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Abstract

We study a fully inertial model of a martensitic phase transition in a one-
dimensional crystal lattice with long-range interactions. The model allows one to
represent a broad range of dynamic regimes, from underdamped to overdamped. We
systematically compare the discrete model with its various continuum counterparts
including elastic, viscoelastic and viscosity-capillarity models. Each of these models
generates a particular kinetic relation which links the driving force with the phase
boundary velocity. We find that the viscoelastic model provides an upper bound
for the critical driving force predicted by the discrete model, while the viscosity-
capillarity model delivers a lower bound. We show that at near-sonic velocities,
where inertia dominates dispersion, both discrete and continuum models behave
qualitatively similarly. At small velocities, and in particular, near the depinning
threshold, the discreteness prevails and predictions of the continuum models cannot
be trusted.

1 Introduction

Proper martensitic phase transitions in crystals represent largely mechanical phenom-
ena. They are associated with softening of an elastic modulus and generate spontaneous
deformation which transforms a high-symmetry parent lattice into a low-symmetry ferroe-
lastic phase. The latter is characterized by several stable variants (twins) corresponding
to different atomic arrangements which are structurally fully identical. During these
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transformations both elasticity and dynamics play a crucial role and a component of the
macroscopic strain is used as the order parameter [11, 14, 19, 17].

Materials undergoing martensitic phase transitions are known to exhibit damping and
hysteresis under cyclic loading [15, 13]. The task of optimizing the corresponding energy
dissipation through microstructural and compositional selection presents an important
technological challenge. It is well understood that the energy is dissipated due to prop-
agation of phase and twin boundaries. The dissipation takes place inside the atomically
sharp transition zones and must be modeled by lattice theories. Adequate molecular
dynamical models are available, but due to the necessity of resolving a large number
of nonlinear degrees of freedom, they are analytically opaque and can be used only for
numerical experiments. The transition zones can also be modeled at the macroscopic
level, as jump discontinuities. However, since elastodynamics does not provide any in-
formation about the rate of the transformation, the system of jump conditions has to
be closed phenomenologically (e.g. [25, 1, 12]). Various quasicontinuum augmentations
of classical elasticity, incorporating dispersion and dissipation mechanisms and providing
the desired closure, have been proposed in the literature, albeit without an explicit link
to the underlying discrete theory (see the reviews [26, 5]).

In this paper we establish such a link by studying dynamics of a phase boundary
associated with a prototypical martensitic transformation in a model lattice. To obtain
analytical results we consider the simplest nonlocal extension of the one-dimensional mass-
spring system proposed in [23, 22]. The discreteness is viewed as representing either atomic
structure or a system of periodically placed obstacles; the nonlocality of the model is
intended to mimic three-dimensional effects. The martensitic phase transition is modeled
as the bistability of the springs connecting nearest neighbors. In addition, the model
incorporates inertial and dissipative terms, which allows one to cover the whole range of
dynamic regimes, from underdamped to overdamped.

To reconstruct the effect of lattice-induced dispersion on the kinetic behavior of the
martensitic phase boundaries, we introduce a dimensionless parameter §, characterizing
the degree of discreteness. We then consider two limits: when the model is strongly dis-
crete and when it is almost continuous. In the continuum limit § — 0 we recover the
classical elasticity theory which is now supplied with a particular kinetic relation for the
phase discontinuities. This relation depends on the details of the limiting procedure, in
particular, on the asymptotic behavior of the parameters representing dissipative prop-
erties of the model. By expanding the governing equations at small § we recover various
quasicontinuum regularizations of the classical theory, including the ones which have been
previously advanced on the phenomenological grounds. In particular, we formally qualify
the asymptotic limits bringing in the viscoelasticity model [16] and the viscosity-capillarity
model [21, 24].

To recover the kinetic relation, we consider an isolated phase boundary driven by



the conditions at infinity and solve the associated traveling wave problem. This problem
can be viewed as a nonlinear eigenvalue problem for the phase boundary velocity. The
conditions at infinity define the driving force, and we search for a functional relation
between the driving force and the velocity ensuring that the eigenvalue problem has a
solution. Using the partial linearity of the discrete model we obtain such a relation in
the closed form and compare it to the viscoelastic and viscosity-capillarity counterparts,
corresponding for the same values of the microscopic parameters.

We find that at near-sonic velocities, when inertial and dissipative effects dominate
dispersion, the kinetic relations in all three models have the same asymptotic structure.
On the phenomenological level, the ensuing kinetic relation corresponds to the maximum
dissipation criterion which can also be derived formally from the viscoelastic model. At
small velocities the kinetic relations in discrete and continuum models are quite different.
The discrete model predicts lattice trapping: a phase boundary cannot move until the
driving force reaches a certain nonzero threshold, which we call the Peierls driving force
by analogy with dislocation theory (e.g [10]). The magnitude of the Peierls force is largely
exaggerated by the viscoelastic model and is completely missed by the viscosity-capillarity
model. This leads to vastly different overdamped limits which can be interpreted as the
zoom in on the kinetic curves in the region where the inertial effects are negligible. In
general, our calculations show that viscosity-capillarity model provides a lower bound
for the discrete kinetics, while the viscoelasticity model delivers an upper bound. When
viscous damping increases, the range of velocities where the three models are qualitatively
similar broadens although the the quantitative thresholds remain different.

As we have implied above, viscosity-capillarity model provides a good representation
of discrete kinetics in the regimes of high damping and large inertia. The approximation
becomes progressively worse as viscosity decreases. At zero viscosity, the model becomes
even qualitatively incorrect as it predicts zero dissipation in the whole range of velocities
up to the sonic limit. In contrast, the discrete model yields nonzero macroscopic dissi-
pation even in the Hamiltonian limit which is then caused by radiative damping [30]. In
general, the deficiencies of the viscosity-capillarity model point to the urgent need for the
development of other quasicontinuum approximations, adequately reproducing the dis-
persive properties of the discrete model in the physically relevant underdamped regimes.
Different proposals in this direction can be found in [9, 31, 4].

The paper is organized as follows. In Section 2 we introduce the discrete model, spec-
ify the main dimensionless parameters and determine the exact scaling in the regimes of
interest. Various continuum and quasicontinuum approximations are derived and studied
in Section 3. In Section 4 we give the full solution of the discrete problem and study
several important limiting cases including the overdamped and Hamiltonian regimes. We
then specialize the discrete model to the case of only nearest and next-to-nearest neigh-
bor interactions (NNN model) and perform a systematic quantitative case-study of this



example. A detailed comparison of the discrete and continuum kinetic relations emerging
in this benchmark problem is presented in Section 5. The final Section 6 summarizes our
conclusions.

2 The model

We begin by introducing the discrete model, formulating the problem in dimensionless
form and specifying the asymptotic regimes studied in detail in the subsequent sections.

2.1 Elastic energy

Consider a one-dimensional lattice, or chain, comprised of isolated point masses connected
by springs. Each mass interacts with its ¢ neighbors on each side. If u,(t) is the displace-
ment of the nth mass, the sum of kinetic and potential energies of the chain can be written

as
oo -9 q B
E=c¢ Z |:p—gn+;p¢p<un+;8 U >:| (1)

n=—oo

Here the function ¢,(w) defines the potential of the elastic interaction between pth nearest
neighbors, ¢ is the reference interparticle distance and p is the constant mass density.

The next step is to specify the interparticle potentials ¢,. We recall that in order
to support a proper martensitic phase transition, the macroscopic elastic energy of the
material must be at least bistable. The macroscopic energy can be derived from the
microscopic potentials

o(w) = pdy(w). (2)

In the interest of analytical simplicity we assume that the function ¢(w) is biquadratic:

sEw?, w < w,

=4 fpta- 3738 3). e &

where FE is the macroscopic elastic modulus and A is the macroscopic transformation
strain. The macroscopic stress-strain relation is then (see Fig. 1)

G(w) = ¢'(w) = péh(w) = E(w — Ab(w — w,)). (4)

The simplest way to secure the desired macroscopic response is to assume that in the
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Figure 1: The bilinear stress-strain curve. The driving force G = A, — A; equals the
difference between the two shaded areas.

micro-model the nearest-neighbor potential is biharmonic:

1 2
shw?, w < we

w) = a
¢1( ) %ul(w—a)2+au1<wc—§), W 2 We,

while the long-range potentials are harmonic:

1
bp(w) = Spupw®, p=2, ... (6)
Here p,, p =1,...,q, are the microscopic elastic moduli, @ > 0 is the microscopic trans-

formation strain and w,. is the critical value of strain separating in (5) the two regions
of convexity (two phases). The compatibility between the microscopic and macroscopic
models requires that

q
E=) p’u (7)
p=1

and
A =au /E. (8)

The microscopic moduli must ensure that £ > 0 and that the the transformation strain is
positive. Additional constraints on p, which guarantee stability in the discrete problem
will be introduced later.

We remark that, in statics, the ensuing discrete model can be alternatively charac-
terized as an Ising model with elastic wells. Indeed, the double-well potential, describing
nearest-neighbor interactions (3), generates a spin-like variable, while the harmonic po-
tentials (6) for next-to-nearest neighbors and beyond ensure that these “spins” interact.
If the quadratic wells in (3) are replaced by the infinitely steep walls located at +1
(11 — 00), the static problem reduces exactly to the (nonlocal) Ising model.

5



2.2 Dissipation

In view of the fact that the model deals with only few generalized coordinates representing
potentially much more complex phenomena at the microscale (for instance, it does not
resolve electronic degrees of freedom), it is natural to conclude that the above Hamiltonian
formulation is oversimplified and to include some dissipation already at the microscale.

Since we are aiming at the simplest prototypical formulation, we assume that the
dissipation is linear, which means that the corresponding Rayleigh function is quadratic.
While different assumptions can be made in this respect, we assume that the dissipation
is viscous and that it comes from the viscoelasticity of the nearest-neighbor “springs”.
We must therefore supplement in the governing equations the elastic force between the
nearest neighbors,

P (w) = ¢ (w),
by a second additive component representing the viscous force. We write it in the form
12 () = €,

where £ > ( is the viscosity coefficient. The resulting dynamic equations can be written

as
. _1 4 d)' Uptp — Un _¢, Up — Up—p +f . % 44 9
Pun = z E D T D T 2\ Untl Up + U1 ) |- (9)

p=1
It will be convenient to rewrite equations (9) in terms of strains
Up — Uy
w, = —— "1 (10)
€
Using our specific assumptions regarding the microscopic elastic potentials, we obtain
,0521Dn - Z He—nWEg + 5(211]” - wn—H - u.)nfl)
k—n|<q (11)
= ma[20(w, — we) — O(Wpy1 — we) — O(wy 1 — we)].

where 6(w) is the unit step function incorporating all the nonlinearity of the problem.

2.3 Scaling

To clarify the role of different terms in the system (11), it is necessary to non-dimensionalize
it. Elastic moduli and the critical strain can be normalized by the macroscopic parameters
E and A defined in (7) and (8), respectively. This produces dimensionless parameters

Hp -~ W

Dp: _Ea We = Ka
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which are assumed to be of order one. In view of (7) parameters D, are not independent
and D; = -1 — 222 pQDp. Note also that D; < 0, since both E and p are assumed to
be positive.

There are two characteristic velocities in the problem: the macroscopic sound speed
¢s = \VE/p, and the microscopic relaxational velocity ¢, = ¢E/£. The ratio of these
velocities gives a dimensionless parameter

WS- &
Cx pEe
which characterizes the relative importance of dissipation at the scale of the lattice. In
particular, when W = 0, the discreteness-induced dispersion dominates dissipation and,
when W — o0, the dispersion can be neglected.

To quantify the presence of inertia, we assume that there is a third characteristic
velocity ¢ defining the rate of the external macroscopic processes under consideration.
The ratio of the characteristic speed ¢ and the macroscopic sound speed ¢, can be taken
as the second dimensionless parameter,

This parameter is fully macroscopic and represents the analog of Mach number in gas
dynamics. When V = 0, inertia is negligible, and the motion can be viewed as quasistatic;
the ensuing dynamics is also overdamped if additionally W # 0.

The next step is to link the macroscopic and microscopic scales. Suppose that the
characteristic external length of the problem is L. This introduces another dimensionless
parameter,

6:Z’

which characterizes the relative role of discreteness, or dispersion, at the macroscale. More
specifically, when 6 ~ 0 we obtain almost continuum case (small dispersion), while ¢ ~ 1
defines the strongly discrete (large dispersion) limit.

To rewrite the main system of equations (11) in dimensionless form, we define the new
variables

$p(AW)

te Up W v, 5 £
——— 7y = [ = — = . 12

Omitting the tildes on the new variables, we obtain the following expression for the energy:

£_s R R~ Uptp — Un 13
-5y [5G +;p¢p(—p5 )| (13)

n=—oo
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The normalized equations read

1 wv
V21I)n - ﬁ Z Dk—nwn —+ T(2wn — wn+1 — ’U.)n_l)
|k—n|<q (14)
1
— ﬁ[Qe(wn —we) — (w1 — we) — 0w, 1 — we)].

We reiterate that the essential dimensionless parameters are W, V and 0.

It is of interest to consider two main cases: infinitesimal § and finite 6. At small § one
is tempted to replace the discrete model by a continuum counterpart. Several possibilities
are considered in the paper:

Classical elasticity. In the limit 6 — 0, with two other non-dimensional criteria fixed,
we obtain classical elasticity theory which contains neither dispersion nor dissipation.

Viscoelasticity. If we assume that ¢ is small but finite, expand the governing equations
(14) in §, and keep only the linear terms, we obtain a viscoelastic model with the macro-
scopic viscosity given by W, = W4d. Alternatively, this approximation can be obtained
by considering the limit 6 — 0 and W — oo, with W, remaining finite.

Viscosity-capillarity model. By expanding the governing equations (14) up to the
second order in 0, we obtain the viscosity-capillarity model. This approximation preserves
the competition between the dissipative terms and the dispersive terms, mimicking the
original discreteness of the problem.

At each value of 9, finite or infinitesimal, it is instructive to perform a parametric
study of the problem in the space of parameters V' and W. The following limiting cases
are of particular interest:

Hamiltonian limit: W = 0. In this case the microscopic dissipation is absent. The
macroscopic dissipation, however, may still be possible due to energy tunneling from
short to long waves. In the context of dynamics of defects, this phenomenon is known as
radiative damping.

Static limit: V' = 0. This case is of interest due to the phenomenon of lattice trapping.
The study of this case is necessary for determining the depinning threshold (Peierls stress).



Overdamped limit: V — 0, W — oo, V, = VW = ¢/c,. In this approximation
one zooms in on the depinning bifurcation and encounters the phenomenon of rate-
independent dissipation. Here the inertia is neglected and the main interplay is between
dissipation and dispersion whose ratio enters the problem through the parameter V..
Our quasilinear system converges in this limit to a semilinear system, equivalent to the
Frenkel-Kontorova model.

2.4 Traveling waves

We are now in a position to specify the macroscopic problem which attaches a particular
meaning to the parameter c¢. To find the kinetic relation it is natural to consider a
steady motion of an isolated phase boundary. The corresponding solution of the governing
equations (14) must have the form of a discrete traveling wave

wn(7) = w(n),
where n = (ne — ct)/L = nd — 7. Without loss of generality, we can assume that

w(n) <w, forn>0  w(n) >w, forn<DO0. (15)

In this case, phase II is behind the localized transformation zone and phase I is in front
(see Fig. 1); at n = 0 we need to impose the condition

w(0) = w,. (16)
Under these assumptions the infinite system (14) reduces to a single advance-delay dif-
ferential equation:

wv

V2" + % > Dyw(n+ ps) — —5 @w'(n) = w'(n +8) = w'(n = 9))
lpl<q (17)

= S5 126(n) — 00 +8) — 61 = ).

Observe that this equation is now linear due to the known location of the phase boundary.
To specify the external boundary conditions for the equation (17), we further assume that

w(n) = wy asn— +oo, (18)

where w. are the limiting strains which can not be prescribed independently. Their
interdependence, which remains implicit until the equation (17) is solved, is the ultimate
reason for the existence of a particular kinetic relation.
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3 Continuum approximations

We begin with the study of a series of approximate continuum models justified by the
smallness of the parameter §.

3.1 Classical elasticity

We assume that in the limit 6 — 0 all fields of interest are sufficiently smooth so that one
can perform the Taylor expansions in §. Define u(z,7) as the continuum displacement
field which satisfies u(nd, 7) = u,(7). By expanding finite differences in (13) and taking

the limit 6 — 0, we obtain
V2’LL2
£ = /[ 5 T+ ¢(uz)] dz. (19)

In dimensionless variables equations (9) reduces to

Ve, = (6(ug))s. (20)

Here u, = 0u/O0t is the macroscopic velocity field and u, = Ou/dzr is the macroscopic
strain. The dimensionless macroscopic stress-strain relation is given by

o(w) = ¢'(w) =w—0(w — w,). (21)

In this continuum framework phase boundaries are described by jump discontinuities
which are not constrained by Eq. (20) and must be defined by the appropriate jump
conditions. To formulate these conditions we denote by f_ and f, the values of f(z) to
the left and to the right of the interface, and introduce the notations [f] = f, — f_ for
the jump and {f} = (f+ + f-)/2 for the average of f across the discontinuity. We first
recall the straightforward Rankine-Hugoniot jump conditions which ensure the balance of
mass and momentum:

lus] +V]ug] =0, V]u,]+ [6(usz)] =0. (22)

Both the physical motivation of the problem and the mathematical requirement of well-
posedness point towards the necessity of an additional assumption regarding the positive
definiteness of the rate of dissipation

R =GV >0, (23)
where

G = [¢] — {6(uz) Hual (24)
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is the configurational (driving) force, which can be interpreted geometrically as the dif-
ference between the two shaded areas in Fig. 1. In what follows we check that in the limit
d — 0 both the Rankine-Hugoniot jump conditions (22) and the entropy inequality (23)
follow from the discrete theory. Moreover, we show that in the case of a phase boundary
with |[V| < 1, not only the sign of the driving force but also its magnitude are dictated
by the discrete theory. This imposes a link between the limiting strains on both sides of
the discontinuity and sets up a specific kinetic relation.

To put things into perspective, we recall that in one-dimensional nonlinear elasto-
dynamics, represented by Eq.(20), the entropy inequality is sufficient for local unique-
ness in the case of supersonic discontinuities (shock waves) satisfying the Lax condition
cy <V < c_, where ci are the values of the sound velocity in front and behind the
discontinuity. In the case of subsonic phase boundaries, or kinks, the Lax condition is
violated and the non-uniqueness persists unless the rate of entropy production is specified
precisely (e.g. [26]). This is usually done phenomenologically, by imposing a kinetic re-
lation, first introduced in [25]. One expects that a particular kinetic relation in the form
G = G(V) should follow from the discrete theory in the limit § — 0, and we show that
this is in fact the case.

Until the discrete problem is solved, the function G(V') cannot be specified. However,
some natural bounds can be easily obtained. Thus, for our piecewise linear material the
admissible set for kinks with 0 < V' < 1 is illustrated in Fig. 2. One of the boundaries
of this set corresponds to reversible kinks which satisfy the kinetic relation G = 0 [24].
Another boundary marks the maximum rate of dissipation R at a given V. In particular,
the static kinks (V' = 0) become maximally dissipative when the driving force reaches the
spinodal threshold G5 = 1/2. The classical continuum theory, incorporating Eq. (20) for
smooth motions and Rankine-Hugoniot jump conditions (22) plus the entropy inequality
(23) for discontinuities, allows for arbitrary kinks in the shaded area shown in Fig. 2. This
is a clear sign of degeneracy of the classical theory and the necessity of an independent
closure condition.

In the next subsections we show that higher order quasicontinuum approximations,
allowing the parameter § to be small but finite, are free from this degeneracy and can
be used as sources of the particular kinetic relations. Later in the paper the adequacy of
such kinetic relations will be checked against the discrete benchmark.

3.2 Viscoelasticity

Keeping linear terms in § as we Taylor expand Eq.(14), we obtain the following partial
differential equation:
VU, = (6(ug) + WVug, ) (25)
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Figure 2: The admissible domain for the kinetic relations G(V') for the subsonic kink
solutions generated by the bilinear stress-strain law.

To find the rate of energy dissipation associated with a moving kink we need to study the
traveling wave solutions of the form

u(z,7) =1a(n), n=xz-—r, (26)

subject to the conditions (18) at infinity. Substituting the traveling wave ansatz (26) in
(25) and integrating once we obtain the following equation for w = u, = 4'(n):

!
VWS

wl

(Vi w_ —w)+6(w) —6(w_)). (27)
The states at infinity satisfy the Rankine-Hugoniot conditions automatically, because,
after eliminating velocity, Eq.(22) can be written as

Vi (w_ —wy)+6(wy) —6(w_) =0. (28)

Now consider the two cases V = 0 and V # 0 separately. In the first case, (28)
reduces to 6(wy) = 6(w-), and we obtain a family of piecewise constant equilibrium
states inside the trapping region, where V.= 0 and |G| < G,. In the second case, a
study of equation (27) gives the Oleynik chord condition (e.g. [16]). For subsonic phase
boundaries, the chord condition implies that either w, or w_, depending on the sign of
[w]V, must satisfy 6'(w) = 0. In the case of the bilinear material considered here, the set
of such configurations reduces to a single point with the critical (spinodal) strain w.. We
can therefore immediately conclude that G5 = 1/2.
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Figure 3: Kinetic relation at V' > 0 resulting from the viscoelasticity model. Insert: the
overdamped limit. Note that the kinetic relation for the overdamped case zooms in on
the neighborhood of the depinning point.

Strain profiles. For the case of bilinear stress-strain law (21), the desired traveling
wave solution with V' # 0 can be written explicitly. In particular, if V' > 0, and w, < w_

we obtain . a V2)
- n
c 1- ———=), <0
w(n) = We 1—-V2 ( exp{ VW6 }) K (29)
We, n > 0.

One can see that in the limit 6 — 0 (or W — 0) the transition layer disappears, and
the viscoelastic profile converges to the piecewise constant traveling wave of the classical
elasticity problem.

Kinetic relation. Using the geometrical interpretation of the driving force G' and the
fact that one of the limiting strains (w, or w_) must be spinodal, one can compute the
area above, for V' > 0 (or below, for V' < 0), the graph 6(w) and below (above) the chord
connecting the states at infinity and obtain the kinetic relation G(V'). According to (28),
this chord, known also as Raleigh line, has the slope V2, so that in Fig. 1 either 4; = 0
(V > 0) or A, =0 (V < 0). The kinetic relation is then given by

1

W) =50-v

sgn(V). (30)
As remarked above, at V' = 0 the kinetic curve G(V') contains the interval V =0, |G| <
G, which represents the trapped equilibrium states (see Fig. 3). The point G5 = 1/2 at
V' = 0 is the depinning threshold from which the solutions with V' > 0 bifurcate (similarly,
solutions with V' < 0 bifurcate at G = —G). In addition to the trapping segment at V' = 0
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the full kinetic curve includes a V' > 0 piece described by the Oleynik condition at nonzero
V (see Fig. 3). We observe that the kinetic relation in this approximation selects exactly
the upper boundary of the admissibility domain shown in Fig. 2 and therefore produces
only maximally dissipative kinks. A serious deficiency of the viscoelastic approximation
is that it admits only sonic, or Chapman-Jouget, moving discontinuities, with either w,
or w_ taking critical (spinodal) values.

Overdamped limit. In the overdamped limit (V — 0, W — oo, V, = VIV finite) the
sound speed c¢, is infinite, and it is no longer appropriate to use it as the velocity scale.
Instead we can use the rescaled velocity V, = VW. Then, at V, > 0 and w; < w_ we

obtain
n
c 1—- ; S 0
wip) =4 T ( eXp[V*é]) 7 (31)
We, n > 0.

We reiterate that these regimes have to be supplemented by the piecewise constant trapped
equilibrium states (V, = 0).

The jump condition (28) reduces to 6(w;) = 6(w-). The magnitude of the driving
force is then constant and is given by the area enclosed between the graph 6(w) and the
horizontal line 6(w) = 6(w; ). The condition (28) reduces to w_ — wy = 1, so that the
resulting kinetic relation is piecewise constant (see the insert in Fig. 3):

G(V.) = gsen(V2). (32)

This piecewise constant kinetics reflects the fact that we capture only quasistatic dynamics
with rate-independent dissipation [18]. One can also see that the kinetic picture in the
overdamped limit can be obtained simply by zooming in on the viscoelastic kinetic law
around the depinning point. Analytically this is achieved by introducing the rescaled
parameter V, which stretches the velocity coordinate around V = 0.

3.3 Viscosity-capillarity model

As we saw, the viscoelastic model does not admit moving subsonic discontinuities. To
correct this problem, one can try to preserve in the continuum problem the effects of
dispersion by expanding the energy of the discrete system (13) in Taylor series at small
§ and retaining the terms up to the order of §2. This procedure leads to the viscosity-
capillarity approximation (35), first proposed as a phenomenological model in [24, 21].

Up to the non-essential null Lagrangian, the total energy in the viscosity capillarity
model can be written as

2,2
1
£ = /[V Ur | d(ug) + §A252ufm dr, (33)

2
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where

1 q
A? = = > " p'D,. (34)
p=1

The model is ill-posed for A* < 0, which means that some coefficients D, must be positive.
Since D, = —p,/E and E > 0, this implies that , < 0 and that the corresponding bonds
are unstable.

The dynamic equations in this approximation can be written as

V2UTT = (6(ug) + WVoug, — A252umw)w' (35)

Substituting the traveling wave ansatz (26) in (35) and integrating, we obtain the differ-
ential equation

A?0*w" + WV + V2w — 6(w) = Viw_ — 6(w-). (36)

This equation must be considered on the infinite domain with the boundary conditions
(18).

Strain profile. For the bilinear stress-strain law (21), the traveling wave solutions of
(36) are given by (see [27] for more details)

A p—
wet 2T g
7) — (Pl —p2),(1 -V ) (37)
w(n) pl(epw - 1)
wc+ ﬁz 07

(p1 —p2)(1 = V?)
where 77 = n/(W46) and

VI? 4A% (1
=——|-1x4/1+—=|—=—-1])|.
P2 =543 [ \/ * e <V2 )]
One can see that moving subsonic discontinuities with wy in the interior of the phase
regions are now admissible.

Kinetic relation. The kinetic relation becomes [27]

aw) = (1 _ v?) B (1 + 4%2 (% _ 1) ) ) (38)

Observe that Eq.(38) is independent of §, and that parameters A and W enter only
through the ratio « = A/W. Fig. 4 shows the typical kinetic curves. At finite W all
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Figure 4: Kinetic relation for the viscosity-capillarity model for V' > 0 at A = 0.56 and
different values of the parameter W.

of them originate at V' = 0 and G(0) = 0. This means zero depinning driving force
(no lattice trapping) and contradicts the persistence of rate-independent hysteresis in
quasistatic loading [20]. As W tends to infinity, the slope G’(0) increases, and the curves
approach the viscoelastic limit (30), which is consistent with the trapping phenomenon.

At near-sonic velocities V' < 1 and W > 0 Eq. (38) converges to Eq. (30), and all
kinetic curves approach the viscoelastic limit (W = oo, thick upper curve). It is also
important to note that in the sonic limit V' — 1 (and finite W) the far-field strain w,
tends to w, — A%/W? and remains binodal (w, < w,). Taking a (pointwise) limit W — 0,
one can see that the model predicts zero dissipation at subsonic velocities and infinite
driving force at V = 1.

Overdamped limit. Now consider (38) at the limit V' — 0 and W — oo, with V, =
VW remaining finite. We obtain

1 442\ 12
G(V) = 5 (1 + V—f) sgn(V).

The resulting kinetic curves are shown in Fig. 5 for different values of A. Under the
additional assumption that A — 0 we obtain the viscoelastic limit.

3.4 Other quasicontinuum approximations

As we show later in the paper, in the region of its validity, the viscosity-capillarity model
is sufficient to capture the dispersive features of the discrete model only in the highly
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Figure 5: Kinetic relation for the viscosity-capillarity model in the overdamped limit for
V > 0 at different values of the parameter A.

damped regimes. The approximation becomes progressively worse as W decreases. In
particular, in the absence of internal damping (W = 0), the model predicts zero dissipation
for subsonic phase boundaries, which completely misses the effect of radiative damping
[30]. This failure of the theory suggests that in order to adequately reproduce dispersive
effects in a continuum setting when the microscopic viscosity is small, other dispersive
approximations of the discrete model should be considered.

For example, one can follow the approach proposed in [31] and replace the energy of
the bilinear discrete system by its exact quasicontinuum analog

Eoc = / BVQuTICuT + %uzﬁux — (ug — we)0(uy — w,) | de. (39)
Here K and £ are operators with Fourier images given by
2 ¢ W(p)sin?(pkd/2
K(k) = '(1;:5) L) = 2 .(z;) (pké/2)
4sin”(kd/2) sin®(kd/2)

In this formal representation both kinetic and elastic contributions to the energy are
nonlocal. Various local models can be obtained if one approximates the Fourier images of
the two above operators by the first few terms in their Taylor expansions around k£ = 0.
In the physical space this leads to gradient approximations of higher order for both kinetic
and elastic energies, e.g.

L[~ L A IS Lo o
3/ u Ku,dz ~5 UT+E(5 um—f—%(S Uper | AT,

B e (40)
3 / ugLuzdx %5/ [ui + a1(52ui$ + CL254U§M] dr.
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The coefficients a; and as can be found from the Taylor expansion (see [31] for the exact
expressions).

One can show that for sufficiently high velocities the mixed-gradient model (40) is in
excellent agreement with the kinetic relations generated by the discrete model even in
the Hamiltonian limit. To capture the low-velocity regime, one may have to replace the
Taylor expansion around £ = 0 by a multi-point Pade approximation which reproduces
more faithfully the short-wave structure of the operators K and L (see, for instance, [4])

4 Solution of the discrete problem

In this section we return to the strongly discrete problem by assuming that § = 1. We
begin by studying the general features of the solution of the discrete problem and then
consider the special case ¢ = 2 to focus on the detailed structure of the kinetic curves.

4.1 General features of the solution
At § =1 Eq. (17) becomes
V2" + 3 Dyw(n+p) — WV (2uw'(n) —w'(n+1) —w'(n — 1))
pl<q (41)
=20(n) —0(n+1)—06(n—1).

Using Fourier transform technique, we obtain® (see [30] for the details)

4sin’(k/2)etkn
wo+ Y ;Iz(k/‘)/e forn <0
_ keM—(V) k( ) ) 49
w(’?)— 4Sin2(k/2)eikn . r,'7>0 ( )
wy — 0 .
T ke KLe(kV)
Here the summation is over the sets M*(V) = {k : L(k,V) = 0, Imk = 0}, where
g pk k
L(k,V) = —4; D, sin? 5 V2k? — AWV ik sin? 5 =0 (43)
The states at infinity must satisfy the jump condition
1
W-=Ws =72 (44)

!"We assume that the moduli D, with p > 2, are not all zero (see [30] for the discussion of the case
when this condition is not satisfied).

18



which coincides with the Rankine-Hugoniot condition (29). For consistency with the
assumptions that led to (11) we still need to check that the formal solution is admissible
in the sense that it satisfies the constraints (15).

Kinetic relation. The continuity of w(n), together with (42) and (16) imply an addi-
tional relation between wy and V which can be written as either

4sin®(k/2)
= — - 4
w W, E, Lk V) (45)
keM—(V)

or

4 sin®( 4sin”(k/2)
WL = We + 46
i 2 kLy(k, V) (46)
keEMT(V)

Due to (44) only one of these relations is independent and is therefore furnishing the
desired kinetic relation. To express this relation in a more familiar form we need to
obtain the microlevel expression for the driving force. We recall that the rate of energy
dissipation is

R =VW / "\dn,
which immediately confirms that the entropy inequality (23) is satisfied. By substituting

the traveling wave solution (42) and using R = VG(V'), we can write the expression for
the driving force in the form

G=VW/ (w')?

sin?(k/2) sin?(1/2)
= 16VWz{kEMZ lEMZ Ly (k, V) Ly, (1, V) (k + 1) (47)
sin?(k/2) sin?(1/2)
D>  Le(k, V)Ll V)(k+l)}

keEM+(V) leM+(V

As shown in the Appendix, this expression coincides with the formula for the driving force
obtained from (24) in the continuum problem. In our bilinear case it reduces to

1 sin? sin®(k/2) sin”(k/2
= —we =2 § : 4
G =3l tu)—w ( kkaV kkaV)) (48)
keM+(V eEM—(V)

where we used (45) and (46). One can see that the driving force in both discrete and

continuum cases is given by the area difference formula (24), which shows that the mi-
croscopic and macroscopic ways of assessing dissipation are consistent. Since the sets of
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roots M*(V) can be computed for each V, the second equality in (48) can be viewed as
a semi-analytic representation of the relation G(V).

Hamiltonian limit. For W > 0 and V # 0 all nonzero roots of the characteristic
equation have nonzero imaginary parts and are located in either upper (set M (V'), n > 0)
or lower (set M~(V), n < 0) half of the complex plane. As n — +oo the amplitude of
oscillations due to the real parts of the roots tends to zero, and solution approaches the
constant values wy given by (45) and (46).

As W tends to zero, some of the complex roots approach the real axis, and in the
purely inertial case W = 0 the characteristic equation (43) becomes

q
k
LO(k,V) = —4_ D, sin? % V%2 =0 (49)
p=1

This equation has a finite number of nonzero real roots responsible for the radiative
damping phenomenon: short-length lattice waves emitted by the moving phase boundary
carry energy away from it (see [30] for more details). These waves appear behind or ahead
of the moving front, depending on whether the corresponding roots approach the real axis
from the lower or upper half plane as W — 0.

Indeed, let k, be a real root of (49) and let k, + x be a small complex root of (43) that
approaches k, (x — 0) as W — 0. Expanding L(k, + x,V) = 0 around £, for small x and
neglecting O(k?) terms, we obtain

Lk, V) + kLy(ks, V) = 0.
Recalling that L(k, V) = L°(k,V) — 4WViksin® £ and L(k,, V) = 0, we can write

AWV sin® & | _2WVk, (2sin” & + k, sin k,) + ik, L) (k,, V)

"= (LY (k,, V)2 + AW2V2(25in? & + k, sin k, )?
One can see that if V' > 0, a complex root moves to real axis from above (Imx > 0) if
and only if k,.L?(k,, V) > 0 and from below whenever k,L2(k,, V) < 0. Therefore, in the
limit W = 0 when the system becomes Hamiltonian, a particular real root contributes to
the solution in front (behind) of the moving phase boundary if k,L}(k., V) > 0 (< 0).
The same radiation condition was employed in [30] on the basis of the following radiation
condition: the group velocity of the waves in front (behind) of the moving phase boundary
must be higher (lower) than the phase boundary velocity.

We can now summarize the above analysis by specifying the sets M*(V) in (17) as
they appear in the Hamiltonian limit. For V > 0 we obtain

M*(V) = {k: L(k,V) =0, Imk 2 0} | N*(V), (50)
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where
NE(V)={k:L(k,V) =0, Imk =0, kLi(k,V) = 0} (51)

are the sets of real roots describing radiation.

Observe now that in the Hamiltonian limit the complex roots of equation (43), which
reduces to (49), appear in symmetric quadruples k, —k, k and —k, where k denotes the
complex conjugate of k. In particular, for any £k € M+ (V) \ N*(V) (i.e. non-real root in
the upper half-plane) we have —k € M~ (V) \ N~ (V). Due to this symmetry and the fact
that the expressions under the sums in (48) are even at W = 0, we can rewrite the kinetic
relation in terms of the positive real roots Npos(V) = {k € N*(V)UN (V) : k > 0} of
(49). We obtain

V) —sm(V) 3 4sin?(k/2)

2SR/ (52)
cei= ) IRLi(k, V)

This expression coincides, up to a dimensional rescaling, with the formula obtained in
[30] by direct computation of the energy fluxes due to lattice waves moving away from a
phase boundary.

Static limit. In another limiting case, V = 0, the continuous variable 7 assumes only
discrete values and the strain profile becomes discontinuous at every integer 1. The main
advance-delay differential equation of the model reduces to a system of finite-difference
equations, and we can replace the continuous Fourier transform by its discrete analog (e.g.
[30]). Either using discrete Fourier transform or directly solving the difference equations,
we obtain the following family of equilibrium configurations:

G143y S/ M <o
w (G) = o + keEF— w(k)wl(k) ’ (53)
n — UM Sin(k/Q)eik(n+1/2)

pert W(k)w'()

These lattice-trapped states are parameterized by the value of the driving force G. The
parameter
oM = w, —1/2 (54)

is the Maxwell stress furnishing the equal area construction for the macroscopic stress-
strain graph o = 6(w). The sets F* = {k : w?(k) = 0,Imk = 0, —m < Rek < 7} contain
the zeroes of the dispersion relation

q
k
W*(k) = =4 D,sin’ %. (55)
p=1
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The admissibility requirements
wp > w, forn < —1, wy, <w, forn>0 (56)

impose constraints on G the set of admissible driving forces constitutes the trapping
region. In particular, if the strain profile (53) is monotone, which occurs, for example,
when all long-range interactions are repulsive (D, > 0 for p > 2 %), the constraints (56)
can be replaced by wy < w, and w_; > w,. The trapping region is then given by

G| < Gp, (57)
where (/2)eit/2
1 sin(k/2)e*
Gr=3+ D (58)
keFt+

is the Peierls driving force (see also [2, 28]).

The phase boundary remains trapped until the driving force reaches one of the limiting
values: G = —(G'p, corresponding to w_; = w,, when the interface starts moving to the
left (V < 0), or G = Gp, corresponding to wy = w,, when the interface starts moving to
the right (V' > 0). The two limiting equilibrium configurations represent unstable states
from which the dynamic solution bifurcates. We emphasize that the Peierls driving force
is generally different from the spinodal driving force G5 = 1/2, which describes depinning
bifurcation in the viscoelastic continuum model.

Overdamped limit. Next, consider the situation when V' — 0 and W — oo, while
their product V, = VW remains finite. Equation (44) reduces to w_ — wy = 1, which
implies that the stresses o1 = ¢(w4) in this limit are equal:

oy =wy=w_—1=0_=0y+G.

This is in agreement with the jump condition (28) at V' = 0 and we can write that
wy = oy +G and w_ = oy + G + 1. The characteristic function L(k, V') in (43) can then
be written as L(k, V) = 4sin®(k/2)A(k, V,), where V, = VW and

. 1 sin?(pk/2) ,
Ak, V) = — ZD,,W — Viik. (59)

p=1

2In this case, since D(1) < 0, the homogeneous phases can still be stable (w?(k) > 0 for all k) provided
that the moduli responsible for long-range interactions are sufficiently small in magnitude.
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The traveling wave solution (42) takes the form

eik?]
G+1+ —— forn <0
keszfj(v*) kAk(k: V*)

w(n) = 0w + (60)
G- _— for n > 0,
ety FAR (R V)

where S*(V,) = {k : A(k,V,) =0, Imk = 0}.
(From (54) and condition w(0) = w, = om + 1/2, one can see that in the overdamped
limit the kinetic relation (48) reduces to

1 1

keST (Vi)

When V, — oo, the sets S*(V,) become empty, and the driving force tends to the
constant value G(V) = (1/2)sgn(V,), which agrees with the behavior (32) predicted by
the viscoelastic continuum model.

4.2 Case study: ¢ =2

We now focus on the special case when only nearest neighbor (NN) and next-to-nearest
neighbor (NNN) interactions are taken into account. In the context of the Ising model
this means standard local interaction of the “spins”.

Motivated by the analogy with the Lennard-Jones type interactions [29], we assume
that —D(1) =1+4D > 0 and D = D(2) > 0; the latter meaning that NNN interactions
are repulsive. To facilitate the comparison with viscosity-capillarity model, we specify for
the discrete NNN model the formula (34)

=+/D-1/12. (62)

Since A? > 0, this implies that the well-posedness of the viscosity-capillarity model re-
quires additionally that D > 1/12. This means that only sufficiently strong NNN inter-
actions can ensure stability of the viscosity-capillarity model.

Under the above assumptions the governing equations (14) reduce to

V2 — (1 + 4D)(wnt1 — 2wy + wn—1) + D(wpyo — 2wy + wy_)

63
— WV (Wny1 — 2Wy + p_1) = 20(wy — we) — O(wpy1 — we) — O(wp_1 — we). (63)
The traveling wave solution is then given by (42) with
k k
L(k,V) = 4(1 + 4D) sin’ 5 —4D sin® k — V2k* — AWV ik sin® o8 (64)
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Dispersion spectrum. To compute the displacement field we need to determine the
roots k of the equation L(k,V) = 0. At V = 0 this equation has real roots k = 27n, for
any integer n; if D > 0 there are also complex roots

k= 2mn + i, (65)
where .
= h{—-+1]).
A\ = arccos (QD + ) (66)

Notice that A tends to infinity as D — 0, and therefore at D = 0 the complex roots
disappear. For V' > 0 the roots can be computed via an iterative numerical procedure
which uses the known roots at V' = 0 as initial guesses. The general configuration of
nonzero roots can be understood from Fig. 6, where due to the symmetry of the problem
only roots with positive real part had to be shown.

In summary, there are two types of roots and they are shown in Fig. 6 as solid black
and grey branches parameterized by the velocity V. The black branches emanate from the
real roots k = 2mn corresponding to V' = 0 ; for small enough W, they can also bifurcate
from the branch of purely imaginary roots. These branches contribute to the oscillatory
behavior of the solution and create the dynamic structure of the core that disappears
at V' = 0. The grey branches emanate from (65). With the exception of the branch
originating at £k = —i\ and V = 0 (along which the roots tend to zero as V increases),
the grey branches exist only at D > 0 and are responsible for the core structure that is
inherited from statics. As W tends to zero, the black branches move closer to each other
(see Fig. 6b). In the purely inertial limit (/W = 0, [30]) these branches get attached to
each other in such a way that some of the roots become real. For contrast, they are shown
in Fig. 6a by a thinner line from which the complex roots (black curves) bifurcate.

As W becomes larger, each black branch folds, and in the overdamped limit they
become straight lines k = 27n (see Fig. 6¢). The limiting roots (the zeroes of sin®(k/2))
are no longer singularities and hence do not contribute to the solution. To see this, we
recall that L(k,V) = 4sin®*(k/2)A(k,V.), so that 4sin*(k/2) appears in both numerator
and denominator. The relevant nonzero roots are those of A(k, V,) = 0, with

A(k,V) =1+ 4Dsin? g — V,ik. (67)

Therefore, as we see in Fig. 6d, only grey branches survive in the overdamped limit.

As D tends to zero, all grey branches except the one coming out of £k = —iA, V = 0,
move to infinity. Thus at D = 0 (NN model) only this and the black branches (at finite
W) remain. In the overdamped limit the only nonzero root of A(k,V,) = 0 at each V,
(the single surviving grey branch) is given by £ = —i/V,. As a result, the strain profile
(60) in this case coincides with its continuum counterpart (31).
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(b) W=0.1

Figure 6: The structure of nonzero roots of L(k,V) = 0 (a, b and ¢) and A(k,V}) (d)
at different W. In all pictures D = 1/16. In (c¢) and (d) V, = VW is plotted along the

vertical axis.
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(a) W=0 (b) W=0.1
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0.75 phase I

Figure 7: Strain profiles for traveling wave solutions with V' = 0.5: (a) W = 0; (b)
W =0.1. Here D =1/16 and w, = 1.

Strain profiles. Typical strain profiles of the traveling wave solutions (42) with suffi-
ciently large velocity (V' = 0.5) are shown Fig. 7 where the Hamiltonian case (W = 0)
is compared with the case of nonzero viscosity (W = 0.1). One can see that solutions of
the discrete problem exhibit lattice scale oscillations (that become damped at W > 0),
while neither classical elasticity nor viscoelastic or viscosity-capillarity models predict any
oscillatory behavior of the displacement fields.

Admissibility. As we have already mentioned, some of the solutions formally con-
structed using (42), may have to be discarded if they violate the constraints (15). For
instance, in both cases shown in Fig. 8 (V = 0.25 and V = 0.1) the oscillating strain at
small n > 0 is in phase II, when the single interphase ansatz requires it to be in phase
II. In fact, a systematic numerical study reveals several small-velocity intervals (velocity
gaps) where the formal traveling wave solutions are not admissible; in these intervals of
velocity a more complex dynamics is expected to take place. These prohibited intervals
become smaller at larger D, for example, Fig. 9 shows that at D = 0.4 the solution with
V = 0.25, which was discarded at D = 1/16, becomes admissible. This takes place due to
the regularizing role of D: as D increases, the grey branches of the characteristic equa-
tion move closer to the real axis which make the transition layer wider and suppress the
oscillations near the phase boundary. The same effect can be achieved by increasing W.
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V=0.25
w
1.5
1.25 phase 11 I
-5 all 5 n
0.75 hase I

w

1.8
1.6
14
1.2

phase II

0.8
0.6

-5
phase I

Figure 8: Examples of inadmissible solutions at D = 1/16, W = 0.1 and w, = 1: (a)
V' =0.25; (b) V = 0.1. Solutions violate the constraints (15) and hence are not admissible.
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Figure 9: Strain profiles at D = 0.4, W = 0.1 and w, = 1. Solution at V = 0.25 is now

admissible but solution at V' = 0.1 still violates (15).
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Static limit. Single-interface equilibria (53) with phase boundary located at n = m
can be presented in the form [6, 7, 28]

exp(A(n —m — 1/2))

G+1-— n<m
i 2cosh()\/2) ’
wy' (G) =ou+ P GO Thne V) I (68)
2cosh(\/2) ’ -

where A is given by (66). These solutions exist for G in the trapping region (57), with
the Peierls driving force given by

Gp=— 1 (69)
" 2/1+4D
Note that the Peierls force is nonzero and Gp < G for all finite D > 0; at D = 0 we have
Gp = Gs.

A subtle but important feature distinguishing our model from the Frenkel-Kontorova
(FK) model is that D does not depend on § and the Peierls force remains finite in the
continuum limit § — 0. In contrast, in the FK model the Peierls force is proportional to
d and thus disappears in the continuum limit (e.g [10]).

Overdamped limit. In the overdamped limit (V' — 0, W — oo, V, = VW finite) the
equation (63) can be “integrated” to yield

V:kwn = D(wn—}—l - an + wnfl) - 6(wn) + g, (70)

where 0 = oy + G is the applied stress. Equation (70) coincides with the discrete
reaction-diffusion equation, which is also known as Nagumo system in biology [6, 8] or
the overdamped FK system in dislocation dynamics [3, 10]. We emphasize that the
equivalence between our and FK models can be established only in the overdamped and
statics limits: when the inertia term in (63) is nonzero, the two models yield different
dynamics [30]. Observe also that at D = 0 the equation (70) coincides with the analogous
equation obtained in continuum viscoelastic model in overdamped limit.

The traveling wave solution in the overdamped limit is given by (60) with A(k, V)
taken from (67). As V — 0+ the strain profile approaches the staircase shown in Fig. 10
(Vi = 0+); at larger V,, the staircase structure smoothens out. The corresponding “stick-
slip” evolution of w,(t) at small V, for n = 0,1,2 can be reconstructed from Fig. 11.

Notice that the small-V, solutions can be viewed as singular perturbations of w"*=%*(n),
in particular, they replace steps by thin transition layers with the width proportional to
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Figure 10: Strain profiles in the overdamped limit at D = 1/4, w, = 1.
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Figure 11: Evolution of strain in the zeroth, first and second springs at small V' in the
overdamped limit. Parameters: V, = 0.01, D = 1/4, w, = 1.
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V. (e.g. [6]). During the time period 7' = 1/V, the dynamics can be interpreted as an ap-
proach toward the closest “virtual attractor” given by a stable equilibrium at G = Gp — 0,
just below the boundary of the trapping region. For instance, if initially the phase bound-
ary is at n = 0 (wo(0) = w,), and if G is just above the trapping region, the closest virtual
attractor is s2 where s = w, — 0, and s = w™(Gp — 0). The attractor is only virtual
because at G > Gp no equilibrium solutions actually exist, and, as a result, it is never
attained. Thus, as soon as w;(t) reaches w,, the whole process starts again, with solution

“attracted” by s! and so on.

5 Comparison of discrete and continuum models

In this section we first review the specific structure of the kinetic relation emerging in our
NNN model, and then use it as a benchmark for comparison of the discrete model with
its continuum approximations.

In the Hamiltonian limit (W = 0) the kinetic relation in the discrete NNN model
reduces to (52), with the driving force fully determined by the real roots of the dispersion
relation. In this case there is an infinite number of resonance velocities V; corresponding
to real k satisfying equations L(k,V;) = 0 and Lg(k,V;) = 0 simultaneously. At such
velocities, the driving force diverges which creates singular peaks on the kinetic curves
(see Fig. 12a). At nonzero W the resonances are replaced by oscillations; the amplitude
of oscillations decreases as W increases (Fig. 12b,c). The shaded regions in Fig. 12
correspond to non-admissible traveling waves that must be removed. As W increases,
the velocity gaps become more narrow. The effect of D can be seen from the comparison
of Fig. 13 (D = 0.4) and Fig. 12b (D = 1/16): at larger D one inadmissibility interval
may transform into several ones.

We can now move to the comparison of the discrete and continuum models. Fig. 14
shows discrete kinetic relations corresponding to a fixed D = 0.4 and different W. This
value of D is equivalent to A = 0.56 in the viscosity-capillarity model (recall (62)), and
Fig. 14 should be juxtaposed against Fig. 4. Although the overall behavior of the kinetic
curves in the discrete theory and in viscosity capillarity model is similar, the discrete
kinetics has two distinct features. First, due to the nonzero value of the Peierls force
and the non-existence of traveling wave solutions at small V', there is a region in the left
bottom corner of the discrete diagram (below the schematic dashed line), where there
are no admissible kinetic curves. In contrast, in continuum viscosity-capillarity model
all curves start from V = 0 and therefore the left bottom corner is filled in. Second,
the discrete model predicts nonzero dissipation in the Hamiltonian limit (W = 0), which
results in the presence of a lower boundary below which there are no kinetic curves.
Meanwhile, kinetic curves in the viscosity-capillarity model can exist anywhere inside the
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Figure 12: Kinetic relations G(V') at different W. Here D = 1/16. The shaded regions
indicate the portions of the graphs that should be removed because the corresponding

traveling wave solutions violate the admissibility conditions (15).



0.5

02 04 06 08 vV

Figure 13: Kinetic relation G(V) at larger D. Here D = 0.4 and W = 0.1. This figure
can be compared to Fig. 12b.

02 0.4 0.6 0.8 V

Figure 14: Kinetic relation for discrete model at different W. Here D = 0.4, which
corresponds to A = 0.56 in the viscosity-capillarity model, the case depicted in Fig. 4. The
portions of the small-W curves that contain non-admissible solutions have been removed.
The solid dashed line is the (schematic) boundary of the region in the left bottom corner
where there are no admissible traveling wave solutions.
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bounds predicted by the classical continuum theory (see our Fig. 2).

As the phase boundary velocity approaches the sonic limit (V' — 1) the behavior of
the kinetic curves starts to exhibit universality.

It will be convenient to first look at the Hamiltonian limit W = 0. Recall that in this
case the driving force (52) is determined entirely by the positive real roots of L(k,V) =0
and when V' < 1, there is only one positive real root. Expanding the dispersion relation
at small £ and W = 0, we obtain

Valt (D- e - - L)
12 6 60

This means that for weak NNN interactions (D < 1/12), the relevant root approaches
zero as V' — 1—. Substituting the above approximation into the expansion of (52) near

small k, we obtain
1

G = m (71)
One can see that this asymptotics at V' — 1— coincides with (30) (see also Fig. 12a,
where D = 1/16). Meanwhile, for stronger NNN interactions (D > 1/12, the interval
where viscosity-capillarity model is valid), the single positive root approaches a nonzero
value ks as V' — 1—, and this leads to a finite value of the driving force [30]. At V = 1+
the driving force becomes infinite, due to the addition of a root at zero. We can then
conclude that the resulting kinetic relation has a “corner” at V' =1 (see, for example, the
curve W = 0 in Fig. 14, where D = 0.4).

If now W > 0, the sum of residues over the set M (V) tends in the sonic limit to
a finite value s > 0, which increases as W — 0 and tends to zero as W — oo. Thus
wy — w, — s (recall (46)), while w_ — w, — s + 1/(1 — V?) (recall (44)). Hence (48)
yields the asymptotics (71) for V' < 1, regardless of the value of D. The width of the
boundary layer where this asymptotic is valid increases with W (see the W > 0 curves in
Fig. 14). The asymptotic behavior of the kinetic curves at W > 0 is thus the same as in
the viscosity-capillarity and viscoelasticity model.

In the overdamped limit the graphs showing the kinetic relations at different D are
presented in Fig. 15. When D = 0 (no NNN interactions) the set St is empty, and
the driving force (61) is constant: G = G, = 1/2. We recall that in this case the
discrete equation (70) coincides with the continuum equation. At D > 0 the driving force
approaches the Peierls value from above as V, tends to zero and G(0+) = Gp. At large
V., solution approaches the one for D = 0, so that GG tends to GG,. In Fig. 15, which should
be compared to Fig. 5, one can see the blow up of the domain in the parameter space
where V' is small and W is large. Both figures show a similar approach to the constant
value of the driving force at V, > 0 as the nonlocality parameter (D or A) decreases.
At the same time, while the viscosity-capillarity model always sets Peierls force at zero
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Figure 15: Kinetic relations at different D in the overdamped limit.

and yields piecewise constant dynamics in the limit when A = 0, the Peierls force in the
discrete model is always nonzero (recall that D = 1/12 in this limit).

To see more clearly how the discrete theory is approximated by its formal continuum
limits, it is instructive to consider the discrete model at the intermediate values of §.
In particular, we expect to see that in the limit 6 << 1 (weakly discrete limit) the
predictions of the discrete model are comparable with those of viscosity-capillarity and
viscoelasticity models everywhere outside thin boundary layers in the space of parameters.
The persistence of the boundary layers is expected due to the singular nature of the
perturbation associated with the parameter §.

For the general § # 0 the solution of the equation (17) is given by

4si 2 9 ikn/d
wo+ D, sin (k/2)e forn<0

- 4 i 2 k/2 ikn/d
wy — sin_(k/2)e for n > 0.

keM+(V) kLk(ka V)

The driving force is still (48), where the summations are over the roots of L(k, V') from
(43). Interestingly, the value of the Peierls driving force is independent of ¢.

We begin by comparing the strain profiles generated by the weakly discrete model (72)
to those obtained using viscoelasticity and viscosity-capillarity models. Recall that A is
related to D through (62) and that viscosity-capillarity approximation is only meaningful
in the strongly nonlocal regime D > 1/12. Fig. 16 compares the strain profiles generated
by discrete (solid curves), viscoelasticity (dashed curves) and viscosity-capillarity (dotted
curves) models at D = 0.4, § = 0.01 and W = 1. One can see that at higher velocities the
strain profiles generated by the discrete and viscosity-capillarity models become closer.
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Figure 16: Strain profiles generated by the discrete (solid curves), viscoelasticity (dashed
curves) and viscosity-capillarity (dotted curves) models at (a) V = 0.5 and (b) V' = 0.8.
Here D =04, W =1, 6 =0.01 and w, = 1.

This is expected since at higher V' the effective viscosity is higher, and the dissipation due
to viscosity plays a larger role, making the flaws in the approximation of dispersion less
visible. Note, however, that strain profiles in both discrete and viscosity-capillarity cases
predict w, below the spinodal value w,., while the viscoelastic model gives w, = w,. As
W tends to infinity, w, tends to the critical value in all three models.

Fig. 17 compares the kinetic curves in different models at W = 0.1, 1 and 10 for
D = 0.4. One can see that the kinetic curves for the discrete model (solid curves)
start at the Peierls value G(0+) = Gp, which is less than spinodal value Gy = 1/2 for
D > 0 (here Gp = 0.31), and approach the viscosity-capillarity (dotted curves) and
viscoelastic continuum (dashed) curves at larger velocities. While the viscosity-capillarity
model underestimates the driving force at small velocities, since it requires G(0) = 0, the
viscoelastic model overestimates it, since it starts at G(0+) = Gs. At sufficiently large
V, all three curves display the same asymptotic behavior given by (30). How “fast” this
asymptotics is approached depends on W. At higher values of W, the width of the small-
velocity boundary layer where discrete model behaves differently from its continuum and
quasicontinuum counterparts diminishes. On the other hand, the range of velocities where
discrete and viscosity-capillarity models predict different behaviors increases as W tends
to zero. In the limiting case, W = 0, the viscosity-capillarity model incorrectly predicts
that G = 0 for V < 1, while the discrete model always requires a nonzero driving force
for the phase boundary to move(see Fig. 12a). Despite this shortcoming, the viscosity
capillarity model still provides a valid lower bound for the driving force.
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Figure 17: Kinetic relations generated by the discrete model (solid curves) and viscosity
capillarity approximation (dotted curves) at (a) W = 0.1, (b) W =1 and (b) W = 10.
Here D = 0.4. In (a) portions of the discrete kinetic relation that contain inadmissible
solutions have been removed. The kinetic curve generated by viscoelastic continuum
model (dashed curve), independent of W, is also shown for comparison.
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6 Concluding remarks

In this paper we considered the simplest discrete dynamical model of a prototypical
martensitic phase transition, amenable to detailed analytical study. We focused on the
interplay between three main physical mechanisms responsible for the specificity of the
dynamics of martensitic phase boundaries, namely, dispersion, dissipation, and inertia.
We introduced three nondimensional measures of the corresponding effects: 6, W, and V.
Despite its simplicity, the model also allows for nonlocality which in the simplest can be
characterized by one additional nondimensional parameter D. The main challenge was to
distinguish qualitatively different kinetic regimes in the space of parameters §, W, V and
D.

A more specific problem addressed in this paper was to what extent the discrete
model can be replaced in the domain § ~ 0 by its quasicontinuum approximation. Having
a fully analytical benchmark, we could test three continuum candidates broadly employed
in the modeling of martensitic phase transitions: elasticity, viscoelasticity and viscosity-
capillarity models. We have temporarily left aside some other more sophisticated quasi-
continuum options.

After showing that the naive continuum limit 6 — 0, corresponding to classical elas-
ticity theory, fails to provide the necessary information regarding the kinetics of phase
boundaries, we have focused on two other continuum approximations of the discrete model
- viscoelasticity, a local continuum model which includes only dissipation, and viscosity-
capillarity, a weakly nonlocal quasicontinuum model that incorporates both dispersion
and dissipation. We systematically compared the kinetic relations and traveling wave
profiles resulting from these two models with the one taken from the explicit solution of
the discrete problem.

Based on this analysis, we can make the following conclusions:

1. The defining feature of the discrete model is lattice trapping. In the presence of
nonlocality (D > 0) the value of the Peierls force in the discrete model is below
the spinodal limit and remains nonzero for all finite D. In contrast, the viscosity-
capillarity model predicts identically zero Peierls force. At large W, the lattice
trapping is mimicked in the viscosity-capillarity model by a rapid increase of the
driving force with velocity around V = 0. Even though the viscoelasticity model
captures the trapping phenomenon qualitatively, it overestimates the value of the
Peierls force by equating it to the spinodal force.

2. If stable, all three models predict the same asymptotics for the kinetic relation in
the regime of |V| < 1, where inertial effects dominate.

3. The overdamped limit represents a blow up of the kinetic curves in the region of
large W and small V', where inertial effects can be neglected. In the absence of
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nonlocality (D = 0 in the discrete case and D = 1/12 in case of viscosity-capillarity
model) all three models behave similarly. In the presence of nonlocality the behavior
of the three models around V = 0 is qualitatively different.

. The most sophisticated among our quasicontinuum approximations, the viscosity-

capillarity model, becomes progressively less adequate as W decreases. In particular,
the viscosity-capillarity model predicts zero dissipation at W = 0 in the subsonic
regime while the discrete theory always remains macroscopically dissipative due to
the phenomenon of radiative damping. The viscosity-capillarity model also can not
be used in the weakly nonlocal regime with D < 1/12 where it is unstable. To deal
with the regimes where viscosity-capillarity model fails, alternative quasicontinuum
models should be constructed and we refer to [31, 4] for the realistic propositions.

Acknowledgements. This work was supported by the National Science Foundation
grant DMS-0443928 (A.V.).

Appendix

In this appendix we prove that the formulas (47) and (48) for kinetic relation are equiv-
alent. We start by considering the double sums in (47). For convenience, we denote the
summand by

sin?(k/2) sin*(1/2)
Ly(k, V)L (L,V)(k+ 1)

[k 1) =

and omit the explicit reference to dependence on V. Now observe that

and

oD fe) =D kD= D > fkD

keM— leM— keM- leM keM— leM+
SO FED =D kD)= >0 Y kD).
kEM+IleM+ keM*leM kEM*leM—

Here M = M*™ U M. Since f(k,l) = f(l,k), the mixed sums can be interchanged, and

thus

PN SIS G E S S L B S S ()

keM—leM— keM+*ileMt keM—leM keM+leM

Now, using Residue Theorem, we can write

sin®(1/2)dl Z sin?(1/2) sin?(k/2)
(

lim — B VAl L .
R0 277 ?{” R B DLOV) &+ DL V) L(—k,V)
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But the integral in the left hand side vanishes as the radius R of the circular contour
tends to infinity, and thus we have

sin?(1/2)  sin?(k/2)
Zﬂ; (k+0)Le(1,V) L(=k, V)

Recalling that & € M satisfy the equation (43), we have
P P
L(—k, V)= L(k,V) + 8WViksin 5= 8WVik sin 7"

Thus,

Z sin®(1/2) 1
= (k+1)Lk(L,V) SWVik
and we obtain

SWW(Z PIFICHESY kaz)

kM- leM- kEM+l€M+
Z sin’ sin®(k/2) Z sin? sin®(k/2)

kLy(k,V) kLy(k,V)’
keM+

which shows that (47) and (48) are equivalent, as claimed.

References

[1] R. Abeyaratne and J.K. Knowles. Implications of viscosity and strain gradient effects
for kinetics of propagating phase boundaries in solids. SIAM Journal of Applied
Mathematics, 51:1205-1221, 1991.

[2] O. M. Braun, Yu. S. Kivshar, and I. I. Zelenskaya. Kinks in the Frenkel-Kontorova
model with long-range interparticle interactions. Physical Review B, 41:7118-7138,
1990.

[3] A. Carpio and L. L. Bonilla. Depinning transitions in discrete reaction-diffusion
equations. SIAM Journal of Applied Mathematics, 63(3):1056-1082, 2003.

[4] M. Charlotte and L. Truskinovsky. Towards multi-scale continuum elasticity theory.
Cont. Mech. Thermodyn., 2007.

39



[6] H. Fan and M. Slemrod. Dynamic flows with liquid/vapor phase transitions. In
D. Serre S. Friedlander, editor, Handbook of mathematical fluid dynamics, volume 1,
pages 373-420. Elsevier, 2002.

[6] G. Fath. Propagation failure of traveling waves in discrete bistable medium. Physica
D, 116:176-190, 1998.

[7] R. Hobart. Peierls stress dependence on dislocation width. J. Appl. Phys., 36(6),
1965.

[8] J. P. Keener. Propagation and its failure in coupled systems of discrete excitable
cells. SIAM Journal of Applied Mathematics, 47(3):556-572, 1987.

[9] P. G. Kevrekidis, I. G. Kevrekidis, A. R. Bishop, and E. S. Titi. Continuum approach
to discreteness. Physical Review F, 65:046613, 2002.

[10] O. Kresse and L. Truskinovsky. Mobility of lattice defects: discrete and continuum
approaches. Journal of the Mechanics and Physics of Solids, 51:1305-1332, 2003.

[11] R.V. Krishnan. Stress induced martensitic transformations. Mater. Sci. Forum,
3:387-398, 1985.

[12] P. G. LeFloch. Hyperbolic systems of conservation laws. ETH Lecture Note Series.
Birkhouser, 2002.

[13] T. Lookman, S. R. Shenoy, K. O. Rasmussen, A. Saxena, and A. R. Bishop. Ferroe-
lastic dynamics and strain compatibility. Physical Review B, 67(2):024114, 2003.

[14] G. B. Olson and W. S. Owen, editors. Martensite. ASM International, Materials
Park, OH, 1992.

[15] K. Otsuka and C. M. Wayman, editors. Shape Memory Materials. Cambridge Uni-
versity Press, Cambridge, 1998.

[16] R. Pego. Phase transitions in one-dimensional nonlinear viscoelasticity: Admissibility
and stability. Archive for Rational Mechanics and Analysis, 97:353-394, 1987.

[17] M. Pitteri and G. Zanzotto. Continuum theories for phase transitions and twinning
in crystals. Chapman and Hall, 2004.

[18] G. Puglisi and L. Truskinovsky. Thermodynamics of rate independent plasticity. J.
Mech. Phys. Solids, 53:655—679, 2005.

40



[19] E. K. H. Salje. Phase transitions in ferroelastic and co-elastic crystals. Cambridge
University Press, Cambridge, 1993.

[20] J. A. Shaw and S. Kyriakides. On the nucleation and propagation of phase transfor-
mation fronts in a NiTi alloy. Acta Mater., 45:683-700, 1997.

[21] M. Slemrod. Admissibility criteria for propagating phase boundaries in a van der
Waals fluid. Archive for Rational Mechanics and Analysis, 81:301-315, 1983.

22| L. I. Slepyan. Feeding and dissipative waves in fracture and phase transition ii.
g
phase-transition waves. Journal of the Mechanics and Physics of Solids, 49:513-550,
2001.

[23] L. I. Slepyan and L. V. Troyankina. Fracture wave in a chain structure. Journal of
Applied Mechanics and Technical Physics, 25(6):921-927, 1984.

[24] L. Truskinovsky. Equilibrium interphase boundaries. Soviet Physics Doklady, 27:306—
331, 1982.

[25] L. Truskinovsky. Dynamics of nonequilibrium phase boundaries in a heat conducting
elastic medium. J. Appl. Math. Mech., 51:777-784, 1987.

[26] L. Truskinovsky. Kinks versus shocks. In E. Dunn R. Fosdick and M. Slemrod, editors,
Shock Induced Transitions and Phase Structures in General Media, volume 52 of IMA,
pages 185-229. Springer-Verlag, 1993.

[27] L. Truskinovsky. About the “normal growth” approximation in the dynamic theory
of phase transitions. Continuum Mechanics and Thermodynamics, 6:185-208, 1994.

[28] L. Truskinovsky and A. Vainchtein. Peierls-Nabarro landscape for martensitic phase
transitions. Physical Review B, 67:172103, 2003.

[29] L. Truskinovsky and A. Vainchtein. The origin of nucleation peak in transformational
plasticity. Journal of the Mechanics and Physics of Solids, 52:1421-1446, 2004.

[30] L. Truskinovsky and A. Vainchtein. Kinetics of martensitic phase transitions: Lattice
model. STAM Journal on Applied Mathematics, 66:533-553, 2005.

[31] L. Truskinovsky and A. Vainchtein. Quasicontinuum models of dynamic phase tran-
sitions. Continuum Mechanics and Thermodynamics, 18(1-2):1-21, 2006.

41



