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Abstract

We study stability, accuracy and efficiency of algorithms for a new regularization of
the NSE, the NS-ω model (in which the vorticity term, ω = ∇× u, is averaged) given
by

ut − u× (∇× u) +∇q − ν∆u = f,∇ · u = 0.

This is similar to the NS-alpha model (in which the nonlinear term is u × ∇ × u),
but the small difference opens attractive algorithmic possibilities. We give tests both
confirming the predicted rates of convergence and exhibiting some shared limitations
of both models. The experiments also show the discrete NS-ω simulation has greater
accuracy at much less cost than a comparable NS-α simulation. The experiments suggest
consideration of higher accuracy NS-ω-deconvolution models as a next logical step.
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1 Introduction

This report presents a numerical analysis and computational testing of a (to our limited
knowledge) new regularization of the Navier-Stokes equations (NSE) that we call the NS-
omega (NS-ω) model of turbulent flow. The regularization (1.1)-(1.3) below is motivated
by a desire for efficient, accurate, and reliable under-resolved simulations of flow problems
and has evolved from our work on algorithms for, e.g., the NS-α model, the rational model
and deconvolution models. The NS-ω model is derived from the rotational form of the NSE
by filtering, with the differential filter / rational filter / Helmholtz filter, the second term
of the nonlinearity (for reasons explained below)

ut − u× (∇× u) +∇q − ν∆u = f, (1.1)
∇ · u = 0, (1.2)

−α2∆u + u = u. (1.3)

NS-ω is a complement to the NS-α model (1.4)-(1.6) next. The NS-α / viscous Camassa-
Holm model (1.4)-(1.6) is a recently developed regularization of the NSE with desirable
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mathematical properties, e.g., [FHT01], [FHT02], [GOP03]. It is given by

ut − u× (∇× u) +∇q − ν∆u = f, (1.4)
∇ · u = 0, (1.5)

−α2∆u + u = u. (1.6)

We consider the NS-ω model (1.1)-(1.3) either for internal flow, i.e. for a bounded, polyhe-
dral domain in Rd, d = 2, 3, subject to no-slip boundary conditions, or for Ω = (0, L)d and
subject to L periodic boundary conditions with zero mean imposed on the solution and all
data.

Comparing (1.1)-(1.3) to (1.4)-(1.6), the NS-ω model averages the vorticity term ω =
∇ × u rather than the velocity term in the nonlinearity. (Hence calling it the NS-ω regu-
larizations seems descriptive.) This modification is similar in form to that of the modified
Leray model, [ILT05] but it differs in motivation and consequence.

The difference (in the non-periodic case) between the imposition of incompressibility
in (1.2) and (1.5) arises from filtering the different terms in the nonlinearity in (1.1) and
(1.4). The choices (1.2) and (1.5) are necessary for model stability (ν > 0) and energy
conservation (ν = 0).

In this report, we compare variants of Crank-Nicolson (CN) finite element method
(FEM) algorithms for NS-ω and NS-α. In Section 3, we study CN algorithms for both
models (necessary notation and preliminaries are presented in Section 2). We give a nu-
merical analysis for the CN scheme for NS-ω that includes proofs of unconditional stability
and solvability, as well as convergence. A similar analysis for the CN scheme for NS-α was
performed in [Con08] and in [Cag03] for a reformulated method. We also study a second
order, unconditionally stable, linearly implicit variant (CNLE) of CN for NS-ω. In Section
4, we present numerical experiments for the schemes. Here we confirm predicted conver-
gence rates, and compare runtimes and errors for the CN schemes for both NS-α and NS-ω.
We also consider linearly and quadratically extrapolated CN schemes for NS-ω; we discuss
in Section 3 why such linearizations lose their strong unconditional stability for NS-α. In
tests in Section 4, significantly better runtimes and errors are found for the NS-ω schemes.

Lastly, we present experiments for the well known two dimensional flow around a cylinder
problem. It is our view that understanding the limitations of a model or algorithm is often
more important than reporting yet another similar success. This test problem is a difficult
one since it is near a critical Reynolds number Re for vortex shedding. Often, regularizations
produce solutions which resemble lower Re solutions (i.e., without shedding). Although both
NS-α and NS-ω are dispersive regularizations, they share this limitation.

1.1 Motivation for NS-ω

Our motivation for studying the modification (1.1)-(1.3) from (1.4)-(1.6) is the search for
efficient, unconditionally stable and (at least second order) accurate methods for the sim-
ulation of under-resolved flows. The classic beginning point for such methods, studied
by Caglar [Cag03] and Connors [Con08] for NS-α, is a variational discretization in space
plus the Crank-Nicolson method in time. Suppressing spatial discretization and letting
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un+1/2 := (un+1 + un)/2, for NS-α (1.4)-(1.6) it is given by

un+1 − un

4t
− wn+ 1

2 ×∇× un+ 1
2 − ν4un+ 1

2 +∇pn+ 1
2 = f n+ 1

2 , (1.7)

∇ · un+ 1
2 = 0 , (1.8)

−α2∆wn+ 1
2 + wn+ 1

2 = un+ 1
2 . (1.9)

This is second order accurate for NS-α and nonlinearly, unconditionally stable (take the
inner product of the discrete equations with wn+ 1

2 ). However, in finite element spaces with
NV velocity degrees of freedom and NP pressure degrees of freedom, the method leads to a
large, nonlinear system at each time step with 2NV + NP total degrees of freedom. There
does not appear to be any method for NS-α which preserves these attractive properties and
has significantly less complexity.

On the other hand, because of the structure of the nonlinearity, the NS-ω model (1.1)-
(1.3) admits simple methods which are nonlinearly, unconditionally stable, second order
accurate, linearly implicit (only 1 linear system per time step) and require only NV + NP

total degrees of freedom. Herein we study both the full Crank-Nicolson method for NS-ω
as well as the following attractive variant CNLE (Crank-Nicolson with linear extrapolation,
known for the NSE at least since Baker’s 1976 paper [B76]). Let un+1/2 := (un+1 + un)/2
and Un := 3

2un − 1
2un−1

un+1 − un

4t
− un+ 1

2 ×∇× Un − ν4un+ 1
2 +∇pn+ 1

2 = f n+ 1
2 , and ∇ · un+ 1

2 = 0 . (1.10)

We prove unconditional stability (take the inner product with un+ 1
2 ). It is clearly second

order accurate and linearly implicit (since Un := 3
2un − 1

2un−1 is known from previous
time levels). Further, since Un := 3

2un − 1
2un−1 is known, its average can be directly

computed, uncoupled from the linear equations for advancing in time. We also discuss the
Crank Nicolson quadratic extrapolation (CNQE) in Section 2 and give experiments for it
in Section 4, where Un is extrapolated quadratically as Un := 15

8 un − 10
8 un−1 + 3

8un−2.
The NS-ω regularization (1.1)-(1.3) exactly conserves (under periodic boundaries and

no viscous or external forces) the two key integral invariants for three dimensional fluid flow
(note ‖·‖ and (·, ·) denote the usual L2 norm and inner product): energy, 1

2‖u‖2, and (model)
helicity, (u,∇× u), Proposition 1.1 below. Helicity is a fundamentally important quantity
in turbulent fluid flow. It is a scalar quantity describing rotation that is conserved by the
Euler equations, cascaded through the inertial range in homogeneous, isotropic turbulence,
and provides important information on the topology of vortex filaments [MT92]. Helicity
density has been used as an indicator of coherent structures, and moreover, as an indicator
of low turbulent dissipation. The Pythagorean identity gives

(u · ∇ × u)2 + |u×∇× u|2
|u|2 |∇ × u|2 = 1, (1.11)

which can be interpreted as

helicity2 + nonlinearity2

energy · enstrophy
= 1. (1.12)

Hence at constant energy and enstrophy, high helicity implies small nonlinearity, and con-
versely. The interaction between model’s treatment of energy and helicity impacts its pre-
dictions of a flow’s rotational structures.

The L2 norm and inner product are ‖ · ‖ and (·, ·).
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Proposition 1.1. In the absence of viscosity and external forces (ν = f = 0), and for
periodic boundary conditions, the NS-ω model (1.1)-(1.3) conserves energy, 1

2‖u‖2, and a
model helicity, (u,∇× u): For t > 0,

1
2
‖u(t)‖2 =

1
2
‖u(0)‖2, (1.13)

(u(t),∇× u(t)) = (u(0),∇× u(0)). (1.14)

Proof. The proof for each result begins by setting ν = f = 0 in (1.1). For energy, multiply
by u and integrate over Ω. The nonlinearity and pressure term vanish. This leaves only
1
2

d
dt‖u‖2 = 0. Integrating over time gives the result.

The proof for helicity requires multiplying by ∇× u and integrate over Ω. This leaves
(ut,∇×u) = 0. Integrating over time and using the fact that differential operators (including
the filter) commute under periodic boundary conditions completes the proof.

Many models and regularizations do not exactly conserve (any form of) helicity, [R07],
and this clearly impacts the reliability of their predictions in highly rotational flows and
over longer time intervals. The nonlinearity of NS-ω acts in manner physically consistent
with true fluid flow in that it neither creates nor dissipates either energy or helicity. In ho-
mogeneous, isotropic turbulence, energy and model helicity conservation suggests that both
energy and model helicity in NS-ω cascade from large (input) scales to small scales where
they are dissipated strongly by viscosity ([LST08], and the helicity case follows [LMNR08]).
It is interesting to note that the three dimensional integral invariants for NS-ω are, in some
sense, reversed from those of NS-α. The NS-α model conserves a weaker model energy,
1
2(u, u), than NS-ω, and the usual helicity (u,∇× u).

1.2 Differential Filters in NS-ω and Large Eddy Simulation

Large eddy simulation is concerned with approximation of local, spacial averages in under-
resolved simulations of mixes of laminar, transitional and turbulent flows. Velocity averages
can be defined by a projection into a finite dimensional space (e.g., a finite element velocity
space) as in the Variational Multiscale Method (VMM) of Hughes and co-workers, e.g.,
[HKJ00, HOM01]. Traditionally, velocity averages u in LES are defined by convolution
with a given filter

u(x, t; α) := (gα ? u)(x, t), α = filter radius, typically O(h).

On the surface, there are many choices of filter kernel g(·). However, if the averages are
viewed as containing information of physical meaning, there are already results on accept-
able filters beginning with the famous paper of Koenderink [Koe84], see also Sagaut [S01].
Scale space analysis begins with some basic postulates that any physically reasonable filter
should satisfy. In [Koe84] (see also [Lin94] for interesting developments and applications)
the following is proven.

Theorem 1 (Koenderink [Koe84]). The only filter satisfying the folowing four conditions
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is the Gaussian filter:

linearity: αu + βv = αu + βv

spacial invariance: u(x− a) = u(x− a)

isotropy, for all rotations R : u(x) = R∗u(Rx)
scale invariance or the semigroup property (no preferred size):
if u(x, t) := gα ? u(x, t) (so u := gα ? gα ? u) then u = g√2α ? u.

Thus, there is really only one mathematical correct filter: the Gaussian. Convolution
with the Gaussian is expensive so that in spite of this strong uniqueness result usually other
filters are used. Koenderink’s result indicates that these other filters must be assessed as
approximations to the Gaussian.

Differential filters like (1.3) were proposed for large eddy simulation by Germano [G86].
The close connection of the above differential filter to the Gaussian filter can be seen various
ways, [BIL06]. For example, the Gaussian is the heat kernel. Thus, one way to compute
the exact Gaussian filtered velocity u(x, t) = gα ? u(x, t) is to solve the following evolution
equation:

vs(x, s) = 4v(x, s) for s > 0, and v(x, 0) = u(x),

then set u(x, t) := v(x, s)|s=α2 . Since the averaging radius α is small, α2 is smaller still and
we can reasonably approximate v(x, α2) by one step of backward Euler, leading back to the
differential filter (1.3).

In comparison with the Gaussian, the differential filter is only approximately scale in-
variant. Indeed, if we compute u it fails the semigroup property by O( α4)

u = (−α24+ 1)−1(−α24+ 1)−1u = (−(
√

2α)24+ 1)−1u + O(α4).

1.3 LES vs. Regularization

In regularization modeling, for example Leray and NS-α, one solves a system similar to the
NSE which has better qualitative properties for numerical simulation than the underlying
NSE. As a consequence, the computed solution is simply a regularized approximation of the
NSE solution rather than a local, spacial average of the fluid velocity. The many possible
NSE regularizations can be judged based on (i) accuracy as an approximation of the NSE,
and (ii) fidelity to qualitative properties of the NSE’s velocity.

The first regularization is due to the seminal 1934 work of J. Leray

ut + u · ∇u +∇q − ν∆u = f, and ∇ · u = 0. (1.15)

This is O(α2) consistent with the NSE. Leray proved that a unique solution exists and con-
verges (modulo a subsequence) as the averaging radius αj → 0 [L34a, L34b]. Importantly,
Leray’s regularization is performed so as to neither create nor destroy kinetic energy: if
ν = f = 0 (and under periodic boundary conditions) Leray’s model exactly conserves
kinetic energy.

As noted above, the 3d Euler equations have two important integral invariants: energy
1
2

∫
Ω |u|2dx and helicity

∫
Ω u · ∇ × udx. The interplay between these two are thought to

organize coherent structures in fluid motion. The important step of Camassa and Holm
from (1.15) to NS-α is that by using Leray’s idea with the NSE nonlinearity in rotational
form, a regularization results which exactly conserves (in the appropriate context) both a
model energy and helicity. Based on the associated á priori bounds, a Leray theory (and
beyond) has been established for (1.4)-(1.6) (and as well as for the NS-ω model in [LST08]).
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2 Notation and Preliminaries

This section summarizes the notation, definitions and preliminary lemmas needed. We start
by introducing the following notation. The L2(Ω) norm and inner product will be denoted
by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the Sobolev W k

p (Ω) norms are denoted by
‖ · ‖Lp and ‖ · ‖W k

p
, respectively. For the semi-norm in W k

p (Ω) we use | · |W k
p
. Hk is used

to represent the Sobolev space W k
2 (Ω), and ‖ · ‖k denotes the norm in Hk. For functions

v(x, t) defined on the entire time interval (0, T ), we define (1 ≤ m < ∞)

‖v‖∞,k := ess sup
0<t<T

‖v(t, ·)‖k , and ‖v‖m,k :=
(∫ T

0
‖v(t, ·)‖m

k dt

)1/m

.

In the discrete case we use the analogous norms:

‖|v|‖∞,k := max
0≤n≤M

‖vn‖k , ‖|v1/2|‖∞,k := max
0≤n≤M

‖vn+1/2‖k ,

‖|v|‖m,k :=

(
M∑

n=0

‖vn‖m
k 4t

)1/m

, ‖|v1/2|‖m,k :=

(
M∑

n=0

‖vn+1/2‖m
k 4t

)1/m

.

We consider both the periodic case and the case of internal flow with no slip boundary
conditions. (There is mainly only small notational differences between these two cases in
the analysis.)

In the periodic case, Ω = (0, L)d, d = 2, 3 and pressure and velocity spaces are, respec-
tively,

Q = L2
0(Ω) := {q ∈ L2,

∫

Ω
q = 0},

X = H1
#(Ω) := {v ∈ H1(Ω) ∩ L2

0(Ω) : v is L periodic },

while in the case of internal flow Ω is a regular, bounded, polyhedral domain in Rd and

Q = L2
0(Ω),

X = H1
0 (Ω) := {v ∈ H1(Ω) : v|∂Ω = 0}.

We denote the dual space of X by X?, with the norm ‖ · ‖?. The space of divergence free
functions is denoted

V := {v ∈ X, (∇ · v, q) = 0 ∀q ∈ Q} .

The velocity-pressure finite element spaces Xh ⊂ X, Qh ⊂ Q are assumed to be con-
forming and satisfy the LBBh condition, e.g. [G89]. The discretely divergence free subspace
of Xh is, as usual

V h = {vh ∈ Xh, (∇ · vh, qh) = 0 ∀qh ∈ Qh} .

In addition, we make use of the following approximation properties,[BS94]:

inf
v∈Xh

‖u− v‖ ≤ Chk+1|u|k+1, u ∈ Hk+1(Ω)d,

inf
v∈Xh

‖u− v‖1 ≤ Chk|u|k+1, u ∈ Hk+1(Ω)d,

inf
r∈Qh

‖p− r‖ ≤ Chs+1|p|s+1, p ∈ Hs+1(Ω).
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Taylor-Hood elements (see e.g. [BS94, G89]) are one common example of such a choice for
(Xh, Qh), and are also the elements we use in our numerical experiments.

We employ a skew-symmetric trilinear form that ensures stability of the method.

Definition 2.1. Define b : X ×X ×X → R , by

b(u, v, w) := ((∇× u)× v, w).

We now list important estimates for the b operator necessary in Section 3.

Lemma 2.2. For u, v, w ∈ X, or L∞(Ω) and ∇×u ∈ L∞(Ω), when indicated, the trilinear
term ((∇× u)× v, w) satisfies

|((∇× u)× v, w)| ≤ ‖∇ × u‖‖v‖∞‖w‖, (2.1)
|((∇× u)× v, w)| ≤ ‖∇ × u‖∞‖v‖‖w‖ , (2.2)
|((∇× u)× v, w)| ≤ C0(Ω)‖∇ × u‖‖∇v‖‖∇w‖ , (2.3)
|((∇× u)× v, w)| ≤ C0(Ω)‖v‖1/2‖∇v‖1/2‖∇ × u‖‖∇w‖ . (2.4)

Proof. The first two estimates follow immediately from the definition of b. The proof
of the other two bounds are easily adapted from the usual bounds of the nonlinearity in
non-rotational form.

Since we study discretizations of the three models, we must deal with discrete differential
filters. Continuous differential filters were introduced into turbulence modeling by Germano
[G86, G86b] and used various models and regularizations [CTV05, CHOT05, ILT05, GH03,
GH05], [GL00].

Definition 2.3 (Continuous differential filter). For φ ∈ L2(Ω) and α > 0 fixed, denote the
filtering operation on φ by φ, where φ is the unique solution (in X) of

−α2∆φ + φ = φ. (2.5)

We denote by A := (−α2∆ + I), so A−1v = v. We define next the discrete differential
filter, following Manica and Kaya-Merdan [MKM06].

Definition 2.4 (Discrete differential filter). Given v ∈ L2(Ω), for a given filtering radius
α > 0, vh = A−1

h v is the unique solution in Xh of

α2(∇vh,∇χ) + (vh, χ) = (v, χ) ∀χ ∈ Xh. (2.6)

Definition 2.5. Define the L2 projection Πh : L2(Ω) → Xh and discrete Laplacian operator
∆h : X → Xh in the usual way by

(Πhv − v, χ) = 0 , (∆hv, χ) = −(∇v,∇χ) ∀χ ∈ Xh. (2.7)

With ∆h, we can write vh = (−α2∆h + Πh)−1v and Ah = (−α2∆h + Πh).

Remark 2.6. If Πh is the L2 projection on Xh and Πh
1 the projection on Xh with respect

to to the H1 semi-inner product (grad , grad ) then ∆h = Πh ∆h = ∆h Πh
1 . Further, ∆h is

extended from Xh to X by zero on the orthogonal complement of Xh with respect to (grad
, grad ).
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Remark 2.7. For other (non-rotational) formulations of the nonlinearity, an attractive
alternative is to define the differential filter by a discrete Stokes problem so as to preserve
incompressibility approximately. In this case, given φ ∈ V , φ

h ∈ V h would be defined by

α2(∇φ
h
,∇χ) + (φh

, χ) = (φ, χ) for all χ ∈ V h .

Herein we study (2.6) which seems to be perfectly acceptable when working with the rotational
form of the nonlinearity.

We begin by recalling from [BIL06, MKM06] some basic facts about discrete differential
filters.

Lemma 2.8. For v ∈ X, we have the following bounds for the discretely filtered and ap-
proximately deconvolved v

‖vh‖ ≤ ‖v‖ , ‖∇vh‖ ≤ ‖∇v‖ and ‖∇ × vh‖ ≤ ‖∇v‖ . (2.8)

Proof. The proof of the first part of (2.8) follows from choosing χ = vh in (2.6), and applying
Young’s inequality.

For the second inequality in (2.8), we note that the filter definition can be rewritten
using ∆h as

−α2(∆hvh, χ) + (vh, χ) = (v, χ) ∀χ ∈ Xh.

Choosing χ = ∆hvh and using the definition of ∆h gives

α2‖∆hvh‖2 + ‖∇vh‖2 = −(∇v,∇vh).

Young’s inequality completes the proof.
The last inequality follows from ‖∇ × vh‖ ≤ ‖∇vh‖ and the second inequality.

Lemma 2.9. For φ ∈ X and ∆φ ∈ L2(Ω)

α2||∇(φ− φ
h)||2 + ||φ− φ

h||2 ≤ C inf
vh∈Xh

{α2||∇(φ− vh)||2 + ||φ− vh||2}+ Cα4||∆φ||2.

Proof. The functions φ and φ
h satisfy respectively for any vh ∈ Xh

α2(∇φ
h
,∇vh) + (φh

, vh) = (φ, vh),
α2(∇φ,∇vh) + (φ, vh) = −α2(∆φ, vh) + (φ, vh).

If the error is denoted e := φ− φ
h, subtraction gives for any vh ∈ Xh

α2(∇e,∇vh) + (e, vh) = −α2(∆φ, vh).

The rest of the proof follows standard error analysis of finite element method. Let φ̃ ∈ Xh

be arbitrary and split the error as e = (φ − φ̃) − (φh − φ̃). Rearranging the above error
equation following that splitting, setting vh = φ

h− φ̃ and using the Cauchy-Schwarz-Young
inequality and the triangle inequality completes the proof.

To compress the analysis of both cases, it will be convenient to define two related trilinear
forms that correspond to the regularized models.
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Definition 2.10 ( bα and bω ). Define bα and bω : X ×X ×X → R , as

bα(u, v, w) := ((∇× u)× vh, w), and bω(u, v, w) := ((∇× uh)× v, w).

We shall assume that the solution to the NSE that is approximated by the model is a
strong solution and in particular satisfies u ∈ L2(0, T ;X) ∩ L∞(0, T ; L2(Ω)) ∩ L4(0, T ;X),
p ∈ L2(0, T ;Q), ut ∈ L2(0, T ; X∗) and

(ut, v) + (u · ∇u, v) − (p,∇ · v) + ν(∇u,∇v) = (f, v) ∀v ∈ X, (2.9)
(q,∇ · u) = 0 ∀q ∈ Q. (2.10)

For notational clarity let v(tn+1/2) = v((tn + tn+1)/2) for the continuous variable and
vn+1/2 = (vn + vn+1)/2 for both, continuous and discrete variables.

Algorithm 2.11. [Full CN-FEM for NS-α or NS-ω ]
For b = bα or bω .
Let ∆t > 0, (u0, p0) ∈ (Xh, Qh), f ∈ X∗ and T := M ∆t for M an integer.
For n = 0, 1, 2, · · · ,M − 1, find (uh

n+1, p
h
n+1) ∈ (Xh, Qh) satisfying

1
∆t

(uh
n+1 − uh

n, vh) + b(uh
n+1/2, u

h
n+1/2, v

h)− (P h
n+1/2,∇ · vh)

+ν(∇uh
n+1/2,∇vh) = (fn+1/2, v

h) ∀ vh ∈ Xh, (2.11)

and

for the alpha model : (∇ · uh
n+1

h
, qh) = 0 ∀qh ∈ Qh, (2.12)

for the omega model : (∇ · uh
n+1, q

h) = 0 ∀qh ∈ Qh. (2.13)

Remark 1. Consider the NS-α model. Since the averaged term uh
n+1

h
in bα is nonlocal,

this must be implemented as a coupled system for (uh
n+1, w

h
n+1, p

h
n+1) , where wh

n+1 = uh
n+1

h
,

of the following form

1
∆t

(uh
n+1 − uh

n, vh) + bα(uh
n+1/2,

1
2
wh

n+1 +
1
2
uh

n

h
, vh)

−(P h
n+1/2,∇ · vh) + ν(∇uh

n+1/2,∇vh) = (fn+1/2, v
h) ∀vh ∈ Xh,(2.14)

α2(∇wh
n+1,∇χh) + (wh

n+1, χ
h) = (uh

n+1, χ
h) ∀χh ∈ Xh, (2.15)

(∇ · wh
n+1, q

h) = 0 ∀qh ∈ Qh. (2.16)

Since (Xh, Qh) satisfies the LBBh condition, this is equivalent to

1
∆t

(uh
n+1 − uh

n, vh) + bα(uh
n+1/2,

1
2
wh

n+1 +
1
2
uh

n

h
, vh)

+ν(∇uh
n+1/2,∇vh) = (fn+1/2, v

h) ∀vh ∈ Xh,(2.17)

α2(∇wh
n+1,∇χh) + (wh

n+1, χ
h) = (uh

n+1, χ
h) ∀χh ∈ V h. (2.18)

At each time-step, the full CN method requires the solution of a large, coupled, nonlinear
system whose 1-1 block’s linearization is potentially highly non-symmetric and indefinite.
To simplify the computations, we also consider an extrapolated version of the above, CNLE.
Note that for the CNLE implementation of Algorithm 2.11, a choice must be made of which
nonlinear term is to be extrapolated. Our choice is made based on the following two
considerations:

9



• unconditional energy stability, which implies the ∇ × uh
n+1 term must be the one to

be extrapolated, and

• efficiency, which implies the nonlocal, filtered term should be the one to be extrapo-
lated.

These two constraints can both be satisfied when the ∇ × u term is filtered, which is
the motivation for the precise form of the NS-ω model and its treatment below.

Algorithm 2.12. [Crank-Nicolson Linear Extrapolation Scheme for NS-ω]
Consider the NS-ω model.
Define E(φh

n, φh
n−1) = 3

2φh
n − 1

2φh
n−1 .

Let ∆t > 0, (uh
0 , P h

0 ) ∈ (Xh, Qh), f ∈ X∗ and M := T
∆t and (uh

−1, P
h
−1) = (uh

0 , P h
0 ).

For n = 0, 1, 2, · · · ,M − 1, find (uh
n+1, P

h
n+1) ∈ (Xh, Qh) satisfying

1
∆t

(uh
n+1 − uh

n, vh) + bω(E(uh
n, uh

n−1), u
h
n+1/2, v

h)− (P h
n+1/2,∇ · vh)

+ ν(∇uh
n+1/2,∇vh) = (fn+1/2, v

h) ,∀ vh ∈ Xh, (2.19)

(∇ · uh
n+1, q

h) = 0 , ∀qh ∈ Qh. (2.20)

Note that the non-local, filtered term, ∇×E(uh
n, uh

n−1)
h
, is an explicit and inexpensive

computation on a known function. Each step of the above requires the solution of one linear
(rather than nonlinear for CN) (Oseen like) system in which the 1-1 block has positive
definite symmetric part (rather than possibly both non-symmetric and indefinite for CN).
For CNLE for the NS-ω model, backward Euler suffices for the first time-step. For n = 0,
this is equivalent to (u−1, P−1) constant extrapolation.

Remark 2.13. It is also interesting to consider an analogous algorithm with quadratic
extrapolation which has better stability and accuracy properties. It can be implemented just
as Algorithm 2.12 by replacing the linear extrapolation E(φh

n, φh
n−1) = 3

2φh
n − 1

2φh
n−1 with

E(φh
n, φh

n−1, φ
h
n−2) = 15

8 φh
n− 10

8 φh
n−1 + 3

8φh
n−2. The error in quadratic extrapolation is higher

order than that of the base CN and thus might be preferable for problems involving delicate
solution behavior.

Another possible advantage of NS-ω is that it is a rotational form model. Rotational
form solvers preconditioners have been studied extensively for the Navier-Stokes equations
[LO02],[OR02], and thus the ability for NS-ω to be implemented for efficient large scale
computations could be a feasible extension of such work.

CNLE for the Navier-Stokes equations was first investigated in [B76] by G. Baker. It is
second order in time, unconditionally stable and linearly implicit. The convergence analysis
of CNLE follows closely but it is technically longer than the full CN method that we perform
in Section 3.

Lemma 2.14. Assume u ∈ C0(tn, tn+1;L2(Ω)). If u is twice differentiable in time and
utt ∈ L2((tn, tn+1)× Ω) then

‖un+1/2 − u(tn+1/2)‖2 ≤ 1
48

(∆t)3
∫ tn+1

tn

‖utt‖2 dt . (2.21)

10



If ut ∈ C0(tn, tn+1; L2(Ω)) and uttt ∈ L2((tn, tn+1)× Ω) then

‖un+1 − un

∆t
− ut(tn+1/2)‖2 ≤ 1

1280
(∆t)3

∫ tn+1

tn

‖uttt‖2 dt and (2.22)

if ∇u ∈ C0(tn, tn+1;L2(Ω)) and ∇utt ∈ L2((tn, tn+1)× Ω) then

‖∇(un+1/2 − u(tn+1/2))‖2 ≤ (∆t)3

48

∫ tn+1

tn

‖∇utt‖2 dt . (2.23)

The proof of Lemma 2.14 is based on the Taylor expansion with remainder. It is more of
technical nature and therefore omitted herein. The error analysis uses a discrete Gronwall
inequality, recalled from [HR90], for example.

Lemma 2.15 (Discrete Gronwall Lemma). Let ∆t, H, and an, bn, cn, dn (for integers n ≥ 0)
be nonnegative numbers such that

al + ∆t
l∑

n=0

bn ≤ ∆t
l∑

n=0

dnan + ∆t
l∑

n=0

cn + H for l ≥ 0. (2.24)

Suppose that dn∆t < 1 ∀n. Then,

al + ∆t
l∑

n=0

bn ≤ exp

(
∆t

l∑

n=0

dn

1−∆tdn

)(
∆t

l∑

n=0

cn + H

)
for l ≥ 0. (2.25)

3 Analysis of Full Crank-Nicolson Scheme for the NS-ω Model

In this section, we show that solutions of the CN schemes for both regularizations are
unconditionally stable and well defined. We prove that the CN-FEM is optimally convergent
to solutions of the NSE. (The case of the NS-α model is considerably more delicate, see
Connors [Con08].) This error analysis, already technical, can be extended to the CNLE (or
CNQE) time stepping method.

Lemma 3.1. Consider the NS-ω model and the schemes in algorithms 2.11 and 2.12 (CN
and CNLE, respectively). A solution ul

h, l = 1, . . .M , exists at each time-step. Both schemes
are unconditionally stable: their solutions satisfy the following á priori bound:

‖uh
M‖2 + ν∆t

M−1∑

n=0

‖∇uh
n+1/2‖2 ≤ ‖uh

0‖2 +
∆t

ν

M−1∑

n=0

‖fn+1/2‖2
∗. (3.1)

Proof. The existence of a solution un
h to the schemes in Algorithms 2.11 and 2.12 follows

from the Leray-Schauder Principle [Zei951]. The main step is deriving an á priori estimate,
which can be obtained by setting vh = uh

n+1/2 both in (2.11) and (2.19). The nonlinear
term in the two schemes considered vanishes with this choice. Thus,

1
2∆t

(‖uh
n+1‖2 − ‖uh

n‖2) + ν‖∇uh
n+1/2‖2 ≤ 1

2ν
‖fn+1/2‖2

∗ +
ν

2
‖∇uh

n+1/2‖2 for every n,

i.e.,
1

∆t
(‖uh

n+1‖2 − ‖uh
n‖2) + ν‖∇uh

n+1/2‖2 ≤ 1
ν
‖fn+1/2‖2

∗, for every n.

Summing from n = 0 . . . M − 1 gives the desired result.
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Remark 3.2. Since the kinetic energy and energy dissipation of NS-ω, KEω and εω, take
the usual form, Lemma 3.1 implies

KEω(uh
M ) + ν

∆t

2

M−1∑

n=0

εω(uh
n+1/2) ≤ KEω(uh

0) +
∆t

2ν

M−1∑

n=0

‖fn+1/2‖2
∗. (3.2)

Thus if ν = f = 0, KEω(uh
M ) = KEω(uh

0). Hence Algorithms 2.11 and 2.12 are energy
conserving.

Next we review stability of the CN method for NS-α. For NS-α it is stable with respect
to a modified kinetic energy with a modified energy dissipation, given by

KEα(u) :=
1
2
‖uh‖2 +

α2

2
‖∇uh‖2, εα(u) := ν||∇uh||2 + να2||4huh||2.

Discrete versions of these two are also exactly conserved by the fully discrete schemes. We
begin by considering the case of NS-α.

Lemma 3.3. Consider Algorithm 2.11. The scheme (2.11)-(2.12) is well defined and un-
conditionally stable. A solution ul

h, l = 1, . . . M , exists at each time-step that satisfies the
following á priori bound:

KEα(uh
M ) +

∆t

2

M−1∑

n=0

εα(uh
n+1/2) ≤ KEα(uh

0) +
∆t

2ν

M−1∑

n=0

‖fn+1/2‖2
∗, (3.3)

If ν = f = 0 then,
KEα(uh

M ) = KEα(uh
0). (3.4)

Proof. The key for existence and stability is the á priori estimate and the key for the á
priori estimate is the exact choice of test function which makes the nonlinear term vanish.

Thus we first note that choosing vh = uh
n+1/2

h
does this since

b∗α(uh
n+1/2, u

h
n+1/2, u

h
n+1/2

h
) = 0 .

With this choice, and qh = P h
n+1/2, we have for NS-alpha:

1
∆t

(uh
n+1 − uh

n, uh
n+1/2

h
)− (P h

n+1/2,∇ · uh
n+1/2

h
) + ν(∇uh

n+1/2,∇uh
n+1/2

h
) = (fn+1/2, u

h
n+1/2

h
) ,

(∇ · uh
n+1/2

h
, P h

n+1/2) = 0,

Adding the equations the Bernoulli pressure term drops out as well. We thus obtain

1
∆t

(uh
n+1 − uh

n, uh
n+1/2

h
) + ν(∇uh

n+1/2,∇uh
n+1/2

h
) = (fn+1/2, u

h
n+1/2

h
).

Consider the viscous term. This can be written as (using the fact that the operators
involved commute on Xh)

ν(∇uh
n+1/2,∇uh

n+1/2

h
) = −ν(4huh

n+1/2, u
h
n+1/2

h
) = −ν(4hAhuh

n+1/2

h
, uh

n+1/2

h
)

= ν(∇uh
n+1/2

h
,∇uh

n+1/2

h
) + να2(4huh

n+1/2

h
,4huh

n+1/2

h
)

= ν||∇uh
n+1/2

h||2 + να2||4huh
n+1/2

h||2

= εα(uh
n+1/2),

12



Similarly, the time difference term can be rewritten as

1
∆t

(uh
n+1 − uh

n, uh
n+1/2

h
) =

1
∆t

(Ahuh
n+1

h −Ahuh
n

h
, uh

n+1/2

h
)

=
1

∆t
(uh

n+1

h − uh
n

h
, uh

n+1/2

h
) +

α2

∆t
(∇uh

n+1

h −∇uh
n

h
,∇uh

n+1/2

h
)

=
1

2∆t
(‖uh

n+1

h‖2 − ‖uh
n

h‖2) +
α2

2∆t
(‖∇uh

n+1

h‖2 − ‖∇uh
n+1

h‖2)

=
1

∆t
(KEα(uh

n+1)−KEα(uh
n)).

Thus,

1
∆t

(KEα(uh
n+1)−KEα(uh

n)) + εα(uh
n+1/2) ≤

1
2ν
‖fn+1/2‖2

∗ +
ν

2
‖∇uh

n+1/2

h‖2 , for every n,

i.e.,
1

∆t
(KEα(uh

n+1)−KEα(uh
n)) +

1
2
εα(uh

n+1/2) ≤
1
2ν
‖fn+1/2‖2

∗.

Summing from n = 0 . . .M−1 gives the desired result. The á priori bound and an argument
using the Leray-Schauder fixed point theorem yields existence of the approximate solution
at each time level as well.

Our main convergence result for the discrete NS-ω model is given next.

Theorem 3.4 (Convergence for discrete NS-omega regularization). Consider the discrete
NS-ω model. Let (u(t), P (t)) be a smooth, strong solution of the NSE satisfying either no-
slip or periodic with zero-mean boundary conditions such that the norms of (u(t), P (t)) on
the right hand side of (3.5)-(3.6) are finite. Suppose (uh

0 , P h
0 ) are the Vh and Qh interpolants

of (u(0), P (0)), respectively. Suppose (uh, P h) is the CN approximation (2.11)-(2.13) of the
NS-ω model. Then for 4t small enough there is a constant C = C(u, P ) such that

‖|u − uh|‖∞,0 ≤ F (4t, h, α) + Chk+1‖|u|‖∞,k+1 , (3.5)
(

ν4t
M−1∑

n=0

‖∇(un+1/2 − (uh
n+1 + uh

n)/2)‖2

)1/2

≤ F (4t, h, α) + Cν1/2(4t)2‖∇utt‖2,0

+Cν1/2hk‖|u|‖2,k+1 , (3.6)

where

F (4t, h, α) := C∗
{

ν−1/2 hk+1/2
(‖|u|‖2

4,k+1 + ‖|∇u|‖2
4,0

)
+ ν1/2hk‖|u|‖2,k+1

+ν−1/2hk
(
‖|u|‖2

4,k+1 + ν−1/2(‖uh
0‖+ ν−1/2‖|f |‖2,?)

)
+ ν−1/2hs+1‖|P1/2|‖2,s+1

+ν−1/2α2‖ |u| ‖4,1‖ |u| ‖4,3 + (∆t)2
(
‖uttt‖2,0 + ν−1/2‖Ptt‖2,0 + ‖ftt‖2,0

+ν1/2‖∇utt‖2,0 + ν−1/2‖∇utt‖2
4,0

+ν−1/2‖|∇u|‖2
4,0 + ν−1/2‖|∇u1/2|‖2

4,0

)}
. (3.7)

Remark 3.5. The constant C∗ arising from Gronwall’s lemma depends on ν like exp(ν−3T )
and the smallness assumption on the time-step is 4t < C(ν−3‖|∇u|‖4

∞,0 +1)−1. We believe
that this last condition on 4t is improvable.
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Corollary 3.6. Suppose that in addition to the assumptions made in Theorem 3.4, the finite
element spaces Xh and Qh are composed of Taylor-Hood elements. Suppose u is smooth in
the sense that the indicated norms on the right hand side of (3.5)-(3.6) are finite for k = 2
and s = 1. Then the error in the CN scheme for the model (2.11)-(2.13), is of the order

‖|u− uh|‖∞,0 +

(
ν∆t

M∑

n=1

‖∇(un+1/2 − uh
n+1/2)‖2

)1/2

= O(h2 + ∆t2 + α2). (3.8)

Proof of Theorem 3.4. Note that for u, v, w, ∈ X, by adding and subtracting terms, we
can write

bω(u, v, w) = ((∇× u)× v, w) − filtering error,

specifically

bω(u, v, w) = ((∇× u)× v, w) − ((∇× u−∇× uh)× v, w),

Define the filtering error accordingly:

FE = FEω(u, v, w) := ((∇× u−∇× uh)× v, w).

At time tn+1/2, the solution of the NSE (u, P ) satisfies

(
un+1 − un

∆t
, vh) + bω(un+1/2, un+1/2, v

h) + ν(∇un+1/2,∇vh)− (Pn+1/2,∇ · vh)

= (fn+1/2, v
h) + Intp(un, Pn; vh), (3.9)

for all vh ∈ V h. The term Intp(un, Pn; vh) collects the interpolation error, the above filtering
error and the consistency error. It is given by

Intp(un, pn; vh) =
(

un+1 − un

∆t
− ut(tn+1/2), v

h

)
+ ν(∇un+1/2 − ∇u(tn+1/2),∇vh)

+bω(un+1/2, un+1/2, v
h)− bω(u(tn+1/2), u(tn+1/2), v

h)

−FE(un+1/2, un+1/2, v
h)

−(Pn+1/2 − P (tn+1/2),∇ · vh) + (f(tn+1/2)− fn+1/2, v
h) . (3.10)

Subtracting (3.9) from (2.11) and letting en = un − uh
n we have

1
∆t

(en+1 − en, vh) + bω(un+1/2, un+1/2, v
h)− bω(uh

n+1/2, u
h
n+1/2, v

h)

+ ν(∇en+1/2,∇vh) = (Pn+1/2,∇ · vh) + Intp(un, pn; vh) , ∀vh ∈ V h. (3.11)

Decompose the error as en = (un − Un) − (uh
n − Un) := ηn − φh

n where φh
n ∈ V h, and U is

the L2 projection of u in V h. Setting vh = φh
n+1/2 in (3.11) and using (q,∇ · φn+1/2) = 0

for all q ∈ Qh we obtain

(φh
n+1 − φh

n, φh
n+1/2) + ν4t‖∇φh

n+1/2‖+4t bω(uh
n+1/2, en+1/2, φ

h
n+1/2)

+4t bω(en+1/2, un+1/2, φ
h
n+1/2) = (ηn+1 − ηn, φh

n+1/2) +4tν(∇ηn+1/2,∇φh
n+1/2)

+4t(Pn+1/2 − q,∇ · φh
n+1/2) +4t Intp(un, pn; vh) , (3.12)
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i.e.

1
2
(‖φh

n+1‖ − ‖φh
n‖) + ν4t‖∇φh

n+1/2‖ = (ηn+1 − ηn, φh
n+1/2) +4tν(∇ηn+1/2,∇φh

n+1/2)

−4t bω(ηn+1/2, un+1/2, φ
h
n+1/2) +4t bω(φh

n+1/2, un+1/2, φ
h
n+1/2)

−4t bω(uh
n+1/2, ηn+1/2, φ

h
n+1/2) +4t(Pn+1/2 − q,∇ · φh

n+1/2)

+4t Intp(un, pn; φh
n+1/2) . (3.13)

We now bound the terms in the RHS of (3.13) individually. According to the choice of
U , (ηn+1 − ηn, φh

n+1/2) = 0. The Cauchy-Schwarz and Young’s inequalities give

ν4t(∇ηn+1/2,∇φh
n+1/2) ≤ ν4t‖∇ηn+1/2‖ ‖∇φh

n+1/2‖

≤ ν∆t

12
‖∇φh

n+1/2‖2 + Cν∆t‖∇ηn+1/2‖2. (3.14)

4t(Pn+1/2 − q,∇ · φh
n+1/2) ≤ C4t‖Pn+1/2 − q‖ ‖∇φh

n+1/2‖

≤ ν∆t

12
‖∇φh

n+1/2‖2 + C4tν−1‖Pn+1/2 − q‖2 . (3.15)

Lemmas 2.2, 2.8 and standard inequalities give

4t bω(ηn+1/2, un+1/2, φ
h
n+1/2)

≤ C∆t‖∇ηn+1/2
h‖ ‖∇un+1/2‖ ‖∇φh

n+1/2‖
≤ C∆t‖∇ηn+1/2‖ ‖∇un+1/2‖ ‖∇φh

n+1/2‖

≤ ν4t

12
‖∇φh

n+1/2‖2 + C4t ν−1 ‖∇ηn+1/2‖2‖∇un+1/2‖2 . (3.16)

4t bω(φh
n+1/2, un+1/2, φ

h
n+1/2) = 4t ((∇× φh

n+1/2

h
)× un+1/2, φ

h
n+1/2)

≤ C4t‖∇ × φh
n+1/2

h‖ ‖∇un+1/2‖‖φh
n+1/2‖1/2 ‖∇φh

n+1/2‖1/2

≤ C4t‖φh
n+1/2‖1/2 ‖∇φh

n+1/2‖3/2 ‖∇un+1/2‖

≤ ν4t

24
‖∇φh

n+1/2‖2 + C4t ν−3‖φh
n+1/2‖2 ‖∇un+1/2‖4 . (3.17)

The final trilinear term requires a bit more effort. Begin by splitting the first entry of
this term by adding and subtracting un+1/2, followed by rewriting the resulting error term
as pieces inside and out of the finite element space.

4tbω(uh
n+1/2, ηn+1/2, φ

h
n+1/2) = 4tbω(ηn+1/2, ηn+1/2, φ

h
n+1/2)

+4tbω(φh
n+1/2, ηn+1/2, φ

h
n+1/2) +4tbω(un+1/2, ηn+1/2, φ

h
n+1/2). (3.18)

We bound each of the terms on the right hand side of (3.18) using the same inequalities
and lemmas as above:

4tbω(ηn+1/2, ηn+1/2, φ
h
n+1/2) ≤ 4t‖∇ × ηn+1/2

h‖‖∇ηn+1/2‖‖∇φh
n=1/2‖

≤ 4t‖∇ηn+1/2‖2‖∇φh
n+1/2‖

≤ ν4t

24
‖∇φh

n+1/2‖2 + C4tν−1‖∇ηn+1/2‖4 (3.19)
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4tbω(φh
n+1/2, ηn+1/2, φ

h
n+1/2)

≤ C4t‖∇φh
n+1/2‖3/2‖∇ηn+1/2‖‖φh

n+1/2‖

≤ ν4t

24
‖∇φh

n+1/2‖2 + C4tν−3‖∇ηn+1/2‖4‖φh
n+1/2‖2 (3.20)

4tbω(un+1/2, ηn+1/2, φ
h
n+1/2)

≤ 4t‖∇ × un+1/2
h‖‖∇ηn+1/2‖‖∇φh

n+1/2‖

≤ ν4t

24
‖∇φh

n+1/2‖2 + C4tν−1‖∇ηn+1/2‖2‖∇un+1/2‖2 (3.21)

Combining (3.14)-(3.21) and summing from n = 0 to M − 1 (assuming that ‖φh
0‖ = 0)

reduces (3.13) to

‖φh
M‖2 + ν4t

M−1∑

n=0

‖∇φh
n+1/2‖2

≤ C4t{
M−1∑

n=0

Cν−3(‖∇un+1/2‖4 + ‖∇ηn+1/2‖4) ‖φh
n+1/2‖2 (3.22)

+
M−1∑

n=0

(
(ν + ν−1)‖∇ηn+1/2‖2 + ν−1‖∇ηn+1/2‖4

)

+
M−1∑

n=0

ν−1‖ηn+1/2‖ ‖∇ηn+1/2‖‖∇un+1/2‖2

+
M−1∑

n=0

‖∇ × uh
n+1/2

h‖ ‖∇ηn+1/2‖ ‖φh
n+1/2‖

1
2 ‖∇φh

n+1/2‖
1
2

+
M−1∑

n=0

ν−1‖Pn+1/2 − q‖2 +
M−1∑

n=0

|Intp(un, pn;φh
n+1/2)| }. (3.23)

Now, we continue to bound the terms on the RHS of (3.23). We have that

4t
M−1∑

n=0

Cν‖∇ηn+1/2‖2 ≤ 4tC(ν + ν−1)
M∑

n=0

‖∇ηn‖2 ≤ 4tC(ν + ν−1)
M∑

n=0

h2k|un|2k+1

≤ C(ν + ν−1)h2k‖|u|‖2
2,k+1, (3.24)

and similarly,

4t
M−1∑

n=0

Cν−1‖∇ηn+1/2‖4 ≤ 4tCν−1
M∑

n=0

‖∇ηn‖4 ≤ 4tCν−1
M∑

n=0

h4k|un|4k+1

≤ Cν−1h4k‖|u|‖4
2,k+1. (3.25)
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For the term

4t

M−1∑

n=0

Cν−1‖∇ηn+1/2‖2‖∇un+1/2‖2

≤ Cν−14th2k
M−1∑

n=0

(|un+1|2k+1 + |un|2k+1)‖∇un+1/2‖2

≤ Cν−14th2k
(‖u‖4

4,k+1 + ‖∇u‖4
4,0

)
. (3.26)

¿From (2.14),

4t
M−1∑

n=0

Cν−1‖Pn+1/2 − q‖2 ≤ Cν−14t
M−1∑

n=0

‖P (tn+1/2)− q‖2 + ‖Pn+1/2 − P (tn+1/2)‖2

≤ Cν−1

(
h2s+24t

M−1∑

n=0

‖P (tn+1/2)‖2
s+1 +4t

M−1∑

n=0

1
48

(4t)3
∫ tn+1

tn

‖ptt‖2 dt

)

≤ Cν−1
(
h2s+2‖|p1/2|‖2

2,s+1 + (4t)4‖ptt‖2
2,0

)
(3.27)

We now bound the terms in Intp(un, pn; φh
n+1/2). Using Cauchy-Schwarz and Young’s

inequalities, Taylor’s theorem, and Lemmas 2.8 and 2.9,
(

un+1 − un

∆t
− ut(tn+1/2), φ

h
n+1/2

)

≤ 1
2
‖φh

n+1/2‖2 +
1
2
‖un+1 − un

∆t
− ut(tn+1/2)‖2

≤ 1
2
‖φh

n+1‖2 +
1
2
‖φh

n‖2 +
1
2

(∆t)3

1280

∫ tn+1

tn

‖uttt‖2 dt , (3.28)

(Pn+1/2 − P (tn+1/2),∇ · φh
n+1/2)

≤ ε1ν‖∇φh
n+1/2‖2 + C ν−1‖Pn+1/2 − P (tn+1/2)‖2

≤ ε1ν‖∇φh
n+1/2‖2 + C ν−1 (∆t)3

48

∫ tn+1

tn

‖ptt‖2 dt , (3.29)

(f(tn+1/2)− fn+1/2, φ
h
n+1/2)

≤ 1
2
‖φh

n+1/2‖2 +
1
2
‖f(tn+1/2)− fn+1/2‖2

≤ 1
2
‖φh

n+1‖2 +
1
2
‖φh

n‖2 +
(∆t)3

48

∫ tn+1

tn

‖ftt‖2 dt , (3.30)

ν(∇un+1/2 − ∇u(tn+1/2),∇φh
n+1/2)

≤ ε2ν ‖∇φh
n+1/2‖2 + C ν‖∇un+1/2 − ∇u(tn+1/2)‖2

≤ ε2ν ‖∇φh
n+1/2‖2 + C ν

(∆t)3

48

∫ tn+1/2

tn

‖∇utt‖2 dt , (3.31)
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bω(un+1/2, un+1/2, φ
h
n+1/2)− bω(u(tn+1/2), u(tn+1/2), φ

h
n+1/2)

= bω(un+1/2 − u(tn+1/2), un+1/2, φ
h
n+1/2) + bω(u(tn+1/2), un+1/2 − u(tn+1/2), φ

h
n+1/2)

≤ C ‖∇ × (un+1/2 − u(tn+1/2))
h‖ ‖∇φh

n+1/2‖
(‖∇un+1/2‖ + ‖∇u(tn+1/2)‖

)

≤ C ‖∇(un+1/2 − u(tn+1/2))‖ ‖∇φh
n+1/2‖

(‖∇un+1/2‖ + ‖∇u(tn+1/2)‖
)

≤ C ν−1
(‖∇un+1/2‖2 + ‖∇u(tn+1/2)‖2

) (∆t)3

48

∫ tn+1

tn

‖∇utt‖2 dt + ε3ν‖∇φh
n+1/2‖2

≤ C ν−1 (∆t)3

48

(∫ tn+1

tn

2(‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4) dt

+
∫ tn+1

tn

‖∇utt‖4 dt

)
+ ε3ν‖∇φh

n+1/2‖2

≤ C ν−1 (∆t)4(‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4)

+C ν−1 (∆t)3
∫ tn+1

tn

‖∇utt‖4 dt + ε3ν‖∇φh
n+1/2‖2 . (3.32)

Next we will bound the filtering error using the definition of the discrete filter.

FE ≤
∣∣∣(∇× un+1/2 −∇× un+1/2

h × un+1/2, φ
h
n+1/2)

∣∣∣
≤ C‖∇ × (un+1/2 − un+1/2

h)‖‖∇un+1/2‖‖∇φh
n+1/2‖

≤ ε4ν‖∇φh
n+1/2‖2 + Cν−1α4‖∇un+1/2‖2‖∇∆hun+1/2

h‖2

≤ ε4ν‖∇φh
n+1/2‖2 + Cν−1α4‖∇un+1/2‖2

∣∣un+1/2

∣∣2
3

(3.33)

Combine (3.28)-(3.33) to obtain

∆t
M−1∑

n=0

|Intp(un, pn; φh
n+1/2)| ≤ ∆t C‖φh

n+1‖2 + (ε1 + ε2 + ε3 + ε4)∆t ν‖∇φh
n+1/2‖2

+C(∆t)4
(‖uttt‖2

2,0 + ν−1‖ptt‖2
2,0 + ‖ftt‖2

2,0

+ν‖∇utt‖2
2,0 + ν−1‖∇utt‖4

4,0

+ν−1‖|∇u|‖4
4,0 + ν−1‖|∇u1/2|‖4

4,0

)
. (3.34)

Let ε1 = ε2 = ε3 = ε4 = 1/12 and with (3.24)-(3.27), (3.34), from (3.23) we obtain

‖φh
M‖2 + ν4t

M−1∑

n=0

‖∇φh
n+1/2‖2

≤ 4t

M−1∑

n=0

C(ν−3‖∇un+1/2‖4 + 1) ‖φh
n+1/2‖2 + Cνh2k‖|u|‖2

2,k+1

+Cν−1 h2k+1
(‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)

+Cν−1h2k
(
‖|u|‖4

4,k+1 + ν−1(‖uh
0‖2 + ν−1‖|f |‖2

2,?)
)

+ Cν−1h2s+2‖|p1/2|‖2
2,s+1

+Cν−1α4‖ |u| ‖2
4,1‖ |u| ‖2

4,3

+C(∆t)4
(‖uttt‖2

2,0 + ν−1‖ptt‖2
2,0 + ‖ftt‖2

2,0

+ν‖∇utt‖2
2,0 + ν−1‖∇utt‖4

4,0

+ν−1‖|∇u|‖4
4,0 + ν−1‖|∇u1/2|‖4

4,0

)
. (3.35)
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Hence, with4t sufficiently small, i.e. 4t < C(ν−3‖|∇u|‖4
∞,0+1)−1, from Gronwall’s Lemma

(see Lemma 2.15), we have

‖φh
M‖2 + ν4t

M−1∑

n=0

‖∇φh
n+1/2‖2

≤ C∗
{

ν−1 h2k+1
(‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)
+ νh2k‖|u|‖2

2,k+1

+ν−1h2k
(
‖|u|‖4

4,k+1 + ν−1(‖uh
0‖2 + ν−1‖|f |‖2

2,?)
)

+ ν−1h2s+2‖|p1/2|‖2
2,s+1

+Cν−1α4‖ |u| ‖2
4,1‖ |u| ‖2

4,3

+(∆t)4
(‖uttt‖2

2,0 + ν−1‖ptt‖2
2,0 + ‖ftt‖2

2,0

+ν‖∇utt‖2
2,0 + ν−1‖∇utt‖4

4,0

+ν−1‖|∇u|‖4
4,0 + ν−1‖|∇u1/2|‖4

4,0

) }
. (3.36)

where C∗ = Cexp(Cν−3T )
Estimate (3.5) then follows from the triangle inequality and (3.36).
To obtain (3.6), we use (3.36) and

‖∇
(
u(tn+1/2)− (uh

n+1 + uh
n)/2

)
‖2

≤ ‖∇(u(tn+1/2)− un+1/2)‖2 + ‖∇ηn+1/2‖2 + ‖∇φh
n+1/2‖2

≤ (4t)3

48

∫ tn+1

tn

‖∇utt‖2 dt + Ch2k|un+1|2k+1 + Ch2k|un|2k+1 + ‖∇φh
n+1/2‖2 .

4 Numerical Experiments

4.1 Convergence Rate Verification

Our first test is designed to test (and does confirm) the predicted rates of convergence.
We use the software FreeFem++ [HePi] to run the numerical tests. To test the predicted
convergence rates for CN, the models are discretized with the full CN method, the nonlinear
system was solved by a fixed point iteration and discretized in space using the FEM with
the Taylor-Hood element (continuous piecewise quadratic polynomials for the velocity and
linears for the pressure). Using the same method for both also allows a fair comparison of
NS-α and NS-ω.

The Chorin vortex decay problem is an interesting test problem in which the true so-
lution is known. It can be found in Chorin [Cho68] and was also used by Tafti [Tafti] and
John and Layton [JL02]. The prescribed solution in Ω = (0, 1)× (0, 1) has the form

u1(x, y, t) = − cos(nπx) sin(nπy)e−2n2π2t/τ

u2(x, y, t) = sin(nπx) cos(nπy)e−2n2π2t/τ

p(x, y, t) = −1
4
(cos(2nπx) + cos(2nπx))e−2n2π2t/τ

When the relaxation time τ = Re, this is a solution of the NSE with f = 0, consisting of
an n× n array of oppositely signed vortices that decay as t →∞.
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In our test, we choose n = 1, 4t = 0.005, T = 1 and α = h = 1/m, where m
is the number of subdivisions of the interval (0, 1). The results for the NS-ω model are
presented in Table 1. The convergence rate is calculated from the error at two successive
values of h in the usual manner by postulating e(h) = Chβ and solving for β via β =
ln(e(h1)/e(h2))/ ln(h1/h2).

From the table we see the convergence rate approaches the second order predicted for
‖|∇u−∇uh|‖2,0. We also see what appears to be an L2 lift for ‖|u− uh|‖∞,0.

m ‖|u− uh|‖∞,0 rate ‖|∇u−∇uh|‖2,0 rate
8 1.3974 · 10−1 5.03788
16 4.06505 · 10−2 1.78 3.36582 0.58
24 1.70328 · 10−2 2.15 2.27963 0.96
32 8.5897 · 10−3 2.38 1.6152 1.19
40 4.81706 · 10−3 2.59 1.18214 1.40
48 2.90948 · 10−3 2.76 8.85739 · 10−1 1.58
56 1.85706 · 10−3 2.91 6.76137 · 10−1 1.75
64 1.23504 · 10−3 3.05 5.24409 · 10−1 1.90
72 8.48737 · 10−4 3.18 4.12513 · 10−1 2.04

Table 1: Errors and convergence rates for the NS-omega model at Re = 105.

4.2 Algorithm Runtime Comparison

The main motivation for computing with NS-ω versus NS-α was for more efficiency, but
not at the cost of less accuracy. In the next experiment, we compute the CN NS-α scheme
(2.11),(2.12) and the CN NS-ω scheme (2.11),(2.13) for the Chorin problem with the same
parameters as used in the simulation presented in Table 1, and with Re = 100. Shown
in Table 2 are runtimes and in Tables 3,4 errors for both of these algorithms, as well as
runtimes and errors for the CNLE and CNQE schemes for NS-ω (as discussed above, such
schemes are not possible for NS-α).

Table 2 shows, as expected, that the CN scheme for CN NS-ω is significantly faster than
that for NS-α. This is no surprise since it generates much smaller matrices and is stable
in a stronger norm. It is more interesting that in Tables 3 and 4 we can observe that CN
NS-ω and two linearizations of it (CNLE and CNQE) are also much more accurate than
the expensive NS-α scheme.

m NS-Omega NS-alpha NS-Omega CNLE NS-omega CNQE
4 25.45 89.85 13.86 14.06
8 89.06 278.41 49.80 50.687
16 361.27 1117.48 205.75 206.27
32 1509.67 4161.5 830.015 840.78
64 6883.17 22557.7 3787.27 3948.25

Table 2: Run times of models at Re = 100.
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m NS-Omega NS-alpha NS-Omega CNLE NS-omega CNQE
4 5.5263 · 10−2 8.54457 · 10−1 5.53164 · 10−2 5.53156 · 10−2

8 7.68681 · 10−3 2.17741 · 10−1 7.69444 · 10−3 7.69427 · 10−3

16 1.52416 · 10−3 5.36912 · 10−2 1.52558 · 10−3 1.52553 · 10−3

32 2.19401 · 10−4 1.30726 · 10−2 2.19642 · 10−4 2.19637 · 10−4

64 2.39093 · 10−5 3.2016 · 10−3 2.39978 · 10−5 2.39979 · 10−5

Table 3: The ‖|u− uh|‖∞,0 errors at Re = 102.

21



m NS-Omega NS-alpha NS-Omega CNLE NS-omega CNQE
4 1.10152 7.30353 1.10395 1.1039
8 2.97759 · 10−1 2.13637 2.98372 · 10−1 2.98329 · 10−1

16 5.32635 · 10−2 6.86788 · 10−1 5.33942 · 10−2 5.33945 · 10−2

32 8.18802 · 10−3 2.31259 · 10−1 8.2195 · 10−3 8.24665 · 10−3

64 1.22089 · 10−3 7.97553 · 10−2 1.2308 · 10−3 1.24955 · 10−3

Table 4: The ‖|∇u−∇uh|‖2,0 errors at Re = 102.

4.3 Flow around a cylinder

Our final numerical experiment is for two dimensional under-resolved flow around a cylinder.
This is a well known benchmark problem taken from Shäfer and Turek [ST96]. It is not
turbulent but does have interesting features. The flow patterns are driven by interaction of
a fluid with a wall. Such flows are critical if regularizations (and LES models too) are to
be useful for real, industrial type flows. It is also interesting since success and failure are
clear (vortex street or not) and thus comparison of higher order statistics is not necessary
to reach a clear conclusion.

The time dependent inflow and outflow profile are

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41− y)

u2(0, y, t) = u2(2.2, y, t) = 0.

No slip boundary conditions are prescribed along the top and bottom walls and the initial
condition is u(x, y, 0) = 0. The viscosity is ν = 10−3 and the external force f = 0. The
Reynolds number of the flow, based on the diameter of the cylinder and on the mean velocity
inflow is 0 ≤ Re ≤ 100. Freefem provides 3 meshes for testing this problem, the finest of
which is able to resolve the problem for the Navier-Stokes equations. These are shown in
Figure 1. The filtering radius α is chosen to be the average element length of the respective
mesh.
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Figure 1: Shown below are three levels of mesh refinement provided by Freefem for com-
puting flow around a cylinder. The meshes provide, respectively, 3,975, 14,455, and 56,702
degrees of freedom for the computations.

For this setting, it is expected that, as the flow increases, from time t = 2 to t = 4, two
vortices start to develop behind the cylinder. Between t = 4 and t = 5, the vortices should
separate from the cylinder, so that a vortex street develops, and they continue to be visible
through the final time t = 8. This can be seen in Figure 2, which is the solution for resolved
Navier-Stokes equations on mesh 3.

However, we were unable to obtain similar results for NS-α or NS-ω. Regularizations
often give approximate solutions that look like NSE solutions at lower Reynolds numbers
(rather than restrictions of the fine mesh solutions to coarser meshes). Some of this behavior
is observed for the NS-α and NS-ω on the coarser meshes. For NS-α, we were only able to
get results for mesh 1, because we were unable to make the nonlinear iteration converge for
the finer meshes. The flow resulting from NS-α on mesh 1 at time t = 8 is shown in Figure
4, and does not capture the correct flow dynamics. Mesh 2 results for NS-ω are presented
for t = 8 in Figure 3, and it can be seen that it was also unable to capture the correct flow
behavior.

Our goal in this test has been to make the models fail on the coarser meshes. Since
we believe understanding the limitations of a model are just as important (if not more so)
as knowing what it does well, we believe presenting these shortcomings are perhaps more
important than showing another similar success.
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Figure 2: NSE Rotational Form, Formation of a vortex street, times 2,4,5,6,7,8, dt=0.005
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Figure 3: NS-ω model computed on mesh 2 at time t=8, dt=0.005
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Figure 4: NS-α model computed on mesh 1 at time t=8, dt=0.005
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5 Conclusions and Future Directions

Reduced models of fluid motion exist as intermediate steps in under-resolved flow simu-
lations. Thus, within any approach to flow modeling the pairing of efficient algorithms
with interesting models must be considered as part of the solution process going from fluid
phenomena to numerical simulation. Considering possible combinations leads to interesting
developments in continuum models as well as algorithms. We have considered one such de-
velopment herein. The form of (1.1)-(1.3), its integral invariants, and its development from
the deconvolution and NS-α circle of ideas suggest some possibilities for future progress.
Three natural ones are synthesis of NS alpha and NS-ω models, higher accuracy in modeling
through deconvolution and enhanced scale truncation through combination with VMM /
time relaxation ideas.

Synthesis of NS-α and ω models. Although our intuition is the contrary, further
study of (1.1)-(1.3) and (1.4)-(1.6) could indicate that they perform well in different flow
regions. If this is the case it might be valuable to study combinations and self-adaptive
local transition between the models. A simple combination, preserving attractive theoretical
properties is given by

ut − u×∇× u +∇q − ν∆u = f, (5.1)

∇ · u = 0, and − α2∆u + u = u. (5.2)

An interesting possibility is to include a switching parameter1, 0 ≤ θ(x, t) ≤ 1, and consider

ut − [θu + (1− θ)u]×∇× [θu + (1− θ)u] +∇q − ν∆u = f, (5.3)

∇ · [θu + (1− θ)u] = 0, and − α2∆u + u = u. (5.4)

This possibility must include determination of a method for self-adaptively switching be-
tween models locally, i.e., determining θ.

The NS-ω-deconvolution models. Computational experience of many years in CFD
affirms that accuracy is still important. Two difficulties with (1.1)-(1.3) and (1.4)-(1.6) are
that (i) low model accuracy of only O(α2) , and (ii) the differential / Helmholz filter (1.3)
does not truncate small scales effectively enough. One solution to both difficulties (following
its success in the Leray-deconvolution models [LMNR08b] is to study NS-ω-deconvolution
models. To avoid extra notation, we give the first nontrivial example.

CNLE uses linear time extrapolation: u(tn+1) = 2u(tn)− u(tn−1) + O(4t2) . A similar
extrapolation can be used in scale space as a deconvolution operator: u = 2u− u + O(α4).
Calling D1u := 2u−u it is a remarkable fact that not only does D1u approximate u to higher
order but it also truncates small scales much more effectively than u, e.g., [LMNR08b]. The

1Included in a way to ensure the possibility of a robust mathematical theory.

25



NS-ω-deconvolution models are then (with D denoting the deconvolution operator)

ut − u×∇×Du +∇q − ν∆u = f, (5.5)

∇ · u = 0, and − α2∆u + u = u, (5.6)

and CNLE algorithms preserve their attractive properties for the entire family of deconvo-
lution regularizations: with Un := 3

2un − 1
2un−1

un+1 − un

4t
− un+ 1

2 ×∇× (DUn)− ν4un+ 1
2 +∇pn+ 1

2 = f n+ 1
2 , and ∇ · un+ 1

2 = 0 . (5.7)

The deconvolution operator involves repeated filtering. Efficiency is preserved if, as here, it
acts on a velocity known from previous time levels.

Scale truncation, eddy viscosity, VMMs and time relaxation. One basic diffi-
culty shared by (1.1)-(1.3) and (1.4)-(1.6), e.g., [FHT01],[LST08], is that scale truncation
is insufficient. While the model’s microscales, ηmodel, (as predicted by turbulence phe-
nomenology) is larger that the NSE microscale, ηNSE , it is far larger than the filter length
scale:

for (1.1)-(1.3) and (1.4)-(1.6): ηmodel >> α ' O(h).

In the usual K41 phenomenology, [F95], microscales can only be altered by increasing energy
dissipation. There are three possibilities (the last two have less influence on the resolved
scales) which can be added to any model to enhance scale truncation: (i) use algorithms
which include extra numerical dissipation (which if not carefully done acts on all scales), (ii)
subgrid eddy viscosity / Variational Multiscale small-small Smagorinsky, [HKJ00, HOM01],
and (iii) time relaxation, e.g., [LN07, SA99, SAK01a, SAK01b]. We believe that the last
two are related and are fundamental tools for effective simulation of under-resolved flows.
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