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Abstract. In this work, we present a comprehensive study of several partitioned methods for the coupling of flow and mechanics. We derive
energy estimates for each method for the fully discrete problem. We write the obtained stability conditions in terms of a key control parameter
defined as a ratio of the coupling strength and the speed of propagation. Depending on the parameters in the problem, give the choice of the
partitioned method which allows the largest time step.

1. Introduction. The problem of predicting the response of an elastic and saturated porous medium occurs in
several important applications at large scales (earthquake modeling and simulations) and small scales (blood flow
and transport through human tissue). The Biot system, presented in detail in Section 3, captures this coupling. It
consists of the equations of flow in a porous medium coupled with the elasticity equations describing the skeleton
mechanics. The nature of each problem is significantly different. Namely, while the fluid equations describe dis-
sipative, parabolic effects, the structure equations are hyperbolic. As a natural consequence, numerical algorithms
that split the fluid dynamics from the structure mechanics are a popular choice. However, the primary concern
of partitioned methods is stability. Indeed, asymptotic stability of the continuous problem arises exactly from the
subproblems coupling and any useful partitioning will break this coupling.

To date, a few partitioned methods for the Biot system have been proposed and analyzed. Well-known par-
titioned algorithms are referred to as the methods of undrained split, fixed stress split, drained split, and fixed
strain split. Using a von Neumann stability analysis (which yields necessary conditions for stability), the work by
Kim et al. [9, 10] shows that the latter two methods exhibit stability issues, while the undrained split and the fixed
stress split methods satisfy unconditionally the derived necessary conditions. However, their results do not include
energy estimates which give sufficient conditions and account for variable coefficients and non-periodic boundary
conditions. A proof of unconditional stability (with convergence rates) for the undrained split and the fixed stress
split, based on energy estimates, was given in [15] by Mikelić and Wheeler for the discrete time, continuous space
and quasi-static Biot system.

The other primary issue is that the wide range of large and small parameter values occurring in applications
determine the strength of this coupling and must arise as time step conditions for the partitioned methods. In this
work, we derive the stability results based on energy estimates for the fully-discrete Biot problem. We consider
the two methods that are known to exhibit stability issues, the drained split and the fixed strain split, and derive
stability conditions based on different parameters in the problem. Moreover, we propose and analyze several other
partitioned methods for the Biot system with complementary stability properties.

Our analysis shows that the coupled Biot system, while containing many physical parameters, possesses one
key control parameter. This control parameter we denote by B has the interpretation

B = Coupling Strength/Speed of Propagation.

The identification and definition of B and comparison of the various partitioned methods in terms of B are given
in the final, conclusions section. See especially Table 5.3 in Section 5. This important non-dimensional parameter
seems to be previously unidentified, e.g. it is not among the many delineated in Bear and Cheng [2] .
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Section 2 presents the (necessarily intricate) Biot system. In Section 2 we show that with the variables

U = (η,u, p)T

the Biot system can be written in the form:

MUt +AU = ΛU +F.

Here M is a positive diagonal matrix. Matrix A includes all the sub-physics terms of each individual compo-
nent. All the coupling terms are included in the operator Λ. Under idealized (e.g. periodic) boundary conditions
A is symmetric and positive semi-definite, and Λ is skew symmetric in specially constructed inner product [·, ·].
However, under the physically correct boundary conditions (considered herein) Λ is not skew symmetric, adding
to the complexity of the stability analysis. This has a similar form to the fully evolutionary, coupled Stokes-Darcy
problem and partitioned methods for the latter can be adapted, analyzed and tested to the former. The extra analytic
and algorithmic complexity is due to the natural boundary conditions. Section 3 gives the partitioned methods and
their stability analysis. This analysis is via energy methods and includes the influence of boundary conditions and
variable coefficients. Since the system and methods are linear, their errors satisfy the same equations as the method
driven by their respective truncation errors. Thus, the partitioned methods’ errors are also governed by the methods’
stability. Section 4 presents numerical experiments confirming the theoretical predictions of Section 3, followed by
conclusions in Section 5.

2. Description of the problem. Consider a deformable porous medium Ω(t) of reference length L, and refer-
ence width H, defined as a mixture of an elastic solid material, called skeleton or matrix, and connecting pores filled
with fluid. We describe the dynamics of such a medium by the Biot system, whose Eulerian formulation is given
by:

ρ
∂ 2η

∂ t2 −∇ ·σp = f in Ω(t) for t ∈ (0,T ), (2.1a)

κ−1q =−∇p in Ω(t) for t ∈ (0,T ), (2.1b)
∂

∂ t
(s0 p+α∇ ·η)+∇ ·q = s in Ω(t) for t ∈ (0,T ), (2.1c)

where η is the displacement of the poroelastic medium, p is the fluid pressure, q is the Darcy velocity, and σp is the
total Cauchy stress tensor

σp = σE −α pI, (2.2)

where σE denotes the elasticity Cauchy stress tensor. Parameters describing the physics of the problem are the
density of the saturated porous medium ρ , a symmetric and positive definite hydraulic conductivity tensor κ, which
is the ratio between the permeability and the fluid viscosity, the storage coefficient s0, and the Biot-Willis constant
α . System (2.1) consists of the momentum equation for the balance of total forces (2.1a), Darcy’s law (2.1b), and
the storage equation (2.1c) for the fluid mass conservation in the pores of the matrix.

Having in mind applications to geomechanics, where η represents the displacement of the porous rock, we can
assume that the poroelastic medium undergoes infinitesimal displacements. In that case, movement of Ω(t) can be
neglected, and we can assume that the domain is fixed

Ω(t) = Ω, ∀t ∈ (0,T ). (2.3)

Furthermore, assuming the material is isotropic and homogeneous, we describe the relation of the displacement η
to the stress tensor σE via the Saint-Venant Kirchhoff elastic model

σE(η) = 2µE(η)+λ tr(E(η))I, (2.4)
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where µ and λ denote Lamé parameters, and due to the hypothesis of infinitesimal deformations,

E(η) =
1
2
(∇η+(∇η)T ).

Taking into account these assumptions, and eliminating the Darcy velocity q, we can write the system (2.1) as a first
order system in the following way:

ρ
∂u

∂ t
−∇ ·σE +α∇p = f in Ω, (2.5a)

ρ(u− ∂η

∂ t
) = 0 in Ω, (2.5b)

∂

∂ t
(s0 p+α∇ ·η)−∇ · (κ∇p) = s in Ω, (2.5c)

where u is the velocity of the skeleton.
Let ∂Ω = Γc∪Γs and ∂Ω = Γd ∪Γn. We assume the following boundary conditions:

η = ηD on Γc, (2.6a)
σpn= g on Γs, (2.6b)
p = 0 on Γd , (2.6c)
κ∇p ·n= 0 on Γn. (2.6d)

Condition (2.6c) is called the drained boundary condition, and if ηD = 0, condition (2.6a) is called the clamped
boundary condition. The above system is supplemented with the following initial conditions:

η(·,0) = η0 in Ω, (2.7a)
u(·,0) = u0 in Ω, (2.7b)
p(·,0) = p0 in Ω. (2.7c)

Define the following functional spaces

X s = {v ∈ (H1(Ω))d | v = 0 on Γc}, (2.8)
X p = {ψ ∈ H1(Ω)| ψ = 0 on Γd}. (2.9)

Then the weak formulation of the problem (2.5a)-(2.7c) is given by: given t ∈ (0,T ) find (η,u, p) ∈ X s×X s×X p,
with η = ηD on Γc, such that for all (v,w,ψ) ∈ X s×X s×X p

ρ(
∂u

∂ t
,v)+ae(η,v)−b(v, p) = (f ,v)+

∫
Γs

g ·vdx, (2.10a)

ρ(u− ∂η

∂ t
,w) = 0, (2.10b)

s0(
∂

∂ t
p,ψ)+b(

∂η

∂ t
,ψ)+ap(p,ψ) = (s,ψ) , (2.10c)

where (·, ·) denotes the inner product associated with L2(Ω) norm, and the bilinear forms are defined as follows:

ae(η,v) = 2µ(E(η),E(v))+λ (∇ ·η,∇ ·v), (2.11a)
b(v,ψ) = α(ψ,∇ ·v), (2.11b)

ap(p,ψ) = (κ∇p,∇ψ). (2.11c)
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Define E to be the sum of the kinetic and elastic energy of the poroelastic medium

E =
ρ

2
‖u‖2

L2(Ω)+µ‖E(η)‖2
L2(Ω)+

λ

2
‖∇ ·η‖2

L2(Ω)+
s0

2
‖p‖2

L2(Ω). (2.12)

PROPOSITION 2.1. A weak solution of the Biot system satisfies the energy equality

E (t)+2
∫ t

0
‖κ1/2

∇p(t ′)‖2
L2(Ω)dt ′ = E (0)+2

∫ t

0

[
(f ,

∂η

∂ t
)+(s, p)+

∫
Γs

g · ∂η
∂ t

dx
]

dt ′, (2.13)

Proof. Take (v,w,ψ) = (
∂η

∂ t
,

∂u

∂ t
, p), and add the equations (2.11a)-(2.11c). We then have the monolithic

energy satisfying

1
2

d
dt

E +‖κ1/2
∇p‖2

L2(Ω) = (f ,
∂η

∂ t
)+

∫
Γs

g · ∂η
∂ t

dx+(s, p), (2.14)

from which the result follows.
This exact energy equality is a stronger result then stability (in the weak sense).

2.1. Structure of the coupled system. Consider the Biot problem (2.5a)-(2.5c). Let the triple of unknowns be
denoted by

U = (η,u, p)T .

Define (via the Riesz representation theorem) operator AE : X s→ (X s)∗ and the symmetric, positive definite operator
AD : X p→ (X p)∗ by

AEη :=−∇ · (2µE(η))+λ∇(∇ ·η) , and AD p :=−∇ · (κ∇p) ,

and define the linear operators on the product space

M =

1 0 0
0 ρ 0
0 0 s0

 , A =

 0 −I 0
AE 0 0
0 0 AD

 , Λ =

0 0 0
0 0 −α∇

0 −α∇· 0

 . (2.15)

Then the system can be written as

MUt +AU = ΛU +F.

It is easy to show the following property:
PROPOSITION 2.2. Assume ηD = 0 and σEn= 0 on Γs. Then, operator AE is symmetric and positive definite.

We define a special inner product on the product space (adapted to the Biot equations) as follows
DEFINITION 2.3. For all U = (η,u, p)T , V = (γ,v,q)T ∈ X s×X s×X p

[U ,V ] : = (AEη,γ)+(u,v)+(p,q) =

=
∫

Ω

(2µE(η) : E(γ)+λ (∇ ·η)(∇ ·γ)+u ·v+ pq)dx.

The following properties hold.
PROPOSITION 2.4 ( Coercivity and skew-symmetry ). For all U = (η,u, p)T ,V = (γ,v,q)T ∈ X s×X s×X p,

we have

[AU ,U ] =−
∫

Γs

σE(u)n ·ηdx+
∫

Γs

σE(η)n ·udx+‖κ
1
2 ∇p‖2,
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[ΛU ,V ] =−[U ,ΛV ]−α

∫
Γn

pv ·ndx−α

∫
Γn

qu ·ndx.

If σEn= 0 on Γs, then A is coercive. If p = 0 on Γn or u ·n= 0 on Γn, then Λ is skew symmetric.
Proof. We calculate

[AU ,U ] = (AE(−u),η)+(AEη,u)+(κ∇p,∇p)

=
∫

Ω

σE(u) : ∇ηdx−
∫

Γs

σE(u)n ·ηdx+(AEη,u)+(κ∇p,∇p)

=−(AEη,u)−
∫

Γs

σE(u)n ·ηdx+
∫

Γs

σE(η)n ·udx+(AEη,u)+(κ∇p,∇p).

If σEn= 0 on Γs, then we have

[AU ,U ] = ‖κ
1
2 ∇p‖2 ≥ 0.

For the second claim we have, using integration by parts,

[ΛU ,V ] = 0+(−α∇p,v)+(−α∇ ·u,q)

= (p,α∇ ·v)+(u,α∇q)−α

∫
Γn

pv ·ndx−α

∫
Γn

qu ·ndx

=−[U ,ΛV ]−α

∫
Γn

pv ·ndx−α

∫
Γn

qu ·ndx.

If p = 0 or u ·n= 0 on Γn, then we have

[ΛU ,V ] =−[U ,ΛV ].

REMARK 1. Partitioned methods for the Biot system are based on this formulation. Partitioning is achieved by
treating implicitly the sub-physics terms, collected in the operator A , and treating explicitly the coupling terms in Λ

(either in parallel as in IMEX methods or sequentially implicitly as in splitting methods). Often, after a partitioned
method is formulated, the intermediate variable u= ∂tη can be eliminated and the method stated in an equivalent
form in the variables η, p. Among the methods we explore are ones adapted from the Stokes-Darcy coupled system to
the Biot system, and include BEFE [16, 18, 19, 1], see also [3] for other applications, BELF [12, 8], CNLF [11, 13],
and ω-method [21, 20, 7].

3. Partitioned numerical methods and the stability analysis. To discretize the Biot system in space, we use
the finite element method, where the finite element spaces are denoted by

X s
h ⊂ X s, and X p

h ⊂ X p,

based on a conforming FEM triangulation in Ω with maximum triangle diameter h. We assume that the mesh is such
that the finite element spaces satisfy the usual inverse inequality

‖∇vh‖ ≤CINV h−1‖vh‖ ∀vh ∈ X s/p
h , (3.1)

where CINV depends on the element aspect ratio in the triangulation. We will make use of the following inequalities.
Poincaré - Friedrichs inequality:

‖v‖L2(Ω) ≤CPF
(
‖∇v‖L2(Ω)+‖v‖L2(ΓD)

)
∀v ∈ X s/p. (3.2)

To reduce the volume of analysis we shall take ηD = 0, eliminating the second term on the right-hand side of (3.2).
Provided ηD ∈ L2(ΓD) the results easily extend to nonzero boundary conditions for all the methods.
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Korn inequality:

‖∇v‖ ≤CK‖E(v)‖ ∀v ∈ X s. (3.3)

Further note that

‖∇ ·v‖ ≤
√

d‖∇v‖ ∀v ∈ X s, (3.4)

d is the dimension of the space (d ∈ {2,3}). The various constants CPF ,CT and CK depend on the domain Ω. It will
be useful to introduce the notation for the sum of discrete kinetic and elastic energy of the discrete Biot system:

E n =
ρ

2
‖un

h‖2
L2(Ω)+µ‖E(ηn

h)‖2
L2(Ω)+

λ

2
‖∇ ·ηn

h‖2
L2(Ω)+

s0

2
‖pn

h‖2
L2(Ω). (3.5)

We start by derivation of precise stability conditions for the classical drained split and fixed strain split parti-
tioned strategies. After that, we propose other partitioned methods and give stability conditions for each method.

3.1. The drained split. The drained split method consists of solving the mechanics problem first, with the
value of pressure given from the previous time step. After that, the flow problem is solved using the new values of
the displacement. This method is known to have stability issues [9]. Here we derive a sufficient condition on model
parameters under which this method is stable.

The discretization in time is done using the Backward Euler method, resulting in the following discrete problem:
Given t ∈ (0,T ) and (ηn

h ,u
n
h, pn

h), find (ηn+1
h ,un+1

h , pn+1
h ) ∈ X s

h ×X s
h ×X p

h , with ηn+1
h = 0 on Γc, such that for all

(vh,wh,ψh) ∈ X s
h×X s

h×X p
h

ρ(
un+1

h −un
h

∆t
,vh)+ae(η

n+1
h ,vh) = b(vh, pn

h)+(fn+1,vh)+
∫

Γs

gn+1 ·vhdx, (3.6a)

ρ(
un+1

h +un
h

2
−
ηn+1

h −ηn
h

∆t
,wh) = 0, (3.6b)

s0(
pn+1

h − pn
h

∆t
,ψh)+ap(pn+1

h ,ψh) =−b(
ηn+1

h −ηn
h

∆t
,ψh)+(sn+1,ψh). (3.6c)

THEOREM 3.1. Let (ηn
h ,u

n
h, pn

h)0≤n≤N be the solution of (3.6). Then under the condition

α2

λ s0
< 1 (3.7)

the following estimate holds:

E N +
µ

2

N−1

∑
n=0
‖E(ηn+1

h −ηn
h)‖2

L2(Ω)+
1
2
(
λ − α2

s0(1− ε)

)N−1

∑
n=0
‖∇ · (ηn+1

h −ηn
h)‖2

L2(Ω)+
εs0

2

N−1

∑
n=0
‖pn+1

h − pn
h‖2

L2(Ω)

+
∆t
2

N−1

∑
n=0
‖κ

1
2 ∇pn+1

h ‖2
L2(Ω)+

1
2

N−1

∑
n=0

(√
(1− ε)s0‖pn+1

h − pn
h‖L2(Ω)−

α√
(1− ε)s0

‖∇ · (ηn+1
h −ηn

h)‖
)2

≤ E 0 +
C2

PFC2
K

µ

N−1

∑
n=0
‖fn+1‖2

L2(Ω)+
∆tC2

PF
2kmin

N−1

∑
n=0
‖sn+1‖2

L2(Ω)+
C2

TCPFC2
K

µ

N−1

∑
n=0
‖gn+1‖2

L2(Γs)
. (3.8)

Proof. To prove the energy estimate, we test the problem (3.6) with

(vh,wh,ψh) = (
ηn+1

h −ηn
h

∆t
,
un+1

h −un
h

∆t
, pn+1

h ).
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Then, after multiplying by ∆t, and adding the equations (3.6a)-(3.6c), we get

E n+1 +µ‖E(ηn+1
h −ηn

h)‖2
L2(Ω)+

λ

2
‖∇ · (ηn+1

h −ηn
h)‖2

L2(Ω)+
s0

2
‖pn+1

h − pn
h‖2

L2(Ω)+∆t‖κ
1
2 ∇pn+1

h ‖2
L2(Ω)

= E n−b(ηn+1
h −ηn

h , pn+1
h − pn

h)+(fn+1,ηn+1
h −ηn

h)+
∫

Γs

gn+1 · (ηn+1
h −ηn

h)dx+∆t(s, pn+1
h ).

To estimate the coupling term, we use (2.11b), Cauchy-Schwarz and the polarized identity

|b(ηn+1
h −ηn

h , pn+1
h − pn

h)| ≤
(1− ε)s0

2
‖pn+1

h − pn
h‖2

L2(Ω)+
α2

2s0(1− ε)
‖∇ · (ηn+1

h −ηn
h)‖2

L2(Ω)

− 1
2

(√
(1− ε)s0‖pn+1

h − pn
h‖L2(Ω)−

α√
(1− ε)s0

‖∇ · (ηn+1
h −ηn

h)‖
)2

.

Stability follows provided

α2

λ s0
≤ 1− ε.

The right-hand side is bounded in a standard way:

∆t(sn+1, pn+1
h )≤ ∆t

2
‖κ

1
2 ∇pn+1

h ‖2
L2(Ω)+

∆tC2
PF

2kmin
‖sn+1‖2

L2(Ω), (3.9)

(fn+1,ηn+1
h −ηn

h)≤
C2

PFC2
K

µ
‖fn+1‖2

L2(Ω)+
µ

4
‖E(ηn+1

h −ηn
h)‖2

L2(Ω), (3.10)∫
Γs

gn+1 · (ηn+1
h −ηn

h)dx≤
C2

TCPFC2
K

µ
‖gn+1‖2

L2(Γs)
+

µ

4
‖E(ηn+1

h −ηn
h)‖2

L2(Ω). (3.11)

Summing over 0≤ n≤ N, we prove the stated estimate.

3.2. The fixed strain split. The fixed strain split method consists of solving the flow problem first, with the
value of the rate of displacement given from the previous time step. After that, the computed value of pressure is
used to load the mechanics problem. This method is known to also have stability issues [10]. Here we derive a
sufficient condition on model parameters or, alternatively, on the time step under which this method is conditionally
stable.

The discretization in time is done using the Backward Euler method, resulting in the following discrete problem:
Given t ∈ (0,T ) and (ηn

h ,u
n
h, pn

h), find (ηn+1
h ,un+1

h , pn+1
h ) ∈ X s

h ×X s
h ×X p

h , with ηn+1
h = 0 on Γc, such that for all

(vh,wh,ψh) ∈ X s
h×X s

h×X p
h

s0(
pn+1

h − pn
h

∆t
,ψh)+ap(pn+1

h ,ψh) =−b(
ηn

h−η
n−1
h

∆t
,ψh)+(sn+1,ψh), (3.12a)

ρ(
un+1

h −un
h

∆t
,vh)+ae(η

n+1
h ,vh) = b(vh, pn+1

h )+(fn+1,vh)+
∫

Γs

gn+1 ·vhdx, (3.12b)

ρ(un+1
h −

ηn+1
h −ηn

h
∆t

,wh) = 0. (3.12c)

THEOREM 3.2. Let (ηn
h ,u

n
h, pn

h)0≤n≤N be the solution of (3.12), and E n defined as in (3.5). Assume either the
problem parameters satisfy the condition

α2

λ s0
< 1 (3.13)
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or ∆t satisfies the time step condition

∆t <
2ρkmin

α2dC2
INVC2

PF
h2. (3.14)

Then, the fixed strain split method is stable in time. If the condition (3.13) on the problem parameters holds, we
have

ρ

2
‖uN

h ‖2
L2(Ω)+µ‖E(ηN

h )‖2
L2(Ω)+

λ

2
‖∇ ·ηN

h ‖2
L2(Ω)+

εs0

2
‖pN

h ‖2
L2(Ω)+

µ

2

N−1

∑
n=0
‖E(ηn+1

h −ηn
h)‖2

L2(Ω) (3.15)

+
1
2
(
λ− α2

s0(1−ε)

)
‖∇·(ηN

h−ηN−1
h )‖2

L2(Ω)+
1
2
(
λ− α2

s0(1−ε)

)N−1

∑
n=0
‖∇·(ηn+1

h −ηn
h)‖2

L2(Ω)+
εs0

2

N−1

∑
n=0
‖pn+1

h − pn
h‖2

L2(Ω)

+ ε∆t
N−1

∑
n=0
‖κ1/2

∇pn+1
h ‖2

L2(Ω)+
1
2

N−1

∑
n=0

(
α√

s0(1− ε)
‖∇ · (ηn−η

n−1)‖L2(Ω)−
√

s0(1− ε)‖pn+1− pn‖L2(Ω)

)2

≤ E 0 +
λ +α2

2
‖∇ · (η1

h−η0
h)‖2

L2(Ω)+
1
2
‖p1

h‖2
L2(Ω)

+
C2

PFC2
K

µ

N−1

∑
n=0
‖fn+1‖2

L2(Ω)+
∆tC2

PF
4kmin(1− ε)

N−1

∑
n=0
‖sn+1‖2

L2(Ω)+
C2

TCPFC2
K

µ

N−1

∑
n=0
‖gn+1‖2

L2(Γs)
.

Otherwise, if the time-step condition (3.14) holds, we have the following estimate

E N +
µ

2

N−1

∑
n=0
‖E(ηn+1

h −ηn
h)‖2

L2(Ω)+
λ

2

N−1

∑
n=0
‖∇ · (ηn+1

h −ηn
h)‖2

L2(Ω)+
s0

2

N−1

∑
n=0
‖pn+1

h − pn
h‖2

L2(Ω) (3.16)

+

(
ρ

2
− ∆tα2dC2

INVC2
PF

4h2kmin(1− ε)

)N−1

∑
n=0
‖un+1

h −un
h‖2

L2(Ω)+ ε∆t
N−1

∑
n=0
‖κ1/2

∇pn+1
h ‖2

L2(Ω)

+∆t
N−1

∑
n=0

(
α
√

dCINVCPF

2h
√

kmin(1− ε)
‖un+1

h −un
h‖L2(Ω)−

√
1− ε‖κ1/2

∇pn+1
h ‖L2(Ω)

)2

≤ E 0 +
C2

PFC2
K

µ

N−1

∑
n=0
‖fn+1‖2

L2(Ω)+
∆tC2

PF
4kmin(1− ε)

N−1

∑
n=0
‖sn+1‖2

L2(Ω)+
C2

TCPFC2
K

µ

N−1

∑
n=0
‖gn+1‖2

L2(Γs)
.

Proof. To prove the energy estimate (3.15), we test the problem (3.12) with

(vh,wh,ψh) = (
ηn+1

h −ηn
h

∆t
,
un+1

h −un
h

∆t
, pn+1

h ).

Then, after multiplying by ∆t, and adding the equations (3.12a)-(3.12c), we get

E n+1 +µ‖E(ηn+1
h −ηn

h)‖2
L2(Ω)+

λ

2
‖∇ · (ηn+1

h −ηn
h)‖2

L2(Ω)+
s0

2
‖pn+1

h − pn
h‖2

L2(Ω) (3.17)

+∆t‖κ1/2
∇pn+1

h ‖2
L2(Ω)+

ρ

2
‖un+1

h −un
h‖2

L2(Ω)

= E n +b((ηn+1
h −ηn

h)− (ηn
h−ηn−1

h ), pn+1
h )+(fn+1,ηn+1

h −ηn
h)+

∫
Γs

gn+1 · (ηn+1
h −ηn

h)dx+∆t(s, pn+1
h ).

We write the coupling term in the following way:

b((ηn+1
h −ηn

h)− (ηn
h−ηn−1

h ), pn+1
h ) = b(ηn+1

h −ηn
h , pn+1

h )−b(ηn
h−ηn−1

h , pn
h)−b(ηn

h−ηn−1
h , pn+1

h − pn
h). (3.18)

8



Furthermore, by adding and subtracting the term λ

2 ‖∇ · (η
n
h−η

n−1
h )‖2

L2(Ω)
from the left-hand side, we have

E n+1 +C n+1 +µ‖E(ηn+1
h −ηn

h)‖2
L2(Ω)+

λ

2
‖∇ · (ηn

h−ηn−1
h )‖2

L2(Ω)+
s0

2
‖pn+1

h − pn
h‖2

L2(Ω)

+∆t‖κ1/2
∇pn+1

h ‖2
L2(Ω)+

ρ

2
‖un+1

h −un
h‖2

L2(Ω)

= E n +C n−b(ηn
h−ηn−1

h , pn+1
h − pn

h)+(fn+1,ηn+1
h −ηn

h)+
∫

Γs

gn+1 · (ηn+1
h −ηn

h)dx+∆t(s, pn+1
h ),

where C n+1 = λ

2 ‖∇ · (η
n+1
h −ηn

h)‖2
L2(Ω)

−b(ηn+1
h −ηn

h , pn+1
h ). Now, using (2.11b), Cauchy-Schwarz and the polar-

ized identity, we have

|b(ηn
h−ηn−1

h , pn+1
h − pn

h)| ≤
α2

2s0(1− ε)
‖∇ · (ηn−η

n−1)‖2
L2(Ω)+

s0(1− ε)

2
‖pn+1− pn‖2

L2(Ω)

− 1
2

(
α√

s0(1− ε)
‖∇ · (ηn−η

n−1)‖L2(Ω)−
√

s0(1− ε)‖pn+1− pn‖L2(Ω)

)2
.

We bound the right hand side as in (3.9)-(3.11). Summing over 0≤ n≤ N−1, we have

E N +C N +
µ

2

N−1

∑
n=0
‖E(ηn+1

h −ηn
h)‖2

L2(Ω)+(
λ

2
− α2

2s0(1− ε)
)

N−1

∑
n=0
‖∇ · (ηn+1

h −ηn
h)‖2

L2(Ω)+
εs0

2

N−1

∑
n=0
‖pn+1

h − pn
h‖2

L2(Ω)

+
ρ

2

N−1

∑
n=0
‖un+1

h −un
h‖2

L2(Ω)+ ε∆t
N−1

∑
n=0
‖κ1/2

∇pn+1
h ‖2

L2(Ω)

+
1
2

N−1

∑
n=0

(
α√

s0(1− ε)
‖∇ · (ηn−η

n−1)‖L2(Ω)−
√

s0(1− ε)‖pn+1− pn‖L2(Ω)

)2

≤ E 0 +C 0 +
C2

PFC2
K

µ

N−1

∑
n=0
‖fn+1‖2

L2(Ω)+
∆tC2

PF
4kmin(1− ε)

N−1

∑
n=0
‖sn+1‖2

L2(Ω)+
C2

TCPFC2
K

µ

N−1

∑
n=0
‖gn+1‖2

L2(Γs)
.

Stability and stated energy inequality thus follows provided

α2

λ s0
≤ 1− ε and E N +C N ≥ 0, for every N.

Thus, using Young’s inequality,

b(ηN
h −ηN−1

h , pN
h )≤

α2

2s0(1− ε)
‖∇ · (ηN

h −ηN−1
h )‖2

L2(Ω)+
s0(1− ε)

2
‖pN

h ‖2
L2(Ω),

we have

E N +C N ≥ ρ

2
‖uN

h ‖2
L2(Ω)+µ‖E(ηN

h )‖2
L2(Ω)+

λ

2
‖∇ ·ηN

h ‖2
L2(Ω)+

εs0

2
‖pN

h ‖2
L2(Ω)

+
(λ

2
− α2

2s0(1− ε)

)
‖∇ · (ηN

h −ηN−1
h )‖2

L2(Ω) ≥ 0,

if the problem parameters condition (3.15) holds.
To prove the energy estimate (3.16), we handle the coupling term in equation (3.17) in the following way. First,

note that from equation (3.12c) we have

ηn+1
h −ηn

h = ∆tun+1
h .

9



Thus, we can write the coupling term as

b((ηn+1
h −ηn

h)− (ηn
h−ηn−1

h ), pn+1
h ) = ∆tb(un+1

h −un
h, pn+1

h ).

From here, using the polarized identity, divergence inequality, and Poincaré-Friedrichs inequality, we have

∆tb(un+1
h −un

h, pn+1
h )≤∆tα2dC2

INVC2
PF

4h2kmin(1− ε)
‖un+1

h −un
h‖2

L2(Ω)+(1− ε)∆t‖κ1/2
∇pn+1

h ‖2
L2(Ω)

−∆t
(

α
√

dCINVCPF

2h
√

kmin(1− ε)
‖un+1

h −un
h‖L2(Ω)−

√
1− ε‖κ1/2

∇pn+1
h ‖L2(Ω)

)2
.

Bounding the right-hand side similar to (3.9)-(3.11) and summing over 0≤ n≤N−1, we prove the desired estimate.

In addition to the classical schemes which sequentially decouple the system, we propose several partitioned
schemes in which the partitioning is performed so that the mechanics problem can be solved at the same time as the
flow problem in parallel.

3.3. Backward Euler-Forward Euler (BEFE). Let tn = n∆t and let superscripts denote the time level of the
approximation. The BEFE partitioned approximations are: Given t ∈ (0,T ) and (ηn

h ,u
n
h, pn

h), find (ηn+1
h ,un+1

h , pn+1
h )∈

X s
h×X s

h×X p
h , with ηn+1

h = 0 on Γc, such that for all (vh,wh,ψh) ∈ X s
h×X s

h×X p
h

ρ(
un+1

h −un
h

∆t
,vh)+ae(η

n+1
h ,vh)−b(vh, pn

h) = (fn+1,vh)+
∫

Γs

gn+1 ·vhdx in Ω, (3.19a)

ρ(un+1
h −

ηn+1
h −ηn

h
∆t

,wh) = 0 in Ω, (3.19b)

s0(
pn+1

h − pn
h

∆t
,ψh)+b(un

h,ψh)+ap(pn+1
h ,ψh) = (sn+1,ψh) in Ω. (3.19c)

Note that this method differs from the drained split because in both equations the coupling terms are evaluated at
the previous time step, leading to a scheme where the fluid and structure problems can be solved in parallel.

LEMMA 3.3. Suppose (ηn+1
h ,un+1

h , pn+1
h ) is solution to (3.19). Then un+1

h =
ηn+1

h −ηn
h

∆t .

Proof. Let wh = u
n+1
h − ηn+1

h −ηn
h

∆t in (3.19b), we have∥∥∥∥∥un+1
h −

ηn+1
h −ηn

h
∆t

∥∥∥∥∥
2

L2(Ω)

= 0,

and the assertion follows.
DEFINITION 3.4. Define, via the Riesz representation theorem, the linear mapping Ah

E from X s
h to X s

h satisfying

(uh,Ah
Eηh) =−ae(ηh,uh) ∀ηh, uh ∈ X s

h . (3.20)

We prove stability under two alternative conditions. The second is a realization (for this specific application) of
results in [1], [8] that BEFE can be unconditionally stable if the part treated implicitly is larger than the components
treated explicitly.

THEOREM 3.5. Assume that we have either

α2

λ s0
< 1 and ∆t ≤ ρkmin

α2dC2
INVC2

PF
h2, (3.21)
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or

∆t ≤min
{

ρkmin

4α2dC2
INVC2

PF
h2,

√
ρs0

αCINV
√

d
h
}
. (3.22)

Then, BEFE method (3.19) is stable. In particular, if (3.21) occurs, we have

E N +
ερ

2

N−1

∑
n=0
‖un+1

h −un
h‖2

L2(Ω)+
µ

2

N−1

∑
n=0
‖E(ηn+1

h −η
n
h )‖2

L2(Ω)+
(λ

2
− α2

2s0(1− ε)

)N−1

∑
n=0
‖∇ · (ηn+1

h −η
n
h )‖2

L2(Ω)

+
εs0

2

N−1

∑
n=0
‖pn+1

h − pn
h‖2

L2(Ω)+∆t
N−1

∑
n=0

(1− ε

2
− ∆tα2C2

PFC2
INV d

2ρh2kmin(1− ε)

)
‖κ1/2 pn+1

h ‖2
L2(Ω)

+
1
2

N−1

∑
n=0

(√
(1− ε)ρ‖un+1

h −un
h‖L2(Ω)−

∆tαCPFCINV
√

d√
ρkmin(1− ε)h

‖κ1/2
∇pn+1

h ‖L2(Ω)

)2

+
1
2

N−1

∑
n=0

(
∆tα√

s0(1− ε)
‖∇ ·un+1

h ‖L2(Ω)−
√

s0(1− ε)‖pn+1
h − pn

h‖L2(Ω)

)2

≤ E 0 +
C2

PFC2
K

µ

N−1

∑
n=0
‖fn+1‖2

L2(Ω)+
C2

TCPFC2
K

µ

N−1

∑
n=0
‖gn+1‖2

L2(Γs)
+

∆tC2
PF

2kminε

N−1

∑
n=0
‖sn+1‖2

L2(Ω). (3.23)

Otherwise, if (3.22) occurs, we have(
ρ

2
−∆t2α2dC2

INV
2s0h2(1−ε)

)
‖uN

h ‖2
L2(Ω)+µ‖E(ηN

h )‖2
L2(Ω)+

λ

2
‖∇ ·ηN

h ‖2
L2(Ω)+

εs0

2
‖pN

h ‖2
L2(Ω)+

∆t(1−ε)

2
‖κ1/2

∇pN
h ‖2

L2(Ω)

+
ερ

2

N−1

∑
n=0
‖un+1

h −u
n
h‖2

L2(Ω)+
µ

2

N−1

∑
n=0
‖E(ηn+1

h −η
n
h )‖2

L2(Ω)+
λ

2

N−1

∑
n=0
‖∇ · (ηn+1

h −η
n
h )‖2

L2(Ω)+
s0

2

N−1

∑
n=0
‖pn+1

h −pn
h‖2

L2(Ω)

+
1
2

N−1

∑
n=0

(√
ρ(1− ε)‖un+1

h −un
h‖L2(Ω)−

∆tαCPFCINV
√

d√
ρ(1− ε)h

‖∇(pn+1
h + pn

h)‖L2(Ω)

)2

≤ E 0 +∆tb(u0
h, p0

h)+
∆t
4
‖κ1/2

∇p0
h‖2

L2(Ω) (3.24)

+
C2

PFC2
K

µ

N−1

∑
n=0
‖fn+1‖2

L2(Ω)+
C2

TCPFC2
K

µ

N−1

∑
n=0
‖gn+1‖2

L2(Γs)
+∆t

C2
PF

2εkmin

N−1

∑
n=0
‖sn+1

h ‖2
L2(Ω).

Proof. In (3.19), by setting vh = u
n+1
h ,wh =− 1

ρ
Ah

Eη
n+1
h ,ψh = pn+1

h , we obtain

ρ(
un+1

h −un
h

∆t
,un+1

h )+ae(η
n+1
h ,un+1

h )−b(un+1
h , pn

h) = (fn+1,un+1
h )+

∫
Γs

gn+1 ·un+1
h dx,

(un+1
h −

ηn+1
h −ηn

h
∆t

,ABη
n+1
h ) = 0,

s0(
pn+1

h − pn
h

∆t
, pn+1

h )+b(un
h, pn+1

h )+ap(pn+1
h , pn+1

h ) = (sn+1, pn+1
h ).

Adding three equations above side by side gives

ρ

2∆t
(‖un+1

h ‖2
L2(Ω)−‖u

n
h‖2

L2(Ω)+‖u
n+1
h −un

h‖2
L2(Ω))+

s0

2∆t
(‖pn+1

h ‖2
L2(Ω)−‖pn

h‖2
L2(Ω)+‖pn+1

h − pn
h‖2

L2(Ω)) (3.26)

+
1

2∆t
(ae(η

n+1
h ,ηn+1

h )−ae(η
n
h ,η

n
h)+ae(η

n+1
h −η

n
h ,η

n+1
h −η

n
h ))+ap(pn+1

h , pn+1
h )−b(un+1

h , pn
h)+b(un

h, pn+1
h )
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= (fn+1,un+1
h )+

∫
Γs

gn+1 ·un+1
h dx+(sn+1, pn+1

h ).

Let E n be defined as in (3.5). Multiplying (3.26) by ∆t we get

E n+1−E n +
ρ

2
‖un+1

h −un
h‖2

L2(Ω)+
s0

2
‖pn+1

h − pn
h‖2

L2(Ω)+
1
2

ae(η
n+1
h −η

n
h ,η

n+1
h −η

n
h )+∆tap(pn+1

h , pn+1
h )

−∆tb(un+1
h , pn

h)+∆tb(un
h, pn+1

h ) = ∆t(fn+1,un+1
h )+∆t

∫
Γs

gn+1 ·un+1
h dx+∆t(sn+1, pn+1

h ). (3.27)

To estimate the right hand side we proceed similar to (3.9)-(3.11). We then treat the term −∆tb(un+1
h , pn

h) +

∆tb(un
h, pn+1

h ) =−∆tb(un+1
h −un

h, pn+1
h )+∆tb(un+1

h , pn+1
h − pn

h) as follows

|−∆tb(un+1
h , pn

h)+∆tb(un
h, pn+1

h )| ≤ (1− ε)ρ

2
‖un+1

h −un
h‖2

L2(Ω)+
∆t2α2C2

PFC2
INV d

2ρh2kmin(1− ε)
‖κ1/2

∇pn+1
h ‖2

L2(Ω) (3.28)

− 1
2

(√
(1− ε)ρ‖un+1

h −un
h‖L2(Ω)−

∆tαCPFCINV
√

d√
ρkmin(1− ε)h

‖κ1/2
∇pn+1

h ‖L2(Ω)

)2
+

∆t2α2

2s0(1− ε)
‖∇ ·un+1

h ‖2
L2(Ω)

+
s0(1− ε)

2
‖pn+1

h − pn
h‖2

L2(Ω)−
1
2

(
∆tα√

s0(1− ε)
‖∇ ·un+1

h ‖L2(Ω)−
√

s0(1− ε)‖pn+1
h − pn

h‖L2(Ω)

)2
.

Combining (3.27)-(3.28), and taking into account un+1
h =

ηn+1
h −ηn

h
∆t we have

E n+1−E n +
ερ

2
‖un+1

h −un
h‖2

L2(Ω)+
εs0

2
‖pn+1

h − pn
h‖2

L2(Ω)+
µ

2
‖E(ηn+1

h −η
n
h )‖2

L2(Ω) (3.29)

+
(λ

2
− α2

2s0(1− ε)

)
‖∇ · (ηn+1

h −η
n
h )‖2

L2(Ω)+∆t
(1− ε

2
− ∆tα2C2

PFC2
INV d

2ρh2kmin(1− ε)

)
‖κ1/2

∇pn+1
h ‖2

L2(Ω)

+
1
2

(√
(1− ε)ρ‖un+1

h −un
h‖L2(Ω)−

∆tαCPFCINV
√

d√
ρkmin(1− ε)h

‖κ1/2
∇pn+1

h ‖L2(Ω)

)2

+
1
2

(
∆tα√

s0(1− ε)
‖∇ ·un+1

h ‖L2(Ω)−
√

s0(1− ε)‖pn+1
h − pn

h‖L2(Ω)

)2

≤ C2
PFC2

K
µ
‖fn+1‖2

L2(Ω)+
C2

TCPFC2
K

µ
‖gn+1‖2

L2(Γs)
+

∆tC2
PF

2εkmin
‖sn+1‖2

L2(Ω).

Stability follows provided

α2

s0λ
≤ 1− ε and ∆t <

ρkmin(1− ε)2

α2C2
PFC2

INV d
h2.

Summing (3.29) from n = 0 to N−1 yields (3.23).
For the second stability inequality, rewrite −b(un+1

h , pn
h)+b(un

h, pn+1
h ) as

−b(un+1
h , pn

h)+b(un
h, pn+1

h ) = b(un+1
h , pn+1

h )−b(un
h, pn

h)−b(un+1
h −un

h, pn+1
h + pn

h).

Using similar estimates to (3.9)-(3.11) and arranging terms in (3.27) in a different way than in the first part of the
proof, we get

[E n+1 +∆tb(un+1
h , pn+1

h )]− [E n +∆tb(un
h, pn

h)]+
ρ

2
‖un+1

h −un
h‖2

L2(Ω)+
s0

2
‖pn+1

h − pn
h‖2

L2(Ω) (3.30)

+
µ

2
‖E(ηn+1

h −η
n
h )‖2

L2(Ω)+
λ

2
‖∇ · (ηn+1

h −η
n
h )‖2

L2(Ω)+
(1− ε)∆t

2
‖
√
κ∇pn+1

h ‖2
L2(Ω)−∆tb(un+1

h −un
h, pn+1

h + pn
h)
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≤ C2
PFC2

K
µ
‖fn+1‖2

L2(Ω)+
C2

TCPFC2
K

µ
‖gn+1‖2

L2(Γs)
+

∆tC2
PF

2kminε
‖sn+1‖2

L2(Ω).

We proceed to bound the term ∆tb(un+1
h −un

h, pn+1
h + pn

h) as follows

∆t|b(un+1
h −un

h, pn+1
h + pn

h)| ≤
ρ(1− ε)

2
‖un+1

h −un
h‖2

L2(Ω)+
∆t2α2C2

PFC2
INV d

2ρh2(1− ε)
‖∇(pn+1

h + pn
h)‖2

L2(Ω)

− 1
2

(√
ρ(1− ε)‖un+1

h −un
h‖L2(Ω)−

∆tαCPFCINV
√

d√
ρ(1− ε)h

‖∇(pn+1
h + pn

h)‖L2(Ω)

)2

≤ ρ(1− ε)

4
‖un+1

h −un
h‖2

L2(Ω)+
∆t2α2C2

PFC2
INV d

ρh2(1− ε)
‖∇pn+1

h ‖2
L2(Ω)+

∆t2α2C2
PFC2

INV d
ρh2(1− ε)

‖∇pn
h‖2

L2(Ω)

− 1
2

(√
ρ(1− ε)‖un+1

h −un
h‖L2(Ω)−

∆tαCPFCINV
√

d√
ρ(1− ε)h

‖∇(pn+1
h + pn

h)‖L2(Ω)

)2

≤ ρ(1− ε)

2
‖un+1

h −un
h‖2

L2(Ω)+
∆t2α2C2

PFC2
INV d

ρh2kmin(1− ε)
‖κ1/2

∇pn+1
h ‖2

L2(Ω)+
∆t2α2C2

PFC2
INV d

ρh2kmin(1− ε)
‖κ1/2

∇pn
h‖2

L2(Ω)

− 1
2

(√
ρ(1− ε)‖un+1

h −un
h‖L2(Ω)−

∆tαCPFCINV
√

d√
ρ(1− ε)h

‖∇(pn+1
h + pn

h)‖L2(Ω)

)2
. (3.31)

Assuming
∆t2α2C2

PFC2
INV d

ρh2kmin(1− ε)
≤ ∆t(1− ε)

4
, and combining (3.30) and (3.31), we have

[
E n+1 +∆tb(un+1

h , pn+1
h )+

∆t(1−ε)

4
‖κ

1
2 ∇pn+1

h ‖2
L2(Ω)

]
−
[
E n +∆tb(un

h, pn
h)+

∆t(1−ε)

4
‖κ

1
2 ∇pn

h‖2
L2(Ω)

]
(3.32)

+
ερ

2
‖un+1

h −un
h‖2

L2(Ω)+
s0

2
‖pn+1

h − pn
h‖2

L2(Ω)+
µ

2
‖E(ηn+1

h −η
n
h )‖2

L2(Ω)+
λ

2
‖∇ · (ηn+1

h −η
n
h )‖2

L2(Ω)

+
1
2

(√
ρ(1− ε)‖un+1

h −un
h‖L2(Ω)−

∆tαCPFCINV
√

d√
ρ(1− ε)h

‖∇(pn+1
h + pn

h)‖L2(Ω)

)2

≤ C2
PFC2

K
µ
‖fn+1‖2

L2(Ω)+
C2

TCPFC2
K

µ
‖gn+1‖2

L2(Γs)
+

∆tC2
PF

2kminε
‖sn+1‖2

L2(Ω).

Finally, to prove stability we have to show that E n +∆tb(un
h, pn

h) +
∆t(1−ε)

4 ‖κ1/2∇pn
h‖2

L2(Ω)
≥ 0. We proceed as

follows

∆tb(un
h, pn

h)≥−
∆t2α2dC2

INV
2s0h2(1− ε)

‖un
h‖2

L2(Ω)−
s0(1− ε)

2
‖pn

h‖2
L2(Ω). (3.33)

Therefore,

E n +∆tb(un
h, pn

h)+
∆t(1−ε)

4
‖κ1/2

∇pn
h‖2

L2(Ω) (3.34)

≥
(

ρ

2
− ∆t2α2dC2

INV
2s0h2(1−ε)

)
‖un

h‖2
L2(Ω)+µ‖E(ηn

h)‖2
L2(Ω)+

λ

2
‖∇ ·ηn

h‖2
L2(Ω)+

εs0

2
‖pn

h‖2
L2(Ω)+

∆t(1−ε)

4
‖κ

1
2 ∇pn

h‖2
L2(Ω).

Stability follows provided

∆t ≤
√

ρs0(1− ε)

αCINV
√

d
h.

Summing equation (3.32) from n = 0 to N−1 yields (3.24).
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3.4. Backward Euler - Leap Frog (BELF). Backward Euler - Leap Frog is a combination of the three level
implicit method with the coupling terms treated by the explicit Leap-Frog method. On the surface, combining
methods of different orders of accuracy can be questioned. However, in [12], BEFE was found to have the best
stability properties for the Stokes-Darcy problem. The use of a higher order method for the (explicitly treated)
coupling terms also reduces the penalty for uncoupling the system without increasing algorithmic complexity.

Approximations are needed at the first two time steps to begin. We shall suppose these are computed to appro-
priate accuracy, such as by BEFE (the first method above). We use the same time step, ∆t, in both sub domains.
The BELF partitioned approximations are : Given t ∈ (0,T ) and (ηn

h ,u
n
h, pn

h) for n ≥ 2, find (ηn+1
h ,un+1

h , pn+1
h ) ∈

X s
h×X s

h×X p
h , with ηn+1

h = 0 on Γc, such that for all (vh,wh,ψh) ∈ X s
h×X s

h×X p
h

ρ(
un+1

h −un−1
h

2∆t
,vh)+ae

(
ηn+1

h +ηn−1
h

2
,vh

)
−b(vh, pn

h) = (fn+1,vh)+
∫

Γs

gn+1 ·vhdx in Ω, (3.35a)

ρ

(
un+1

h +un−1
h

2
−
ηn+1

h −ηn−1
h

2∆t
,wh

)
= 0 in Ω, (3.35b)

s0(
pn+1

h − pn−1
h

2∆t
,ψh)+b(un

h,ψh)+ap(pn+1
h ,ψh) = (sn+1,ψh) in Ω. (3.35c)

THEOREM 3.6. Under the condition

∆t ≤ ρh2

2α2C2
INV d

(kmin

C2
PF

+
(k2

min

C4
PF

+
4s0α2C2

INV d
ρh2

)1/2)
, (3.36)

the following bound holds for the BELF method (3.35):

ερ

2
(
‖uN

h ‖2
L2(Ω)+‖u

N−1
h ‖2

L2(Ω)

)
+µ

(
‖E(ηN

h )‖2
L2(Ω)+‖E(η

N−1
h )‖2

L2(Ω)

)
+

λ

2
(
‖∇ ·ηN

h ‖2
L2(Ω)+‖∇ ·η

N−1
h ‖2

L2(Ω)

)
+

1
2

(
s0 +

∆tkmin

C2
PF
− α2∆t2C2

INV d
ρh2(1− ε)

)(
‖pN

h ‖2
L2(Ω)+‖pN−1

h ‖2
L2(Ω)

)
+

∆t
2

N−1

∑
n=1
‖κ

1
2 ∇(pn+1

h + pn−1
h )‖2

L2(Ω)

≤ E 1 +E 0 +
∆t
2
(
‖κ

1
2 ∇p1

h‖2 +‖κ
1
2 ∇p0

h‖2)+∆t
(
b(u0

h, p1
h)−b(u1

h, p0
h)
)

+∆t
N−1

∑
n=1

(fn+1,un+1
h +un−1

h )+∆t
N−1

∑
n=1

∫
Γs

gn+1 · (un+1
h +un−1

h )dx+∆t
N−1

∑
n=1

(sn+1, pn+1
h + pn−1

h ).

Proof. In (3.35), set vh = u
n+1
h +un−1

h ,wh =− 1
ρ

Ah
E(η

n+1
h +η

n−1
h ),ψh = pn+1

h + pn−1
h and add, we obtain

ρ

2∆t
(‖un+1

h ‖2
L2(Ω)−‖u

n−1
h ‖2

L2(Ω))+
1

2∆t
(ae(η

n+1
h ,ηn+1

h )−ae(η
n−1
h ,ηn−1

h ))+
s0

2∆t
(‖pn+1

h ‖2
L2(Ω)−‖pn−1

h ‖2
L2(Ω))

+
1
2
(
ap(pn+1

h , pn+1
h )−ap(pn−1

h , pn−1
h )

)
+

1
2

ap(pn+1
h + pn−1

h , pn+1
h + pn−1

h )−b(un+1
h +un−1

h , pn
h)+b(un

h, pn+1
h + pn−1

h )

= (fn+1,un+1
h +un−1

h )+
∫

Γs

gn+1 · (un+1
h +un−1

h )dx+(sn+1, pn+1
h + pn−1

h ). (3.37)

Let the discrete energy E n be denoted as in (3.5). Multiplying (3.37) by ∆t and rearranging, we get

[E n+1 +
∆t
2
‖κ1/2

∇pn+1
h ‖2

L2(Ω)+∆tb(un
h, pn+1

h )−∆tb(un+1
h , pn

h)]

− [E n−1 +
∆t
2
‖κ1/2

∇pn−1
h ‖2

L2(Ω)+∆tb(un−1
h , pn

h)−∆tb(un
h, pn−1

h )]+
∆t
2
‖κ1/2

∇(pn+1
h + pn−1

h )‖2
L2(Ω)
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= ∆t(fn+1,un+1
h +un−1

h )+∆t
∫

Γs

gn+1 · (un+1
h +un−1

h )dx+∆t(sn+1, pn+1
h + pn−1

h ).

Now add and subtract E n + ∆t
2 ‖κ

1/2∇pn
h‖2

[E n+1 +E n +
∆t
2
(
‖κ

1
2 ∇pn+1

h ‖2 +‖κ
1
2 ∇pn

h‖2)+∆t
(
b(un

h, pn+1
h )−b(un+1

h , pn
h)
)
]

− [E n+E n−1+
∆t
2
(
‖κ

1
2 ∇pn

h‖2 +‖κ
1
2 ∇pn−1

h ‖2)+∆t
(
b(un−1

h , pn
h)−b(un

h, pn−1
h )

)
]+

∆t
2
‖κ

1
2 ∇(pn+1

h + pn−1
h )‖2

L2(Ω)

= ∆t(fn+1,un+1
h +un−1

h )+∆t
∫

Γs

gn+1 · (un+1
h +un−1

h )dx+∆t(sn+1, pn+1
h + pn−1

h ),

and sum from n = 1 to N−1 to obtain

E N+E N−1+
∆t
2
(
‖κ

1
2 ∇pN

h ‖2+‖κ
1
2 ∇pN−1

h ‖2)+∆t
(
b(uN−1

h , pN
h )−b(uN

h , pN−1
h )

)
+

∆t
2

N−1

∑
n=1
‖κ

1
2 ∇(pn+1

h + pn−1
h )‖2

L2(Ω)

= E 1 +E 0 +
∆t
2
(
‖κ

1
2 ∇p1

h‖2 +‖κ
1
2 ∇p0

h‖2)+∆t
(
b(u0

h, p1
h)−b(u1

h, p0
h)
)

+∆t
N−1

∑
n=1

(fn+1,un+1
h +un−1

h )+∆t
N−1

∑
n=1

∫
Γs

gn+1 · (un+1
h +un−1

h )dx+∆t
N−1

∑
n=1

(sn+1, pn+1
h + pn−1

h ).

Note that

∆t
(
b(uN−1

h , pN
h )−b(uN

h , pN−1
h )

)
≥−ρ(1− ε)

2
(
‖uN

h ‖2
L2(Ω)+‖u

N−1
h ‖2

L2(Ω)

)
− α2∆t2C2

INV d
2ρh2(1− ε)

(
‖pN

h ‖2
L2(Ω)+‖pN−1

h ‖2
L2(Ω)

)
,

so using again the definition (3.5) and (3.2) we have

ερ

2
(
‖uN

h ‖2
L2(Ω)+‖u

N−1
h ‖2

L2(Ω)

)
+µ

(
‖E(ηN

h )‖2
L2(Ω)+‖E(η

N−1
h )‖2

L2(Ω)

)
+

λ

2
(
‖∇ ·ηN

h ‖2
L2(Ω)+‖∇ ·η

N−1
h ‖2

L2(Ω)

)
+
( s0

2
+

∆tkmin

2C2
PF
− α2∆t2C2

INV d
2ρh2(1− ε)

)(
‖pN

h ‖2
L2(Ω)+‖pN−1

h ‖2
L2(Ω)

)
+

∆t
2

N−1

∑
n=1
‖κ

1
2 ∇(pn+1

h + pn−1
h )‖2

L2(Ω)

≤ E 1 +E 0 +
∆t
2
(
‖κ

1
2 ∇p1

h‖2 +‖κ
1
2 ∇p0

h‖2)+∆t
(
b(u0

h, p1
h)−b(u1

h, p0
h)
)

+∆t
N−1

∑
n=1

(fn+1,un+1
h +un−1

h )+∆t
N−1

∑
n=1

∫
Γs

gn+1 · (un+1
h +un−1

h )dx+∆t
N−1

∑
n=1

(sn+1, pn+1
h + pn−1

h ).

Therefore stability holds provided ∆t satisfies

0≤ s0 +∆t
kmin

C2
PF
−∆t2 α2C2

INV d
ρh2(1− ε)

,

which gives (3.36).
REMARK 2. Alternatively, we can discretize the problem using BELF method in the following way: Given

t ∈ (0,T ) and (ηn
h ,u

n
h, pn

h) for n≥ 2, find (ηn+1
h ,un+1

h , pn+1
h ) ∈ X s

h×X s
h×X p

h , with ηn+1
h = 0 on Γc, such that for all

(vh,wh,ψh) ∈ X s
h×X s

h×X p
h

ρ(
un+1

h −un−1
h

2∆t
,vh)+ae(η

n
h ,vh)−b(vh, pn

h) = (fn+1,vh)+
∫

Γs

gn+1 ·vhdx in Ω, (3.38a)
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ρ(un
h−

ηn+1
h −ηn−1

h
2∆t

,wh) = 0 in Ω, (3.38b)

s0(
pn+1

h − pn−1
h

2∆t
,ψh)+b(un

h,ψh)+ap(pn+1
h ,ψh) = (sn+1,ψh) in Ω. (3.38c)

It can be shown in a similar way as in the previous proof that this method is stable provided

∆t ≤min
{

ρkmin

2α2dC2
INVC2

PF
h2,

√
ρs0

4αCINV
√

d
h
}
. (3.39)

3.5. ω-method. This is a three-level second order family of partitioned methods, containing Crank-Nicolson
Leap-Frog (CNLF) and Backward Differentiation Formula 2 - Adams-Bashforth 2 (BDF2-AB2). Let ω ∈ [ 1

2 ,1], and
denote

ν =
1

16(2ω2−3ω + 5
4 )
∈
[ 1

4 ,
1
2

]
, cω =

ω2

(2ω−1)
for ω ∈ (

1
2
,1], and c 1

2
= 0.

Assuming the initial data (η0
h ,u

0
h, p0

h) is given and (η1
h ,u

1
h, p1

h) is computed with a second order accurate method,
we consider the following method, which is a convex combination (via the ω variable) of BDF2-AB2 and CNLF:

ρ
( (2ω− 1

2 )u
n+1
h +(−4ω +2)un

h +(2ω− 3
2 )u

n−1
h

∆t
,vh
)
+ae(ωη

n+1 +(1−ω)ηn−1,vh)

+∆t
α2cω

s0

(
∇ · (ωun+1

h +(1−ω)un−1
h ),∇ ·vh

)
(regularization term)

−b(vh,2ω pn +(−2ω +1)pn−1) =
(
fn+2ω−1,vh

)
+
∫

Γs

gn+2ω−1vh dσ ,

ρ
(
ωun+1

h +(1−ω)un−1
h −

(2ω− 1
2 )η

n+1
h +(−4ω +2)ηn

h +(2ω− 3
2 )η

n−1
h

∆t
,wh

)
= 0, (3.40)

s0
( (2ω− 1

2 )p
n+1
h +(−4ω +2)pn

h +(2ω− 3
2 )p

n−1
h

∆t
,ψh
)
+b(2ωun +(−2ω +1)un−1,ψh)

+ap(ω pn+1
h +(1−ω)pn−1

h ,ψh) = (sn+2ω−1,ψh).

For ω = 1/2 this method reduces to CNLF, and for ω = 1 it becomes the IMEX method BDF2-AB2, e.g., [13, 21,
20, 7]. Let 0≤ ε � 1 and denote

ε1 =
∆t

1− ε

ω(1−ω)

ν

αdC2
INV

ρh2 , ε2 = s0ν +∆tω(2ω−1)
kmin

C2
PF
−∆t2

ω
2 α2C2

INV
ρh2

( (1−ω)2d
ν(1− ε)

+2ω−1
)
,

∆tCNLF =

√
ρs0

αCINV
√

d
h,

∆tω =
ρh2

2ωC2
invC

2
PF α2( d(1−ω)2

ν
+2ω−1)

(
(2ω−1)kmin +

(
(2ω−1)2k2

min +4s0ν
C2

invC
4
PF

ρh2 α
2(

d(1−ω)2

ν
+2ω−1)

) 1
2
)
.

Note that under assumption (3.42), ε2 ≥ 0.
THEOREM 3.7. Under the CFL conditions

∆t <
√

ρs0

αCINV
√

d
h, (3.41)
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when ω = 1
2 , and

∆t < min
{

ν

ω(1−ω)
∆tCNLF ,∆tω

}
, (3.42)

for ω ∈ ( 1
2 ,1], the following energy inequality holds

ερν
(
‖uN+1

h ‖2 +‖uN
h ‖2)+‖(ηN+1

h ,ηN
h )‖2

G,ae + ε2(‖pN+1
h ‖2 +‖pN

h ‖2)

+Positive Terms+Numerical Dissipation

+(2ω−1)∆t
N−1

∑
n=2

((
(2ω−1)κ− ∆t

ρ
α

2
ω

2 dC2
INV

h2 C2
PFI

)
∇pn , ∇pn

)
+ω(1−ω)∆t

N

∑
n=1

ap(pn+1
h + pn−1

h , pn+1
h + pn−1

h )

≤ ρ‖(u1
h,u

0
h)‖2

G + s0‖(p1
h, p0

h)‖2
G +‖(η1

h ,η
0
h)‖2

G,ae +2ω(1−ω)∆t
(
b(u0, p1)−b(u1, p0)

)
− (1−ω)(2ω−1)∆t

(
ap(p1, p1)+ap(p0, p0)

)
−(1−ω)(2ω−1)∆t2 α2cω

s0
(
∥∥∇ ·u1

h‖2 +‖∇ ·u0
h‖2)

+∆t
N

∑
n=1

((
fn+2ω−1,ωun+1 +(1−ω)un−1)+∫

Γs

gn+2ω−1(ωun+1 +(1−ω)un−1)dσ

+(sn+2ω−1,ω pn+1
h +(1−ω)pn−1

h )
)
,

where

Positive Terms :=ρ‖auN+1
h +buN

h ‖2 + s0‖apN+1
h +bpN

h ‖2+ω
2(1−ω)

α2

s0
∆t2(‖∇ ·uN+1

h ‖2 +‖∇ ·uN
h ‖2)

+αω(1−ω)∆t
(∥∥√ε1 pN+1

h + 1√
ε1

∇ ·uN
h

∥∥2
+
∥∥√ε1 pN

h + 1√
ε1

∇ ·uN+1
h

∥∥2)
,

and

Numerical Dissipation := 2ω−1
4

N

∑
n=1

ae
(
ηn+1

h −2ηn
h +η

n−1
h ,ηn+1

h −2ηn
h +η

n−1
h

))
+∆tω(1−ω)

α2cω

s0
∆t

N

∑
n=1
‖∇ · (un+1

h +un−1
h )‖2

+(2ω−1)∆t
N

∑
n=1

(∥∥√ ρ

4∆t pn+1 +
√

∆t
ρ

αω∇ · (un+1−2un +un−1)
∥∥2)

+(2ω−1)∆t
N

∑
n=1

(∥∥√ s0
4∆t (pn+1−2pn + pn−1)+

√
∆t
s0

αω ∇ ·un+1∥∥2)
.

REMARK 3. When ω = 1
2 , the regularizing third term in the first equation in (3.40) vanishes, and (3.40)

reduces to the Crank Nicolson-Leap Frog (CNLF) scheme: Given (un−1
h ,ηn−1

h , pn−1
h ),(un

h,η
n
h , pn

h) ∈ X s
h ×X s

h ×X p
h

find (un+1
h ,ηn+1

h , pn+1
h ) ∈ X s

h×X s
h×X p

h such that ∀(vh,wh,ψh) ∈ X s
h×X s

h×X p
h :

ρ

(
un+1

h −un−1
h

2∆t
,vh

)
+ae

(
ηn+1

h +ηn−1
h

2
,vh

)
−b(vh, pn

h) = (fn,vh)+
∫

Γs

gn ·vh dx, (3.43)

ρ

(
un+1

h +un−1
h

2
−
ηn+1

h −ηn−1
h

2∆t
,wh

)
= 0, (3.44)
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s0

(
pn+1

h − pn−1
h

2∆t
,ψh

)
+b(un

h,ψh)+ap

(
pn+1

h + pn−1
h

2
,ψh

)
= (sn,ψh). (3.45)

The stability condition for CNLF is similar to the one for BELF. The proof of stability follows as in Section 3.4,
ignoring the contribution of the molecular diffusion term ap(ph, ph) in the energy balance.

The proof of the general case is based on energy-type estimates, it involves the G-stability methodology [4, 6],
and produces the time-step restriction for stability by balancing the contribution from the coupling term with both
the numerical and molecular dissipation (see e.g.[20]). For the reader’s convenience, we include the proof in the
Appendix 6. 1

The CNLF time-step restriction (3.41) and the first term in (3.42) are related to the second part of the condition
in (3.36) in BELF, and inverse related to conditions (3.7) in the drained split method (3.6) and also to (3.13) in the
fixed strain split method (3.12). The second term in (3.42) is proportional to condition (3.14) in the fixed strain split
method, the first condition in (3.21) and (3.22) in BEFE, and the first part of the condition in (3.36) in BELF.

4. Numerical examples. In this section, we numerically investigate the stability properties of the methods
presented in Section 3. As a benchmark problem, we consider the cantilever bracket problem, studied previously
for poroelastic systems in [14, 22, 17]. Let domain Ω to be a square [0,1]× [0,1], and denote by Γ1 and Γ3
the bottom and top boundaries of Ω, and by Γ2 and Γ4 the right and left boundaries of Ω, respectively, so that
∂Ω = Γ1∪Γ2∪Γ3∪Γ4. We prescribe the following boundary conditions for the elasticity problem

η = 0 on Γ4,

σpn= 0 on Γ1∪Γ2,

σpn= (0,−1) on Γ3,

and a Dirichlet boundary condition for the flow problem

p = 20 on ∂Ω.

This problem reaches the steady state at T = 50s. The structure material properties are given by ρ = 2g/cm2, µ =
3.57×103dyne/cm2 and λ = 1.4×104dyne/cm2 (corresponding to the values ν = 0.4dyne/cm2 and E = 104dyne/cm2).
The source terms are f = 0, s = 0, and the Biot-Willis constant that determines the strength of the coupling between
the fluid and structure is α = 1. To numerically test the stability properties of the proposed algorithms, we first solve
the problem using a monolithic solver until the steady state is reached. We will refer to this solution as a reference
solution. Then, we solve the same problem using each partitioned scheme and measure the relative error between
the obtained solution and the reference solution. Since parameters s0 and κ are frequently very small in applications,
we test the problem with different values of s0 and κ, and the time step size ∆t. In all the test cases, each side of the
boundary is equally divided by 20 grid points. Figure 4.1 shows the reference displacement and pressure obtained
at T = 50s using ∆t = 1 and values of the parameters κ= 10−7I and s0 = 10−5.

4.1. Drained split. We numerically test the stability of the drained split method in three cases: κ = 10−7I ,
s0 = 5×10−5; κ= 10−7I , s0 = 10−4; and κ= 10−7I , s0 = 5 ·10−4. In each case we use the time step ∆t = 0.1. We
observe that drained split method is unstable in the first (α2/λ s0 = 1.4) case, and stable in the second (α2/λ s0 = 0.7)
and third case (α2/λ s0 = 0.14). This is in good agreement with the theory, in which we proved that the method is
stable with α2/λ s0 < 1.

4.2. Fixed strain split. The stability condition for this method to be stable is either

α2

λ s0
< 1 or ∆t <

2ρkmin

α2dC2
PFC2

INV
h2.

We test fixed strain split for the following cases:

1An extended version of this report with more details in the proof is available at http://www.mathematics.pitt.edu/research/technical-
reports.php
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FIG. 4.1. The reference solution at T = 50s. Left: Horizontal displacement. Middle: Vertical displacement. Right: Pressure.

1.) κ= 10−5I , s0 = 5×10−5, ∆t = 0.1: In this case

α2

λ s0
= 1.4 or ∆t ≤ 5 ·10−8

C2
INVC2

PF
.

Even thought the first quantity is larger than 1, and the time step is larger than the one dictated by the
time step condition, this method is stable. Note that we used the same parameters as for the drained split
method, which was in this case unstable. This indicates that it is more favorable to solve the fluid problem
first, and the structure mechanics problem second.

2.) κ= 10−5I , s0 = 10−5, ∆t = 0.1: In this case

α2

λ s0
= 7 or ∆t ≤ 5 ·10−8

C2
INVC2

PF
.

Numerical experiments show that using ∆t = 0.1 the method is unstable. The method becomes stable with
the choice of ∆t = 10−4. Moreover, if we decrease κ to κ = 10−6I , in order to achieve stability we have
to take ∆t = 10−5, which confirms the linear relationship between ∆t and κ, for fixed h.

3.) κ= 10−7I , s0 = 10−4: We have

α2

λ s0
= 0.7 or ∆t ≤ 5 ·10−10

C2
INVC2

PF
.

If we try to take κ = 10−7I in the first test case, the scheme exhibits instabilities. However, in this case
the first quantity is less than 1, so the theory predicts unconditional stability (no time step restrictions). The
numerical experiments show that fixed strain split in this case is stable for virtually every time step size,
confirming the predictions.

4.3. BEFE. The stability condition for this method is either

α2

λ s0
< 1 and ∆t ≤ ρkmin

α2C2
PFC2

INV d
h2, or ∆t ≤min

{
ρkmin

4α2C2
PFC2

INV d
h2,

√
ρs0

αCINV
√

d
h
}
.

Note that the first set of conditions is more restrictive than conditions in fixed strain split. This indicates that if one
prefers to solve the problem using BEFE and a parallel solver, the price to pay is stronger conditions on the problem
parameters and the time step. In particular, to solve the last test case in fixed strain split using BEFE, one would
need a time step that is less than ∆t = 10−10.
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4.4. BELF. The stability condition for BELF is

∆t ≤max
{

ρkmin

α2C2
PFC2

INV d
h2,

√
ρs0

αCINV
√

d
h
}
≤ ρh2

2α2C2
INVC2

PF d

(
kmin +

(
k2

min +
4s0α2C2

INVC4
PF d

ρh2

)1/2
)
.

If s0� 1 (is negligible), the method of choice can be BELF, ω-method (with ω > 1
2 ), or fixed strain split. However,

note that BELF and ω-method allow to solve the elasticity and the fluid problem in parallel, using a smaller time
step than the one needed for the fixed strain split. In the case when the kmin � 1 is very small (as is often in
applications), BELF offers a CFL condition depending on the structure density ρ and the storage coefficient s0. The
same time step condition is theoretically needed for the CNLF method (ω = 1

2 ). Note that the alternative condition
in fixed strain split method is a condition on the parameters of the problem, independent of ∆t.

To test this scheme we choose κ= 10−6I and s0 = 10−5. The theoretical condition becomes

∆t ≤ 1.3 ·10−3

C2
INVC2

PF

(
10−6 +

(
10−12 +1.6 ·10−2C2

INVC4
PF

)1/2
)
.

The numerical experiments shows that this method is stable for ∆t = 3 ·10−5. Note that in this case α2

λ s0
= 7, and the

time step needed to solve this test case with fixed strain split method was ∆t = 10−5.

4.5. ω-method. The ω-method is a second order method that solves the fluid and the mechanics problem
in parallel. However, in the cases when ω > 1

2 the scheme contains a penalty term which improves the stability
properties, but may affect the accuracy. In the cases when kmin is small, CNLF method (ω = 1

2 ) offers an appealing
time step if values of s0 are large enough. The time step conditions is the same as the one for the BELF method in
the cases with dominant s0. Indeed, if κ= 10−6I and s0 = 10−5, the time step restriction for CNLF is

∆t <
1.6 ·10−4

CINV
.

Numerical experiments show that CNLF is stable for ∆t = 3 ·10−5.
If θ 6= 1

2 , the time step restriction for the ω method is given by

∆t < min
{

ν

ω(1−ω)
∆tCNLF ,∆tω

}
,

where

∆tω =
ρh2

2ωC2
invC

2
PF α2( d(1−ω)2

ν
+2ω−1)

(
(2ω−1)kmin+

(
(2ω−1)2k2

min+4s0ν
C2

invC
4
PF

ρh2 α
2(

d(1−ω)2

ν
+2ω−1)

) 1
2
)
.

A popular choice of ω is ω = 1, in which case the ω-method is known as BDF2-AB2. With the values of parameters
κ= 10−6I and s0 = 10−5, the time step conditions becomes

∆t <
ρh2

2C2
invC

2
PF α2

(
kmin +(k2

min +4s0ν
C2

invC
4
PF

ρh2 α
2) 1

2
)
=

2.5 ·10−3

C2
invC

2
PF

(
10−6 +(10−12 +2 ·10−3C2

invC
4
PF
) 1

2
)

The numerical experiments show that this method is stable when ∆t = 10−5.

5. Conclusions. We have expanded the number of tools (partitioned methods) available for solving the coupled
Biot system using methods optimized for individual sub-physics problems. We have also given a comprehensive
stability analysis of the methods based on energy methods. These results give sufficient conditions for the given (non
periodic) boundary conditions, include the effects of non-constant physical parameters and have carefully tracked
the dependence on physical parameters in the results. In our experiments, the sufficient conditions were found to
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Effect Definition

Elastic wave speed cE =

√
λ

ρ

derived Elastic time scale τE =
L
cE

= L
√

ρ

λ

—— —-

Darcy relaxation time τD =
L2s0

κ

derived Darcy relaxation speed cD =
κ

Ls0

Coupling Strength Λ =

√
α2

ρs0

TABLE 5.1
Characteristic quantities for the coupled Biot system.

be quite sharp. The stability results seem essentially complex and thus hard to use to choose a good method for a
given physical setting. However, at least for constant physical parameters, the results can be (perhaps surprisingly)
simplified greatly and into a useful table (below). We conclude this paper by giving this analysis of the Biot system
and the methods studied.

The coupled Biot system has three competing effects: Wave propagation in the elastic components, with key
parameter wave-speed

cE =

√
λ

ρ
,

porous media relaxation in Darcy, with key parameter relaxation time

τD =
L2s0

κ
,

where L is the global length scale, and the system coupling, with key parameter a measure of coupling strength. For
the relaxation time, we form the relaxation speed

cD =
κ

Ls0
.

Our intuition is that the essential steps in the numerical analysis involve interaction of these effects and thus should be
phrased in terms of parameters measuring their magnitude. To this end, we define (for constant physical parameters2)
the three key parameters and two derived parameters for each subproblem and the system coupling in Table 5.1.

For the coupling strengths, the natural measures of it in each equation are the elastic coupling strength

ΛE =
α

ρ
,

2The detailed stability theorems are stated in terms of the correct values needed in the variable case.
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Parameter condition

α2

λ s0
< 1

Λ2

c2
E

< 1

Time step condition Time scale τE Time scale τD

∆t ≤CF
(

h
L

)2
ρκ

α2
4t
τE
≤CF

(
h
L

)2 cD · cE

Λ2
4t
τD
≤CF

(
h
L

)2 c2
D

Λ2

∆t ≤CF
(

h
L

)
L
√

ρs0

α

4t
τE
≤CF

(
h
L

)
1
Λ

4t
τD
≤CF

(
h
L

)
cD

Λ

∆t ≤ ρκ

α2
4t
τE
≤ cD · cE

Λ2
4t
τD
≤ c2

D
Λ2

TABLE 5.2
Characteristic quantities for the coupled Biot system.

the Darcy coupling strength

ΛD =
α

S0
,

and their geometric average

Λ =

√
α2

ρs0
.

The choice of the global length scale L (such as L = diam(Ω)) is arbitrary at this level of generality. For the
two constants of analysis in the stability theorems, note that CINV depends only on the minimum angle and is unit
free while CPF has units [CPF ] = L . Let CF denote an absolute (unit free) constant. Four conditions occur often in
the stability analysis. Rearranging these in the stability theorems and choosing time scale to be τE or τD gives the
equivalent conditions presented in Table 5.2. We observe that the key combination of the parameters is

B :=
Coupling Strength

Speed of Propagation
.

Therefore, we define the following quantities.
DEFINITION 5.1. With Λ,cD,cE defined in Table 5.1, set

BE : =
Λ

cE
, BD :=

Λ

cD
, and

BBiot = B :=
√

BD ·BE =
Λ

√
cD · cE

.

To make precise estimates, denote by C =CINV
√

d, and let c̃PF be the dimensionless part of CPF . Table 5.3 gives a
summary comparison of the methods with respect to Coupling Strength / Speed of Propagation.

From qualitative behavior shown in Figure 5.1 we conclude that when the speed of propagation is dominated
by the coupling strength, the optimal method from the ω family (3.40) is CNLF. Also we notice that there is a rapid
transition between the two regimes/methods (CNLF and BDF2-AB2) as the ratio of the speed of propagation and
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Method Stability Condition

DS B2
E < 1

FSS B2
E < 1 or

∆t
τD

< 2
1

c̃2
PF

(h
L

)2
(CBD)

−2

BEFE B2
E < 1 and

∆t
τD

<
1

c̃2
PF

(h
L

)2
(CBD)

−2

or
4t
τD
≤min

{1
4

1
c̃2

PF

(h
L

)2
(CBD)

−2,
h
L
(CBD)

−1}

BELF
4t
τD
≤max

{ 1
c̃2

PF

(h
L

)2
(CBD)

−2,
h
L
(CBD)

−1}

BA(θ = 1
2 )

∆t
τD
≤ h

L
(CBD)

−1

BA(θ 6= 1
2 )

4t
τD
≤min

{ 1
c̃2

PF

2θ −1
θ 2

(h
L

)2
(CBD)

−2,
ν

θ(1−θ)

h
L
(CBD)

−1,
C2

θ
(CBD)

−2}
TABLE 5.3

Comparison of stability properties of the partitioned methods. The abbreviations in the first column are: DS= Drained Split, FSS= Fixed
strain split and BA = ω .
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FIG. 5.1. The transition between CNLF and BDF2-AB2 regimes of the ω family (3.40), as a function of the ratio between the coupling
strength and the speed of propagation.
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FIG. 5.2. The choice of method which allows the largest time step in the case when 1
c̃PF

= 3.14 (left), and 1
c̃PF

= 10 (right).

the coupling strength increases. In the cases with high speeds of propagation, the optimal method, with highest
allowable time step, is BDF2-AB2.

To summarize, we find the method that allows the largest time step with respect to the relative mesh step h
L and

the parameters of the problem CBD. We distinguish two cases, B2
E < 1 and B2

E > 1. When B2
E < 1, the method of

choice could be drained split or fixed strain split. If B2
E > 1, our results are given as follows. In order to estimate the

size of c̃PF , we used the following result from [5] for the domain and boundary conditions in the numerical tests:

1
c̃PF
≥ π.

Figure 5.2 left shows the method that allows the largest time step in the case when 1
c̃PF

= 3.14. The case when
1

c̃PF
= 10 is shown in Figure 5.2 right.

6. Appendix. In order to prove the energy estimate in Theorem 3.7, we will use Dalhquist’s G-stability
methodology [4, 6, 20]. Let define the positive definite matrix

G =

 2ω2−ω + 1
4 − (2ω−1)2

2

− (2ω−1)2

2 2ω2−3ω + 5
4

 , ω ∈
[ 1

2 ,1
]
, (6.1)

and notice that (
(2ω− 1

2 )u
n+1
h +(−4ω +2)un

h +(2ω− 3
2 )u

n−1
h ,ωun+1

h +(1−ω)un−1
h

)
= ‖(un+1

h ,un
h)‖2

G−‖(un
h,u

n−1
h )‖2

G + 2ω−1
4 ‖u

n+1
h −2un

h +u
n−1
h ‖2,

similarly (
(2ω− 1

2 )pn+1
h +(−4ω +2)pn

h +(2ω− 3
2 )pn−1

h ,ω pn+1
h +(1−ω)pn−1

h

)
= ‖(pn+1

h , pn
h)‖2

G−‖(pn
h, pn−1

h )‖2
G + 2ω−1

4 ‖pn+1
h −2pn

h + pn−1
h ‖2,

and

ae
(
ωηn+1

h +(1−ω)ηn−1
h ,(2ω− 1

2 )η
n+1
h +(−4ω +2)ηn

h +(2ω− 3
2 )η

n−1
h

)
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= ‖(ηn+1
h ,ηn

h)‖2
G,ae −‖(η

n
h,η

n−1
h )‖2

G,ae +
2ω−1

4 ae
(
ηn+1

h −2ηn
h+η

n−1
h ,ηn+1

h −2ηn
h+η

n−1
h

)
,

where

‖(ηn+1
h ,ηn

h)‖2
G,ae :=(2ω

2−ω+ 1
2 )ae(η

n+1
h ,ηn+1

h )− (2ω−1)2ae(η
n+1
h ,ηn

h)

+(2ω
2−3ω+ 5

4 )ae(η
n
h ,η

n
h).

For the proof of Theorem 3.7 we need the following preliminary results, which follow by algebraic manipulation.
LEMMA 6.1. ‖(un+1,un)‖2

G = ν
(
‖un+1‖2 +‖un‖2

)
+‖aun+1 +bun‖2, where

ν =
1

16(2ω2−3ω + 5
4 )
∈
[ 1

4 ,
1
2

]
,

a =−
√

2ω−1
2

(√
1+(2ω−1)2 +1

)
, b =

√
2ω−1

2

(√
1+(2ω−1)2−1

)
.

LEMMA 6.2. The contribution of the coupling terms to the energy equation is

N

∑
n=1

(
−b(ωun+1 +(1−ω)un−1,2ω pn +(−2ω +1)pn−1)

+b(2ωun +(−2ω +1)un−1,ω pn+1
h +(1−ω)pn−1

h )
)

= 2ω(1−ω)
(
b(uN , pN+1)−b(uN+1, pN)

)
+ω(1−2ω)

N

∑
n=1

(
b(un+1−2un +un−1, pn+1)−b(un+1, pn+1−2pn + pn−1)

)
−2ω(1−ω)

(
b(u0, p1)−b(u1, p0)

)
.

LEMMA 6.3. The dissipative term in pressure writes as

N

∑
n=1

ap(ω pn+1 +(1−ω)pn−1,ω pn+1 +(1−ω)pn−1)

= ω(2ω−1)
(

ap(pN+1, pN+1)+ap(pN , pN)
)
+(2ω−1)2

N−1

∑
n=2

ap(pn, pn)

− (1−ω)(2ω−1)
(
ap(p1, p1)+ap(p0, p0)

)
+ω(1−ω)

N

∑
n=1

ap(pn+1 + pn−1, pn+1 + pn−1),

and similarly the stabilizing term

N

∑
n=1
‖∇ · (ωun+1

h +(1−ω)un−1
h )‖2

= ω(2ω−1)
(
‖∇ ·uN+1

h ‖2 +‖∇ ·uN
h ‖2)+(2ω−1)2

N−1

∑
n=2
‖∇ ·un

h‖2

− (1−ω)(2ω−1)(
∥∥∇ ·u1

h‖2 +‖∇ ·u0
h‖2)

+ω(1−ω)
N

∑
n=1
‖∇ · (un+1

h +un−1
h )‖2.
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Proof. [Proof of Theorem 3.7] Using the following test functions in (3.40)

vh = ωun+1 +(1−ω)un−1,

wh =− 1
ρ

∇ ·σE(ωηn+1 +(1−ω)ηn−1)

ψh = ω pn+1
h +(1−ω)pn−1

h

after summation we obtain

ρ
( (2ω− 1

2 )u
n+1
h +(−4ω+2)un

h+(2ω− 3
2 )u

n−1
h

∆t ,ωun+1 +(1−ω)un−1)
+ae(ωη

n+1 +(1−ω)ηn−1,ωun+1 +(1−ω)un−1)

+∆t
α2cω

s0

(
∇ · (ωun+1

h +(1−ω)un−1
h ),∇ · (ωun+1

h +(1−ω)un−1
h )

)
−b(ωun+1 +(1−ω)un−1,2ω pn +(−2ω +1)pn−1)

−ae
(
ωun+1

h +(1−ω)un−1
h ,ωηn+1 +(1−ω)ηn−1)

+ae
( (2ω− 1

2 )η
n+1
h +(−4ω+2)ηn

h+(2ω− 3
2 )η

n−1
h

∆t ,ωηn+1 +(1−ω)ηn−1)
+ s0

( (2ω− 1
2 )p

n+1
h +(−4ω+2)pn

h+(2ω− 3
2 )p

n−1
h

∆t ,ω pn+1
h +(1−ω)pn−1

h

)
+b(2ωun +(−2ω +1)un−1,ω pn+1

h +(1−ω)pn−1
h )

+ap(ω pn+1
h +(1−ω)pn−1

h ,ω pn+1
h +(1−ω)pn−1

h )

=
(
fn+2ω−1,ωun+1 +(1−ω)un−1)+∫

Γs

gn+2ω−1(ωun+1 +(1−ω)un−1)dσ

+(sn+2ω−1,ω pn+1
h +(1−ω)pn−1

h ).

By rearranging terms,

ρ
( (2ω− 1

2 )u
n+1
h +(−4ω+2)un

h+(2ω− 3
2 )u

n−1
h

∆t ,ωun+1
h +(1−ω)un−1

h

)
+ s0

( (2ω− 1
2 )pn+1

h +(−4ω+2)pn
h+(2ω− 3

2 )pn−1
h

∆t ,ω pn+1
h +(1−ω)pn−1

h

)
+ae(ωη

n+1 +(1−ω)ηn−1,
(2ω− 1

2 )η
n+1
h +(−4ω+2)ηn

h+(2ω− 3
2 )η

n−1
h

∆t )

+∆t
α2cω

s0

(
∇ · (ωun+1

h +(1−ω)un−1
h ),∇ · (ωun+1

h +(1−ω)un−1
h )

)
+ap(ω pn+1

h +(1−ω)pn−1
h ,ω pn+1

h +(1−ω)pn−1
h )

−b(ωun+1 +(1−ω)un−1,2ω pn +(−2ω +1)pn−1)

+b(2ωun +(−2ω +1)un−1,ω pn+1
h +(1−ω)pn−1

h )

=
(
fn+2ω−1,ωun+1 +(1−ω)un−1)+∫

Γs

gn+2ω−1(ωun+1 +(1−ω)un−1)dσ

+(sn+2ω−1,ω pn+1
h +(1−ω)pn−1

h ).

using the G-matrix (6.1), the above estimate becomes

ρ

∆t

(
‖(un+1

h ,un
h)‖2

G−‖(un
h,u

n−1
h )‖2

G + 2ω−1
4 ‖u

n+1
h −2un

h +u
n−1
h ‖2)

+
s0

∆t

(
‖(pn+1

h , pn
h)‖2

G−‖(pn
h, pn−1

h )‖2
G + 2ω−1

4 ‖pn+1
h −2pn

h + pn−1
h ‖2)
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+
1
∆t

(
‖(ηn+1

h ,ηn
h)‖2

G,ae −‖(η
n
h ,η

n−1
h )‖2

G,ae +
2ω−1

4 ae
(
ηn+1

h −2ηn
h +η

n−1
h ,ηn+1

h −2ηn
h +η

n−1
h

))
+∆t

α2cω

s0

(
∇ · (ωun+1

h +(1−ω)un−1
h ),∇ · (ωun+1

h +(1−ω)un−1
h )

)
+ap(ω pn+1

h +(1−ω)pn−1
h ,ω pn+1

h +(1−ω)pn−1
h )

−b(ωun+1 +(1−ω)un−1,2ω pn +(−2ω +1)pn−1)

+b(2ωun +(−2ω +1)un−1,ω pn+1
h +(1−ω)pn−1

h )

=
(
fn+2ω−1,ωun+1 +(1−ω)un−1)+∫

Γs

gn+2ω−1(ωun+1 +(1−ω)un−1)dσ

+(sn+2ω−1,ω pn+1
h +(1−ω)pn−1

h ),

and summing from n = 1 to N, we obtain

ρ

∆t
‖(uN+1

h ,uN
h )‖2

G + ρ

∆t
2ω−1

4

N

∑
n=1
‖un+1

h −2un
h +u

n−1
h ‖2

+
s0

∆t
‖(pN+1

h , pN
h )‖2

G + s0
∆t

2ω−1
4

N

∑
n=1
‖pn+1

h −2pn
h + pn−1

h ‖2

+
1
∆t
‖(ηN+1

h ,ηN
h )‖2

G,ae +
1
∆t

2ω−1
4

N

∑
n=1

ae
(
ηn+1

h −2ηn
h +η

n−1
h ,ηn+1

h −2ηn
h +η

n−1
h

))
+∆t

α2cω

s0

N

∑
n=1
‖∇ · (ωun+1

h +(1−ω)un−1
h )‖2

+
N

∑
n=1

ap(ω pn+1
h +(1−ω)pn−1

h ,ω pn+1
h +(1−ω)pn−1

h )

+
N

∑
n=1

(
−b(ωun+1 +(1−ω)un−1,2ω pn +(−2ω +1)pn−1)

+b(2ωun +(−2ω +1)un−1,ω pn+1
h +(1−ω)pn−1

h )
)

=
ρ

∆t
‖(u1

h,u
0
h)‖2

G +
s0

∆t
‖(p1

h, p0
h)‖2

G +
1
∆t
‖(η1

h ,η
0
h)‖2

G,ae

+
N

∑
n=1

((
fn+2ω−1,ωun+1 +(1−ω)un−1)+∫

Γs

gn+2ω−1(ωun+1 +(1−ω)un−1)dσ

+(sn+2ω−1,ω pn+1
h +(1−ω)pn−1

h )
)
.

Using by Lemma 6.2 the energy balance writes

ρ

∆t
‖(uN+1

h ,uN
h )‖2

G + ρ

∆t
2ω−1

4

N

∑
n=1
‖un+1

h −2un
h +u

n−1
h ‖2

+
s0

∆t
‖(pN+1

h , pN
h )‖2

G + s0
∆t

2ω−1
4

N

∑
n=1
‖pn+1

h −2pn
h + pn−1

h ‖2

+
1
∆t
‖(ηN+1

h ,ηN
h )‖2

G,ae +
1
∆t

2ω−1
4

N

∑
n=1

ae
(
ηn+1

h −2ηn
h +η

n−1
h ,ηn+1

h −2ηn
h +η

n−1
h

))
+∆t

α2cω

s0

N

∑
n=1
‖∇ · (ωun+1

h +(1−ω)un−1
h )‖2
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+
N

∑
n=1

ap(ω pn+1
h +(1−ω)pn−1

h ,ω pn+1
h +(1−ω)pn−1

h )

+2ω(1−ω)
(
b(uN , pN+1)−b(uN+1, pN)

)
+ω(1−2ω)

N

∑
n=1

(
b(un+1−2un +un−1, pn+1)−b(un+1, pn+1−2pn + pn−1)

)
=

ρ

∆t
‖(u1

h,u
0
h)‖2

G +
s0

∆t
‖(p1

h, p0
h)‖2

G +
1
∆t
‖(η1

h ,η
0
h)‖2

G,ae +2ω(1−ω)
(
b(u0, p1)−b(u1, p0)

)
+

N

∑
n=1

((
fn+2ω−1,ωun+1 +(1−ω)un−1)+∫

Γs

gn+2ω−1(ωun+1 +(1−ω)un−1)dσ

+(sn+2ω−1,ω pn+1
h +(1−ω)pn−1

h )
)
.

Using (2.11b), the polarized identity, we write the coupling terms

ω(1−2ω)
N

∑
n=1

(
b(un+1−2un +un−1, pn+1)−b(un+1, pn+1−2pn + pn−1)

)
= ω(1−2ω)α

N

∑
n=1

(
(pn+1,∇ · (un+1−2un +un−1))− (pn+1−2pn + pn−1,∇ ·un+1)

)
=−(2ω−1)

N

∑
n=1

( ρ

4∆t
h2

dC2
inv
‖∇ · (un+1−2un +un−1)‖2 +

∆t
ρ

α
2
ω

2 dC2
inv

h2 ‖pn+1‖2)
− (2ω−1)

N

∑
n=1

( s0

4∆t
‖pn+1−2pn + pn−1‖2 +

∆t
s0

α
2
ω

2‖∇ ·un+1‖2)
+(2ω−1)

N

∑
n=1

(∥∥√ ρ

4∆t pn+1 +
√

∆t
ρ

αω∇ · (un+1−2un +un−1)
∥∥2)

+(2ω−1)
N

∑
n=1

(∥∥√ s0
4∆t (pn+1−2pn + pn−1)+

√
∆t
s0

αω ∇ ·un+1∥∥2)
,

and also (using the notation ε1 =
∆t

1−ε

ω(1−ω)
ν

αdC2
inv

ρh2 )

2ω(1−ω)
(
b(uN

h , pN+1
h )−b(uN+1

h , pN
h )
)

= ε1αω(1−ω)
(
‖pN+1

h ‖2 +‖pN
h ‖2)+ 1

ε1
αω(1−ω)

(
‖∇ ·uN+1

h ‖2 +‖∇ ·uN
h ‖2)

+αω(1−ω)
(∥∥√ε1 pN+1

h + 1√
ε1

∇ ·uN
h

∥∥2
+
∥∥√ε1 pN

h + 1√
ε1

∇ ·uN+1
h

∥∥2)
.

Then substituting above we obtain

ρ

∆t
‖(uN+1

h ,uN
h )‖2

G+
ρ

∆t
2ω−1

4

N

∑
n=1
‖un+1

h −2un
h +u

n−1
h ‖2

+
s0

∆t
‖(pN+1

h , pN
h )‖2

G+
s0
∆t

2ω−1
4

N

∑
n=1
‖pn+1

h −2pn
h + pn−1

h ‖2

+
1
∆t
‖(ηN+1

h ,ηN
h )‖2

G,ae +
1
∆t

2ω−1
4

N

∑
n=1

ae
(
ηn+1

h −2ηn
h +η

n−1
h ,ηn+1

h −2ηn
h +η

n−1
h

))
+∆t

α2cω

s0

N

∑
n=1
‖∇ · (ωun+1

h +(1−ω)un−1
h )‖2

28



+
N

∑
n=1

ap(ω pn+1
h +(1−ω)pn−1

h ,ω pn+1
h +(1−ω)pn−1

h )

− ε1αω(1−ω)
(
‖pN+1‖2 +‖pN‖2)− 1

ε1
αω(1−ω)

(
‖∇ ·uN+1‖2 +‖∇ ·uN‖2)

− (2ω−1)
N

∑
n=1

( ρ

4∆t
h2

dC2
inv
‖∇ · (un+1−2un +un−1)‖2 +

∆t
ρ

α
2
ω

2 dC2
inv

h2 ‖pn+1‖2)
− (2ω−1)

N

∑
n=1

( s0

4∆t
‖pn+1−2pn + pn−1‖2 +

∆t
s0

α
2
ω

2‖∇ ·un+1‖2)
+αω(1−ω)

(∥∥√ε1 pN+1
h + 1√

ε1
∇ ·uN

h

∥∥2
+
∥∥√ε1 pN

h + 1√
ε1

∇ ·uN+1
h

∥∥2)
+(2ω−1)

N

∑
n=1

(∥∥√ ρ

4∆t pn+1 +
√

∆t
ρ

αω∇ · (un+1−2un +un−1)
∥∥2)

+(2ω−1)
N

∑
n=1

(∥∥√ s0
4∆t (pn+1−2pn + pn−1)+

√
∆t
s0

αω ∇ ·un+1∥∥2)
=

ρ

∆t
‖(u1

h,u
0
h)‖2

G +
s0

∆t
‖(p1

h, p0
h)‖2

G +
1
∆t
‖(η1

h ,η
0
h)‖2

G,ae +2ω(1−ω)
(
b(u0, p1)−b(u1, p0)

)
+

N

∑
n=1

((
fn+2ω−1,ωun+1 +(1−ω)un−1)+∫

Γs

gn+2ω−1(ωun+1 +(1−ω)un−1)dσ

+(sn+2ω−1,ω pn+1
h +(1−ω)pn−1

h )
)
.

Using the inverse and divergence inequalities (3.1) and (3.4), canceling out terms yields

ρ

∆t
‖(uN+1

h ,uN
h )‖2

G− 1
ε1

αω(1−ω)
(
‖∇ ·uN+1‖2 +‖∇ ·uN‖2)

+
s0

∆t
‖(pN+1

h , pN
h )‖2

G+
s0
∆t

2ω−1
4

N

∑
n=1
‖pn+1

h −2pn
h + pn−1

h ‖2

+
1
∆t
‖(ηN+1

h ,ηN
h )‖2

G,ae +
1
∆t

2ω−1
4

N

∑
n=1

ae
(
ηn+1

h −2ηn
h +η

n−1
h ,ηn+1

h −2ηn
h +η

n−1
h

))
+∆t

α2cω

s0

N

∑
n=1
‖∇ · (ωun+1

h +(1−ω)un−1
h )‖2

+
N

∑
n=1

ap(ω pn+1
h +(1−ω)pn−1

h ,ω pn+1
h +(1−ω)pn−1

h )− (2ω−1)
∆t
ρ

α
2
ω

2 dC2
inv

h2

N

∑
n=1
‖pn+1‖2

− ε1αω(1−ω)
(
‖pN+1‖2 +‖pN‖2)

− (2ω−1)
N

∑
n=1

( s0

4∆t
‖pn+1−2pn + pn−1‖2 +

∆t
s0

α
2
ω

2‖∇ ·un+1‖2)
+αω(1−ω)

(∥∥√ε1 pN+1
h + 1√

ε1
∇ ·uN

h

∥∥2
+
∥∥√ε1 pN

h + 1√
ε1

∇ ·uN+1
h

∥∥2)
+(2ω−1)

N

∑
n=1

(∥∥√ ρ

4∆t pn+1 +
√

∆t
ρ

αω ∇ · (un+1−2un +un−1)
∥∥2)

+(2ω−1)
N

∑
n=1

(∥∥√ s0
4∆t (pn+1−2pn + pn−1)+

√
∆t
s0

αω ∇ ·un+1∥∥2)
≤ ρ

∆t
‖(u1

h,u
0
h)‖2

G +
s0

∆t
‖(p1

h, p0
h)‖2

G +
1
∆t
‖(η1

h ,η
0
h)‖2

G,ae +2ω(1−ω)
(
b(u0, p1)−b(u1, p0)

)
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+
N

∑
n=1

((
fn+2ω−1,ωun+1 +(1−ω)un−1)+∫

Γs

gn+2ω−1(ωun+1 +(1−ω)un−1)dσ

+(sn+2ω−1,ω pn+1
h +(1−ω)pn−1

h )
)
.

Using the inverse, Poincaré-Friedrichs inequalities (3.1), (3.2), Lemmata 6.1 and 6.3, we have

(ρν

∆t
− 1

ε1
αω(1−ω)

dC2
inv

h2

)
︸ ︷︷ ︸

≡ε
ρν

∆t

(
‖uN+1

h ‖2 +‖uN
h ‖2)+ ρ

∆t
‖auN+1

h +buN
h ‖2

+
s0

∆t
ν
(
‖pN+1

h ‖2 +‖pN
h )‖2)+ s0

∆t
‖apN+1

h +bpN
h ‖2+ s0

∆t
2ω−1

4

N

∑
n=1
‖pn+1

h −2pn
h + pn−1

h ‖2

+
1
∆t
‖(ηN+1

h ,ηN
h )‖2

G,ae +
1
∆t

2ω−1
4

N

∑
n=1

ae
(
ηn+1

h −2ηn
h +η

n−1
h ,ηn+1

h −2ηn
h +η

n−1
h

)
+ω(2ω−1)∆t

α2cω

s0

(
‖∇ ·uN+1

h ‖2 +‖∇ ·uN
h ‖2)+(2ω−1)2

∆t
α2cω

s0

N−1

∑
n=2
‖∇ ·un

h‖2

−(1−ω)(2ω−1)∆t
α2cω

s0
(
∥∥∇ ·u1

h‖2 +‖∇ ·u0
h‖2)

+ω(1−ω)∆t
α2cω

s0

N

∑
n=1
‖∇ · (un+1

h +un−1
h )‖2

+ω(2ω−1)ap(pN+1, pN+1)− (2ω−1)∆t
ρ

α
2
ω

2‖∇pN+1‖2− ε1αω(1−ω)
)
‖pN+1‖2

+ω(2ω−1)ap(pN , pN)− (2ω−1)∆t
ρ

α
2
ω

2‖∇pN‖2− ε1αω(1−ω)
)
‖pN‖2

+(2ω−1)
N−1

∑
n=2

(
(2ω−1)ap(pn, pn)− ∆t

ρ
α

2
ω

2 dC2
inv

h2 CPF‖∇pn‖2
)

+ω(1−ω)
N

∑
n=1

ap(pn+1 + pn−1, pn+1 + pn−1)

− (2ω−1)
N

∑
n=1

( s0

4∆t
‖pn+1−2pn + pn−1‖2 +

∆t
s0

α
2
ω

2‖∇ ·un+1‖2)
+αω(1−ω)

(∥∥√ε1 pN+1
h + 1√

ε1
∇ ·uN

h

∥∥2
+
∥∥√ε1 pN

h + 1√
ε1

∇ ·uN+1
h

∥∥2)
+(2ω−1)

N

∑
n=1

(∥∥√ ρ

4∆t pn+1 +
√

∆t
ρ

αω∇ · (un+1−2un +un−1)
∥∥2)

+(2ω−1)
N

∑
n=1

(∥∥√ s0
4∆t (pn+1−2pn + pn−1)+

√
∆t
s0

αω ∇ ·un+1∥∥2)
≤ ρ

∆t
‖(u1

h,u
0
h)‖2

G +
s0

∆t
‖(p1

h, p0
h)‖2

G +
1
∆t
‖(η1

h ,η
0
h)‖2

G,ae +2ω(1−ω)
(
b(u0, p1)−b(u1, p0)

)
− (1−ω)(2ω−1)

(
ap(p1, p1)+ap(p0, p0)

)
+

N

∑
n=1

((
fn+2ω−1,ωun+1 +(1−ω)un−1)+∫

Γs

gn+2ω−1(ωun+1 +(1−ω)un−1)dσ

+(sn+2ω−1,ω pn+1
h +(1−ω)pn−1

h )
)
.
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Rearranging terms and using the definition (2.11c), yields

ε
ρν

∆t

(
‖uN+1

h ‖2 +‖uN
h ‖2)+ 1

∆t
‖(ηN+1

h ,ηN
h )‖2

G,ae

+
( s0

∆t
ν− ε1αω(1−ω)

)
‖pN+1‖2 +ω(2ω−1)

((
κ− ∆t

ρ
α

2
ωI
)
∇pN+1 , ∇pN+1

)
+
( s0

∆t
ν− ε1αω(1−ω)

)
‖pN‖2 +ω(2ω−1)

((
κ− ∆t

ρ
α

2
ωI
)
∇pN , ∇pN

)
+

ρ

∆t
‖auN+1

h +buN
h ‖2 +

s0

∆t
‖apN+1

h +bpN
h ‖2+ω(2ω−1)∆t

α2cω

s0

(
‖∇ ·uN+1

h ‖2 +‖∇ ·uN
h ‖2)

+ 1
∆t

2ω−1
4

N

∑
n=1

ae
(
ηn+1

h −2ηn
h +η

n−1
h ,ηn+1

h −2ηn
h +η

n−1
h

))
+(2ω−1)2

∆t
α2cω

s0

N−1

∑
n=2
‖∇ ·un

h‖2

+ω(1−ω)∆t
α2cω

s0

N

∑
n=1
‖∇ · (un+1

h +un−1
h )‖2

+(2ω−1)
N−1

∑
n=2

((
(2ω−1)κ− ∆t

ρ
α

2
ω

2 dC2
inv

h2 C2
PFI

)
∇pn , ∇pn

)
+ω(1−ω)

N

∑
n=1

ap(pn+1 + pn−1, pn+1 + pn−1)

−(2ω−1)
∆t
s0

α
2
ω

2
N

∑
n=1
‖∇ ·un+1‖2

+αω(1−ω)
(∥∥√ε1 pN+1

h + 1√
ε1

∇ ·uN
h

∥∥2
+
∥∥√ε1 pN

h + 1√
ε1

∇ ·uN+1
h

∥∥2)
+(2ω−1)

N

∑
n=1

(∥∥√ ρ

4∆t pn+1 +
√

∆t
ρ

αω∇ · (un+1−2un +un−1)
∥∥2)

+(2ω−1)
N

∑
n=1

(∥∥√ s0
4∆t (pn+1−2pn + pn−1)+

√
∆t
s0

αω ∇ ·un+1∥∥2)
≤ ρ

∆t
‖(u1

h,u
0
h)‖2

G +
s0

∆t
‖(p1

h, p0
h)‖2

G +
1
∆t
‖(η1

h ,η
0
h)‖2

G,ae +2ω(1−ω)
(
b(u0, p1)−b(u1, p0)

)
− (1−ω)(2ω−1)

(
ap(p1, p1)+ap(p0, p0)

)
−(1−ω)(2ω−1)∆t

α2cω

s0
(
∥∥∇ ·u1

h‖2 +‖∇ ·u0
h‖2)

+
N

∑
n=1

((
fn+2ω−1,ωun+1 +(1−ω)un−1)+∫

Γs

gn+2ω−1(ωun+1 +(1−ω)un−1)dσ

+(sn+2ω−1,ω pn+1
h +(1−ω)pn−1

h )
)
,

and multiply by ∆t, after some calculations involving (3.2) and (3.1) we get

ερν
(
‖uN+1

h ‖2 +‖uN
h ‖2)+‖(ηN+1

h ,ηN
h )‖2

G,ae

+
(

s0ν +∆tω(2ω−1)
kmin

C2
PF
−∆t2

ω
2 α2C2

inv
ρh2

( (1−ω)2d
ν(1− ε)

+2ω−1
))(
‖pN+1

h ‖2 +‖pN
h ‖2)

+ρ‖auN+1
h +buN

h ‖2 + s0‖apN+1
h +bpN

h ‖2
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+∆t
(

ω(2ω−1)∆t
α2cω

s0
−(2ω−1)

∆t
s0

α
2
ω

2
)

︸ ︷︷ ︸
ω2(1−ω)∆t α2

s0
≡O(∆t), and ≡0 when ω= 1

2

(
‖∇ ·uN+1

h ‖2 +‖∇ ·uN
h ‖2)

+ 2ω−1
4

N

∑
n=1

ae
(
ηn+1

h −2ηn
h +η

n−1
h ,ηn+1

h −2ηn
h +η

n−1
h

))
+∆t

(
(2ω−1)2

∆t
α2cω

s0
−(2ω−1)

∆t
s0

α
2
ω

2
)

︸ ︷︷ ︸
=0
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ρ
α

2
ω

2 dC2
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)
∇pn , ∇pn
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h
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.

Therefore we have a stability result by energy methods provided

0≤ s0ν +∆tω(2ω−1)
kmin

C2
PF
−∆t2

ω
2 α2C2

inv
ρh2

( (1−ω)2d
ν(1− ε)

+2ω−1
)
,

0≤ (2ω−1)
(
(2ω−1)kmin− α2ω2

ρ

dC2
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h2 C2
PF ∆t

)
,

namely the time-step satisfies the following CFL conditions:

∆t ≤
√

ρs0

d
h

αCINV

√
1− ε,

when ω = 1
2 , and

∆t ≤min
{

ν
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√
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d
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√
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32



ρh2

2ωC2
invC

2
PF α2( d(1−ω)2

ν
+2ω−1)

(
(2ω−1)kmin +

(
(2ω−1)2k2

min +4s0ν
C2

invC
4
PF

ρh2 α
2(

d(1−ω)2

ν
+2ω−1)

) 1
2
)}

for ω ∈ ( 1
2 ,1], respectively.

We now transform this time-step restrictions in term of the characteristic parameters defined in Table 5.1. The CNLF
(ω = 1

2 ) condition writes
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For ω ∈ ( 1
2 ,1] we have similarly
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Therefore
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