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Abstract
This report performs a complete analysis of convergence and rates of convergence

of finite element approximations of the Navier-Stokes-α (NS-α) regularization of the
NSE, under a zero-divergence constraint on the velocity, to the true solution of the
NSE. Convergence of the discrete NS-α approximate velocity to the true Navier-Stokes
velocity is proved and rates of convergence derived, under no-slip boundary conditions.
Generalization of the results herein to periodic boundary conditions is evident. 2D
experiments are performed, verifying convergence and predicted rates of convergence.
It is shown that the α-FE solutions converge at the theoretical limit of O(h2) when
choosing α = h, in the H1 norm. Convergence in L2 is shown to approach O(h3), but
may plateau below the optimal rate. Furthermore, in the case of flow over a step the
NS-α model is shown to resolve vortex separation in the recirculation zone.

1 Introduction

Regularizations of the Navier-Stokes equations (NSE) were first introduced as a theoreti-
cal tool in 1934 by J. Leray [20, 21] and have since been shown to have some attractive
computational properties, [11, 12]. The Leray and related regularizations replace one of
its velocities in the non-linear term of the NSE with a filtered velocity u. In particular,
choosing u = (I − α2∆)−1

u gives the Leray-α regularization:

ut + u · ∇u− ν4u +∇p = f and ∇ · u = 0 , in Ω× (0, T ]. (1.1)

The solution to (1.1) is smooth, and converges as α → 0 modulo a subsequence to a
weak solution of the NSE [20, 21]. Higher order regularizations using deconvolution have
shown higher order convergence properties [1]. If a similar regularization is used when the
NSE is in rotational form the model which we study herein results:

ut + (∇× u)× u− ν∆u +∇p = f, in Ω× (0, T ]

u− α2∆u +∇λ = u, in Ω× (0, T ]
∇ · u = ∇ · u = 0, in Ω× (0, T ]

u(x, 0) = u0(x), in Ω
u = u = 0 on ∂Ω× (0, T ]





. (1.2)
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Solving for p, λ ∈ L2
0(Ω), this corresponds to the usual α-model with an added con-

straint, and coincides in the case of periodic boundary conditions where in fact λ ≡ 0. The
NS-α model is an outgrowth of the work by Camassa and Holm (e.g. [6, 7, 8]) to model
turbulent flow. In summary, the Camassa-Holm equations were shown to have an energy
spectrum closely resembling the Kolmogorov model associated with the NSE. The equations
are physically derivable, and sequences {αn} → 0 yield solutions converging (weakly) to a
weak solution of the NSE. The energy cascade in the inertial range follows the expected
wavenumber scaling k−5/3 for kα < 1, but then scales as k−3 for kα > 1. This results
in a dissipation wavenumber cutoff of order Re1/2 for NS-α, smaller than the correspond-
ing Re3/4 for NS-α, which translates to a DNS computational cost for NS-α of roughly
(NSE cost)2/3. Thus NS-α is expected to provide a useful model for many physical flows.

In practice, finite element approximations using the rotation form of the NSE suffers
a degradation in accuracy when the gradient of the pressure is large compared to second
derivatives of the velocity. Addition of a grad-div stabilization term helps to reduce errors
in this case, (see [19]). Let X = H̊1(Ω) and Q = L2

0(Ω). If Xh ⊂ X and Qh ⊂ Q are finite
element spaces, then the finite element discretization of the NS-α model studied herein is
find uh, uh

h ∈ Xh and ph, λh ∈ Qh satisfying:

(uh,t, vh) + ν(∇uh,∇vh)− (ph,∇ · vh)

+ ((∇× uh)× uh
h, vh) + γ(∇ · uh,∇ · vh) = (f, vh), ∀vh ∈ Xh

(uh
h, wh) + α2(∇uh

h,∇wh)− (λh,∇ · wh) = (uh, wh) ∀wh ∈ Xh

(∇ · uh
h, µh) = 0, ∀µh ∈ Qh

(∇ · uh, qh) = 0, ∀qh ∈ Qh





. (1.3)

An equivalent problem is formulated over discretely divergence free functions Vh =
{vh ∈ Xh : (∇ · vh, qh) = 0, ∀qh ∈ Qh}. The equivalent problem is then posed as:

Find uh, uh
h ∈ Vh satisfying:

(uh,t, vh) + ν(∇uh,∇vh) + ((∇× uh)× uh
h, vh)

+ γ(∇ · uh,∇ · vh) = (f, vh), ∀vh ∈ Vh

(1.4)

and
(uh

h, wh) + α2(∇uh
h,∇wh) = (uh, wh) ∀wh ∈ Vh (1.5)

See Section 2 and [22] for details. The computational expense of the discrete filtering
operation (1.5) is small compared to solving (1.4), especially considering the the condition
number of the associated linear system in (1.5) is O

(
α2

h2 + 1
)

[22]. Herein we study conver-
gence of uh to a solution of the NSE. Since NS-α is a regularization of the NSE, it seems
appropriate to study convergence as both α, h → 0 to the NSE solution. An alternate con-
vergence problem would be to study convergence to the continuous NS-α solution as h → 0,
(Çağlar), [5]. This leaves the problem of characterizing the dependence of the continuum
NS-α model’s solution upon α, for small α.

The issue of boundary conditions for the NS-α model is an interesting question. Work
by Chen, Foias, Holm, Olson, Titi and Wynne, [6], shows that some statistics of pipe flows
can be well fit using a Navier-slip condition, while Fried and Gurtin [9] remark that the
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friction values required violate thermodynamic constraints on the model. Based on this
work of Fried and Gurtin, an interesting, alternative numerical approach was formulated by
Kim, Dolbow and Fried, [15], treating the NS-α equations as a higher order problem with
accompanying boundary conditions. It was shown a non-conforming finite element method
based on C0 basis functions can be implemented, using stabilization techniques on finite
element interfaces to enforce continuity of higher derivatives. Another computationally effi-
cient treatment of boundary conditions for LES models is known as ”Near Wall Modelling”
(NWM), where boundary conditions for the filtered variables are derived using a closure
model near the wall, ensuring certain physical conditions hold. One interesting example was
proposed by Borggaard and Iliescu, [4], estimating the filtered boundary conditions at each
time step using an explicit update derived via an NWM model. Treatment of boundary
conditions is still an open question and no-slip boundary conditions are chosen for tests
herein. The numerical analysis (Section 3) is easily extendable to any linear, well posed
boundary conditions.

The relationship between the filter radius α and the mesh size h will be examined in the
error analysis. The solution to (1.2) is known to be globally regular with periodic boundary
conditions [7], or for zero boundary conditions lies in L∞(0, T ; H1(Ω)) ∩ L2(0, T ;H2(Ω))
with bounds proportional to α−1, [5]. Since it is a regularized approximation of the NSE
as α → 0, the value of α chosen in computations should effect resolution of some non-
smooth or transitional flow behavior. In the computational section, we perform direct
convergence rate verification for three flows: one in the unit circle with zero boundary
conditions, the unit square with no-slip and periodic boundary conditions. A comparison
of NS-α computations against direct finite element discretization of the NSE in the case of
flow over a step [10] is performed. Previous work indicates problems resolving separation of
vortices in the recirculation region behind the step for some regularizations [1] or when using
the rotational NSE [19]. Computations performed by Layton, Manica, Neda and Rebholz
[18] using the NS-α model failed to resolve the characteristic vortex street produced by flow
around a cylinder while not imposing ∇ · u = 0. In this report the extra divergence-free
constraint is imposed to avoid such problems, and the computational implications discussed.

2 Notation and Preliminaries

This section provides the necessary preliminary definitions and lemmas for the convergence
analysis of the discrete NS-α model. The Sobolev space Hk = W k,2 is equipped with the
usual norm ‖·‖k, and semi-norm |·|k, for 1 ≤ k < ∞, e.g. Adams [2]. The L2 norm is
denoted by ‖·‖, and the L∞ norm by ‖·‖∞. For functions v(x, t) defined for t ∈ (0, T ] we
define the norms (1 ≤ m < ∞, 1 ≤ k ≤ ∞) :

‖v‖∞,k = ess sup
0<t<T

‖v(·, t)‖k

‖v‖m,k =
(∫ T

0
‖v‖m

k dt

)1/m

The convergence analysis will be proved in the case of zero boundary conditions, al-
though generalization to the case of periodic boundary conditions (with the usual zero
spacial mean condition) is clear. For internal flows, we take the domain to be Ω ⊂ Rd, for
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d = 2 or 3. The corresponding velocity spaces are:

X ≡ H1
0 =

{
v ∈ H1(Ω)d : v|∂Ω = 0

}

Q ≡ L2
0 =

{
q ∈ L2(Ω) :

∫

Ω
q dx = 0

}

V =
{

v ∈ X :
∫

Ω
q∇ · v dx = 0, ∀q ∈ Q

}

We assume conforming finite element spaces Xh ⊂ X and Qh ⊂ Q, satisfying the uniform
LBBh condition:

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖∇vh‖‖qh‖ ≥ β > 0, ∀h > 0.

The continuous and discrete differential filters are central to the analysis of the conver-
gence of the FEM applied to the NS-α model.

Definition 2.1 (Continuous differential filter). Let φ ∈ L2(Ω) and α > 0. The filtering
operation on φ is denoted by φ. Here (φ, λ) ∈ (V ×Q) is the unique solution to:

−α2∆φ + φ + ∇λ = φ (2.1)
∇ · φ = 0. (2.2)

Definition 2.2 (Discrete differential filter [22]). Given φ ∈ L2(Ω) and α > 0. The discrete
differential filter of φ, φ

h ∈ Vh, is the unique solution to:

(φ, vh) = (φh
, vh) + α2(∇φ

h
,∇vh), ∀vh ∈ Vh (2.3)

Furthermore, define A−1
h : L2(Ω) → Vh by A−1

h by A−1
h φ = φ

h
, ∀φ ∈ L2(Ω).

We can understand the operator Ah in terms of the L2-projection and the discrete
Laplacian.

Definition 2.3 (L2-projection Πh and Discrete Laplacian ∆h). Let φ ∈ L2(Ω). Then we
denote the L2-projection of φ onto Vh by Πhφ, the unique solution to:

(φ−Πhφ, vh) = 0,∀vh ∈ Vh. (2.4)

Given ψ ∈ X. Let ψh ∈ Vh be the unique solution to:

(ψh, vh) = −(∇ψ,∇vh), ∀vh ∈ Vh. (2.5)

Then the discrete Laplacian ∆h : X → Vh is defined by ∆hψ = ψh.

We then have Ah = Πh − α2∆h, and φ
h = A−1

h (Πhφ). In order to bound error terms
on Xh in a useful way for the convergence proof, we make use of the next identities.

Lemma 2.1. For φh ∈ Vh the following identities hold:

(φh, φh
h) = ‖φh

h‖2
+ α2‖∇φh

h‖2
(2.6)

(∇φh,∇φh
h) = ‖∇φh

h‖2
+ α2‖∆hφh

h‖2
(2.7)
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Proof. The proof of (2.6) follows immediately from choosing vh = φh
h in (2.3) and (2.5).

Notice that from (2.3) and (2.5) we can also write:

(φh − (φh
h − α2∆hφh

h), vh) = 0,∀vh ∈ V h

or, using Ah = Πh − α2∆h,

(φh −Ahφh
h
, vh) = 0, ∀vh ∈ V h

Now, by choosing vh = φh −Ahφh
h, we have:

‖φh −Ahφh
h‖2

= 0

and hence φh = φh
h − α2∆hφh

h. Note since φh
h
, φh ∈ Vh we can further write ∇φh =

∇φh
h − α2∇∆hφh

h a.e., and we have:

(∇φh,∇vh) = (∇φh
h
,∇vh)− α2(∇∆hφh

h
,∇vh)

Therefore, choosing vh = φh
h and applying (2.4) we get:

(∇φh,∇φh
h) = (∇φh

h
,∇φh

h) + α2(∆hφh
h
,∆hφh

h), ∀vh ∈ V h

thus proving (2.6).

¤
We need to be able to bound the L2 norms of functions and their derivatives on Vh in

terms of (2.5)-(2.6). This motivates the next lemma by Rebholz and Miles [24].

Lemma 2.2. Let Xh ⊂ X be a finite element space with no-slip or periodic boundary
conditions, satisfying the inverse inequality:

‖∇φh‖ ≤ C

h
‖φh‖, ∀φh ∈ Xh (2.8)

Assume 0 < α ≤ C h < ∞. Then there exists C0 independent of h such that for all
φh ∈ Vh ⊂ Xh

(φh, φh
h) ≤ ‖φh‖2 ≤ C (φh, φh

h) (2.9)

(∇φh,∇φh
h) ≤ ‖∇φh‖2 ≤ C (∇φh,∇φh

h) (2.10)

Remark 2.1. Typical finite element spaces in use satisfy the inverse estimate (2.7), when
used as a locally quasi-uniform mesh, e.g. [25].

The convergence analysis requires a variety of bounds for trilinear terms.

Lemma 2.3. For a, b, c ∈ X and d = 1,2,3:

(a× (∇× b), c) ≤ C ‖a‖1/2‖∇a‖1/2‖∇b‖‖∇c‖ (2.11)

(a× (∇× b), c) ≤ C ‖∇a‖‖∇b‖‖c‖1/2‖∇c‖1/2 (2.12)
(a× (∇× b), c) ≤ ‖∇× b‖∞‖a‖‖c‖ (2.13)

(a · ∇b, c) ≤ C ‖a‖1/2‖∇a‖1/2‖∇b‖‖∇c‖ (2.14)

(a · ∇b, c) ≤ C ‖∇a‖‖∇b‖‖c‖1/2‖∇c‖1/2 (2.15)

(a · b,∇ · c) ≤ C ‖a‖1/2‖∇a‖1/2‖∇b‖‖∇c‖ (2.16)

(a · b,∇ · c) ≤ C ‖∇a‖‖b‖1/2‖∇b‖1/2‖∇c‖ (2.17)
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Proof. See e.g. [2, 7].

¤

The following vector identities will also be employed. Let a, b, c ∈ X: a(x), b(x), c(x) ∈ R3

for all x ∈ Ωd, then:

(Triple Product) a · (b× c) = b · (c× a) = c · (a× b) (2.18)
∇× (a× b) = b · ∇a− a · ∇b + a(∇ · b)− b(∇ · a) (2.19)

(a× b) · a = (a× b) · b = 0 (2.20)
a× (∇× b) = (∇× a)× b− a · ∇b− b · ∇a +∇(a · b) (2.21)

3 Convergence of the FEM

The convergence analysis will use bounds on the terms in (2.6) and (2.7) in order to subse-
quently bound ‖φh‖ and ‖∇φh‖ on V h. The stability of the FEM with respect to the terms
in (2.6), (2.7) must first be established.

Lemma 3.1 (Stability). Let uh ∈ V h satisfy (1.4), and assume the finite element space Xh

has no-slip or periodic boundary conditions, and satisfies the inverse inequality (2.8). Let
0 < α ≤ C h < ∞. Then ∃M > 0 such that if 0 < γ ≤ Mν, uh satisfies:

‖uh
h‖2

+ α2‖∇uh
h‖2

+ ν

∫ T

0

{
‖∇uh

h‖2
+ α2‖∆huh

h‖2
}

dt + γ

∫ T

0
‖∇ · uh‖2 dt ≤ C (3.1)

‖uh‖2 + ν

∫ T

0
‖∇uh‖2 dt + γ

∫ T

0
‖∇ · uh‖2 dt ≤ C (3.2)

where C = C(u0, ν, f, T ) is independent of α, h, γ.

Proof. Choose vh = uh
h in (1.4). Then it follows:

(
∂

∂t
uh, uh

h) + ν(∇uh,∇uh
h) + γ(∇ · uh,∇ · uh

h) = (f, uh
h)

Here (2.20) is used to eliminate the trilinear term. After rewriting (∇ · uh,∇ · uh
h) =

(∇ · uh,∇ · uh) + α2(∇ · uh,∇ ·∆huh
h) and rearranging terms,

(
∂

∂t
uh, uh

h) + ν(∇uh,∇uh
h) + γ(∇ · uh,∇ · uh) = (f, uh

h)− γα2(∇ · uh,∇ ·∆huh
h).

Note that ( ∂
∂tuh, uh

h) = 1
2

d
dt(uh, uh

h). Apply Lemma 2.1, followed by Hölder’s and
Young’s inequalities to get:

1
2

d

dt

{
‖uh

h‖2
+ α2‖∇uh

h‖2
}

+ ν
{
‖∇uh

h‖2
+ α2‖∆huh

h‖2
}

+ γ‖∇ · uh‖2

≤ ‖f‖−1‖∇uh
h‖+ γα2‖∇ · uh‖‖∇ ·∆huh

h‖
≤ 1

2ν
‖f‖2

−1 +
ν

2
‖∇uh

h‖2
+ C1 γα2h−1‖∇ · uh‖‖∆huh

h‖

≤ 1
2ν
‖f‖2

−1 +
ν

2
‖∇uh

h‖2
+ C2 γα‖∇ · uh‖‖∆huh

h‖

≤ 1
2ν
‖f‖2

−1 +
ν

2
‖∇uh

h‖2
+ C3 γ

α2

2
‖∆huh

h‖2 +
γ

2
‖∇ · uh‖2.
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Here the inverse inequality (2.8) and assumption α ≤ Ch were used. Taking M = 1
C3

and γ ≤ Mν,

1
2

d

dt

{
‖uh

h‖2
+ α2‖∇uh

h‖2
}

+ ν
{
‖∇uh

h‖2
+ α2‖∆huh

h‖2
}

+ γ‖∇ · uh‖2

≤ 1
2ν
‖f‖2

−1 +
ν

2
‖∇uh

h‖2
+

ν α2

2
‖∆huh

h‖2 +
γ

2
‖∇ · uh‖2.

Subsume all terms on the right hand side except 1
2ν ‖f‖2

−1 and multiply through by 2:

d

dt

{
‖uh

h‖2
+ α2‖∇uh

h‖2
}

+ ν
{
‖∇uh

h‖2
+ α2‖∆huh

h‖2
}

+ γ‖∇ · uh‖2 ≤ 1
ν
‖f‖2

−1

Integrate in time to yield (3.1). Lemma 2.2 may be applied to (3.1) by assumption,
yielding (3.2).

¤
The choice of scaling γ = O(ν) is expected to improve accuracy of solutions to (1.4)-(1.5)

compared to γ = 0, when ν << 1. For details, see Section 2.3 in [19].

Corollary 3.1. uh : [0, T ] → Vh exists.

Proof. Select a basis of (Vh, Qh) and expand (uh, ph) in terms of basis functions in
(1.4),(1.5). This reduces (1.4),(1.5) to a finite system of ODE’s. Lemma 3.1 shows the
corresponding solutions cannot blow up in finite time.

¤
We now proceed to prove convergence of the FEM for the NS-α model. In the analysis of

the following theorem, the regularity assumptions arise due to the problem of characterizing
convergence of the solution of the NS-α model to the solution of the NSE; known results
are not sufficient for the convergence proof.

Theorem 3.1. Let Xh ⊂ X be a conforming finite element space satisfying (2.8). Assume
u(x, ·) ∈ V is a strong solution of the NSE, satisfying:

∇× u ∈ L2(0, T ; L∞(Ω)). (3.3)

Furthermore, assume ∃ C1 > 0, C2 > 0 independent of α, h such that:

0 < C2h ≤ α ≤ C1h (3.4)
0 < α ≤ 1 (3.5)

and the differential filter of u satisfies u ∈ L∞(0, T ; H1(Ω))∩L2(0, T ; H2(Ω)) (α-independent).
Then ∃M > 0 such that if 0 < γ ≤ Mν, the solution uh ∈ V h to (1.4)-(1.5) satisfies:

sup
0≤t≤T

‖u− uh‖2+ν

∫ T

0
‖∇(u− uh)‖2 dt+γ

∫ T

0
‖∇ · (u− uh)‖2 dt ≤ 2 sup

0≤t≤T
inf

vh∈V h

{
‖u− vh‖2

}

+C‖u(0)− u0‖2 + C inf
vh∈V h

qh∈Qh

{ ∫ T

0

{‖p− qh‖2 + ‖∇(u− vh)‖2 + ‖ ∂

∂t
(u− vh)‖

2}
dt

}

+C
{

inf
vh∈V h

(∫ T

0
‖∇(u− vh)‖4dt

) 1
2

+ α4

∫ T

0
‖∆u‖2dt + h2k+2

∫ T

0
|u|2k+1dt

}
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Proof. Subtract (1.4) from the weak formulation of the rotation NSE, to get the error
equation:

(
∂

∂t
(u− uh), vh) + ν(∇(u− uh),∇vh)− γ(∇ · uh,∇ · vh)

= (p,∇ · vh) + ((∇× uh)× uh
h, vh)− ((∇× u)× u, vh),∀vh ∈ V h

Add in −(qh,∇ · vh) = 0 and γ(∇ · u,∇ · vh) = 0:

(
∂

∂t
(u− uh), vh) + ν(∇(u− uh),∇vh) + γ(∇ · (u− uh),∇ · vh)

= (p− qh,∇ · vh) + ((∇× uh)× uh
h, vh)− ((∇× u)× u, vh), ∀(vh, qh) ∈ (V h, Qh).

Let ũ ∈ V h be arbitrary, and split u− uh = (u− ũ) + (ũ− uh) = η + φh. Insert this in
above and rearrange terms to get:

(
∂

∂t
φh, vh) + ν(∇φh,∇vh) + γ(∇ · φh,∇ · vh)

= (p− qh,∇ · vh)− (
∂η

∂t
, vh)− ν(∇η,∇vh)

+ ((∇× uh)× uh
h, vh)− ((∇× u)× u, vh)− γ(∇ · η,∇ · vh)





(3.6)

To deal with the trilinear terms, we begin by writing ∇× u = ∇× uh −∇× (uh − u) and
re-write the two trilinear terms as:

((∇×uh)×uh
h, vh)−((∇×u)×u, vh) = ((∇×uh)×(uh

h−u), vh)−((∇×(uh−u))×u, vh).

Inserting this back into (3.6) and choosing vh = φh
h we obtain:

(
∂

∂t
φh, φh

h) + ν(∇φh,∇φh
h) + γ(∇ · φh,∇ · φh

h)

= (p− qh,∇ · φh
h)− (

∂η

∂t
, φh

h)− ν(∇η,∇φh
h)− γ(∇ · η,∇ · φh

h)

+ ((∇× uh)× (uh
h − u), φh

h)− ((∇× (uh − u))× u, φh
h)

Insert ∇ · φh
h = ∇ · φh + α2∇ ·∆hφh

h on the left and subtract α2γ(∇ · φh,∇ ·∆hφh
h) to

the right:

(
∂

∂t
φh, φh

h) + ν(∇φh,∇φh
h) + γ(∇ · φh,∇ · φh)

= (p− qh,∇ · φh
h)− (

∂η

∂t
, φh

h)− ν(∇η,∇φh
h)− α2γ(∇ · φh,∇ ·∆hφh

h)

− γ(∇ · η,∇ · φh
h) + ((∇× uh)× (uh

h − u), φh
h)− ((∇× (uh − u))× u, φh

h).

Apply Lemma 2.1 to the LHS and Hölder’s inequality to the first five terms on the RHS.

8



This yields:

1
2

d

dt

{
‖φh

h‖2
+ α2‖∇φh

h‖2}
+ ν

{
‖∇φh

h‖2
+ α2‖∆hφh

h‖2}
+ γ‖∇ · φh‖2

≤ ‖p− qh‖‖∇ · φh
h‖+ ‖∂η

∂t
‖‖φh

h‖+ ν‖∇η‖‖∇φh
h‖

+ α2γ‖∇ · φh‖‖∇ ·∆hφh
h‖+ γ‖∇ · η‖‖∇ · φh

h‖
+ ((∇× uh)× (uh

h − u), φh
h)− ((∇× (uh − u))× u, φh

h)





(3.7)

The following bounds follow from applying Young’s inequality, the inverse inequality
(2.8) and ‖∇ · w‖ ≤ C‖∇w‖:

γ‖∇ · φh
h‖‖∇ · η‖ ≤ C‖∇η‖2 +

ν

12
‖∇φh

h‖2

γα2‖∇ ·∆hφh
h‖‖∇ · φh‖ ≤ C∗γα2

h
‖∆hφh

h‖‖∇ · φh‖

≤ (C∗)2γα4

2h2
‖∆hφh

h‖2 +
γ

2
‖∇ · φh‖2

(3.8)

Choose M = ν
3(C1·C∗)2 , and 0 < γ ≤ M . Combined with the assumption α ≤ C1h, (3.8)

is used to rewrite (3.7):

1
2

d

dt

{
‖φh

h‖2
+ α2‖∇φh

h‖2}
+ ν

{
‖∇φh

h‖2
+ α2‖∆hφh

h‖2}
+ γ‖∇ · φh‖2

≤ ‖p− qh‖‖∇ · φh
h‖+ ‖∂η

∂t
‖‖φh

h‖+ ν‖∇η‖‖∇φh
h‖

+
να2

6
‖∆hφh

h‖2 +
γ

2
‖∇ · φh‖2 + C‖∇η‖2 +

ν

12
‖∇φh

h‖2

+ ((∇× uh)× (uh
h − u), φh

h)− ((∇× (uh − u))× u, φh
h)





(3.9)

Consider the terms in (3.9). Split the last term using uh − u = −η − φh to get:

((∇× (uh − u))× u, φh
h) = −((∇× η)× u, φh

h)− ((∇× φh)× u, φh
h) (3.10)

The two RHS terms will be treated separately. Bound the first term by applying (2.12)
and then Young’s inequality as follows:

−((∇× η)× u, φh
h) ≤ C‖∇η‖‖∇u‖‖φh

h‖1/2‖∇φh
h‖1/2

≤ ν

24
‖∇φh

h‖2
+ C‖∇η‖4/3‖∇u‖4/3‖φh

h‖2/3

≤ ν

24
‖∇φh

h‖2
+ C

{
‖∇η‖2 + ‖∇u‖4‖φh

h‖2
,
}





(3.11)

using ab ≤ 2
3a3/2 + 1

3b3. This two-step application of Young’s inequality will be commonly

employed. To bound the second term on the RHS of (3.10), write φh = φh
h−α2∆hφh

h (see
Lemma 3.1 proof) and apply (2.12). This gives:

−((∇× φh)× u, φh
h) = −((∇× φh

h)× u, φh
h) + α2((∇×∆hφh

h)× u, φh
h)

≤ C
{
‖∇φh

h‖3/2‖φh
h‖1/2‖∇u‖

+ α2‖∇∆hφh
h‖‖φh

h‖1/2‖∇φh
h‖1/2‖∇u‖

}
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Here we apply Young’s inequality twice:

−((∇× φh)× u, φh
h) ≤ ν

24
‖∇φh

h‖2
+ C

{
‖∇u‖4‖φh

h‖2

+ α8/3‖∇∆hφh
h‖4/3‖φh

h‖2/3‖∇u‖4/3
}

≤ ν

24
‖∇φh

h‖2
+ C ε‖φh

h‖2‖∇u‖4 +
ν

6
α4 ε−1/2‖∇∆hφh

h‖2





(3.12)

We cannot subsume ‖∇∆hφh
h‖2

into the LHS of (3.9), or apply a Gronwall technique to
treat it. Instead, using the inverse inequality (2.8) and bound (3.4) on α, there follows:

α4‖∇∆hφh
h‖2 ≤ C

(α2

h2

)
α2‖∆hφh

h‖2 ≤ C∗α2‖∆hφh
h‖2

Choose ε = (C∗)2 in (3.12) and applying the above bounds we get:

−((∇× φh)× u, φh
h) ≤ ν

24
‖∇φh

h‖2
+

ν

6
α2‖∆hφh

h‖2
+ C‖∇u‖4‖φh

h‖2
(3.13)

The first two terms of (3.13) can be subsumed on the LHS of (3.9), and the last term will
later be absorbed into a constant using Gronwall’s inequality. Combining (3.10), (3.11),
and (3.13) implies the bound:

((∇× (uh − u))× u, φh
h) ≤ ν

12
‖∇φh

h‖2
+ C‖∇η‖2

+ C‖∇u‖4‖φh
h‖2

+
ν

6
α2‖∆hφh

h‖2





(3.14)

This provides the necessary bound for the second trilinear term on the RHS of (3.9). Note
thus far we have used ∇u ∈ L4(0, T ; L2(Ω)), but no more regularity on the velocity. To
bound the other trilinear term in (3.9) we first split u− uh

h = (u− uh) + (uh − uh
h). By

linearity of the discrete filtering operation, we have

uh − uh
h = u− ũ

h + ũ− uh
h = ηh + φh

h

and can therefore write

((∇× uh)× (uh
h − u), φh

h) = ((u− uh)× (∇× uh), φh
h)

+ (ηh × (∇× uh), φh
h) + (φh

h × (∇× uh), φh
h)



 (3.15)

The last term on the RHS of (3.15) is zero by (2.20). To bound the first term, write
uh = u− (u− uh) to get

((u− uh)× (∇× uh), φh
h)

= ((u− uh)× (∇× u), φh
h)− ((u− uh)× (∇× (u− uh)), φh

h)

= ((u− uh)× (∇× u), φh
h) + ((u− uh)× (∇× η), φh

h)

− ((u− uh)× (∇× φh), φh
h)





(3.16)
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We require special care in bounding the RHS of (3.16). Bounds for ‖u−uh‖ and ‖∇(u−uh)‖
will be needed. Applying the triangle inequality and then (2.1) we have

‖u− uh‖ ≤ ‖u− u‖+ ‖u− uh‖

= α2‖∆u‖+ ‖u− uh‖
But it has been shown [1] that

‖u− uh‖ ≤ C
{

αhk|u|k+1 + hk+1|u|k+1.
}

Using α ≤ C1 h gives
‖u− uh‖ ≤ α2‖∆u‖+ C hk+1|u|k+1. (3.17)

The first term on the RHS of (3.17) is bounded by applying (2.13) and Young’s inequality
as follows

((u− uh)× (∇× u), φh
h) ≤ C ‖∇ × u‖∞‖u− uh‖‖φh

h‖
≤ C ‖∇ × u‖2

∞‖φh
h‖2

+
1
2
‖u− uh‖2

≤ C ‖∇ × u‖2
∞‖φh

h‖2
+ C

{
α4‖∆u‖2 + h2k+2|u|2k+1.

}





(3.18)

Here we are using the assumption (3.3), so that later Gronwall’s inequality will be used to

treat ‖∇ × u‖2
∞‖φh

h‖2
.

To finish bounding (3.16), we bound ‖∇(u− uh)‖ uniformly, by first using the triangle
inequality to write

‖∇(u− uh)‖ ≤ ‖∇(u− u)‖+ ‖∇(u− uh)‖
It is known [17] that ‖∇(u − u)‖ ≤ C ‖∇u‖, where C is α, h independent. Also, using
the same technique described in [1] it can be easily shown that with assumption (3.4) , it
follows ‖∇(u− uh)‖ ≤ C hk|u|k+1. It is assumed u ∈ L2(0, T ; H2(Ω)) ∩ L∞(0, T ; H1(Ω)),
so we can take k = 1 (at least). Therefore, we have the bound

‖∇(u− uh)‖ ≤ C
{‖∇u‖+ hk|u|k+1

}
(3.19)

and we can proceed to finish bounding (3.16). Applying (2.12) and Young’s inequality, we
get

((u− uh)× (∇× η), φh
h) ≤ C ‖∇(u− uh)‖‖∇η‖‖φh

h‖1/2‖∇φh
h‖1/2

≤ C ‖∇u‖‖∇η‖‖φh
h‖1/2‖∇φh

h‖1/2
+ C hk|u|k+1‖∇η‖‖φh

h‖1/2‖∇φh
h‖1/2

≤ ν

24
‖∇φh

h‖2
+ C

{‖∇η‖2 + ‖∇u‖4‖φh
h‖2

+ h2k|u|4k+1‖φh
h‖2}

To guarantee integrability in time, take k=0 to get:

((u− uh)× (∇× η), φh
h) ≤ ν

24
‖∇φh

h‖2

+ C
{‖∇η‖2 +

(‖∇u‖4 + ‖∇u‖4)‖φh
h‖2}





(3.20)
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Now the last term can be dealt with using Gronwall’s inequality near the end of the proof.
One more term in (3.16) needs to be bounded. We write φh = φh

h − α2∆hφh
h to get

−((u− uh)×∇× φh, φh
h) = −((u− uh)×∇× φh

h
, φh

h) + α2((u− uh)×∇×∆hφh
h
, φh

h)

Now apply (2.12) followed by Young’s inequality and (3.19), and it follows:

−((u− uh)×∇× φh, φh
h) ≤ C ‖∇(u− uh)‖‖∇φh

h‖3/2‖φh
h‖1/2

+C α2‖∇(u− uh)‖‖∇∆hφh
h‖‖∇φh

h‖1/2‖φh
h‖1/2

≤ ν

24
‖∇φh

h‖2
+ C ε

{‖∇u‖4 + ‖∇u‖4}‖φh
h‖2

+ ε−1/2 ν

6
α4‖∇∆hφh

h‖2

Applying the inverse inequality (2.8) and choosing ε as in (3.12), it follows

−((u− uh)× (∇× φh), φh
h) ≤ ν

24
‖∇φh

h‖2

+
ν

6
α2‖∆hφh

h‖2
+

{‖∇u‖4 + ‖∇u‖4}‖φh
h‖2





(3.21)

Combining (3.18), (3.20) and (3.21) yields a final bound for (3.16):

((u− uh)× (∇× uh), φh
h) ≤ C

{‖∇ × u‖2
∞ + ‖∇u‖4 + ‖∇u‖4}‖φh

h‖2

+
ν

12
‖∇φh

h‖2
+

ν

6
α2‖∆hφh

h‖2

+ C
{‖∇η‖2 + α4‖∆u‖2 + h2k+2|u|2k+1

}





(3.22)

This subsequently bounds one of the two non-zero terms on the RHS of (3.15), leaving only
one term to bound. To start bounding the last term for (3.15), apply vector identity (2.21).

(ηh × (∇× uh), φh
h) = ((∇× ηh)× uh, φh

h)− (ηh · ∇uh, φh
h)

− (uh · ∇ηh, φh
h) + (∇(ηh · uh), φh

h)



 (3.23)

Next, proceed term by term.

((∇× ηh)× uh, φh
h) = ((∇× ηh)× (uh − uh

h), φh
h) + ((∇× ηh)× uh

h, φh
h)

= −α2((∇× ηh)×∆huh
h, φh

h) + ((∇× ηh)× uh
h, φh

h)



 (3.24)

Applying (2.12) and the inverse inequality (2.8), then Young’s inequality, it follows

−α2((∇× ηh)×∆huh
h, φh

h) ≤ C α2‖∇η‖‖φh
h‖1/2‖∇φh

h‖1/2‖∇∆huh
h‖

≤ C
(
α‖∆huh

h‖)‖∇η‖‖φh
h‖1/2‖∇φh

h‖1/2

≤ ν

48
‖∇φh

h‖2
+ C

(
α4/3‖∆huh

h‖4/3)‖∇η‖4/3‖φh
h‖2/3

=
ν

48
‖∇φh

h‖2
+ C

(
α2/3‖∆huh

h‖2/3‖∇η‖4/3

︸ ︷︷ ︸
a

)(
α2/3‖∆huh

h‖2/3‖φh
h‖2/3

︸ ︷︷ ︸
b

)
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and apply ab ≤ 2
3a3/2 + 1

3b3:

−α2((∇× ηh)×∆huh
h, φh

h) ≤ ν

48
‖∇φh

h‖2

+ C α2‖∆huh
h‖2‖φh

h‖2
+

1
3
α‖∆huh

h‖‖∇η‖2





(3.25)

Reference to (3.1) shows
∫ t
0 α2‖∆huh

h‖2
dt′ ≤ C, independent of α, h. This also creates

a way of bounding the last term on the RHS of (3.25), using Hölder’s inequality after
integration in time:

∫ t

0
α‖∆huh

h‖‖∇η‖2 dt′ ≤
(∫ t

0
α2‖∆huh

h‖2
dt′

)1/2( ∫ t

0
‖∇η‖4dt′

)1/2

≤ C
(∫ t

0
‖∇η‖4dt′

)1/2





(3.26)

To bound the next term in (3.24), apply (2.11) and Young’s inequality, along with the
uniform bound on ‖uh

h‖ from Lemma 3.1 to get:

((∇× ηh)× uh
h, φh

h) ≤ C ‖uh
h‖1/2‖∇uh

h‖1/2‖∇ηh‖‖∇φh
h‖

≤ C ‖∇uh
h‖‖∇ηh‖2

+
ν

48
‖∇φh

h‖2



 (3.27)

We’ve also applied ‖∇ηh‖ ≤ ‖∇η‖ so that standard interpolation results will apply to the
final result in Theorem 3.1. Next, apply the skew-symmetric property (integrate by parts)
−(ηh · ∇uh, φh

h) = (ηh · ∇φh
h
, uh). Then by applying uh = (uh − uh

h) + uh
h, it follows:

−(ηh · ∇uh, φh
h) = (ηh · ∇φh

h
, uh − uh

h) + (ηh · ∇φh
h
, uh

h) (3.28)

Now use uh − uh
h = −α2∆huh

h and apply (2.15) to get:

(ηh · ∇φh
h
, uh − uh

h) = −α2(ηh · ∇φh
h
, ∆huh

h)

≤ C α2‖∇ηh‖‖∇φh
h‖‖∆huh

h‖1/2‖∇∆huh
h‖1/2

≤ C α3/2‖∆huh
h‖‖∇ηh‖‖∇φh

h‖
= C

(
α‖∆huh

h‖)‖∇ηh‖(α1/2‖∇φh
h‖1/2)‖∇φh

h‖1/2

≤ C
(
α‖∆huh

h‖)‖∇ηh‖‖φh
h‖1/2‖∇φh

h‖1/2

From here, apply bounds exactly as shown to derive (3.25), yielding

(ηh · ∇φh
h
, uh − uh

h) ≤ ν

96
‖∇φh

h‖2

+ C α2‖∆huh
h‖2‖φh

h‖2
+

1
3
α‖∆huh

h‖‖∇η‖2





(3.29)

Now apply (2.15) and Young’s inequality to get

(ηh · ∇φh
h
, uh

h) ≤ C ‖∇uh
h‖1/2‖∇η‖‖∇φh

h‖
≤ C ‖∇uh

h‖‖∇η‖2 +
ν

96
‖∇φh

h‖2
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and combine with (3.28) and (3.29) to get the bound

−(ηh · ∇uh, φh
h) ≤ ν

48
‖∇φh

h‖2
+ C ‖∇uh

h‖‖∇η‖2

+ C α‖∆huh
h‖‖∇η‖2 + C α2‖∆huh

h‖2‖φh
h‖2





(3.30)

We bound −(uh · ∇ηh, φh
h) the same as in (3.24) - (3.27), by first applying uh = (uh −

uh
h) + uh

h and the corresponding bounds (2.15). Then from (3.25) and (3.27) we get

−(uh · ∇ηh, φh
h) ≤ ν

48
‖∇φh

h‖2
+ C

{
α‖∆huh

h‖+ ‖∇uh
h‖}‖∇η‖2

+ C α2‖∆huh
h‖2‖φh

h‖2





(3.31)

Now, to finish bounding (3.23), we treat the final term by integrating by parts and inserting
uh = uh

h − α2∆huh
h to get

−(∇(ηh · uh), φh
h) = (ηh · uh,∇ · φh

h)

= −α2(ηh ·∆huh
h,∇ · φh

h) + (ηh · uh
h,∇ · φh

h)

Now apply (2.17) to these terms to get bounds exactly as in (3.30).

−(∇(ηh · uh), φh
h) ≤ ν

48
‖∇φh

h‖2
+ C

{
α‖∆huh

h‖+ ‖∇uh
h‖}‖∇η‖2

+ C α2‖∆huh
h‖2‖φh

h‖2





(3.32)

Now combine (3.27) and (3.30) - (3.32) to get a final bound for (3.23):

−(ηh × (∇× uh), φh
h) ≤ ν

12
‖∇φh

h‖2
+ C

{
α‖∆huh

h‖+ ‖∇uh
h‖}‖∇η‖2

+ C α2‖∆huh
h‖2‖φh

h‖2





(3.33)

Combining (3.22) and (3.33) provides a bound for (3.15), and in turn with (3.14) provides
bounds for (3.9). Therefore, combining all these results, we can re-write (3.9) as follows:

1
2

d

dt

{
‖φh

h‖2
+ α2‖∇φh

h‖2}
+ ν

{
‖∇φh

h‖2
+ α2‖∆hφh

h‖2}
+ γ‖∇ · φh‖2

≤ ‖p− qh‖‖∇φh
h‖+ ‖∂η

∂t
‖‖φh

h‖+ ν‖∇η‖‖∇φh
h‖

+
4ν

12
‖∇φh

h‖2
+

ν

2
α2‖∆hφh

h‖2
+

γ

2
‖∇ · φh‖2

+ C
{
1 + α‖∆huh

h‖+ ‖∇uh
h‖}‖∇η‖2

+ C
{‖∇u‖4 + ‖∇u‖4 + ‖∇ × u‖2

∞ + α2‖∆huh
h‖2}‖φh

h‖2

+ C
{
α4‖∆u‖2 + h2k+2|u|2k+1

}





(3.34)

After applying Young’s inequality to (3.34), subtract ν
2

{‖∇φh
h‖2

+ α2‖∆hφh
h‖2}

and γ
2‖∇ · φh‖2
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from both sides of (3.34) and integrate in time to get:

1
2

{
‖φh

h(t)‖2
+ α2‖∇φh

h(t)‖2}
+

ν

2

∫ t

0

{
‖∇φh

h‖2
+ α2‖∆hφh

h‖2}
dt′ +

γ

2

∫ t

0
‖∇ · φh‖2 dt′

≤ 1
2

{
‖φh

h(0)‖2
+ α2‖∇φh

h(0)‖2}
+ C

∫ t

0

{‖p− qh‖2 + ‖∂η

∂t
‖
2}

dt′

+ C

∫ t

0

{
1 + α‖∆huh

h‖+ ‖∇uh
h‖}‖∇η‖2 dt′

+ C

∫ t

0

{‖∇u‖4 + ‖∇u‖4 + ‖∇ × u‖2
∞ + α2‖∆huh

h‖2}‖φh
h‖2

dt′

+ C

∫ t

0

{
α4‖∆u‖2 + h2k+2|u|2k+1

}
dt′

Now multiply through by 2 and apply Gronwall’s inequality. The third line is dealt with
using the technique shown in (3.26). Recall η = u− ũ, ũ ∈ Xh arbitrarily chosen. Now call
ũ = vh ∈ Xh and we have:

{
‖φh

h(t)‖2
+ α2‖∇φh

h(t)‖2}
+ ν

∫ t

0

{
‖∇φh

h‖2
+ α2‖∆hφh

h‖2}
dt′

+ γ

∫ t

0
‖∇ · φh‖2 dt′ ≤ 1

2

{
‖φh

h(0)‖2
+ α2‖∇φh

h(0)‖2}

+ C

∫ t

0

{
‖p− qh‖2 + ‖∂(u− vh)

∂t
‖
2

+ ‖∇(u− vh)‖2
}

dt′

+ C
(∫ t

0
‖∇η‖4 dt′

)1/2

+ C
{

α4 + h2k+2

∫ t

0
|u|2k+1 dt′

}





(3.35)

To derive the final result, begin by applying the triangle inequality:

‖u− uh‖2 + ν

∫ t

0
‖∇(u− uh)‖2 dt′ + γ

∫ t

0
‖∇ · (u− uh)‖2 dt′

≤ 2‖u− vh‖2 + 2ν

∫ t

0
‖∇(u− vh)‖2 dt′ + 2‖φh‖2 + 2ν

∫ t

0
‖∇φh‖2 dt′

+ 2γ

∫ t

0
‖∇ · η‖2 dt′ + 2γ

∫ t

0
‖∇ · φh‖2 dt′

Now apply Lemma 2.1 and Lemma 2.2 to get:

‖u− uh‖2 + ν

∫ t

0
‖∇(u− uh)‖2 dt′ + γ

∫ t

0
‖∇ · (u− uh)‖2 dt′

≤ 2‖u− vh‖2 + 2ν

∫ t

0
‖∇(u− vh)‖2 dt′ + 2γ

∫ t

0
‖∇ · (u− vh)‖2 dt′

+ C
{
‖φh

h‖2
+ α2‖∇φh

h‖2
+ ν

∫ t

0

{‖∇φh
h‖2

+ α2‖∆hφh
h‖2}

dt′
}

+ 2γ

∫ t

0
‖∇ · φh‖2 dt′





(3.36)

Using this and (3.35) we can get the final bound needed on (3.36). As in the NSE case,
(e.g. [16]), apply the triangle inequality ‖φh(0)‖ ≤ ‖(u− uh)(0)‖+‖(u− vh)(0)‖, then take
the infimum over vh ∈ V h, qh ∈ Qh and the supremum over t ∈ [0, T ] to get the final result.
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Corollary 3.2. Let (Xh, Qh) be finite element spaces corresponding to Taylor-Hood el-
ements, with a locally quasi-uniform family of meshes. Choose α = h for each mesh. If
u(·, t) is a solution of the NSE satisfying (3.3), then the corresponding NS-α approximations
converge at the rate O(h2) in the H1 norm.

Proof. Using Theorem 3.1, this is a standard exercise in finite element analysis, (e.g.
[16, 25]).

4 2-D Computational Testing

4.1 Convergence rate verification

In this section we provide computational verification of the convergence rate of the alpha
model as predicted by Theorem 3.1. Approximations of known solutions to the Navier-
Stokes equations are calculated in three cases: flow around a circle under no-slip boundary
conditions, flow on the unit square with no-slip boundary conditions and flow on the unit
square with periodic boundary conditions. The convergence using the full Crank-Nicholson
method for small time steps should yield convergence rates comparable to those predicted
by Theorem 3.1. The fully discrete method used herein follows as Algorithm 4.1.

Algorithm 4.1 (Crank-Nicholson Scheme for NS-α). Let ∆t > 0, (w0, q0) ∈ (Xh, Qh), f ∈
X∗ and M := T

∆t and (w−1, q−1) = (w0, q0). For n = 0, 1, 2, · · · ,M −1, find (wn+1
h , qn+1

h ) ∈
(Xh, Qh) satisfying

1
∆t

(wn+1
h −wn

h , vh) +
1
2
(wn+1

h

h ×∇×wn+1
h , vh) +

1
2
(wn

h
h ×∇×wn

h , vh)− (qn+1/2
h ,∇ · vh)

+ ν(∇w
n+1/2
h ,∇vh) + γ(∇ · wn+1/2

h ,∇ · vh) = (fn+1/2, vh) ∀ vh ∈ Xh (4.1)

(∇ · wn+1
h , χh) = 0 ∀χh ∈ Qh

All calculations were performed using FreeFEM++ [14], with a triangular Delaunay-
Voronoi mesh and Hood-Taylor finite element space. At each time step, the full non-linear
problem is solved iteratively as a fixed point problem, using Oseen linearization. The
resulting matrix systems were solved using the FreeFEM UMFPACK solver. The error
analysis performed in Theorem 3.1 shows that by choosing α = h we should expect to see
an effective convergence rate of order h2. In all cases the scaling α = h was chosen on each
mesh, with h calculated as the maximum diameter of a triangle in the mesh. The grad-div
stabilization parameter is γ = 1, which in some cases is larger than the scaling O(ν) from
Section 3. However, in practice the divergence of both uh, uh

h were found to be very small
(‖·‖∞ ≈ 10−18) with this choice of γ. Figure 1 shows an example of the mesh and calculated
solution. Errors are calculated in L∞(0, T ;L2(Ω)) and L∞(0, T ;H1(Ω)) with convergence
rates calculated using the rule err ≈ C · hp. These norms are stronger than necessary for
verification of Theorem 3.1.

4.1.1 Circular Domain, No-slip Boundary Conditions

A smooth, divergence free 2-D velocity field in the unit circle with zero boundary condi-
tions was derived. The corresponding pressure and driving force f(x,y) was subsequently
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obtained from this exact solution. Indeed, choose u(x, y, t) = 2−t(1− x2 − y2) < y,−x >

and p(x, y, t) = −1
62−2t

(
(1− x2 − y2)3 − 1

4

)
. Then differentiation gives ∇ · u = 0 and

∂u

∂t
− ν∆u + u · ∇u +∇p =

2−t
(
ln2(1− x2 − y2)− 8ν

)
< y,−x >= f(x, y, t)

This choice of pressure satisfies
∫
Ω p dΩ = 0, and curl(u) is uniformly bounded on (0,T).

The viscosity is ν = 1.

Figure 1: Left: example mesh, Right: normalized velocity solution.

h
∥∥u− uh

∥∥
L2 Rate

∥∥u− uh
∥∥

H1 Rate
0.393 1.22e-2 —- 1.26e-1 —-
0.191 2.98e-3 2.07 4.05e-2 1.67
0.101 7.32e-4 1.96 1.33e-2 1.55
0.051 1.81e-4 2.32 4.53e-3 1.79
0.030 4.96e-5 2.37 1.71e-3 1.79

Table 1: L2 and H1 errors and rates for circular flow.

Table 1 summarizes the results. There is an error contribution due to the polygonal
approximation of the circular boundary, and due to the time discretization. Error con-
tribution due to time discretization with dt = 0.01 is assumed to be small, which was
determined by decreasing the time-step size until the errors began decreasing slowly. These
factors may partially explain why the convergence rate with respect to the H1 norm are
generally below 2. In particular, since the true solution vanishes at the boundary, the error
contributions should decrease substantially as the boundary becomes more accurately ap-
proximated. Computations using smaller meshes and possibly smaller time steps must be
used to verify optimality here.
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4.1.2 Square Domain, No-slip Boundary Conditions

An ideal convergence result should be possible using a square domain where boundary
approximation is exact. Choosing a solution

u1(x, y, t) = x2(x− 1)2(2y3 − 3y2 + y)

u2(x, y, t) = −y2(y − 1)2(2x3 − 3x2 + x)
p(x, y, t) = 0

differentiation gives ∇ · u = 0. This choice of pressure satisfies
∫
Ω p dΩ = 0, and curl(u) is

uniformly bounded on (0,T). The viscosity is ν = 10−3 with final time T = 1. A time step
size dt = 5e− 3 was chosen. Table 2 summarizes the results.

h
∥∥u− uh

∥∥
L2 Rate

∥∥u− uh
∥∥

H1 Rate
1.088e-1 9.620e-7 —- 4.141e-4 —-
5.657e-2 7.225e-8 3.96 1.131e-4 1.98
2.886e-2 5.096e-9 3.94 2.952e-5 2.00
1.458e-2 4.845e-10 3.45 7.539e-6 2.00

Table 2: L∞(0, T ) errors and convergence rates, square domain.

Interestingly we obtain in L∞(0, T ;L2(Ω)) a possible superconvergence for this problem.
The decreasing rate may be a result of asymptotically approaching an optimal rate h3, or
an artifact resulting from the fixed time step size being too large to verify the superconver-
gent rate. However, the optimal convergence rate in L∞(0, T ; H1(Ω)) matches exactly the
prediction of Theorem 3.1.

4.1.3 Square Domain, Periodic Boundary Conditions

The analysis in this report can be extended to periodic boundary conditions. Convergence
rate verification in this case is performed using Taylor-Green vortices on the unit square as
a true solution, [13, 3]. Taylor-Green vortices are a solution of the NSE with driving force
f ≡ 0, given by:

u1(x, y, t) = −cos(Nπx)sin(Nπy)e−2N2π2νt

u2(x, y, t) = cos(Nπy)sin(Nπx)e−2N2π2νt

p(x, y, t) = −1
4
cos(2Nπx)cos(2Nπy)e−2N2π2νt.

We choose N = 2. The viscosity parameter is ν = 10−2 with final time T = 1. Table 3
summarizes the results using Algorithm 4.1.

h
∥∥u− uh

∥∥
L2 Rate

∥∥u− uh
∥∥

H1 Rate
1.28565e-1 5.94047e-2 —- 9.51165e-1 —-
6.73435e-2 1.87157e-2 1.786 3.16293e-1 1.703
3.44930e-2 4.20793e-3 2.231 7.64096e-2 2.123
1.74594e-2 9.45320e-4 2.193 1.77568e-2 2.143

Table 3: L∞(0, T ) errors and convergence rates, periodic boundary conditions.
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The optimal convergence rate h2 in L∞(0, T ; H1(Ω)) is achieved, again verifying Theo-
rem 3.1. In L∞(0, T ; L2(Ω)) a suboptimal rate is observed. Given the similar convergence
rates for the circular flow it must be concluded that some special properties exist for the
problem of flow on the unit square with no-slip boundary conditions which resulted in the
superoptimal convergence rate observed there. Computational evidence suggests in general
only a suboptimal rate is possible in L∞(0, T ;L2(Ω)). This does not contradict the analysis
herein.

4.2 Prediction of Coherent Vortices

In this section Algorithm 4.1 is used to approximate solutions of the NSE for the forward-
backward facing step problem (see [10] for details). For Reynolds numbers 500 ≤ Re ≤ 700
the solution of the NSE for this problem features a recirculation zone behind the step, and
vortices separate and detach, propagating downstream over time. It is known that using
Leray regularization for this problem with filtering radius scaling α = h retards vortex
separation, [1]. There is a question of scaling the filter parameter near walls but is beyond
this report. The filter is chosen to be a constant on the domain, α = 0.05(h + hmin),
with hmin being the diameter of the smallest triangle, thus corresponding to an order
of magnitude less than the average of the maximum and minimum triangle diameters.
With this choice of filter scale, using shape regular elements Theorem 3.1 still holds. Less
regularity will be imposed by the NS-α model in the recirculation zone compared to choosing
α = h, improving prediction of vortex separation.

A non-uniform mesh is chosen, refined near the step as shown in Figure 2. Calculations
were performed for ν = 1/600 with grad-div stabilization parameter γ = 1 and time step
dt = 0.005. Figure 3 shows the streamline plot generated using the NS-α model at time
t = 32. For comparison, the calculations were repeated using the standard finite element
discretization of the NSE and convective form of the non-linearity on the same mesh, shown
in Figure 4. In both cases two separate vortices are resolved, as expected at this time step.
The NSE discretization predicts a small vortex adherent to the back wall of the step and
larger one immediately adjacent, downstream. The vortices predicted by the NS-α model
are elongated and generally larger compared to those predicted by the NSE discretization.
Evidently the NS-α model predicts a faster vortex shedding kinetic, as well as a snowball
type growth of vortex diameter while propagating downstream. Calculations using smaller
meshes for this problem are computationally expensive and beyond this report, hence no
comment can be made regarding the overall quality of calculations for the step problem using
NS-α. However, the formation and separation of distinct vortices is clear and demonstrates
to some extent the ability to predict time dependent behavior using NS-α.

Remark 4.1. An important observation is that repeating the step problem calculations
using the standard NS-α model without imposing the extra constraint ∇ · u = 0 yields a
numerical method which fails to converge during the nonlinear solve. Using both fixed-point
and Newton’s methods, no meaningful output is obtained. It is critical using NS-α to impose
∇ · u = ∇ · u = 0 for practical computations.

5 Conclusions

Finite element discretizations of the continuous-time NS-α model have a convergence rate
O(h2) in the H1 norm if we choose α = h, consistent with Theorem 3.1. This has been
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Figure 2: Example mesh, moderately refined near the step.

Figure 3: NS-α approximation streamline plot, t = 32.

observed in 2D experiments herein. Further study is needed to draw conclusions as to
optimality of the NS-α model in the L2 norm. It has been demonstrated that the model
qualitatively predicts time dependent behavior, using the constraint ∇ · u = 0.

Thanks to Prof. William Layton for many enlightening discussions during preparation
of this report.
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Figure 4: NSE finite element approximation streamline plot, t = 32.
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