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Abstract

This report develops and studies a new family of NSE-regularizations, Tikhonov Leray Reg-
ularization with Time Relaxation Models. This new family of turbulence models is based on
a modification (consistent with the large scales) of Tikhonov-Lavrentiev regularization. With
this approach, we obtain an approximation of the unfiltered solution by one filtering step. We
introduce the modified Tikhonov deconvolution operator and study its mathematical proper-
ties. We also perform rigorous numerical analysis of a computational attractive algorithm for
the considered family of models. Numerical experiments that support our theoretical results are
presented.

1 Introduction

The Navier-Stokes equations (NSE), given by

ut + u · ∇u− ν∆u +∇p = f , ∇ · u = 0 , in Ω× (0, T ) (1.1)

is an exact model for the flow of a viscous, incompressible fluid, [15]. Their solution contains
so much information that they become impractical for many problems within typical time and
resource limitations. Various models and tools have been developed seeking to give a reasonable
treatment of this richness of information. The key is to capture all the relevant information with less
(computational) work than that involved in solving the NSE. One of the ideas is to use regularizations
of (1.1). Leray, [29], proposed the following:

ut + u · ∇u− ν∆u +∇p = f and ∇ · u = 0 , in Ω× (0, T ), (1.2)

where u = Gu is a smooth/averaged velocity. He selected G to be the Gaussian filter associated
with a length scale δ. He proved existence and uniqueness of strong solutions to (1.2) and showed
that a subsequence uδj

converges to a weak solution of the NSE as δj → 0. If that weak solution is a
smooth, strong solution it is not difficult to prove additionally that ||uNSE −uLerayModel|| = O(δ2)
using only ||u− u|| = O(δ2).

Continuing his idea, new regularization models can be derived every time a suitable regularization
operator is chosen. One modification is to replace the Gaussian filter by a differential filter, u :=
(−δ2∆ + 1)−1u . Properties of the resulting Leray-α model (1.2) are derived by Geurts and Holm
[22, 21] together with some tests in turbulent flow simulations and by Dunca [9] in a shape design
problem. Experiments have shown that, due to its low accuracy, (1.2) with the above differential
filter can have catastrophic error growth and not adequately conserve physically important integral
invariants. They also indicate that the increase in accuracy resulting from using deconvolution
(replacing u by Du := higher order approximation of u) decreases error growth and improves
conservation properties. The theory of the Leray-α model is developed in [6, 5, 25, 41].
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The deconvolution problem is central in image processing, [2] and many algorithms can be
adapted to give possible better regularizations of the NSE. The van Cittert deconvolution algo-
rithm, see [9, 31, 37] is one such example. It is time to explore other operators, which can lead to
possibly more accurate models. Based on the theory of inverse problems, we study a new, modified
Tikhonov regularization operator:

Dµ(u) = approximation of u.

The operator Dµ, 0 ≤ µ ≤ 1, is a Tikhonov-Lavrentiev regularization of the formal filter inverse
adapted to turbulence, i.e. designed to accurately capture the large scales of a flow, while modeling
the small (or under resolved) scales (and truncating). The case µ = 0, would result in Dµ(u) = u (no
regularization), whereas µ = 1, leads to Dµ(u) = u (the Leray/Leray-α model (1.2)). For smooth
velocity fields u, we have Dµ(u) = u + O(µ δ2).

Replacing u by Dµ(u) in (1.2), we study the following Leray-Tikhonov Model with Time Relax-
ation:

ut + Dµ(u) · ∇ u− ν4u +∇q + χ(u−Dµ(u)) = f

∇ · u = 0 (1.3)
u|t=0 = u0.

The term χ(u − Dµ(u)) is included to damp unresolved fluctuations over time, where χ ≥ 0 is
the time relaxation parameter. It is a generalized fluctuation term (often included in Approximate
Deconvolution Models of turbulence to damp marginally unresolved scales, see [37] and [33]).

Our goal is to perform a convergence analysis of a discretization of (1.3), when µ, δ, h → 0. The
discretization consists of the finite element method in space, combined with the Crank-Nicolson
algorithm in time. The notation and definitions necessary for the scheme and for the numerical
analysis are in Section 2, where we also give a detailed mathematical theory of the Modified Tikhonov
deconvolution operator. Section 3 develops the theory for the scheme, showing stability, existence of
solutions, and analysis of convergence. Numerical experiments are presented in Section 4, followed
by conclusions.

2 Notation and Preliminaries

Throughout this report we use standard notation for Lebesgue and Sobolev spaces and their norms.
Let ‖·‖ and (·, ·) be the L2 norm and inner product respectively. The Lp(Ω) norm and the Sobolev
W k

p (Ω) norm are denoted by ‖ · ‖Lp and ‖ · ‖W k
p
. The semi-norm in W k

p (Ω) is denoted by | · |W k
p
.

The space Hk represents the Sobolev space W k
2 (Ω) and ‖ · ‖k denotes the norm in Hk. For time

dependent functions v(x, t), with t ∈ (0, T ), we define the norm

‖v(x, t)‖m,k =

{ (∫ T

0
‖v(·, t)‖m

k dt
)1/m

, if 1 ≤ m < ∞
ess sup0<t<T ‖v(·, t)‖k , if m = ∞.

The flow domain Ω is a regular, bounded, polyhedral domain in Rn. The pressure and velocity
spaces are

Q = L2
0(Ω),

X = H1
0 (Ω).

The dual space of X is X? and the corresponding norm is ‖ · ‖?. For the variational formulation we
define the space of divergence free functions

V := {v ∈ X, (∇ · v, q) = 0 ∀q ∈ Q} .
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The velocity-pressure finite element spaces Xh ⊂ X, Qh ⊂ Q are assumed to be conforming and
satisfy the discrete inf-sup condition. Taylor-Hood elements are one common example of such a
choice for (Xh, Qh) (see [18] and [17]). The discretely divergence free subspace of Xh is defined as

Vh = {vh ∈ Xh, (∇ · vh, qh) = 0 ∀qh ∈ Qh} .

For the convective term, we consider the following trilinear form.

Definition 2.1. [The skew symmetric operator b∗] The skew-symmetric trilinear form b∗ : X×X×
X → R is defined as

b∗(u,v,w) :=
1
2
(u · ∇v,w)− 1

2
(u · ∇w,v). (2.1)

Lemma 2.1. Let u,v,w ∈ X such that v ∈ L∞(Ω) and ∇v ∈ L∞(Ω), where indicated. The
trilinear term b∗(u,v,w) can be bounded in the following ways

|b∗(u,v,w)| ≤ 1
2

(‖u‖ ‖∇v‖∞ ‖w‖+ ‖u‖ ‖v‖∞ ‖∇w‖) (2.2)

|b∗(u,v,w)| ≤ C0(Ω) ‖∇u‖ ‖∇v‖ ‖∇w‖ (2.3)

|b∗(u,v,w)| ≤ C0(Ω) ‖u‖1/2 ‖∇u‖1/2 ‖∇v‖ ‖∇w‖ . (2.4)

Proof. For the proof see [32].

We also use the following approximation properties, see [4]:

inf
v∈Xh

‖u− v‖ ≤ Chk+1‖u‖k+1, u ∈ Hk+1(Ω)d,

inf
v∈Xh

‖u− v‖1 ≤ Chk‖u‖k+1, u ∈ Hk+1(Ω)d, (2.5)

inf
r∈Qh

‖p− r‖ ≤ Chs+1‖p‖s+1, p ∈ Hs+1(Ω).

We often use some well known inequalities:

• Cauchy-Schwarz inequality: |(f, g)| ≤ ‖f‖ ‖g‖, for all f and g ∈ L2(Ω),

• Young’s inequality: ab ≤ ε
p ap + ε−q/p

q bq, where 1 < p, q < ∞, 1
p + 1

q = 1, ε > 0 and a, b ≥ 0,

• Poincaré-Friedrich’s inequality: ‖v‖ ≤ CPF ‖∇v‖, for all v ∈ X.

2.1 Differential Filters

In our analysis we use differential filters. Differential filters are well-established in LES, starting
with the work of Germano [20] and continuing with [19], [35]. They have many connections to
regularization processes such as the Yoshida regularization of semigroups and the very interesting
work of Foias, Holm, Titi [13] (and others) on Lagrange averaging of the Navier-Stokes equations.
We also define the discrete differential filter, following Manica and Kaya Merdan [34].

Definition 2.2. [Continuous differential filter] For φ ∈ L2(Ω) and δ > 0 fixed, denote the filtering
operation on φ by φ, where φ is the unique solution (in X) of

−δ2∆φ+ φ = φ. (2.6)

Set A := −δ2∆ + I, thus φ := A−1φ.

Following Manica and Kaya Merdan [34], at this point, we define the discrete counterpart of the
above differential filter.

Definition 2.3. [Discrete differential filter] Given v ∈ L2(Ω), for a given filtering radius δ > 0,
vh = A−1

h v is the unique solution in Xh of

δ2(∇vh,∇χ) + (vh,χ) = (v,χ) ∀χ ∈ Xh. (2.7)
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Definition 2.4. The L2 projection Πh : L2(Ω) → Xh and discrete Laplacian operator ∆h : X → Xh

are defined by

(Πhv − v,χ) = 0 , (∆hv,χ) = −(∇v,∇χ) ∀χ ∈ Xh. (2.8)

Remark 2.1. The extension from Xh to X in the definition of ∆h is the extension by zero on the
orthogonal complement of Xh w.r.t. (∇·,∇·). With ∆h, we can rewrite vh = (−δ2∆h +Πh)−1v and
Ah = (−δ2∆h + Πh).

2.2 Why a modification of Tikhonov-Lavrentiev is needed?

The deconvolution problem is central in image processing, see [2]. The basic problem in deconvolution
is: given u solve for u the following equation

Gu = u, (2.9)

where G is not invertible and thus exact deconvolution is typically ill-posed.
Throughout the years, many approaches have been used to address and answer questions concern-

ing ill-posed problems. Some were based on constrained least-square solutions, others determined
the smoothest approximate solution compatible with the data within a given noise level. Tikhonov
proposed a general approach, called regularization, which is a unification of the these two methods,
[40]. The basic idea of regularization consists of constructing a family of approximate solutions
depending on a positive regularization parameter, µ. Using Tikhonov regularization, we compute a
family of approximate solutions to the ill-posed deconvolution problem (2.9) as

uµ = arg min
u

[
||Gu− u||2 + µ||u||2

]
.

The main property of regularization is that, for a non-zero value of µ, one can obtain an optimal
approximation of the exact solution of the problem (2.9). Lavrentiev adapted Tikhonov’s idea to
symmetric positive definite (SPD) operators G. In this case the regularization process is called
Tikhonov-Lavrentiev and leads to a family of approximate solutions given by

uµ = arg min
u

[
1
2
(Gu,u)− (u,u) +

µ

2
(u,u)

]
.

Remark 2.2. The Tikhonov-Lavrentiev regularization process gives an approximate solution to the
deconvolution problem as follows: let µ > 0 and let G be SPD. Then,

uµ = (G + µI)−1u (2.10)

solves (2.9) approximately as µ → 0.

Lemma 2.2. [ Error in Tikhonov-Lavrentiev approximation ] With the differential filter (2.6), we
have

‖u− uµ‖ ≤ µ(δ2 ‖4u‖+ ‖u‖). (2.11)

Proof. Note that u,4u ∈ L2(Ω). Also, G = (−δ24+ I)−1 and A = −δ24+ I. Now,

u− uµ = u− (G + µ I)−1 Gu = u− (A−1 + µ I)−1 A−1u

= u− (A(A−1 + µ I))−1u = u− (I + µA)−1u

= (I + µA)−1 ((I + µA)− I)u = µ (I + µA)−1 Au .

Thus,

‖u− uµ‖ = µ ‖(I + µA)−1 Au‖
≤ µ ‖(I + µA)−1‖ ‖Au‖ .
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Figure 1: Tikhonov-Lavrentiev and Exact Deconvolution

All of our operators are self-adjoint. The spectrum of I+µA is contained in the interval [1+µ,∞);
and so the spectrum of (I + µA)−1 is contained in the interval (0, (1 + µ)−1]. Hence,

‖u− uµ‖ ≤ µ

1 + µ
‖Au‖ ≤ µ ‖(−δ24+ I)u‖

≤ µ (δ2 ‖4u‖+ ‖u‖) .

With the differential filter (2.6), the transfer function of exact deconvolution is Ĝ(k) = 1/(1 +
δ2k2), where k is the wave number. Then, the transfer function of (G + µI)−1 is

̂(G + µI)−1(k) =
1

µ + Ĝ(k)
. (2.12)

This (for µ = 0.1 and 0.3) and exact deconvolution are plotted in Figure 1. It is clear that, for
large scales (small wave number k), the operator (G + µI)−1 is not a good approximation of the
inverse of G. Thus, it is sensible to consider a modified Tikhonov-Lavrentiev operator, which is more
consistent for large scales. With this, we obtain a new approximation of u and improve (2.11).

Definition 2.5. [ Modified Tikhonov Approximate Deconvolution Operator] Let G be a symmetric
positive-definite operator and let 0 < µ < 1. Given u, an approximate solution to the deconvolution
problem (2.9) is given by

uµ = ((1− µ)G + µI)−1u. (2.13)

Set Dµ = ((1− µ)G + µI)−1. The operator Dµ is the modified Tikhonov deconvolution operator.

Remark 2.3. With the differential filter (2.6), the modified Tikhonov deconvolution operator can
be defined variationally as: given φ ∈ X, for a given filtering radius δ > 0 and 0 < µ < 1, ψ = Dµφ
is the unique solution in X of the problem

µδ2(∇ψ,∇χ) + (ψ,χ) = (φ,χ), ∀χ ∈ X, (2.14)

where φ and φ satisfy φ = A−1φ in X, i.e. δ2(∇φ,∇χ) + (φ,χ) = (φ,χ).
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Figure 2: Modified Tikhonov and Exact Deconvolution

With the differential filter (2.6), the transfer function of Dµ is

D̂µ(k) =
1

µ + (1− µ)Ĝ(k)
. (2.15)

Exact deconvolution and D̂µ (for µ = 0.1 and 0.3) are plotted in Figure 2. The figure reflects a high
order contact of the graphs for wave numbers near 0. Thus, Dµ leads to a very accurate solution of
the deconvolution problem.

2.3 Continuous and Discrete Modified Tikhonov Deconvolution Operator

In this section we analyze in more detail properties of the modified Tikhonov deconvolution operator.
In particular, we prove that it is a bounded, self adjoint, and positive definite operator. We also
introduce and study a discrete version of the modified Tikhonov operator.

Theorem 2.1. Let G be SPD and 0 < µ < 1. Given u, the solution of (2.13) is given by the unique
minimizer in L2(Ω) of the functional

Fµ(u) =
1
2
(Gu,u)− (u,u) +

µ

2
(u−Gu,u). (2.16)

Proof. The unique minimizer in L2(Ω) of the functional (2.16) is calculated as the minimum, when
t = 0, of the function

Fµ(u+tw) =
1
2
(G(u+tw),u+tw)−(u,u+tw)+

µ

2
(u+tw−G(u+tw),u+tw), ∀w ∈ L2(Ω). (2.17)

Differentiating and setting d
dtFµ(u + tw)

∣∣
t=0

= 0 we obtain

((1− µ)Gu + µu,w) = (u,w), ∀w ∈ L2(Ω). (2.18)

Thus, if u is a solution of (2.18), then u is also a solution of (2.13).
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Proposition 2.1. Let the averaging operator be the differential filter Gu := (−δ24 + I)−1u. Let
0 < µ < 1 be fixed. The operator Dµ : L2(Ω) → L2(Ω) is one-to-one and onto, bounded, self-adjoint
and positive definite.

Proof. We first recall that G is a linear, self-adjoint positive definite operator, with spectrum con-
tained in [0, 1]. Thus the spectrum of (1 − µ) G + µ I is contained in [µ, 1], and consequently, the
spectrum of Dµ = ((1−µ) G+µ I)−1 is a subset of the interval [1, µ−1]. Consequently, we have that
Dµ is one-to-one and onto, bounded, self-adjoint and positive definite.

Remark 2.4. Both A−1 := (−δ24+ I)−1, given by Definition 2.2, and Dµ are linear combinations
of the Laplace operator. Thus, they commute with the Laplace operator and with each other.

Lemma 2.3. With the differential filter given by Definition 2.2 and for smooth u we have

‖Dµ4u‖ ≤ ‖4u‖ . (2.19)

Proof. We have that

Dµ G = ((1− µ) A−1 + µ I)−1 A−1

= (A ((1− µ) A−1 + µ I))−1 = ((1− µ) I + µA))−1 .

The spectrum of A is contained in [1,∞), and thus the spectrum of (1 − µ) I + µA is a subset of
[(1− µ) + µ,∞) = [1,∞), too. Hence, the spectrum of the self-adjoint operator Dµ G is contained
in the interval (0, 1]; which implies that ‖Dµ G‖ ≤ 1.

Using Remark 2.4 and the Cauchy-Schwarz inequality, it follows that

‖Dµ4u‖ = ‖Dµ G4u‖ ≤ ‖Dµ G‖ ‖4u‖ ≤ ‖4u‖.

Lemma 2.4. [ Error in Approximate deconvolution ] Consider the differential filter given by Defi-
nition 2.2. Then, for smooth u

‖u−Dµu‖ ≤ µδ2 ‖4u‖ . (2.20)

Proof. Indeed, by algebraic manipulation, we have:

u−Dµu = (I −DµA−1)u
= Dµ(D−1

µ −A−1 )u

= µDµ(I −A−1)u.

But, (I −A−1)u = u− u = −δ24u. Thus,

u−Dµu = −µδ2Dµ4u.

Using the proof of Lemma 2.3 and taking the L2 norm of both sides we obtain the desired result.

With the discrete filter (2.7), we define the discrete modified Tikhonov deconvolution operator.

Definition 2.6. [ Discrete Modified Tikhonov Deconvolution Operator ] For a given filtering radius
δ > 0 and 0 < µ < 1, the discrete counterpart of Dµ is denoted by Dh

µ, and is defined by

Dh
µ =

(
(1− µ)A−1

h + µI
)−1

.

With the discrete differential filter in Definition 2.3 we define Dh
µ precisely. Given Ψ ∈ X, ψh =

Dh
µΨ

h
is the solution in Xh of the problem

µδ2(∇ψh,∇χ) + (ψh,χ) = (Ψ,χ), ∀χ ∈ Xh, (2.21)

where Ψ and Ψ
h

satisfy δ2(∇Ψ
h
,∇χ) + (Ψ

h
,χ) = (Ψ,χ).
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Proposition 2.2. The operator Dh
µ is bounded self-adjoint and positive definite on Xh.

Proof. The operator Dh
µ is the inverse of a convex combination of A−1

h and I. Both these operators
are SPD on Xh. Thus, so is Dh

µ.

Lemma 2.5. For v ∈ X, we have the following bounds for the discretely filtered and approximately
deconvolved v ∥∥vh

∥∥ ≤ ‖v‖ , (2.22)∥∥∇vh
∥∥ ≤ ‖∇v‖ , (2.23)∥∥Dh

µvh
∥∥ ≤ ‖v‖ , (2.24)∥∥∇Dh

µvh
∥∥ ≤ ‖∇v‖ . (2.25)

Proof. Let χ = vh in (2.7) and apply the Cauchy-Schwarz inequality in the right hand side. We
have

δ2
∥∥∇vh

∥∥2
+
∥∥vh

∥∥2 ≤
∥∥vh

∥∥ ‖v‖ .

Thus ∥∥vh
∥∥2 ≤

∥∥vh
∥∥ ‖v‖

and (2.22) follows. For the proof of (2.23) we proceed in a similar way, we set χ = 4hvh in (2.7)
and obtain

δ2
∥∥4hvh

∥∥2
+
∥∥∇vh

∥∥2 ≤
∥∥∇vh

∥∥ ‖∇v‖ .

To prove (2.24), let Ψ = v and χ = Dh
µvh in (2.21). Definition 2.3 and the Cauchy-Schwarz

inequality give

µδ2
∥∥∇Dh

µvh
∥∥2

+
∥∥Dh

µvh
∥∥2 ≤ ‖v‖

∥∥Dh
µvh

∥∥ , (2.26)

proving (2.24). The proof of (2.25) is similar. Let Ψ = v and χ = 4hDh
µvh in (2.21). The definition

of 4h and Cauchy-Schwarz inequality give

µδ2
∥∥4hDh

µvh
∥∥2

+
∥∥∇Dh

µvh
∥∥2 ≤ ‖∇v‖

∥∥∇Dh
µvh

∥∥ . (2.27)

Now the conclusion follows.

Theorem 2.2. Let v∗h := v −Dh
µvh, where v ∈ X. Then, we have

(v∗h,v) > 0. (2.28)

Proof. Let v ∈ X. Poincaré’s inequality together with (2.26) gives∥∥Dh
µvh

∥∥2 ≤ 1
(C2

PF µδ2 + 1)
‖v‖2 , (2.29)

which leads to (
v −Dh

µvh,v
)
≥ C2

PF µδ2

1 + C2
PF µδ2

‖v‖2 . (2.30)

and (2.28) follows for all v ∈ X.

Lemma 2.6. Let v ∈ X. Then

(v∗h,χh) ≤ µδ2 ‖∇v‖ ‖∇χh‖ , ∀χh ∈ Xh. (2.31)
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Proof. Definition 2.6 leads to

(v∗h,χh) = µδ2(∇Dh
µvh,∇χh), ∀χh ∈ Xh.

Applying the Cauchy-Schwarz inequality and Lemma 2.5 in the RHS, we obtain (2.31).

From Theorem 2.2 follows that I − Dh
µA−1

h is SPD. Fundamental in deriving energy estimates
for the scheme outlined in the next section is the norm of v∗h defined as

‖v∗h‖
2 := (v∗h,v) . (2.32)

Lemma 2.7. For all v ∈ X with 4v ∈ L2(Ω), we have∥∥v −Dh
µvh

∥∥ ≤ µδ2 ‖v‖2 + C (δhk + hk+1) ‖v‖k+1 + (µ1/2δhk + hk+1) ‖Dµv‖k+1 . (2.33)

Proof. Applying the triangle inequality, we obtain∥∥v −Dh
µvh

∥∥ ≤ ‖v −Dµv‖+
∥∥Dµv −Dh

µv
∥∥+

∥∥Dh
µv −Dh

µvh
∥∥ . (2.34)

We now look at each term in the right hand side separately. Lemma 2.4 gives

‖v −Dµv‖ ≤ µδ2 ‖v‖2 . (2.35)

For the second term, let χ ∈ Xh in (2.14) and subtract it from (2.21). Let e := Dµv − Dh
µv =

Dµv − vh −Dh
µv + vh for all vh ∈ Xh. Using Galerkin orthogonality, we obtain

µδ2
∥∥∇Dµv −∇Dh

µv
∥∥2

+
∥∥Dµv −Dh

µv
∥∥2 ≤ inf

vh∈Xh

(µδ2
∥∥∇(Dµv − vh)

∥∥2
+
∥∥Dµv − vh

∥∥2
).

The approximation results (2.5) lead to∥∥Dµv −Dh
µv
∥∥ ≤ (µ1/2δhk + hk+1) ‖Dµv‖k+1 . (2.36)

To bound the last term we first apply Lemma 2.5∥∥Dh
µv −Dh

µvh
∥∥ ≤ ∥∥v − vh

∥∥ .

From Definitions 2.2 and 2.3, Galerkin orthogonality and then using the approximation results (2.5)
we get ∥∥Dµv −Dµvh

∥∥ ≤ C (δhk + hk+1) ‖v‖k+1 . (2.37)

The final conclusion then follows from (2.35), (2.36), and (2.37).

In the next section we study a Crank-Nicolson Finite Element Scheme for the Modified Tikhonov
Approximate Deconvolution Model (1.3).

3 Convergence of the Discrete Model

To begin, we define the scheme and show that its solutions are well defined, unconditionally stable,
and optimally convergent to solutions of the NSE.

A strong solution of the Navier-Stokes equations satisfies u ∈ L2(0, T ;X) ∩ L∞(0, T ;L2(Ω)) ∩
L4(0, T ;X), p ∈ L2(0, T ;Q) with ut ∈ L2(0, T ;X∗) such that

(ut,v) + (u · ∇u,v) − (p,∇ · v) + ν(∇u,∇v) = (f ,v) , ∀v ∈ X , (3.1)
(q,∇ · u) = 0 , ∀q ∈ Q . (3.2)

Throughout the analysis we use the following notation v(tn+1/2) := v((tn + tn+1)/2) for the
continuous variables and vn+1/2 := (vn + vn+1)/2 for both, continuous and discrete variables.
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Algorithm 3.1. [Crank-Nicolson Finite Element Scheme for Leray-Tikhonov deconvolution model]
Let ∆t > 0, (w0, q0) ∈ (Xh, Qh), f ∈ X∗ and T := M ∆t as M is an integer. For n = 0, 1, 2, · · · ,M−
1, find (wh

n+1, q
h
n+1) ∈ (Xh, Qh) satisfying

1
∆t

(wh
n+1 −wh

n,vh) + b∗(Dh
µwh

n+1/2

h
,wh

n+1/2,v
h)− (qh

n+1/2,∇ · vh) + ν(∇wh
n+1/2,∇vh)

+χ(wh
n+1/2 −Dh

µwh
n+1/2

h
,vh) = (fn+1/2,vh), ∀ vh ∈ Xh

(3.3)
(∇ ·wh

n+1,φ
h) = 0, ∀φh ∈ Qh.

(3.4)

Remark 3.1. Since (Xh, Qh) satisfies the discrete inf-sup condition, (3.3)-(3.4) is equivalent to

1
∆t

(wh
n+1 −wh

n,vh) + b∗(Dh
Nwh

n+1/2

h
,wh

n+1/2,v
h) + ν(∇wh

n+1/2,∇vh)

+ χ(wh
n+1/2 −Dh

µwh
n+1/2

h
,vh) = (fn+1/2,vh), ∀ vh ∈ Vh. (3.5)

In the error analysis we use of the following lemmas and notation.

Lemma 3.1. Assume u ∈ C0(tn, tn+1;L2(Ω)). If u is twice differentiable in time and utt ∈
L2((tn, tn+1)× Ω) then∥∥un+1/2 − u(tn+1/2)

∥∥2 ≤ 1
48

(∆t)3
∫ tn+1

tn

‖utt‖2 dt . (3.6)

If ut ∈ C0(tn, tn+1;L2(Ω)) and uttt ∈ L2((tn, tn+1)× Ω) then∥∥∥∥un+1 − un

∆t
− ut(tn+1/2)

∥∥∥∥2

≤ 1
1280

(∆t)3
∫ tn+1

tn

‖uttt‖2 dt . (3.7)

If ∇u ∈ C0(tn, tn+1;L2(Ω)) and ∇utt ∈ L2((tn, tn+1)× Ω) then∥∥∇(un+1/2 − u(tn+1/2))
∥∥2 ≤ (∆t)3

48

∫ tn+1

tn

‖∇utt‖2 dt . (3.8)

Proof. The proof is based on the Taylor expansion with remainder.

Lemma 3.2. [ Discrete Gronwall Lemma ] Let ∆t, H, and an, bn, cn, dn (for integers n ≥ 0) be
nonnegative numbers such that

al + ∆t
l∑

n=0

bn ≤ ∆t
l∑

n=0

dnan + ∆t
l∑

n=0

cn + H for l ≥ 0. (3.9)

Suppose that ∆tdn < 1 ∀n. Then,

al + ∆t
l∑

n=0

bn ≤ exp

(
∆t

l∑
n=0

dn

1−∆tdn

)(
∆t

l∑
n=0

cn + H

)
for l ≥ 0. (3.10)

Proof. The proof follows from [24].

In the discrete case we use the analogous norms:

‖|v|‖∞,k := max
0≤n≤M−1

‖vn‖k , ‖|v1/2|‖∞,k := max
1≤n≤M−1

‖vn+1/2‖k ,

‖|v|‖m,k :=

(
M−1∑
n=0

‖vn‖m
k 4t

)1/m

, ‖|v1/2|‖m,k :=

(
M−1∑
n=1

‖vn+1/2‖m
k 4t

)1/m

.

10



Lemma 3.3. [ Existence of Solutions and Stability of the Scheme ] At each time step, there exists a
solution of the approximation scheme (3.5). Also, the scheme is unconditionally stable and satisfies
the following á priori bound:

∥∥wh
n

∥∥2
+ ν∆t

n−1∑
k=0

∥∥∥∇wh
k+1/2

∥∥∥2

+ χ
n−1∑
k=0

∥∥∥wh
k+1/2

∗
∥∥∥2

≤
∥∥wh

0

∥∥2
+

∆t

ν

n−1∑
k=0

∥∥fk+1/2

∥∥2

∗ , (3.11)

for all integers 1 ≤ n ≤ M .

Proof. We begin by proving the à priori estimate (3.11). In (3.5), set vh = wh
k+1/2. Applying

Young’s inequality, we obtain

1
∆t

(
∥∥wh

k+1

∥∥2 −
∥∥wh

k

∥∥2
) + ν

∥∥∥∇wh
k+1/2

∥∥∥2

+ χ
∥∥∥wh

k+1/2

∗
∥∥∥2

≤ 1
ν

∥∥fk+1/2

∥∥2

∗ , for every k. (3.12)

Summing from k = 0 to n, where n is an integer, 1 ≤ n ≤ M , we obtain the desired result.
The existence of a solution wh

k+1 to (3.5) follows from the Leray-Schauder Principle, [42]. We
reformulate (3.5) as a fixed point problem, insert a parameter λ and adapt the proof of the à priori
bound to give a bound uniform in λ. To do this, we define the operator T : X

′ → Vh, by T (y) := z,
where

(y,v) := 4t ν(∇
(

z + wh
k

2

)
,∇v) +4t χ(

z + wh
k

2
−Dh

µ

(z + wh
k)

h

2
,v), for all v ∈ Vh.

The bilinear form on the above right hand side is coercive. Then, by the Lax-Milgram theorem, the
operator T exists and is bounded. Note that T is also linear. We also define the nonlinear operator
N : Vh → X

′
, via the Riesz Representation theorem,

(N(z),v) = −4t b∗(Dh
µ

(z + wh
k)

h

2
,
z + wh

k

2
,v) + (wh

k − z,v) +4t(fk+1/2,v) for all v ∈ Vh.

Since Vh is finite dimensional, the operator N is trivially bounded and continuous. Finally, we define
F : Vh → Vh, by F (z) = T (N(z)). Then, z is a solution of (3.5) if and only if it is a fixed point of
F .

To show that F has a fixed point in Vh, we apply the Leray-Schauder Principle. We first note
that the operator F is algebraic, hence continuous. Since dim Vh < ∞, F is also compact. By
the Leray-Schauder Principle, we need to show that any solution uλ of the fixed point problem
z = λF (z), where 0 ≤ λ < 1, satisfies ‖uλ‖X ≤ γ, where γ does not depend on λ. We have

4t ν(∇
(

uλ + wh
k

2

)
,∇v) +4t χ(

uλ + wh
k

2
−Dh

µ

(uλ + wh
k)

h

2
,v)

= −λ4t b∗(Dh
µ

(uλ + λwh
k)

h

2
,
uλ + wh

k

2
,v) + λ(uλ −wh

k ,v)

+λ4t(fk+1/2,v), for all v ∈ Vh. (3.13)

Now, set v = uλ+wh
k

2 . Since 0 ≤ λ < 1, proceeding as in the à priori estimate bounded we obtain
the desired bound for ‖∇uλ‖. It means that a solution of (3.5) exists at each time step.

Remark 3.2. The same argument works in the infinite dimensional case, when (3.5) is posed in X
instead of Xh. The only modification is that compactness of F (which holds) is verified separately
using the Raleigh Lemma.
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3.1 Convergence Analysis

We now state and prove our main convergence estimate.

Theorem 3.2. Let (u(t), p(t)) be a sufficiently smooth, strong solution of the NSE with no-slip
boundary conditions. Suppose (wh(0), qh(0)) are approximations of (u(0), p(0)) to the accuracy of
(2.5), respectively. Then there is a constant C = C(u, p) such that

‖|u − wh|‖∞,0 ≤ F (4t, h, δ) + Chk+1‖|u|‖∞,k+1 ,

(3.14)(
ν4t

M−1∑
n=0

‖∇(un+1/2 − (wh
n+1 + wh

n)/2)‖2
)1/2

≤ F (4t, h, δ) + Cν1/2(4t)2‖∇utt‖2,0

+Chk‖|u|‖2,k+1,

(3.15)

where

F (4t, h, µ, δ) = C∗hk+1 (ν−1/2 + χ)( ‖Dµu‖2,k+1 +
∥∥un+1/2

∥∥
k+1

)

+ν−1/2 hk+1/2
(
‖|u|‖24,k+1 + ‖|∇u|‖24,0

)
+ν−1/2hk

(
‖|u|‖24,k+1 + ν−1/2(‖wh

0‖+ ν−1‖|f |‖2,?)
)

+δhk(ν−1/2 + χ)
(
µ ‖Dµu‖2,k+1 + ‖u‖2,k+1

)
ν−1/2hs+1‖|p1/2|‖2,s+1 + (ν−1/2 + χ)µδ2 ‖u‖2,2

+ (∆t)2
(
‖uttt‖2,0 + ‖ftt‖2,0 + ν−1/2‖ptt‖2,0

+ν−1/2‖∇utt‖24,0 +ν−1/2‖|∇u|‖24,0 + ν−1/2‖|∇u1/2|‖24,0

)

Proof. First, we note that at time tn+1/2, u given by (3.1)-(3.2) satisfies

(
un+1 − un

∆t
,vh) + b∗(Dh

µun+1/2
h,un+1/2,vh) + ν(∇un+1/2,∇vh)− (pn+1/2,∇ · vh)

+χ(un+1/2 −Dh
µun+1/2

h,vh) = (fn+1/2,vh) + Intp(un, pn;vh),
(3.16)

for all vh ∈ Xh, where Intp(un, pn;vh), representing the interpolating error, denotes

Intp(un, pn;vh) =
(

un+1 − un

∆t
− ut(tn+1/2),vh

)
+ ν(∇un+1/2 − ∇u(tn+1/2),∇vh)

+b∗(un+1/2,un+1/2,vh)− b∗(u(tn+1/2),u(tn+1/2),vh)

−b∗(un+1/2 −Dh
µun+1/2

h,un+1/2,vh)

+χ(un+1/2 −Dh
µun+1/2

h,vh)− (pn+1/2 − p(tn+1/2),∇ · vh)

+(f(tn+1/2)− fn+1/2,vh) . (3.17)

Subtracting (3.3) from (3.16) and letting en = un −wh
n we have

1
∆t

(en+1 − en,vh) + b∗(Dh
µun+1/2

h,un+1/2,vh)− b∗(Dh
µwh

n+1/2

h
,wh

n+1/2,v
h)

+ ν(∇en+1/2,∇vh) + χ(en+1/2 −Dh
µen+1/2

h,vh)

= (pn+1/2 − q,∇ · vh) + Intp(un, pn;vh), ∀vh ∈ Xh. (3.18)
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Let en = (un −Un)− (wh
n −Un) := ηn −φ

h
n where φh

n ∈ Xh and U represents the L2 projection of
u in Xh. Setting vh = φh

n+1/2 in (3.18) and using (q,∇ · φn+1/2) = 0 for all q ∈ Qh we obtain

(φh
n+1 − φ

h
n,φh

n+1/2) + ∆tν‖∇φh
n+1/2‖2 + ∆tb∗(Dh

µwh
n+1/2

h
, en+1/2,φ

h
n+1/2)

+ ∆tb∗(Dh
µen+1/2

h,un+1/2,φ
h
n+1/2) + ∆tχ

∥∥∥φh
n+1/2

∗∥∥∥2

= ∆t(ηn+1 − ηn,φh
n+1/2) + ∆tν(∇ηn+1/2,∇φ

h
n+1/2)

+ ∆tχ(ηn+1/2 −Dh
µηn+1/2

h,φh
n+1/2)

+ ∆t(pn+1/2 − q,∇ · φh
n+1/2)−∆t Intp(un, pn;φh

n+1/2) . (3.19)

Because of our choice of U , we have (ηn+1 − ηn,φh
n+1/2) = 0 and we can rewrite

1
2
(‖φh

n+1‖2 − ‖φ
h
n‖2) + ∆tν‖∇φh

n+1/2‖2 + ∆tχ
∥∥∥φh

n+1/2

∗∥∥∥2

= ∆tν(∇ηn+1/2,∇φ
h
n+1/2)−∆tb∗(Dh

µηn+1/2
h,un+1/2,φ

h
n+1/2)

+ ∆tb∗(Dh
µφ

h
n+1/2

h

,un+1/2,φ
h
n+1/2)

−∆tb∗(Dh
µwh

n+1/2

h
,ηn+1/2,φ

h
n+1/2)

+ ∆tχ(ηn+1/2 −Dh
µηn+1/2

h,φh
n+1/2)

+ ∆t(pn+1/2 − q,∇ · φh
n+1/2) + ∆t Intp(un, pn;φh

n+1/2) . (3.20)

We now estimate the terms on the right hand side of (3.20) separately.
Using Cauchy-Schwarz and Young’s inequalities we have

ν4t(∇ηn+1/2,∇φ
h
n+1/2) ≤ ν4t‖∇ηn+1/2‖ ‖∇φ

h
n+1/2‖

≤ ν∆t

12

∥∥∥∇φh
n+1/2

∥∥∥2

+ Cν∆t
∥∥∥∇ηn+1/2

∥∥∥2

. (3.21)

4t(pn+1/2 − q,∇ · φh
n+1/2) ≤ C4t‖pn+1/2 − q‖ ‖∇φh

n+1/2‖

≤ ν∆t

12

∥∥∥∇φh
n+1/2

∥∥∥2

+ C4tν−1‖pn+1/2 − q‖2 . (3.22)

Lemmas 2.1 and 2.5 and standard inequalities give

4t b∗(Dh
µηn+1/2

h,un+1/2,φ
h
n+1/2)

≤ C∆t‖Dh
µηn+1/2

h‖1/2 ‖∇Dh
µηn+1/2

h‖1/2 ‖∇un+1/2‖ ‖∇φh
n+1/2‖

≤ ν4t

12
‖∇φh

n+1/2‖2 + C4t ν−1‖ηn+1/2‖ ‖∇ηn+1/2‖‖∇un+1/2‖2 . (3.23)

4t b∗(Dh
µφ

h
n+1/2

h

,un+1/2,φ
h
n+1/2)

≤ C4t‖Dh
µφ

h
n+1/2

h

‖1/2 ‖∇Dh
µφ

h
n+1/2

h

‖1/2 ‖∇un+1/2‖ ‖∇φh
n+1/2‖

≤ C4t‖φh
n+1/2‖1/2 ‖∇φh

n+1/2‖3/2 ‖∇un+1/2‖

≤ ν4t

12
‖∇φh

n+1/2‖2 + C4t ν−3‖φh
n+1/2‖2 ‖∇un+1/2‖4 . (3.24)
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4t b∗(Dh
µwh

n+1/2

h
,ηn+1/2,φ

h
n+1/2)

≤ C‖Dh
µwh

n+1/2

h
‖1/2 ‖∇Dh

µwh
n+1/2

h
‖1/2 ‖∇ηn+1/2‖ ‖∇φ

h
n+1/2‖

≤ ν4t

12
‖∇φh

n+1/2‖2 + C4t ν−1‖wh
n+1/2‖ ‖∇wh

n+1/2‖ ‖∇ηn+1/2‖2 . (3.25)

Lemma 2.6 and Young’s inequality give

∆tχ(ηn+1/2 −Dh
µηn+1/2

h,φh
n+1/2) ≤ ν4t

12
‖∇φh

n+1/2‖2 + C4t ν−1 χ2µ2δ4
∥∥∥∇ηn+1/2

∥∥∥2

.

(3.26)

Substituting (3.21)-(3.25) into (3.20) and summing from n = 0 to M−1 (assuming that ‖φh
0‖ = 0)

we get

‖φh
M‖2 + ν4t

M−1∑
n=0

‖∇φh
n+1/2‖2 + χ4t

M−1∑
n=0

‖φh
n+1/2

∗
‖2

≤ 4t
M−1∑
n=0

Cν−3‖∇un+1/2‖4 ‖φh
n+1/2‖2 +4t

M−1∑
n=0

Cν‖∇ηn+1/2‖2

+4t
M−1∑
n=0

Cν−1‖ηn+1/2‖ ‖∇ηn+1/2‖‖∇un+1/2‖2

+4t

M−1∑
n=0

Cν−1‖wh
n+1/2‖ ‖∇wh

n+1/2‖ ‖∇ηn+1/2‖2

+4t
M−1∑
n=0

C ν−1 χ2µ2δ4
∥∥∥∇ηn+1/2

∥∥∥2

+4t
M−1∑
n=0

Cν−1‖pn+1/2 − q‖2

+4t

M−1∑
n=0

|Intp(un, pn;φh
n+1/2)| . (3.27)

We now bound each term in the right hand side of (3.27).

4t
M−1∑
n=0

Cν‖∇ηn+1/2‖2 ≤ 4tCν
M∑

n=0

‖∇ηn‖2 ≤ 4tCν
M∑

n=0

h2k|un|2k+1

≤ Cνh2k‖|u|‖22,k+1 . (3.28)
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Next, we consider the term

4t
M−1∑
n=0

Cν−1‖ηn+1/2‖ ‖∇ηn+1/2‖ ‖∇un+1/2‖2

≤ Cν−14t
M−1∑
n=0

(
‖ηn+1‖ ‖∇ηn+1‖+ ‖ηn‖ ‖∇ηn‖

+ ‖ηn‖ ‖∇ηn+1‖+ ‖ηn+1‖ ‖∇ηn‖
)
‖∇un+1/2‖2

≤ C ν−1 h2k+1

(
4t

M−1∑
n=0

|un+1|2k+1 ‖∇un+1/2‖2 +4t
M−1∑
n=0

|un+1|k+1|un|k+1 ‖∇un+1/2‖2

+ 4t
M−1∑
n=0

|un|2k+1 ‖∇un+1/2‖2
)

≤ Cν−1 h2k+1

(
4t

M∑
n=0

|un|4k+1 +4t
M∑

n=0

‖∇un‖4
)

= Cν−1 h2k+1
(
‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
. (3.29)

Using (3.11), we have

4t
M−1∑
n=0

Cν−1
(
‖wh

n+1/2‖ ‖∇wh
n+1/2‖ ‖∇ηn+1/2‖2

)
≤ Cν−14t

M−1∑
n=0

‖∇wh
n+1/2‖ ‖∇ηn+1/2‖2

≤ Cν−14t
M−1∑
n=0

(
‖∇ηn+1‖2 + ‖∇ηn‖2

)
‖∇wh

n+1/2‖

≤ Cν−1h2k4t
M−1∑
n=0

(
|un+1|2k+1 + |un|2k+1

)
‖∇wh

n+1/2‖

≤ Cν−1h2k

(
4t

M∑
n=0

|un|4k+1 +4t

M∑
n=0

‖∇wh
n+1/2‖

2

)
≤ Cν−1h2k

(
‖|u|‖44,k+1 + ν−1(‖wh

0‖2 + ν−1‖|f |‖22,?)
)

. (3.30)

Lemma 3.1 and (2.5) give

4t
M−1∑
n=0

Cν−1‖pn+1/2 − q‖2 ≤ 4tCν−1
M−1∑
n=0

( ‖p(tn+1/2)− q‖2 + ‖pn+1/2 − p(tn+1/2)‖2 )

≤ Cν−1 (h2s+24t
M−1∑
n=0

‖p(tn+1/2)‖2s+1

+4t
M−1∑
n=0

1
48

(4t)3
∫ tn+1

tn

‖ptt‖2 dt

≤ Cν−1(h2s+2‖|p1/2|‖22,s+1 + (4t)4‖ptt‖22,0). (3.31)

Next, we bound the time relaxation term

4t
M−1∑
n=0

ν−1 χ2µ2δ4
∥∥∥∇ηh

n+1/2

∥∥∥2

≤ ν−1 χ2µ2δ4 h2k‖|u|‖22,k+1 . (3.32)
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We now bound the terms in Intp(un, pn;φh
n+1/2). Using Cauchy-Schwarz and Young’s inequali-

ties, Taylor’s theorem, and Lemma 2.7,(
un+1 − un

∆t
− ut(tn+1/2),φ

h
n+1/2

)
≤ 1

2
‖φh

n+1/2‖2 +
1
2
‖u

n+1 − un

∆t
− ut(tn+1/2)‖2

≤ 1
2
‖φh

n+1‖2 +
1
2
‖φh

n‖2 +
1
2

(∆t)3

1280

∫ tn+1

tn

‖uttt‖2 dt , (3.33)

(pn+1/2 − p(tn+1/2),∇ · φh
n+1/2)

≤ ε1ν‖∇φh
n+1/2‖2 + C ν−1‖pn+1/2 − p(tn+1/2)‖2

≤ ε1ν‖∇φh
n+1/2‖2 + C ν−1 (∆t)3

48

∫ tn+1

tn

‖ptt‖2 dt , (3.34)

(f(tn+1/2)− fn+1/2,φ
h
n+1/2)

≤ 1
2
‖φh

n+1/2‖2 +
1
2
‖f(tn+1/2)− fn+1/2‖2

≤ 1
2
‖φh

n+1‖2 +
1
2
‖φh

n‖2 +
(∆t)3

48

∫ tn+1

tn

‖ftt‖2 dt , (3.35)

(∇un+1/2 − ∇u(tn+1/2),∇φh
n+1/2)

≤ ε2ν ‖∇φh
n+1/2‖2 + C ν‖∇un+1/2 − ∇u(tn+1/2)‖2

≤ ε2ν ‖∇φh
n+1/2‖2 + C ν

(∆t)3

48

∫ tn+1

tn

‖∇utt‖2 dt , (3.36)

b∗(un+1/2,un+1/2,φ
h
n+1/2)− b∗(u(tn+1/2),u(tn+1/2),φ

h
n+1/2)

= b∗(un+1/2 − u(tn+1/2),un+1/2,φ
h
n+1/2) + b∗(u(tn+1/2),un+1/2 − u(tn+1/2),φ

h
n+1/2)

≤ C ‖∇(un+1/2 − u(tn+1/2))‖ ‖∇φh
n+1/2‖

(
‖∇un+1/2‖ + ‖∇u(tn+1/2)‖

)
≤ C ν−1

(
‖∇un+1/2‖2 + ‖∇u(tn+1/2)‖2

) (∆t)3

48

∫ tn+1

tn

‖∇utt‖2 dt + ε3ν‖∇φh
n+1/2‖2

≤ C ν−1 (∆t)3

48

(∫ tn+1

tn

2(‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4) dt

+
∫ tn+1

tn

‖∇utt‖4 dt

)
+ ε3ν‖∇φh

n+1/2‖
2

≤ C ν−1 (∆t)4(‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4)

+C ν−1 (∆t)3
∫ tn+1

tn

‖∇utt‖4 dt + ε3ν‖∇φh
n+1/2‖2 . (3.37)
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b∗(un+1/2 −Dh
µun+1/2

h,un+1/2,φ
h
n+1/2)

≤ 1
2

(
‖un+1/2 −Dh

µun+1/2
h‖ ‖∇un+1/2‖∞ ‖φh

n+1/2‖

+ ‖un+1/2 −Dh
µun+1/2

h‖ ‖un+1/2‖∞ ‖∇φh
n+1/2‖

)
≤ C ‖un+1/2 −Dh

µun+1/2
h‖ ‖∇φh

n+1/2‖

≤ ε4ν‖∇φh
n+1/2‖2 + Cν−1‖un+1/2 −Dh

µun+1/2
h‖2

≤ ε4ν‖∇φh
n+1/2‖2 + Cν−1

(
(µδ2h2k + h2k+2)

∥∥Dµun+1/2

∥∥2

k+1

+ (δ2h2k + h2k+2)
∥∥un+1/2

∥∥2

k+1
+ µ2δ4

∥∥un+1/2

∥∥2

2

)
. (3.38)

χ(un+1/2 −Dh
µun+1/2

h,φh
n+1/2) ≤ χ

∥∥∥φh
n+1/2

∥∥∥∥∥un+1/2 −Dh
µun+1/2

h
∥∥

≤ 1
2
‖φh

n+1‖2 +
1
2
‖φh

n‖2 + χ2C
(

(µδ2h2k + h2k+2)
∥∥Dµun+1/2

∥∥2

k+1

+ (δ2h2k + h2k+2)
∥∥un+1/2

∥∥2

k+1
+ µ2δ4

∥∥un+1/2

∥∥2

2

)
. (3.39)

Combine (3.33)-(3.39) to obtain

M−1∑
n=0

∆t|Intp(un, pn;φh
n+1/2)| ≤

M−1∑
n=0

[ ∆t C‖φh
n+1‖2

+(ε1 + ε2 + ε3 + ε4)∆t ν‖∇φh
n+1/2‖2

+Cν−1
(

(µδ2h2k + h2k+2)
∥∥Dµun+1/2

∥∥2

k+1

+ (δ2h2k + h2k+2)
∥∥un+1/2

∥∥2

k+1
+ µ2δ4

∥∥un+1/2

∥∥2

2

)
+Cχ2

(
(µδ2h2k + h2k+2)

∥∥Dµun+1/2

∥∥2

k+1

+ (δ2h2k + h2k+2)
∥∥un+1/2

∥∥2

k+1
+ µ2δ4

∥∥un+1/2

∥∥2

2

)
]

+C(∆t)4
(
‖uttt‖22,0 + ν−1‖ptt‖22,0 + ‖ftt‖22,0

+ν‖∇utt‖22,0 + ν−1‖∇utt‖44,0

+ν−1‖|∇u|‖44,0 + ν−1‖|∇u1/2|‖44,0

)
. (3.40)

Let ε1 = ε2 = ε3 = ε4 = 1/12 and putting everything together, from (3.27) we obtain
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‖φh
M‖2 + ν4t

M−1∑
n=0

‖∇φh
n+1/2‖2 + χ4t

M−1∑
n=0

‖φh
n+1/2

∗
‖2

≤ 4t
M−1∑
n=0

C (ν−3
∥∥∇un+1/2

∥∥4 + 1)
∥∥∥φh

n+1/2

∥∥∥2

+ C ν h2k ‖|u|‖22,k+1 + C ν−1 h2k+1
(
‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
+ C ν−1h2k

(
‖|u|‖44,k+1 + ν−1(‖wh

0‖2 + ν−1‖|f |‖22,?)
)

+ C ν−1
(

h2s+2‖|p1/2|‖22,s+1 + (4t)4‖ptt‖22,0

)
+ C ν−1χ2µ2δ4 h2k‖|u|‖22,k+1

+ C (ν−1 + χ2)
(

(µδ2h2k + h2k+2) ‖Dµu‖22,k+1

+ (δ2h2k + h2k+2) ‖u‖22,k+1 + µ2δ4 ‖u‖22,2

)
+C(∆t)4

(
‖uttt‖22,0 + ‖ftt‖22,0 + ν‖∇utt‖22,0

+ ν−1‖∇utt‖44,0 +ν−1‖|∇u|‖44,0 + ν−1‖|∇u1/2|‖44,0

)
. (3.41)

Hence, with 4t sufficiently small, i.e. 4t < C(ν−3‖|∇u|‖4∞,0 + 1)−1, from Gronwall’s Lemma
(see Lemma 3.2), we have

‖φh
M‖2 + ν4t

M−1∑
n=0

‖∇φh
n+1/2‖2 + χ4t

M−1∑
n=0

‖φh
n+1/2

∗
‖2

≤ C∗ { h2k+2 (ν−1 + χ2)( ‖Dµu‖2k+1 + ‖u‖2k+1 )

+ν−1 h2k+1
(
‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
+ h2k(ν + ν−1 χ2µ2δ4 )‖|u|‖22,k+1

+ν−1h2k
(
‖|u|‖44,k+1 + ν−1(‖wh

0‖2 + ν−1‖|f |‖22,?)
)

+δ2h2k(ν−1 + χ2)
(
µ ‖Dµu‖22,k+1 + ‖u‖22,k+1

)
ν−1h2s+2‖|p1/2|‖22,s+1 + (ν−1 + χ2)µ2δ4 ‖u‖22,2

+ (∆t)4
(
‖uttt‖22,0 + ν−1‖ptt‖22,0 + ‖ftt‖22,0 + ν‖∇utt‖22,0

+ν−1‖∇utt‖44,0 +ν−1‖|∇u|‖44,0 + ν−1‖|∇u1/2|‖44,0

)
} (3.42)

where C∗ = C exp(Cν−3T ).
Estimate (3.14) then follows from the triangle inequality and (3.42).
To obtain (3.15), we use (3.42) and

‖∇
(
u(tn+1/2)− (wh

n+1 + wh
n)/2

)
‖2

≤ ‖∇(u(tn+1/2)− un+1/2)‖2 + ‖∇ηn+1/2‖2 + ‖∇φh
n+1/2‖2

≤ (4t)3

48

∫ tn+1

tn

‖∇utt‖2 dt + Ch2k||un+1||2k+1 + Ch2k||un||2k+1 + ‖∇φh
n+1/2‖2 .

4 Numerical Illustrations

In this section, we present two numerical experiments. Our first test confirms the predicted rates of
convergence. In our second experiment, we study a simple, under-resolved flow with recirculation:
the flow across a step. The computations were performed with the software FreeFem++, see [14].
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4.1 Convergence Rate Verification

To test the predicted convergence rates, we consider the Chorin vortex decay problem, [7, 26, 38].
The prescribed solution in Ω = (0, 1)× (0, 1) is

u1(x, y, t) = − cos(nπx) sin(nπy)e−2n2π2t/τ

u2(x, y, t) = sin(nπx) cos(nπy)e−2n2π2t/τ

p = −1
4
(cos(nπx) + cos(nπy))e−2n2π2t/τ .

When the relaxation time τ = Re, the pair (u, p) defined above is a solution of the NSE with f = 0.
This solution consists of an n× n array of oppositely signed vortices that decay as t →∞.

The model was discretized in time with the implicit second order Crank-Nicolson scheme and in
space with the Taylor-Hood finite element method, i.e. the velocity was approximated by continuous
piecewise quadratics and the pressure by continuous piecewise linears. Theorem 3.2 shows that
under sufficient regularity of the solution of the variational problem, the error ||∇(u−wh)||2,0 is of
O(h2). This experiment suggests that it might be possible to establish an upper bound for the error
||u−wh||2,0 as follows

||u−wh||2,0 ≤ C h ||∇(u−wh)||2,0,

i.e., ||u −wh||2,0 ' O(h3). Generally, Nitsche’s duality trick is employed to derive error estimates
for L2 norms. This is often referred to as the L2 lift, [4]. In our test, we choose n = 1, dt = 0.005,
T = 0.5, µ = 1/m, χ = 0.1, δ =

√
1/m and h = 1/m, where m is the number of subdivisions of

the interval (0, 1). We performed the same test for different Reynolds numbers. The results are in
Tables 1 and 2 below. In both cases, Re = 1 and Re = 104, the convergence rate approaches the
second order predicted for ||∇(u−wh)||2,0. For Re = 104 we also see what appears to be an L2 lift
for
∥∥u−wh

∥∥
2,0

.
Note that the error plateau around 10−5 already on coarse mesh. This is likely related to the

stopping criteria (uresidual < 10−5) or the O(10−5) stabilization used in the (2,2) block of the linear
Stokes system for the solver used.

mesh ||u−wh||2,0 ratio ||∇(u−wh)||2,0 ratio
10× 10 0.000316786 - 0.00461599 -
20× 20 6.66405 · 10−5 2.25 0.00116309 1.98
30× 30 5.31594 · 10−5 0.6 0.000522003 1.97
40× 40 5.16375 · 10−5 0.1 0.000300615 1.91

Table 1: Errors and convergence rates for the Leray-Tikhonov model at Re = 1

mesh ||u−wh||2,0 ratio ||∇(u−wh)||2,0 ratio
10× 10 0.0226085 - 1.35783 -
20× 20 0.00428244 2.40 0.502447 1.43
30× 30 0.00131237 2.91 0.23989 1.82
40× 40 0.000531236 3.14 0.131774 2.08

Table 2: Errors and convergence rates for the Leray-Tikhonov model at Re = 104

4.2 Step Problem

In our second test, we consider a flow in transition via shedding of eddies behind the step. At a
critical Reynolds number, for which the flow should be time dependent, some models are not able
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to capture the correct (non stationary) physical properties of the flow, e.g., [27]. Herein, we present
results for a parabolic inflow profile, which is given by u = (u1, u2)T , with u1 = y(10 − y)/25 and
u2 = 0. No-slip boundary condition is prescribed on the top and bottom boundary as well as on
the step. At the outflow we have “do nothing” boundary condition, an accepted outflow condition
in CFD. The model was discretized in time with the Crank-Nicolson and in space with the Taylor
Hood finite-element method. Figure 3 shows that expected behavior of the flow: behind the step
the flow simulation correctly develops vortices separate from the step. Figure 3 shows the results
for a course mesh (4585 degrees of freedom) at T = 10, 20, 30, 40, for ν−1 = 750, χ = 0.01, µ = 0.01,
dt = 0.0025, δ = 1.5.

Figure 3: Leray-Tikhonov deconvolution model: Flow field at T = 10, 20, 30, 40.

5 Conclusions

Numerical simulation of complex flows presents many challenges. Often, simulations are based on
various regularizations of the NSE rather than the NSE themselves. The resulting models have
remarkable and positive effects on computation results: errors are observed to be much better over
much larger time intervals and the transition from one type of flow to another is not retarded.

Herein, we developed and studied a new family of such NSE-regularizations, based on a modifi-
cation of Tikhonov-Lavrentiev regularization process for ill-posed problems. With this method, we
obtained an approximation to the unfiltered solution by one filtering step. Using the differential filter
(2.7), the error in approximation is u − Dµu = O(µδ2). We studied a fully discrete algorithm for
the model, Crank-Nicolson in time and finite element in space. We have given a numerical analysis
for the scheme and included proofs of unconditional stability and solvability. We have also given a
convergence analysis which was also verified in our numerical computations.
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