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Abstract. Given a compact operator G, we consider the ill-posed problem,

given y , solve Gφ = y (approximately).

Typically, in the presence of noise y /∈ Range(G). We consider the iterated Tikhonov method for
this problem. The method selects a regularization parameter based on stability and corrects several
times to increase accuracy. We show that it gives a higher accuracy approximation to the noise-free
solution at each step, both in the regular and not regular cases, and that it alleviates the parameter
selection difficulty of Tikhonov regularization. We also show that each update also computes the
sensitivity of the Tikhonov approximation with respect to the user selected regularization parameter.

1. Introduction. Let G : X → X (X a Hilbert space) be a compact linear
operator. Given y ∈ X we consider the problem:

Solve Gφ = y for φ ∈ X. (1.1)

This problem occurs in many applications including parameter identification and im-
age processing (e.g. the deconvolution problem from image processing, e.g., [BB98]).
The problem of deconvolution of turbulent velocities also occurs in one approach to
the closure problem in turbulence modeling (e.g., [BIL06], [Geu97], [AS01], [LL05]).
It is well known, e.g., [AN01], [BK04], [H94], [N84], [S07], [V02], [V82], that for G
compact and Range(G) infinite dimensional, problem (1.1) is ill-posed. Motivated
by the deconvolution problem, we shall decompose the given data y as an element of
Range(G) plus noise as

y = φ+ ε, φ = Gφtrue ∈ Range(G) and ε := noise. (1.2)

Since the problem (1.1) subject to (1.2) is ill-posed, the problem thus becomes

Given (1.2), solve (1.1) for φtrue as accurately as possible. (1.3)

We study herein the combination of Tikhonov regularization and defect correction
for (1.3), known as iterated Tikhonov regularization. The usual Tikhonov regularized
approximation to (1.3) is the solution of

(G∗G+ αI)φ0 := G∗y.

Wrapping a defect correction loop around this results in the iterated Tikhonov regu-
larization method, [VV86]. With iterated Tikhonov, the regularization parameter α
can be selected for stability (perhaps too large initially for acceptable accuracy). The
approximation is then corrected several times to recover lost accuracy as follows.
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A�������	 1.1 (iterated Tikhonov). Given data y = φ+ε where ε is the noise
in the problem data. Select α > 0 and fix J (the number of steps)

Solve for φ0

(G∗G+ αI) φ0 = G∗ y

For j = 1, · · ·, J solve for φj

(G∗G+ αI)[φj − φj−1] = G∗(y −G φj−1).

The difference between iterative and non-iterative regularization is not sharply
defined. Often, in the former, the iteration stopping point functions as a regularization
parameter, e.g., [BK04], [GG00], [HT01]. Even so, it is important to note that in
defect correction methods like iterated Tikhonov J is fixed at a moderate value so it
is not an iteration (properly speaking). The important question is thus asymptotic
convergence as α → 0 and not as J → ∞. This point is well illustrated in the
experiments and amplified by the analysis in Section 4.

Even in this simple form (fixed α and J), iterated Tikhonov has great advantages
over usual Tikhonov regularization. It reduces the sensitivity of the approximation
error to the exact choice of the regularization parameter α and greatly increases the
accuracy of the approximation (when the noise free solution is smooth), e.g., [VV86],
[EHN96] Chapter 5. Interestingly, we shall also prove a superconvergence result (The-
orem 2.1) that, even in the non-smooth case, accuracy is greatly increased in the noise
free solution’s large scales. The implementation of iterated Tikhonov involves wrap-
ping a loop around a Tikhonov regularization routine; thus, it is also straightforward
from a programming standpoint. These benefits can be enhanced further by selecting
J self-adaptively and varying α at each step. These possibilities, involving extensions
of the L−curve method, the monotone error rule and the discrepancy principle, are
developed in the important work of Engl [E87], Hämarik, Palm and Raus [HPR08],
Hämarik and Tautenhahn [HT01], Gfrerer [G87], Hanke and Groetsch [HG98], among
others.

Each iterated Tikhonov update step requires the solution of one regularized prob-
lem. To begin, we prove that, provided the noise free solution is sufficiently regular,
each step increases the asymptotic accuracy of the computed approximation, Theo-
rems 1.3 and 1.8. This basic result is typical for defect correction type methods like
iterated Tikhonov. We believe its proof is known, e.g., in the Russian literature in
Vainikko and Veretennikov [VV86]. We give a proof in Section 2 for completeness and
also because the proof given makes the superconvergence result follow immediately,
essentially by a change of variable.

Our initial motivation was the deconvolution problem. In this problem there is
a natural length scale associated with (1.3) and a natural way to define a hierar-
chy of scales. This idea can be abstracted in a simple way to the general problem
(1.3). Within this abstraction we show in Theorem 2.1 that even in the non-regular
case (in which global error estimates exhibit no advantage for iterated Tikhonov over
Tikhonov) each step of iterated Tikhonov increases the accuracy of the approxima-
tion’s large scales as much as predicted in the smooth case. Due to our motivation, we
briefly consider the method’s induced deconvolution operator / approximate inverse
and show that it is self-adjoint and positive definite (Proposition 2.3). Section 3 con-
nects iterated Tikhonov to sensitivity analysis. We show that each iterated Tikhonov

2



step additionally computes the sensitivity (precisely defined) of the approximate so-
lution to variations of α and uses it to increase the approximation’s accuracy. By
rewriting iterated Tikhonov-Lavrentiev in terms of a minimization problem in Sec-
tion 4, we show how the initial steps approximate the noise free solution while if too
many steps are taken the updates become a minimizing sequence for the undesired,
noisy problem. Two simple numerical experiments are given in Section 5 that confirm
the fundamental theoretical predictions.

1.1. Tikhonov and Tikhonov-Lavrentiev Regularization. The work horse
for approximating solutions of ill-posed problems is Tikhonov regularization. It is
given by selecting the regularization parameter α > 0 and computing the approxima-
tion φ0(α) to the noise free solution by solving

(G∗G+ αI)φ0(α) := G∗y. (1.4)

When G is a self-adjoint and non-negative operator (Definition 1.1 below) a sim-
pler variant of Tikhonov regularization, Tikhonov-Lavrentiev regularization1 , is ap-
plicable. It proceeds by selecting α > 0 and computing φ0(α) now by solving

(G+ αI)φ0(α) := y. (1.5)

In the absence of noise, it is known, e.g., [BHTY07], [EHN96], [H95], [MP06], [V82],
that the error in both (1.4) and (1.5) converges to zero at rate φtrue−φ0(α) = O(

√
α)

and at rate φtrue − φ0(α) = O(α) under an additional smoothness condition on the
problem data. In the presence of noise, an optimal choice of α exists for which φ0(α)
converges to φtrue as the size of the noise ||ε||X → 0. It is also well known that an
inaccurate choice of α often leads to significant loss of either stability (α chosen too
small) or accuracy (α chosen too large). For a more detailed discussion of regulariza-
tion methods, see the above references (among very many).

R�	��� 1.2 (Tikhonov vs Tikhonov-Lavrentiev regularization). Many of the
known properties of Tikhonov regularization hold for iterated Tikhonov as well. For
example, even in problems where both can be used the choice is application dependent.
For example, there is often a benefit to using full Tikhonov regularization even in the
self-adjoint and non-negative definite case. This is because the RHS of (1.4) is G∗ε
rather than ε. Often the (adjoint) operator G∗ acts as a filter and ||G∗ε||X is signif-
icantly smaller than ||ε||X. Also, in specific applications there are often advantages
of regularizing by αL (with a judicious and application dependent choice of L) rather
than αI.

1.2. The Iterated Tikhonov Method. Iterated Tikhonov uncouples stability
and accuracy in the choice of α. The regularization parameter α can be selected for
stability (perhaps too large initially for acceptable accuracy). The approximation is
then corrected several times to recover lost accuracy. The following error estimate for
the J step iterated Tikhonov approximation follows from the analysis in Section 2 for
the Tikhonov-Lavrentiev case.

T�����	 1.3 (iterated Tikhonov error estimate). Suppose

φtrue ∈ Range
(
(G∗G)J

)
.

1 Tikhonov regularization is Tikhonov-Lavrentiev regularization applied to the normal equations;
we prove Theorem 1.8 in Section 2; Theorem 1.3 follows by replacing G by G∗G, ε by G∗ε and y
by G∗y.
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In the absence of noise, i.e., ε ≡ 0, there exists a constant C(J) <∞ such that the J
step iterated Tikhonov error eJ = φtrue − φJ satisfies

||φ− φJ ||X ≤ C(J)αJ+1.

In the presence of noise, if for some constant ε0 we have

||G∗ε||X ≤ ε0,

then there exists a constant C(J) <∞ such that

‖eJ‖X ≤
(J + 1) ε0

α
+C (J)αJ+1. (1.6)

As an example (see Section 5 for details) of the increase in accuracy that the
iterated Tikhonov steps give, the problem of inverting the 200 × 200 Hilbert matrix
with relative noise of magnitude 10−5 is considered in the last section. For α = 0.7
the relative error e (the scaled norm of the noise free solution - approximation) in the
Tikhonov approximation (step number j = 0) and subsequent approximations (steps
j = 1, 2, · · · and errors e) is given in the next table.

j 0 1 2 3 4 5 6 7 8 9

e .2955 .1114 .0550 .0334 .0231 .0171 .0133 .0108 .0090 .0078

j 10 11 12 13 14 15 16 17 18 19

e .0069 .0062 .0057 .0053 .0049 .0047 .0045 .0043 .0042 .0041

j 20 21 22 23 24 25 26 27 28 29

e .0041 .0041 .0041 .0041 .0042 .0043 .0043 .0044 .0045 .0047

We see a clear and dramatic increase in accuracy in the approximation followed
by an increase in the error after too many steps as predicted in Theorem 1.3, (1.6).
Plotting in the next figure below the error (vertical axis) against update number
(horizontal axis) in the first 500 steps shows this effect clearly.

Errors increase linearly with j after too many steps

1.3. The Iterated Tikhonov-Lavrentiev Method. Consider the case of a
self-adjoint and non-negative compact operator G.

D��������� 1.4. Let G : X → X . We shall say that G is ����-������� ���
���-�������� �������� if G∗ = G and

(Gv, v)X ≥ 0,∀v ∈ X.
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Tikhonov-Lavrentiev regularization applies to the self-adjoint and non-negative
definite case. It is given by: select α > 0 and solve

(G+ αI)φ0(α) := y. (1.7)

A�������	 1.5 (iterated Tikhonov-Lavrentiev). Let G be self-adjoint and non-
negative definite. Given data y = φ + ε, select α > 0 (the regularization parameter)
and fix J (the number of steps)

Solve for φ0

(G+ αI) φ0 = y (1.8)

For j = 1, · · ·, J solve for φj

(G+ αI)[φj − φj−1] = y −G φj−1 (1.9)

D��������� 1.6. The approximate deconvolution operator / approximate inverse
of G induced by the iterated Tikhonov-Lavrentiev operator is the operator DJ : X → X
by

DJy = φJ .

We have the following closed form expression for the approximate inverses / ap-
proximate deconvolution operators DJ at each step.

P��!������� 1.7. The deconvolution operators / approximate inverses induced
by iterated Tikhonov-Lavrentiev are D0 = (G+ αI)−1, and, for J ≥ 1,

DJ = (G+ αI)−1
J∑

j=0

αj(G+ αI)−j .

Proof. These formulas follow by eliminating the intermediate steps in Algo-
rithm 1.5.

The basic result of iterated Tikhonov-Lavrentiev is that the approximation’s accu-
racy increases by one power of α for each step, for example [VV86], [EHN96]. Indeed,
in the absence of noise, the jth step and the exact solution can both be rewritten as
follows

φj = D0φ+ αD0φj−1(j ≥ 1), and φtrue = D0φ+ αD0φtrue.

(Recall that D0 = (G + αI )−1.) Let ej := φtrue − φj . By subtraction, the jth and
(j − 1)st errors are related by

e0 = αD0φtrue, ej = αD0ej−1 (for j ≥ 1),

Thus, for j = 0, 1, · · ·, J ,

ej = αj+1Dj+1
0 φtrue.

This simple formula captures the idea of the error analysis we give. It immediately
gives the preliminary result that if the solution φtrue is smooth enough that

sup
0<α<1

||DJ+1
0 φtrue||X ≤ C(J) <∞ (1.10)
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then the error is eJ = O(αJ+1). Hence, each step decreases the error by one power
of the regularization parameter α. The ideas in the proof of the next theorem are
provided above; its detailed proof is given in Section 2.

T�����	 1.8 (iterated Tikhonov-Lavrentiev error). Let G be self-adjoint and
non-negative definite and α > 0. In the absence of noise, the iterated Tikhonov-
Lavrentiev error eJ = φtrue − φJ satisfies

eJ = αJ+1DJ+1
0 φ.

Moreover, if φtrue ∈ Range
(
GJ
)
there exists a constant C(J) <∞ such that

||φ− φJ ||X ≤ C(J)αJ+1.

In the presence of noise if there is an ε0 such that

||ε||X ≤ ε0 <∞ and φtrue ∈ Range
(
GJ
)

then there exists a constant C(J) <∞ such that.

‖eJ‖X ≤
(J + 1) ε0

α
+C (J)αJ+1 (1.11)

Supposing C(J) = O(1), we can gain some insight can by plotting the RHS of
the error estimate for various values of J in the next figure.

alpha

error

Errors: J = 0 (light),1 (medium),2 (dark),5 (dashed)
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The plot suggests that as the number of steps increases
• the minimum error is obtained for a larger value of α and thus each regularized

problem solved is more stable,
• the error curve is flatter near the minimum and thus the error is less sensitive

to non-optimal values of α,
• the error decreases as J increases for the first steps.

1.4. Other related work. The idea of defect correction is simple and universal.
In its original form, it was considered an algorithmically efficient way to perform
Richardson’s extrapolation [S78], [BHS84]. There is a connection between iterated
Tikhonov with constant α, sensitivities and extrapolation which is explored in Section
3. Extrapolation methods based on varying α inside iterated Tikhonov is explored in
depth in the work of Hämarik, Palm and Raus [HMR07] and Brezinski, Redivo-zaglia,
Rodriguez and Seatzu [BRRS98]. In the context of computational fluid dynamics, the
practical benefit of defect correction was recognized for nearly singular problems in
the work of Hemker [Hem82a], [Hem82b] and Hemker and Koren [HK88], [HK92]
with analytical proof of its effectiveness in [EL89] and [AL90]. One current view
of defect correction is that it allows for approximating irregular solutions through
stabilization and correction, exactly as realized in the iterated Tikhonov method.
For a sample of related works outside of those cited above on ill-posed problems
see, e.g., Altase and Burrage [AB94]; Axelsson and Nikolova [AN97]; Juncu [J99];
Lee [L04], Boonkkamp, Graziadei, and Mattheij [BGM04]; Heinrichs [Hei94], [Hei96];
Desideri and Hemker [DH95]; Mattheij and Nemedov [MN02]; and Crumpton and
Shaw [CS93]. Another interpretation of the defect correction idea has recently been
applied to integral equations in Derevtsov, Louis and Schuster [DLS04], and Schuster
[S05].

2. Error analysis of iterated Tikhonov-Lavrentiev. We begin by giving a
complete proof of the basic error estimate in Theorem 1.8 so that the superconvergence
result (in Section 2.1) follows almost immediately. First, we construct and solve the
error equation. Recall that D0 = (G+ αI)−1.

L�		� 2.1 (error equation). Let G be self-adjoint and non-negative definite,
α > 0. For j = 0, 1, · · ·, J, the jth error, ej := φtrue − φj, of the iterated Tikhonov-
Lavrentiev satisfies

e0 = −D0ε+ αD0φtrue, ej = −D0ε+ αD0ej−1 (for j ≥ 1). (2.1)

Further,

ej = −D0

(
j∑

i=0

αiDi
0

)
ε+ αj+1Dj+1

0 φtrue. (2.2)

Proof. The iterated Tikhonov-Lavrentiev can be rewritten as

φ0 = D0y, φj = D0y + αD0φj−1 (for j ≥ 1). (2.3)

Since Gφtrue = φ can be rearranged to read

φtrue = D0φ+ αD0φtrue, (2.4)

subtraction yields (2.1). Eliminating intermediate quantities yields (2.2).
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We next show that the required regularity condition on φtrue in (1.10) holds
uniformly in α if φtrue ∈ Range

(
GJ
)
.

P��!������� 2.2 (regularity). Let G be self-adjoint and non-negative definite.
If, for integer J, φtrue ∈ Range

(
GJ
)
, then there exists a constant C(J) < ∞ such

that

sup
0<α≤1

∥∥DJ
0φtrue

∥∥
X
≤ C (J) . (2.5)

More generally, if β ≥ 0 and φtrue ∈ Range
(
Gβ
)
, then there exists a constant

C(β) <∞ such that

sup
0<α≤1

∥∥∥Dβ
0φtrue

∥∥∥
X
≤ C (β) .

Proof. For integer J , we proceed by induction. Since G is self-adjoint and non-
negative definite operator, it follows that

inf {λ : λ ∈ σ(G)} ≥ 0.

(In fact, if Range(G) is infinite dimensional, it can be shown for compact G that the
infimum is exactly zero.) Hence,

‖D0‖L(X→X) = [α+ inf{λ ∈ σ(G)}]−1 ≤ 1

α
. (2.6)

If φtrue ∈ Range(G), then there exists an x1 ∈ X such that Gx1 = φtrue. This implies

||D0φtrue||X = ||D0Gx1||X
= ||D0[(G+ αI)x1 − αx1]||X
= ||x1 − αD0x1||X
≤ ||x1||X + α||D0||L(X→X)||x1||X
≤ 2||x1||X =: C1(<∞).

Now, fix 1 < j ≤ J and suppose for any k = 1, · · ·, j − 1 that φtrue ∈ Range
(
Gj
)

implies
∥∥Dk

0φtrue
∥∥
X
≤ Ck, uniformly in α. Take φtrue ∈ Range

(
Gj
)

and xj ∈ X

with φtrue = Gjxj . Then, by the binomial theorem,

||Dj
0φtrue||X = ||Dj

0G
jxj ||X

= ||Dj
0[(G+ αI)jxj − Pj(α,G)xj ]||X

≤ ||xj ||X + ||Dj
0Pj(α,G)xj ||X , where

Pj(α,G) =

j∑

i=1

j!

(j − i)!i!
αiGj−i.

Observe that Gj−ixj ∈ Range(Gj−i) and j − i < j. Since ‖D0‖L(X→X) ≤ 1
α ,
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αi||Di
0||L(X→X) ≤ 1 so the induction hypothesis gives

||Dj
0Pj(α,G)xj ||X ≤

j∑

i=1

j!

(j − i)!i!
αi||Dj

0G
j−ixj ||X

≤
j∑

i=1

j!

(j − i)!i!
αi||Di

0||L(X→X)||Dj−i
0 Gj−ixj ||X

≤
j∑

i=1

j!

(j − i)!i!
Cj−i.

Thus,

||Dj
0φtrue||X ≤ ||xj ||X + ||Dj

0Pj(α,G)xj ||X

≤ ||xj ||X +
j∑

i=1

j!

(j − i)!i!
Cj−i =: Cj .

In the non-integer case we give a different proof based on the spectral decompo-
sition of G. Since G is a compact, non-negative, self-adjoint operator, the spectral
theorem implies existence of non-negative real eigenvalues and a complete orthonor-
mal set of eigenvectors of G:

Gvk = λkvk, k = 1, · · ·.

Denote φ̂(k) := (φtrue, vk)X so that

φtrue =
∑

k

φ̂(k)vk and ||φtrue||2X =
∑

k

|φ̂(k)|2 <∞.

Further, if φtrue ∈ Range
(
Gβ
)

then φtrue = Gβψ for some ψ ∈ X. Thus,

||ψ||2X =
∑

k

|λk|−β|φ̂(k)|2 <∞.

We then have by direct calculation

∥∥(G+ αI)−βφtrue
∥∥2
X
=
∑

k

|λk + α|−β|φ̂(k)|2 =

=
∑

k

|λk + α|−β
|λk|−β

{|λk|−β|φ̂(k)|2} ≤

≤
(
sup
k,α≥0

|λk + α|−β
|λk|−β

)
∑

k

|λk|−β|φ̂(k)|2 ≤

≤
(
sup
k,α≥0

|λk + α|−β
|λk|−β

)
||ψ||2X .

The result is thus proven provided (after rearrangement)

sup
λ∈[0,||G||],α∈[0,1]

|λ|β
|λ+ α|β ≤ C <∞.
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Over the indicated values the denominator is always larger than the numerator so the
fraction is bounded by C = 1 and the result follows.

The proof of Theorem 1.8 now follows easily.

Proof. (Theorem 1.8) In the absence of noise, the claim follows by setting ε = 0
and iterating backwards in the error equation

ej = αD0ej−1 and e0 = αD0φ.

This gives eJ = αJ+1DJ+1
0 φ. We thus have

||eJ ||X ≤ αJ+1||DJ+1
0 φ||X .

The second claim follows by Proposition 2.2.
In the presence of noise, by taking norms across (2.2) and applying the triangle

and Cauchy-Schwarz inequalities and inequality (2.6), we obtain

‖ej‖X ≤
(j + 1) ε0

α
+ αj+1

∥∥∥Dj+1
0 φtrue

∥∥∥
X
. (2.7)

Proposition 2.2 completes the proof.
To conclude this section, we prove that the iterated Tikhonov-Lavrentiev opera-

tors Dj are self-adjoint, strictly positive definite and convergent as α→ 0.
P��!������� 2.3. Let G be bounded, self-adjoint and non-negative definite and

α > 0.
(i) Dj is a self-adjoint, strictly positive definite and bounded operator.
(ii) Considering the noise-free problem, if Range(Gj+1) is dense in X, then for

any φ ∈ X, Djφ→ φtrue as α→ 0 where Gφtrue = φ.
Proof. (i) Recall that

Dj = (G+ αI)−1
j∑

k=0

αk(G+ αI)−k.

Dj is a function of G hence self-adjoint. The form of this function readily shows that
Dj is positive definite for α > 0. By (2.6), ||Dj ||L(X→X) ≤ j+1

α and hence Dj is
bounded. Part (ii) follows by a density argument.

2.1. The case of less regular solutions: a superconvergence result. The
assumption that φtrue ∈ Range

(
GJ
)

is a regularity condition that may or may not
be satisfied. Thus two questions naturally arise:

• What is the accuracy of the iterated Tikhonov-Lavrentiev approximation in
the less regular case?

• Does the approximation in the less regular case contain hidden accuracy?
We begin by noting that in the global convergence analysis (and by the same

proof) less regularity yields a corresponding reduced rate of convergence.
T�����	 2.4 (Iterated Tikhonov-Lavrentiev: less regularity). Let G be self-

adjoint and non-negative definite and let α > 0. Suppose that for some integer β ≥ 0

φtrue ∈ Range
(
Gβ
)

for some β, 0 ≤ β < J

In the absence of noise, there is a constant C = C(J) such that the iterated Tikhonov-
Lavrentiev error eJ = φtrue − φJ satisfies

||φtrue − φJ ||X ≤ C(J)αβ+1, 0 ≤ β < J.
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In the presence of noise, if

||ε||X ≤ ε0 <∞,

then there exists a constant C(J) <∞ such that

‖eJ‖X ≤
(J + 1) ε0

α
+C (J)αβ+1.

Some components of the error can converge faster than the global error and
faster than the bound above suggests. To attach some intuition to our next re-
sult, let us begin by supposing that G can be interpreted as a smoothing operator.
In that case, we can think about φ ∈ X as containing all scales of the solution
and Gφ ∈ Range(G) ⊂ X as underweighting the small scales associated with higher
eigenfunctions of G. In this sense we consider G(φtrue−φJ) as representing the larger
scales of the error, G2(φtrue − φJ) as the still larger scales and so on. For example,
if G represents smoothing by a Gaussian filter, there is a natural convolution length
scale δ. Naturally, G(φtrue − φJ) represents the O(δ) and larger scales of the error,
G2(φtrue − φJ) the O(

√
2δ) and larger scales and, in general, GJ(φtrue − φJ) the

O(
√
Jδ) and larger scales.

T�����	 2.5 (superconvergence of iterated Tikhonov). Let G be self-adjoint
and non-negative definite, let α > 0 and suppose φtrue ∈ X. If

∥∥GJε
∥∥
X
≤ ε0, then

there exists a constant C(J) <∞ such that

∥∥GJeJ
∥∥
X
≤ (J + 1) ε0

α
+C (J)αJ+1.

More generally, if φtrue ∈ Range
(
Gβ
)

for some β, 0 ≤ β < J and ||GJ−βε||X ≤ ε0,
then

∥∥GJ−βeJ
∥∥
X
≤ (J + 1) ε0

α
+C (J)αJ+1.

Proof. This proof follows quickly from the analysis in the proof of Theorem 1.8
by a change of variables. Indeed, define

φ̃ = GJ−βφ (in all cases with all subscripts), ỹ = GJ−βy, ε̃ = GJ−βε.

Multiplying Gφ = y through by GJ−β gives a problem of exactly the same form
as (1.3) with tildes over all variables:

Solve Gφ̃ = ỹ for φ̃true as accurately as possible.

for φ̃true as accurately as possible. If φtrue ∈ Range(Gβ) then clearly φ̃true ∈
Range(GJ). Similarly, multiplying the iterated Tikhonov-Lavrentiev algorithm by

GJ−β shows that the approximations φ̃j = GJ−βφj are the iterated Tikhonov-Lavrentiev

approximations to the tilde problem. The basic error estimate for ẽJ = φ̃true − φ̃J
now applies to the tilde problem. Since ẽJ = GJ−βeJ the result follows.
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3. Sensitivity of Tikhonov-Lavrentiev regularization. Sensitivities give
important information about the reliability of predictions, e.g., [G02], [AL07], [SS02],
[BB97], [L94]. They are also required when the output of an algorithm is optimized
over the algorithm’s inputs, [G02].

D��������� 3.1. The sensitivity with respect to α, sj(α), of the jth iterated
Tikhonov-Lavrentiev approximation φj is

sj(α) :=
d

dα
φj(α).

Sensitivity equations are obtained by implicitly differentiating the equations de-
rived for the proposed algorithms. In the initial Tikhonov-Lavrentiev approximation,
implicit differentiation gives the following coupled system for φ0(α) and s0(α) :

(G+ αI)φ0(α) = y (3.1)

(G+ αI)s0(α) = −φ0(α)
Thus, calculating the sensitivity of φ0 involves one extra regularization solve step
beyond the Tikhonov-Lavrentiev regularization solve. Interestingly, the extra work
computing α sensitivities of the Tikhonov-Lavrentiev approximation is not wasted
from the standpoint of accuracy. Indeed, following an idea in [AL07], the sensitivity
can be used to increase the accuracy of the Tikhonov-Lavrentiev approximation as
follows. In the noise-free problem, since φtrue = φ0(α)|α=0, one Newton step in α
parameter space gives the approximation φ0(α)− αs0(α) which has accuracy

φtrue = φ0(α)− αs0(α) +O(α2). (3.2)

We begin by showing that this sensitivity corrected approximation φ0(α)−αs0(α) in
(3.2) coincides with the J = 1 step of the iterated Tikhonov-Lavrentiev algorithm.

P��!������� 3.2. (i) The sensitivity s0(α) satisfies

s0(α) =
φ0(α)− φ1(α)

α
. (3.3)

(ii) The J = 1 iterated Tikhonov-Lavrentiev approximation is identical to the
sensitivity corrected approximation (3.2):

φ1 ≡ φ0(α)− αs0(α). (3.4)

Proof. Starting with (G+αI)φ0 = y and (G+αI)(φ1−φ0) = y−Gφ0, the result
follows by implicit differentiation and algebraic rearrangement

The correspondence between iterated Tikhonov-Lavrentiev and sensitivity correc-
tions of Tikhonov-Lavrentiev regularization can be continued to higher sensitivities
and more than one update step. Indeed, if φ0(α) is a sufficiently regular function of
α, we can develop its Taylor polynomial at α as a function of α̃ as

Tk(φ0(α))(α̃) := φ0(α) + (α̃− α)
dφ0(α)

dα
+ ...+

(α̃− α)k

k!

dkφ0(α)

dαk
. (3.5)

Beginning with this, we can take Tk(φ0(α))(α̃)|α̃=0 as an approximation to φtrue,
aiming at order of accuracy O(αk+1). This gives

Approxk(φtrue) : = Tk(φ0(α))(α̃)|α̃=0 (3.6)

= φ0(α)− α
dφ0(α)

dα
+ ...+ αk

(−1)k
k!

dkφ0(α)

dαk
.
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We show next that (3.6) is exactly the kth approximation and thus the updates implic-
itly compute higher sensitivities of φ0(α) and use them to correct the approximation.

T�����	 3.3. Let G be self-adjoint and non-negative definite and α > 0. Con-
sider the higher order, sensitivity corrected approximation (3.6). In the absence of
noise and for sufficiently regular φ0(α)

φtrue = Approxk(φtrue) +O(αk+1).

Further, the kth iterated Tikhonov-Lavrentiev approximation φk(α) is exactly (3.6):

φk(α) = Approxk(φtrue).

We begin the proof with several algebraic identities.
L�		� 3.4. (i) For j > 0,

(G+ αI)[sj(α)− sj−1(α)] = −(φj(α)− φj−1(α))−Gsj−1(α).

(ii) For j > 1,

sj−1(α) =
φj−1(α)− φj(α)

α
+ αD0sj−2(α).

(iii) For j > 1,

φj(α) = φj−1(α)− αsj−1(α) + α2D0sj−2(α).

(iv) For j > 0,

(G+ αI)j−1(φj(α)− φj−1(α)) = αj−1(φ1(α)− φ0(α))

Proof. Part (i) Follows directly from implicit differentiation with respect to α of
equations (1.8) and (1.9). Part (ii) follows from (i) and equations (1.8) and (1.9).
Indeed,

(G+ αI)(sj−1(α)− sj−2(α)) = −(φj−1(α)− φj−2(α))−Gsj−2(α)

implies that

(G+ αI)sj−1(α) = −(φj−1(α)− φj−2(α)) + αsj−2(α).

Further

(G+ αI)(φj−1(α)− φj−2(α)) = y −Gφj−2(α)

implies as well that

−αφj−2(α) = y − (G+ αI)φj−1(α), and (3.7)

−αφj−1(α) = y − (G+ αI)φj(α). (3.8)

So, we conclude that,

α(G+ αI)sj−1(α) = −(G+ αI)(φj(α)− φj−1(α)) + α2sj−2(α)

13



The desired conclusion follows immediately. Part (iii) follows immediately by alge-
braically rearranging (ii). For part (iv) note that in the proof of (ii) we showed that

(G+ αI)φj−1(α) = y + αφj−2(α) (3.9)

(G+ αI)φj(α) = y + αφj−1(α). (3.10)

So, we have

(G+ αI)(φj(α)− φj−1(α)) = α(φj−1(α)− φj−2(α)),

from which the conclusion follows.
L�		� 3.5. (i) We have

ds0(α)

dα
= −s1(α)

α
.

(ii) For k = 2, · · ·, J

dk−1s0(α)

dαk−1
= (−1)k−1 k!

2α
Dk−2
0 s1(α).

(iii) The sensitivity s1(α) of the first iterated Tikhonov-Lavrentiev approximation
φ1(α) satisfies

(G+ αI)s1(α) = −2(φ1(α)− φ0(α))

Proof. Part (i) follows by implicit differentiation of equation (3.3) with respect
to α. For part (ii), starting with (G+ αI)φ0(α) = y and differentiating k times with
respect to α we get

dk−1s0(α)

dαk−1
= −kD0

dk−2s0(α)

dαk−2

By continued substitution and using ds0(α)
dα = −s1(α)

α in from (i) in the final step, we
get (ii). For (iii), s1(α) satisfies

(G+ αI)[s1(α)− s0(α)] = −(φ1(α)− φ0(α))−Gs0(α).

Rearranging and inserting s0(α) = −φ
1
(α)−φ

0
(α)

α gives (iii).
We are now ready to prove Theorem 3.3.

Proof. (Theorem 3.3) We first note that for α > 0, φ0(α) = (G + αI)−1y is a
smooth function of α. By Taylor’s theorem, for regular φ0(α),

φtrue = Tk(φ0(α)) +O(αk+1).

Next, by Lemma 3.4, part (iii) we have

φk(α) = φk−1(α)− αsk−1(α) + α2D0sk−2(α).

We want to show that this is exactly the kth term in the claimed Taylor expansion.
We have already shown this is true for k = 1. We assume that the claim is true for
k − 1 and proceed by induction. Hence, we must show

αk
(−1)k
k!

dkφ0(α)

dαk
= αsk−1(α) + α2D0sk−2(α)
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which, applying Lemmas (3.4) (iii) and (3.5) (ii), is equivalent to showing

φk(α)− φk−1(α) = −αk−1
1

2
Dk−2
0 s1(α),

which, multiplying by − 2
αk−1

(G+ α)k−1, is equivalent to

(G+ αI)s1(α) = −
2

αk−1
(G+ αI)k−1(φk(α)− φk−1(α))

which, by Lemma 3.4, part (iv), is equivalent to

(G+ αI)s1(α) = −2(φ1(α)− φ0(α)).

Lemma 3.5, part (iii) asserts the validity of the last equation. By equivalence, we get
the desired conclusion.

We offer an equivalent algorithm for iterated Tikhonov-Lavrentiev using the sen-
sitivities sj developed above. If sensitivities are desired, this reformulation algorithm
is an efficient way to compute sj and update φj+1 as needed.

A�������	 3.6 (iterated Tikhonov-Lavrentiev in terms of sensitivities). Let G
be self-adjoint and non-negative definite. Given data y = φ+ ε, select α > 0 and fix
J
Solve for φ0 and s0,

(G+ αI) φ0 = y

(G+ αI) s0 = −φ0.

Set

φ1 = φ0 − αs0.

For j = 1, · · ·, J
Solve for sj

(G+ αI)[sj − sj−1] = −(φj − φj−1)−Gsj−1

If j �= J then

φj+1 = φj − αsj + α2D0sj−1

4. Descent properties of iterated Tikhonov-Lavrentiev approximations.

The original problem (1.3) for self-adjoint and non-negative definite G is formally
equivalent to the minimization problem

minimizev∈X Jε(v) , where Jε(v) :=
1

2
(Gv, v)X − (φ+ ε, v)X .

The question naturally arises if the approximations φ0, φ1, · · · form a minimizing
sequence for Jε(·) and/or the noise - free functional J0(·) := Jε(·)|ε≡0.

P��!������� 4.1. Let G be self-adjoint and non-negative definite and α > 0.
Then the the iterated Tikhonov-Lavrentiev iterates are a minimizing sequence for Jε.
In particular,

Jε(φj)− Jε(φj+1) =
1

2
((G+ 2αI)(φj+1 − φj), φj+1 − φj) ≥ 0. (4.1)
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Thus

Jε(φj+1) < Jε(φj), unless φj+1 = φj .

Proof. The formula is an identity, well-known in numerical linear algebra from
the work of Householder [Hou06]. It follows here as well by expanding both sides
and cancelling terms. Formula (4.1) immediately implies Jε(φj+1) < Jε(φj), unless
φj+1 = φj as claimed.

From the form of the updates, φj+1 = φj only if Gφj = φ + ε, see (1.9). Thus,
if one continues to update, as j → ∞, φj converges to the undesired solution of the
noisy data problem, reinforcing the idea that it is critical to stop after a few update
steps and not iterate.

Since the problem we seek to solve is instead the noise-free one

Gφtrue = φ,

it is also natural to ask under what conditions the updates reduce the noise-free
functional

J0(v) :=
1

2
(Gv, v)X − (φ, v)X .

Rearranging the formula (4.1) shows that

J0(φj)− J0(φj+1) = (ε, φj+1 − φj) +
1

2
((G+ 2αI)(φj+1 − φj), φj+1 − φj). (4.2)

T�����	 4.2. Let G be self-adjoint and non-negative definite and α > 0. Sup-
pose the estimate on the noise ε0 ≥ ||ε||X is known. Then the the iterated Tikhonov-
Lavrentiev approximations are a minimizing sequence for the noise-free functional J0
as long as

α ≥ ε0
||φj+1 − φj ||X

. (4.3)

Proof. This follows from (4.2) and the Cauchy-Schwarz inequality.
Theorem 4.2 suggests that in the early steps, in which larger updates are ex-

pected, the updates move the approximate solution closer to the noise free solution.
Later in the process, as the updates become smaller, φj begins to deviate from an
approximation of the noise free solution unless α is increased. If more is known about
the noise or its statistical distribution, (e.g., if there is a projection operator P with
Pε = 0 ) then

(ε, φj+1 − φj)X = (ε, (I − P )[φj+1 − φj ])X .

In other words, if the component of the approximation in Range(P ) is updated the
approximation is still one to the noise free problem. This suggests the following small
algorithmic modification.

A�������	 4.3 (modified Tikhonov-Lavrentiev DCM). Given data φ+ ε, Sup-
pose ε0 ≥ ||ε||X and given P with Pε = 0. Select α and fix J .

Solve for φ0

(G+ αI) φ0 = φ.
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For j = 1, · · ·, J and while α ≥ ε0
||φj−φj−1||X

solve for φj

(G+ αI)[φj − φj−1] = φ−G φj−1

If α < ε0
||φj−φj−1||X

then either increase α so that (4.3) holds and recompute or

compute as above φj− φj−1 and set

φj ⇐ φj−1 + P (φj − φj−1)

Set Dφ := φJ .

5. Numerical Illustrations. We consider two problems illustrating the iterated
Tikhonov and iterated Tikhonov-Lavrentiev methods: inverting the Hilbert matrix
with a noisy right hand side and the inverse Laplace transform with noisy data.

Test 1: iterated Tikhonov-Lavrentiev for the 200×200 Hilbert matrix.
The N ×N Hilbert matrix, HN , has ij entries given by

(HN)ij :=
1

i+ j − 1 , 1 ≤ i, j ≤ N.

The Hilbert matrix is well known to be extremely ill-conditioned, e.g., [S06], and has
been used for testing methods for solving ill—posed problems, in, for example, [LR08].
It is known that H200 has condition number

cond(H200) ≃ O(
e3.5255×200√

200
) = 1.1763e+ 305.

We take the exact solution to the noise free problem to be

φtrue = [1,
1

2
, · · ·, 1

200
]

and compute the noise free RHS in extended precision. To this we add noise given by

ε := unit(rand(200)) · 10−4 · ‖y‖, so that
||ε||
||y|| = 10

−4,

where unit(rand(200)) is the Matlab routine used to generate a random unit vector
and || · || is the usual euclidean norm. HN is self-adjoint and positive definite, so we
applied iterated Tikhonov-Lavrentiev with parameters α and J ranging over values

10−4 ≤ α ≤ 1, and J = 0, 1, · · ·, 5.

For the range of α tested, we consistently observed a dramatic increase in ac-
curacy with the updated approximations; see the error table in the introduction for
a representative case. The next figure plots the error between the true, noise-free
solution and first 5 iterated Tikhonov-Lavrentiev approximations for the 200 × 200
Hilbert matrix.

17



Relative error vs. α for 5 steps for H200

The horizontal axis is the range of regularization parameter values: α from 10−4

to 1. The vertical axis plots the relative error between the calculated solution with
the indicated update’s approximation and the noise free solution. The error plots
above in the last figure show an increase in accuracy with the updates and that the
error becomes less sensitive to the regularization parameter as J increases. (The
region of the error curve around the minimum becomes flatter as J increases.) This
is also in accordance with the theoretical predictions. (Compare this figure with the
corresponding figure illustrating the theorem’s predictions in the introduction.) The
next figure zooms in to the part of the relative error occurring in the range from 0 to
0.05 for a clearer view of these effects.
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Zoom of: Relative error vs. α, 5 DCM steps for H200

With any update method, the natural question arises of what happens when the
iteration proceeds and J → ∞. (We stress that in practical computing one should
stop at a moderate value of J , e.g., J = 5.) The theory predicts that as J → ∞
the updates’ error first decreases then increases as the updates converge to the exact
solution of the noisy problem. This is observed in the calculations as well. The next
figure plots the update steps from J = 0 to J = 1000 (a ridiculously large number of
update steps) for a fixed α = 0.5.
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Absolute error vs. J , α = 0.5 for H100: Don’t Iterate!
This first test shows that we can calculate the noise-free solutions of problems with
noise with good accuracy and with little prior knowledge of the regularization para-
meter.

Test 2: iterated Tikhonov for inverting the Laplace transform.

The second example we look at is an inverse Laplace Transform problem from
[LR08]. The discretized inverse-Laplace transform matrix is well known to be ex-
tremely ill-conditioned, e.g., [H94], and has been used as a problem in [LR08] for
testing methods for solving ill—posed problems. The data is selected so that the ex-
act, noise free solution is given by

∫ ∞

0

e−s·tx(s)ds = b(t), t > 0 where

b(t) =
1

t+ 1
2

and x(s) = e−t/2.

The problem is converted into a discrete system using a 100 point Gauss-Laguerre
quadrature with 100 equidistantly spaced points 0 ≤ s(i) ≤ 10. The discretization
parameters t(j) come from solving the eigensystem derived from symmetric tridiagonal
recurrence relation for Laguerre polynomials. Also, we choose for 1 ≤ i ≤ 100,

s(i) = i/10, x(i) = x(s(i)) and b(i) = b(t(i)).

This discretization gives a matrix A ∈ R100×100 that is neither symmetric nor non-
negative. Thus, this illustration tests the full iterated Tikhonov algorithm with para-
meters ranging over values

10−6 ≤ α ≤ 1 and J = 0, 1, · · ·, 5,

with noise introduced of magnitude

‖ε‖ = 10−2 · ‖b(j)‖ with
||ε||
||y|| = 10

−2.
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The 100×100 Inverse-Laplace matrix is known to be highly ill-conditioned (see [H94]).
We take the exact solution to the noise free problem to be

φtrue = et/2

and compute the noise free RHS in extended precision. The next figure plots the
relative error in the Tikhonov approximation (J = 0) and the first 5 steps (i.e.,
J = 1, · · ·, 5)applied to the above 100× 100 inverse Laplace example.

Relative error vs. α, 5 steps Tikhonov DCM: inverse Laplace transform

The horizontal axis is the regularization parameter α, from 10−6 ≤ α ≤ 1. The
relative noise has magnitude 10−2. The vertical axis shows the relative error between
the approximation and the noise-free solution. In this graph the error becomes less
sensitive to the chosen values of the regularization parameter α as J increases. This
observation and the error behavior is in accordance with the theoretical predictions.
The second test show that iterated Tikhonov is a very successful way to calculate
solutions to ill-posed, non-self-adjoint and indefinite problems accurately.

6. Conclusions. Defect correction in the form of the iterated Tikhonov and
iterated Tikhonov-Lavrentiev methods is a powerful tool for increasing accuracy of
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regularization methods for ill-posed problems. While optimal parameters also exist
for these methods, one important feature of them is that they do not require optimal
parameters for accuracy. Iterated Tikhonov reduces the sensitivity of the error to the
exact value of the regularization parameter selected. They are also very efficient (in
programmer effort) to implement once a basic regularization method is available. It
is almost a meta-theorem in programming that simpler is better and in numerical
analysis that higher accuracy methods give better approximations (even when not
predicted by theory). Since these two conditions are often exclusive, it is particularly
interesting to note that iterated Tikhonov and iterated Tikhonov-Lavrentiev are both
algorithmically simple and highly accurate, even in the less regular case!
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