wy,| reaches the critical value, wy, = w,, and the
equilibria become marginally stable; see the curve G = Gp in Fig. 3. Above
the Peierls threshold (Gp < G < Gfs), there are no equilibria, and the above
construction is no longer valid.

One very approximate but rather common way to extend the idea of PN
landscape beyond G = Gp is to take the classical PN landscape at G = 0
(Maxwell stress) and tilt it (Braun and Kivshar, 2004). More precisely, we can

define o

dr(v;G) = B(v +1/2;0) — Gv — TP’ (51)
where we have also added a constant to ensure that &1 (0; G) = 0. It is not hard
to see that at G < Gp the energy (50) agrees with (51) up to the appropriate

shifts in horizontal and vertical directions:

Gp— G (Gp — G)?
<y+ Ten ,G) Gn t(v;G), 0<G<Gp

The two landscapes coincide exactly only at the Peierls threshold and differ
below this threshold. Thus, in (50) the local energy minima are always located
at the integer values of v, reflecting the fact that in a discrete system position
of a phase boundary coincides with a lattice point, and the points of local
maxima move toward the integer values as G increases until at G = Gp the
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Fig. 4. (a) The tilted energy landscape (grey) and the DPN landscape for K = 1
(black) at D = 0.5. The two landscapes coincide at G = Gp. (b) The exact kinetic
relation G(V') (solid curve) and its approximations via the tilted landscape (grey
curve), K = 1 approximation (dotted curve) and K = 2 approximation (dashed
curve).

minumum and maximum points merge. Meanwhile, in the case of the tilted
PN landscape (51) the local maxima are always fixed at the integer values,
and the minimum points move instead.

Now, since the tilted landscape can be extended beyond the Peierls threshold
G = Gp we can try to model the dynamics of our phase boundary by the
overdamped motion of a particle in this landscape (see the grey curve in
Figure 4a). The equation of motion takes the form

v=—ad(v;G) = —a(2Gp(v — [v] — 1/2) = G).

Solving this equation subject to the condition v([V't]/V) = [V'] yields

u(t) = Vi + S2C8 (1 _ gzecre-vam)).
2Gr

Imposing v(([Vt] +1)/V) = [Vt] + 1, we obtain the kinetic relation

G(V)=Gp (52)

1— e—?aGp/V '

Expectedly, it gives the correct limit G — Gp when V — 0. However, in
contrast to the discrete kinetic equation (34) the function (52) is unbounded:
at large V, we have G(V) =~ V/«a (see Figure 4b). In addition, since the
physical meaning of the dynamic variable v(t) is obscure, it is not clear how
one can recover the strains w,(?).
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5 One-dimensional DPN landscape (K=1)

We now take a more systematic point of view on how the idea of classical
PN landscape can be extended to dynamics. We begin with the K = 1 ap-
proximation which means that we choose a scalar collective variable whose
dynamics we follow faithfully while minimizing the energy with respect to all
remaining variables. Our choice of the order parameter is motivated by the
“single-active-site theory” (Kladko et al., 2000; Carpio and Bonilla, 2003).
More precisely, we assume that the motion is periodic and during each period
only a single NN spring, located right behind the phase transition front and
actually changing the energy well during this period, is important.

Thus, suppose that at ¢ = 0 the Oth NN spring has just switched to phase
IT: wy(0) = w,. Therefore, during the time period 0 < ¢ < 1/V the “active
strain” is wy. Minimizing the energy with respect to all other strain variables,
we obtain

14+ (wyg—w, — G —1/2)e*, n <0
wy, = we — 1/2+ G + (o /?) N (53)
(wo —we —G+1/2)e ™™  n>1.

Substituting these expressions in (22) for n = 0 with 6(w) given by (20), we
obtain a single equation governing the dynamics of the active point:

g = —wof{l +2D(1 —e ™M)} +w.+ G +1/24+2D(G +w,)(1 —e™). (54)

This is a prototype of our kinetic equation. To see whether it is compatible with
exact kinetic relation (34), we solve (54) subject to the boundary condition
wp(0) = w,, obtaining

wo(t) =wc+(G+GP){1—eXp<—ﬁ>}, (55)

Then, setting n =1 in (53), we find

t
wi(t) =w.+G — Gp — ef’\(G + Gp) exp<—f>.
P

The second boundary condition w;(1/V) = w, yields the desired approxima-
tion of the kinetic relation

(1—e*)(Gs — Gp)

G =G0 o) — exp(—A)

(56)

Clearly, G(V) — Gp as V — 0 and G(V) tends to the spinodal value Gs =
1/2 as V goes to infinity, in agreement with (34). Note, however, that the
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Fig. 5. (a) Kinetic relations G(V): infinite-dimensional dynamics (solid curve), its
small-velocity approximation (45) (grey curve) and K = 1 approximation (dotted
curve). (b) Comparison of strain trajectories in the K = 1 reduced model (dotted
curves) and in the original infinite-dimensional model (solid curves). Parameters:
V =0.1,D = 0.5, w, = 1.

asymptotic behavior at small V, G — Gp ~ exp(—ﬁ), differs from the
asymptotics (45). This is not surprising since we have replaced the infinite-
dimensional dynamical system by a single differential equation for wq(t).

The next step is to patch different segments of the dynamic trajectory into
one by introducing a single order parameter. Recall that during each time
period k/V <t < (k+1)/V the active strain is wg(t), and the corresponding
solution can be obtained by replacing n in the expressions above for £ = 0 by
n—k and ¢t by t — k/V . Introduce a new continuous monotonically increasing
function

— exp(— = (t — 1)

1— exp(—ﬁ) (57)

R )

where [v] = [Vt] and (56) was used to obtain the second equality. Note that
v(t) takes consecutive integer values at the beginning of each time period. It
is exactly the dynamic extension of the parameter v which we used to obtain
the static PN landscape. In terms of this new “global” order parameter, we
obtain the following expression for any active strain wp,(t) (over the time

period [v]/V <t < ([v]+1)/V):

1
v(t) =[Vit] +

wpy(t) = we + (e* — 1)(Gs — G)(v(t) — [¥(1))),
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and hence time evolution of all strains can be written in terms of v as
wy(t) =w, — 1/2 + G+

1+ ((e’\ - 1)(Gs —G)(v(t) - [VHt]) -G — GS> A=V < (V1]

((e’\ ~1)(Gs — G)(v(t) — [VH]) — G + Gs> e AV > [V 41,
(58)

Note that although v(t) is by construction a continuous function of time, the
strain variables have jump discontinuities at t = n/V, n=1,2..., due to the
fact that our approximation treats non-active strains as if they are equilibrated
and neglects the corresponding dynamics. As a result, at the end of each time
period we switch to the new active strain, and the old one has to increase its
value in order to be in equilibrium with the new active point; the associated
jumps can be computed explicitly:

I[wn]]t:(n+1)/v = I[wO]]tzl/V = ’U}()(l/V + O) - wo(l/V —_ 0) =2 sinh )\(G —_ GP)

Now we are in a position to construct the global DPN potential ®(v; G) which
serves as a landscape for the overdamped dynamics of v(t):

v=—ad(v;G). (59)

The potential must be clearly piecewise quadratic and we can select the coef-
ficients to ensure that the function (57) is the solution of (59). If we choose
the mobility as a = 1/(4G%) the resulting potential

056 = G (v~ 1 - (2w +0)- ()

coincides with the equilibrium PN landscape at G = Gp (see Figure 3).

The one-dimensional dynamics (59) is compared to the full infinite-dimensional
dynamics in Figure 5b. As expected, the evolution of the active strain is cap-
tured quite well, but there is a visible deviation from the actual values for the
strains whose adjustment was assumed to be instantaneous. The correspond-
ing kinetic relations are juxtaposed in Figure Ha.

One can see that the approximate model provides a good quantitative ap-
proximation of the exact kinetic relation until V' = 0.2. At higher velocities
it deviates substantially from the exact relation, although both tend to the
same spinodal limit G at infinite V.
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6 Two-dimensional DPN landscape (K=2)

To obtain a better approximation, we need to consider more active points in
the core region of the defect. From Figure 5b one can see that in each period
the natural choice for the expanded set of order parameters would be w_y, wq
and w;.

By minimizing the energy with respect to all other strain variables, we obtain

we+G+1/2+ (w_y —w, — G —1/2)e*®+D) n < —1

Wp = § Wy, n=20 (61)

we+ G —1/24 (wy —we — G +1/2)eX=" > 1.

Observe that the dynamics of w_(t), we(t) and wi(t) is not independent.
Indeed, the three active points satisfy the dynamic equations

U.],l :D(’LUQ —2w,1+w,2) —w,1+wc+G+1/2
Wy = D(wy — 2we +w_1) —wy +w. + G+ 1/2 (62)
11.]1 :D(w2—2w1+w0)—wl—i-wc—i-G—l/Q

Substituting the expressions for w, and w_, from (61) in (62), we obtain

(—2D — 14 e *D)w_; + Dwy + (we + G +1/2)(1 + D(1 — ™))
wy = (=2D — Vwy + Dwy + Dw 1 +w,+ G +1/2

i = (—2D — 14+ e *D)w_y + Dwy + (w, + G —1/2)(1 + D(1 — ™))
(63)

Wy

If we now compare the equations governing the dynamics of w_;(t) and w (),
we see that they differ only by a constant term in the right hand side. This
allows us to reduce the number of variables further and express the functions
w_1(t) and wy(t) in terms of a single new variable z(t). We write

w=1(t) = z(t) 2(11:%((12__66,\))) = a(t) + 1 _26_ :

(64)

where we have used (36) to obtain the second equality. We now have two
variables: wy(t), describing the dynamics of the “center of mass” of the phase
boundary, and z(t), which describes the configuration of the core region. They
must solve the following system of equations

wo = (—2D — 1wy + 2Dz + w.+ G+ 1/2 (65)

&= (=2D -1+ e D)z + Dwy+ (we. + G)(1+ D(1 —e™)). (66)
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Fig. 6. (a) Kinetic relations G(V): infinite-dimensional system (solid curve), its
small-velocity approximation (45) (grey curve) and the K = 2 reduced system
(dashed curve); (b) Comparison of the strain trajectories in the K = 2 model
(dashed curves) and in the infinite-dimensional system model (solid curves). Pa-
rameters: V =0.1, D = 0.5, w, = 1.

This system constitutes our kinetic equation approximating the dynamics of
the full infinite-dimensional system.

To reproduce traveling wave solutions of the original system the reduced sys-
tem (65), (66), must be subjected to the following boundary conditions. First,
we must require that

wo(0) = we, (67)
a condition that ensures that the Oth NN spring has just transformed to the
new phase at ¢ = 0. Second, we require that

wy(1/V) = w,,

or
1—e?
2(1/V) = we+ ———, (68)

so that at ¢ = 1/V the first NN spring reaches the critical strain, marking the
end of the period. Finally, periodicity requires that

We can now construct approximate kinetic relation generated by the K = 2
model. Using (61) at n = 2 together with (68), we can see that this boundary
condition reduces to

w1 (0) = w, — (Gs — G)(1 —e ™),

1—e?

z(0) = w, — (Gs — G)(1 —e™) + 5
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Next, by solving the system (65), (66) subject to the initial conditions (67)
and (69), we obtain

Y
z(t) = w,+ G + e *Gp + 67(01(1 +1/1 4 8e2)e™t + (1 — o /1 + 8e2\)e™)

wo(t) = we + G + Gp + cre™™ + cpe™™,
(70)

where
by

e 1
= (14 e M1F /1 + 82 71
"2 4sinh2()\/2)< Foe AT VLA )> (71)

(note that 7, < 71 < 0) and

(3+ V1 +8e2)(2G — 1+ €M1 + 2G))

a=- 41+ )V 1 8eR
. (V1+8e2r —3)(2G — 1 + M1 + 2G))
2 = — .

4(1+ er)v1 + 8e

The boundary condition (68) now yields the desired kinetic relation:

1—e? 22 2X)eri/V 20 _ 92X _ 1)em2/V
G Gp + o /iie ((1 +2e** + /1 4 8e?*)e™/V 4 (V1 4+ 8e 2e 1)e )

_ e 22 2\ pr1/V 2X _ 902X\ _ 1)\ pr2/V
1 NW(“JF% + V14 8e2M)er/V + (V1+8e 2e e )
(72)

First we notice that the approximate kinetic relation (72) satisfies the con-
straint G(0) = Gp. Then, as V tends to infinity, G(V) — Gs = 1/2 with the
asymptotics G — G ~ exp(—|ri|/V’). The comparison of the approximate and
exact kinetic relations is presented in Figure 6. One can see that in view of
how few degrees of freedom are involved in the approximation, the agreement
is remarkable, at least for small to moderate values of D (see Figure 7). At
larger D (strong coupling limit) more active points need to be included, or
rather the structure of the approximation must be changed due to close to
continuum character of the model in this limit.

Our next goal is to introduce the global order parameter and to reformulate the
dynamics in the form of a gradient flow on a two-dimensional DPN landscape.
First recall that expressions (70), (64) and (61) define the strain trajectories
wy, (t) only over the time period 0 < t < 1/V. The extension of this solution for
k/V <t < (k+1)/V is obtained by replacing n in the above formulas by n—k
and ¢t by t — k/V. To patch together different periods we need to introduce
a set of two order parameters that change continuously and monotonically
with t. We denote these variables as 7;(t) and 5(t) and define them by the
conditions [ (t)] = [#(t)] = [V], wivy(t) = we+ (71(t) = [VE]) (wo(1/V) —we)
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Fig. 8. (a) Two-dimensional energy landscape ®(v1,14). (b) Level sets of the energy
along with the path of the effective particle v(t). Parameters: V = 0.1, D = 0.5,
we = 1.

and Z(t) = z(0) + ((t) — [Vi])(z(1/V) — x(0)), where Z(t) is viewed as
an extension of z(t) to all ¢ > 0. Under the assumption that V = V(Q)
the dynamics of the vector field 7(t) = (71(t), 72(t)) can be represented as a
gradient flow

v=-avod(o,G) (73)
where we introduced a mobility matrix & and a two-dimensional effective DPN
potential ®(&, Q).

We can further simplify our kinetic equation (73) by diagonalizing the mobility
matrix &. Observe that in (71) we have |ry| > |r;| > 0, so that the eigenvector
(%(\/1 + 8e?* +1),1) corresponding the eigenvalue ry is the slow direction,
while the eigenvector (%(1 — V14 8¢e?}),1) that corresponds to 7 is the fast
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direction. Thus we can introduce the slow variable

() = Vi L= UL/T) (74
and the fast variable
wolt) = [VH] + 1 —exp(ra(t — [Vt]/V))' (75)

1 —exp(ry/V)

In terms of the new variables, the time evolution of all strains is given by

(e + G+ 1/24 {Go— 124 1ei(1 4+ VITEP) (1~ (1= ) (1) — V1))
Fes(l = VITE (1 — (1 — e VY (w(t) — VI I VD, < [VH] — 1
we + G+ Gp +c1(1 = (1= eV (t) = [VH]))
ool = (1—e ™M) (a(t) = [VH])}, n=[Vi]
wet G = 1/24 {Go +1/2+ Jer(L+ VIT 8PN (1 — (1 — /)1 (t) — [V])

[ +ea(1 = VT +8e2M) (1 — (1 — eV (n(t) — [VH]) Je VI n < [VH] - 1.
(76)

wy (t) = ¢

The vector field v(t) = (v1(t), vo(t)) satisfies
v=-aVe(v,Qq), (77)

where the mobility matrix a = diag(a;, ae) is now diagonal (here a; > 0 and
ay > 0 are constants). The potential ®(uvy,19;G) is piecewise quadratic; it
depends on V' and hence, through the kinetic relation V' = V(G) which can
be obtained by inverting (72), on the driving force G. Using (74) and (75), we
obtain

Q(ylayﬂG):_r‘fl{(yl_[Vl]) - 1—eXp(T'1/V(G))V1+[y1]}
"2 2 _ 2 1%} Vol ¢.
‘@{(”2 ~ ) T gmvey ]}

To determine the effective viscosities a; and ag, we require that at Gp the
DPN potential equals the relative Gibbs free energy of the system:

®(v; Gp) = W(v; Gp) — W(0; Gp).

This yields

o riv'1+ 8¢ o riv1 + 8eA (78)
(V1482 +3)Gr 0 (V1482 —3)Gp
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and, finally,

. _(\/1 +8€2)‘ +3)GP _ 2 2

v 1o G) == == {(”1 e e Y ) [”1]}
(\/ 1+ 8e2A — 3)GP 2 2

M s {(”2 ) - ey [”2]}'

(79)

The DPN landscape ®(vq,v5;G), along with the path of the effective parti-
cle, is shown in Figure 8. The comparison of strain trajectories in the two-
dimensional reduced theory with the exact result shows the considerable im-
provement, over the one-dimensional approximation. For instance, Figure 6b
juxtaposes the evolution of strains near the phase boundary over the first three
time periods at V' = 0.1. One can see that as in the case K = 1 the evolution
of the transforming element is followed closely over each time period; however,
in the K = 2 case the dynamics of other, nontransforming elements is also
captured extremely well.
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