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A�������. This report analyzes the long time stability of four methods for
non-iterative, sub-physics, uncoupling for the evolutionary Stokes-Darcy prob-
lem. The four methods uncouple each time step into separate Stokes and Darcy
solves using ideas from splitting methods. Three methods uncouple sequen-
tially while one is a parallel uncoupling method. We prove long time stability of
four splitting based partitioned methods under time step restrictions depend-
ing on the problem parameters. The methods include ones stable uniformly
in S0, the storativity coefficient, for moderate kmin, the minimum hydraulic
conductivity, uniformly in kmin for moderate S0 and with no coupling between
the timestep and the spacial meshwidth.

1. I
��������


Many important applications such as coupled surfacewater groundwater flows re-
quire the accurate solution of multi-domain, multi-physics coupling of unobstructed
flows with filtration or porous media flows (the Stokes-Darcy problem). There are
large advantages in efficiency, storage, accuracy and programmer effort in using par-
titioned methods built from components optimized for the individual sub-processes.
Partitioned methods for the evolutionary Stokes-Darcy problem confront several in-
trinsic difficulties which include:

• Values of the hydraulic conductivity k can be small, for example 10−12 for
sands to 10−15 for clay, [B79].

• Values for the storativity coefficient S0 range from 10−2 in unconfined
aquifers to 10−5 in confined aquifers, [J67].

• The scale of the problem varies from large L = diam(Ω) for geophysics and
small L for biomedical applications.

• Turnover times in aquifers can be large due to small hydraulic conductivity
values and large domains. Thus accurate calculations are needed over long
time intervals.

• Differences in flow rates in the Stokes and the Darcy regions can require
different timesteps in the two domains for efficiency and accuracy.
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These features mean that stability is a primary issue for partitioned methods
for the Stokes-Darcy problem. Uncoupling / partitioning necessarily induces a
timestep restriction for long time stability. The severity of the restriction depends
on the method chosen, the relaxation times of the individual subdomain problems
and the strength of coupling of the underlying problem. We study herein stability
vs the severity of the induced timestep restriction for small kmin, S0 and long time
intervals for uncoupling by splitting methods. Since the Stokes-Darcy problem and
the methods we consider are linear, their error satisfies the same equations as the
approximate solution with the body force replaced by a consistency error. Thus, for
errors also, stability over long time intervals for small S0, k is the key to a method
with good error behavior.

The four methods we analyze methods uncouple each time step into a separate
Stokes flow problem and Darcy flow problem. The strength of the coupling between
the two subdomains varies with different ranges of physical parameters and is re-
flected in restrictions on timesteps required for long time stability. Our estimates
and tests suggest that these methods are stable for larger timesteps that the IMEX
based partitioned methods in [MZ10], [LT11], [LTT11], [SZ11]. In particular, sta-
bility analysis and numerical tests herein indicate that splitting based partitioned
methods are a very good option when either kmin or S0 is small, Figures 1,2,3 in
Section 5. Finding partitioned methods stable for large timesteps when both kmin,
S0 are small is an open problem, Figures 4,5,6 in Section 5. Further, while the
first order methods gave acceptable error levels, more accuracy is always desirable.
Stable higher order partitioned methods for large timesteps and small parameters
are also not yet known, e.g., Figure 7 Section 5.

1.1. The Stokes-Darcy problem. Let the two domains be Ωf ,Ωp lie across an
interface I from each other. The fluid velocity and porous media piezometric head
(related to the Darcy pressure) satisfy

ρut − µ△u+∇p = ff , and ∇ · u = 0, in Ωf ,(1.1)

S0φt −∇ · (K∇φ) = fp, in Ωp,

φ(x, 0) = φ0, in Ωp and u(x, 0) = u0, in Ωf ,

φ(x, t) = 0, in ∂Ωp\I and u(x, t) = 0, in ∂Ωf\I,
+ coupling conditions across I.

Let n̂f/p denote the indicated, outward pointing, unit normal vector on I. The
coupling conditions are conservation of mass and balance of forces on I

u · n̂f −K∇φ · n̂p = 0, on I,

p− µ n̂f · ∇u · n̂f = ρgφ on I.

The last condition needed is the Beavers-Joseph-Saffman (-Jones) condition

−µ ∇u · n̂f = α
√

µρg

τ̂ i · K · τ̂ i
u · τ̂ i ≡ χu · τ̂ i, on I for any τ̂ i tangent vector on I,

see [BJ67], [S71], [JM00]. This is a simplification of the original and more physically
realistic Beavers-Joseph conditions, in which u · τ̂ i is replaced by (u − up) · τ̂ i,
e.g., [CGHW08], [CGHWZ10]. Here ρ, g are the fluid density and gravitational
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acceleration constant and

φ = Darcy pressure + elevation induced pressure = piezometric head,

up = −K∇φ = velocity in porous media region, Ωp,

u = velocity in Stokes region, Ωf ,

ff , fp = body forces in fluid region and source in porous media region,

K = hydraulic conductivity tensor with minΩpλmin(K) =: kmin > 0,
µ = viscosity of fluid,

S0 = specific mass storativity coefficient.

We assume that all material and fluid parameters are positive and the boundary
conditions are simple Dirichlet conditions on the exterior boundaries (not including
the interface I). While this is only one of several important boundary conditions,
[B79], [PC06], the algorithms herein and their numerical analysis can easily be
extended to different combinations of exterior boundary conditions.

Section 2 collects preliminaries and Section 3 presents four partitioned methods.
Section 4 analyzes long time stability and derives the associated timestep restric-
tions. Section 5 gives numerical tests and Section 6 follows with conclusions and
future prospects.

1.2. Related Work. Understanding of the equilibrium Stokes-Darcy problem is
now advanced, e.g., [JM00], [LSY], [DMQ01], [PS98], [PSS99]. For the evolutionary
problem, the monolithic approach (discretize the problem implicitly, assemble the
fully coupled system at each time step, solve by an iterative method where uncou-
pling is attained by using a domain decomposition preconditioner) is an important
complement to partitioned methods; it is developed in, e.g., [DMQ01], [CGHW11],
[D04], [DQ], [DQ03], [HPV07], [CMX07], [MX07], [J09], [MQS03], [MX07], and
[VY11]. Partitioned methods require neither access to a fully coupled system nor
iteration at each time step, e.g., [LT11], [LTT11], [SZ11], [MZ10] (the first paper on
partitioned methods for Stokes-Darcy), and [CGHW08], [CGHWZ10] (a interesting
new approach and the first papers studying the Beavers-Joseph interface coupling).
There is a very strong connection between application-specific partitioned methods
and more general IMEX and splitting methods; see, e.g., [V09], [V80], [ARW95],
[C80], [FHV96], [HV03], [V09], [M88], [M90], [Y71]. The idea used in CNsplit
below to compute in parallel two approximations and then average occurs in the
Dyakunov splitting method, e.g., [M88], [M90], [Y71], [HKLR10].

2. T�� ��
��
�� ������� �
� ����-�������� ������������


We denote the L2(I) norm by || · ||I and the L2(Ωf/p) norms by || · ||f/p, respec-
tively; the corresponding inner products are denoted by (·, ·)f/p. Let

Xf : = {v ∈
(
H1(Ωf )

)d
: v = 0 on ∂Ωf\I},

Xp : = {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp\I},
Qf : = L20(Ωf ).
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To discretize the Stokes-Darcy problem in space by the finite element method, we
select conforming finite element spaces

Velocity: Xh
f ⊂ Xf = {v ∈

(
H1(Ωf )

)d
: v = 0 on ∂Ωf\I},

Darcy pressure: Xh
p ⊂ Xp = {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp\I},

Stokes pressure: Qhf ⊂ Qf = L20(Ωf ).
based on a conforming FEM triangulations in Ωf ,Ωp with maximum triangle di-
ameter "h". No mesh compatibility at or continuity across the interface I between
the FEM meshes in the two subdomains is assumed. It is known that provided
a minimum angle condition holds functions in piecewise polynomial finite element
spaces including Xh

f ,X
h
p and even Qhf (for the elementwise gradient) satisfy an

inverse inequality1:

(2.1) ||∇vh|| ≤ CINV h−1||vh||, h = minimum meshwidth.

The Stokes velocity-pressure FEM spaces (Xh
f ,Q

h
f ) are assumed to satisfy the usual

discrete inf-sup / LBBh condition for stability of the discrete pressure, e.g., [G89],
[GR86], [L07]. We denote the discretely divergence free velocities by

V h := Xh
f ∩ {vh : (qh,∇ · vh)f = 0, for all qh ∈ Qhf}

The HDIV (Ωf ) norm is given by

||u||DIV :=
√
||u||2f + ||∇ · u||2f .

Note that if d = dim(Ωf ), ||∇ ·u||f ≤
√
d||∇u||f and that the Poincaré - Friedrichs

inequality holds in both domains:

||v||f/p ≤ CPF (Ωf/p)||∇v||f/p,∀v ∈ Xf/p.
We use versions of the trace theorem on the interface I:

(2.2) ||φ||I ≤ C∗p ||φ||1/2p ||∇φ||1/2p and ||u||I ≤ C∗f ||u||
1/2
f ||∇u||1/2f

We shall assume that the domains Ωf/p are such that the second trace inequality
holds:

(HDIV trace)

∣∣∣∣
∫

I

φu · n̂ds
∣∣∣∣ ≤ C||u||DIV ||φ||H1(Ωp), for all u ∈ Xf , φ ∈ Xp.

This inequality is standard if Ωp = Ωf and I = ∂Ωp and holds with C = 1 in
that case, e.g., [GR86]. It also holds if Ωp is contained in Ωf and I = ∂Ωp and
visa versa. The most general domains and shared boundaries I which satisfy this
inequality do not seem to be known. However, Moraiti [M11] shows that it holds

in many cases directly (without extra assumptions like φ ∈ H1/2
00 (I)) such as when

one domain is an image under a smooth map of the other. For example, we have
the following special case of Moraiti [M11].

Lemma 1. Suppose Ωf/p are open connected, regular sets in Rd sharing a boundary
portion I which is an open connected set with I ⊂ {x = (x1, · · ·, xd) : xd = 0}.
Suppose Ωp is the reflection of Ωf across I, i.e., (x1, · · ·, xd) ∈ Ωp if and only if
(x1, · · ·,−xd) ∈ Ωf . Then (HDIV trace) holds with C = 1.

1The constant CINV depends upon the angles in the finite element mesh but not on the domain
size. The analysis must either use hmin in stability restrictions and hmax in the interpolation
inequalities or assume a quasi-uniform mesh. For notational simplicity we do the latter.
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Proof. We have that φ(x1, ···, xd) ∈ Xp means φ∗ := φ(x1, ···,−xd) is a well defined
function on Ωf with the same regularity, norms and boundary conditions. Since
φ∗ = φ on I we have

∫

I

φu · n̂ds =

∫

I

φ∗u · n̂ds =
∫

Ωf

∇ · (uφ∗) dx =

=

∫

Ωf

(∇ · u)φ∗dx+
∫

Ωf

u · ∇φ∗dx.

Thus, by the Cauchy-Schwarz inequality
∣∣∣∣
∫

I

φu · n̂ds
∣∣∣∣ ≤ ||u||DIV ||φ

∗||H1(Ωf ) = ||u||DIV ||φ||H1(Ωp).

�

To present a convenient2 variational formulation we first multiply the porous
media equation through by ρg. Define the associated bilinear forms

af (u, v) = (µ∇u,∇v)f + (∇ · u,∇ · v)f +
∑

i

∫

I

χ(u · τ̂ i)(v · τ̂ i)ds,

ap(φ, ψ) = ρg(K∇φ,∇ψ)p, and

cI(u, φ) = ρg

∫

I

φu · n̂fds.

A (monolithic) variational formulation of the coupled problem is to find (u, p, φ) :
[0,∞) → Xf × Qf × Xp satisfying the given initial conditions and, for all v ∈
Xf , q ∈ Qf , ψ ∈ Xp

ρ(ut, v)f + af (u, v)− (p,∇ · v)f + cI(v, φ) = (ff , v)f ,
(q,∇ · u)f = 0,(2.3)

ρgS0(φt, ψ)p + ap(φ, ψ)− cI(u, ψ) = ρg(fp, ψ)p.
The bilinear forms af/p(·, ·) are symmetric, continuous and coercive. We include
grad-div stabilization (the term (∇·u,∇·v)f ), an idea developed by [LO02], [OR02],
[OR04], with coefficient (normally O(1)) chosen to be 1.

The key to the problem is the coupling term. The effect of the above pre-
multiplications by ρg is to make the coupling exactly skew symmetric.

Lemma 2. If (HDIV trace) holds we have for u, φ ∈ Xf ,Xp

|cI(u, φ)| ≤ µ

2
||∇u||2f +

ρgkmin
2

||∇φ||2p +
(C∗fC

∗

p)
2 (ρg)3/2

4
√
µkmin

||u||f ||φ||p,

|cI(u, φ)| ≤ µ

2
||∇u||2f +

ρgkmin
2

||∇φ||2p +
ρ

2
||u||2f +

(C∗fC
∗

p)
4 (ρg)3

32ρµkmin
||φ||2p,

and

|cI(u, φ)| ≤ ρgkmin
2

||∇φ||2p +
ρg(1 +C2PF (Ωp))

2kmin

(
||u||2j + ||∇ · u||2f

)
.

2Other variational formulations are possible. In (2.3) the volumetric porosity is implicit rather
than explicit.
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In the discrete case, if the inverse estimate (2.1) holds we have for all uh, φh ∈
Xh
f ,X

h
p

|cI(uh, φh)| ≤ ρgC∗fC∗pCINV h−1
(
1

2
||uh||2f +

1

2
||φh||2p

)
.

Proof. Using (2.2) and the arithmetic geometric mean inequality twice we obtain

cI(u, φ) = ρg

∫

I

φu · n̂ds ≤ ρg||u||I ||φ||I

≤ ρgC∗fC∗p ||φ||1/2p ||∇φ||1/2p ||u||1/2f ||∇u||1/2f

≤ µ

2
||∇u||2f +

ρgkmin
2

||∇φ||2p +
(C∗fC

∗

p)
2 (ρg)

3/2

4
√
µkmin

||u||f ||φ||p.

The second follows from the first by another application of the arithmetic-geometric
mean inequality. For the third estimate we use (HDIV trace) and the Poincaré-
Friedrichs inequality

|cI(u, φ)| ≤ ρg||u||DIV ||φ||H1(Ωp) ≤ ρg||u||DIV
√
1 +C2PF (Ωp)||∇φ||p

≤ ρgkmin
2

||∇φ||2p +
ρg(1 +C2PF (Ωp))

2kmin
||u||2DIV .

The fourth follows similarly using the inverse estimate:

|cI(uh, φh)| ≤ ρg||uh||I ||φh||I ≤ ρgC∗f ||u||
1/2
f ||∇u||1/2f C∗p ||φh||1/2p ||∇φh||1/2p

≤ ρgC∗fC∗pCINV h−1||uh||f ||φh||p ≤ ρgC∗fC∗pCINV h−1
(
1

2
||uh||2f +

1

2
||φh||2p

)
.

�

3. F�� S������
� B���� P�������
�� M������

Pick a time-step △t > 0. Let tn := n△t, the (arbitrary) final time be T = N△t
and let superscripts denote the time level of the approximation. We consider four
uncoupling methods. BEsplit1 and 2 methods have superior stability properties in
different cases of small physical parameters. The fourth method is second order
accurate. The first method is a translation of the method from [V09] to the Stokes-
Darcy problem.
Method 1: SDsplit = a Stokes-Darcy time-split method. SDsplit is

a first order accurate, three sub-step method adapted from [V09]. The SDsplit

approximations are: given (unh, p
n
h, φ

n
h), find (un+1h , pn+1h , φ

n+1/2
h ) ∈ Xh

f ×Qhf ×Xh
p

and φn+1h ∈ Xh
p satisfying, for all vh ∈ Xh

f , qh ∈ Qhf , ψh ∈ Xh
p :

ρgS0(
φ
n+1/2
h − φnh
△t , ψh)p +

1

2
ap(φ

n+1/2
h , ψh)−

1

2
cI(u

n
h, ψh) =

1

2
ρg(fn+1/2p , ψh)p.

ρ(
un+1h − unh

△t , vh)f + af (u
n+1
h , vh)− (pn+1h ,∇ · vh)f

+cI(vh, φ
n+1/2
h ) = (fn+1f , vh)f , and (qh,∇ · un+1h )f = 0,(SDsplit)

ρgS0(
φn+1h − φn+1/2h

△t , ψh)p +
1

2
ap(φ

n+1
h , ψh)−

1

2
cI(u

n+1
h , ψh) =

1

2
ρg(fn+1f , ψh)p.
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SDsplit is uncoupled but sequential: unh → φ
n+1/2
h → un+1h → φn+1h .

Method 2: BEsplit1 = a Backward Euler time-split method. The
BEsplit approximations are: given (unh, p

n
h, φ

n
h) find (un+1h , pn+1h , φn+1h ) ∈ Xh

f ×
Qhf ×Xh

p satisfying, for all vh ∈ Xh
f , qh ∈ Qhf , ψh ∈ Xh

p ,

ρ(
un+1h − unh

△t , vh)f + af (u
n+1
h , vh)− (pn+1h ,∇ · vh)f + cI(vh, φnh) = (fn+1f , vh)f ,

(qh,∇ · un+1h )f = 0,(BEsplit1)

ρgS0(
φn+1h − φnh

△t , ψh)p + ap(φ
n+1
h , ψh)− cI(un+1h , ψh) = ρg(f

n+1
p , ψh)p.

The coupling term in the φ equation is evaluated at the newly computed value un+1h

so we compute φnh → un+1h → φn+1h .
Method 3: BEsplit2. The order of cycling through the equations alters the

computed results. BEsplit2 is the previous method in the opposite order. It is
given by: given (unh, p

n
h, φ

n
h) find (un+1h , pn+1h , φn+1h ) ∈ Xh

f × Qhf × Xh
p satisfying,

for all vh ∈ Xh
f , qh ∈ Qhf , ψh ∈ Xh

p ,

ρgS0(
φn+1h − φnh

△t , ψh)p + ap(φ
n+1
h , ψh)− cI(unh, ψh) = ρg(fn+1p , ψh)p

ρ(
un+1h − unh

△t , vh)f + ρ(∇ ·
un+1h − unh

△t ,∇ · vh)f + af (un+1h , vh)(BEsplit2)

−(pn+1h ,∇ · vh)f + cI(vh, φn+1h ) = (fn+1f , vh)f ,

(qh,∇ · un+1h )f = 0.

Our initial analysis revealed that control was needed for a term ||un+1h − unh||DIV .
This led to the idea of inserting the grad-div stabilization term (∇·

(
un+1h − unh

)
/△t,∇·

vh)f acting on the time discretization of ut. This term is exactly zero for the con-
tinuous problem so it does not increase the method’s consistency error.
Method 4: CNsplit= a Crank-Nicolson time-split method. CNsplit is

second order accurate. It computes in parallel3 two partitioned approximations

(ûn+1h , p̂n+1h , φ̂
n+1

h ) and (ũn+1h , p̃n+1h , φ̃
n+1

h ) ∈ Xh
f × Qhf × Xh

p whereupon the new
approximation to each variable is the average of the two computed approximations:

(CNsplit) (un+1h , pn+1h , φn+1h ) =
1

2
[(ûn+1h , p̂n+1h , φ̂

n+1

h ) + (ũn+1h , p̃n+1h , φ̃
n+1

h )].

The two individual approximations satisfy, for all vh ∈ Xh
f , qh ∈ Qhf , ψh ∈ Xh

p

ρ(
ûn+1h − ûnh

△t , vh)f + af (
ûn+1h + ûnh

2
, vh)− (

p̂n+1h + p̂nh
2

,∇ · vh)f

+cI(vh, φ̂
n

h) = (f
n+1/2
f , vh)f , and (qh,∇ · ûn+1h )f = 0,(CNsplit-a)

ρgS0(
φ̂
n+1

h − φ̂nh
△t , ψh)p + ap(

φ̂
n+1

h + φ̂
n

h

2
, ψh)− cI(ûn+1h , ψh) = ρg(f

n+1/2
p , ψh)p

3Two processors can be working simultaneously with waiting only due to the different speeds
of solving the subdomain problems.
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and

ρgS0(
φ̃
n+1

h − φ̃nh
△t , ψh)p + ap(

φ̃
n+1

h + φ̃
n

h

2
, ψh)− cI(ũnh, ψh) = ρg(fn+1/2p , ψh)p.

ρ(
ũn+1h − ũnh

△t , vh)f + af (
ũn+1h + ũnh

2
, vh)− (

p̃n+1h + p̃nh
2

,∇ · vh)f(CNsplit-b)

+cI(vh, φ̃
n+1

h ) = (f
n+1/2
f , vh)f , and (qh,∇ · ũn+1h )f = 0.

The calculation can proceed as follows

Step 1: Pass previous values across the interface to the other domains

solve, in parallel for ûn+1h , φ̃
n+1

h

Step 2: Pass each of ûn+1h , φ̃
n+1

h across the interface to the other domains

solve, in parallel, for ũn+1h , φ̂
n+1

h .

Step 3: Average the two approximations on each domain

Averaging the equations of the two approximations shows that the averages unh
and φnh satisfy

ρ(
un+1h − unh

△t , vh)f + af (
un+1h + unh

2
, vh)− (

pn+1h + pnh
2

,∇ · vh)f+(3.1)

+cI(vh,
φ̃
n+1

h + φ̂
n

h

2
) = (f

n+1/2
f , vh)f , and (qh,∇ · un+1h )f = 0,

ρgS0(
φn+1h − φnh

△t , ψh)p + ap(
φn+1h + φnh

2
, ψh)− cI(

ûn+1h + ũnh
2

, ψh) = ρg(f
n+1/2
p , ψh)p

To assess consistency errors, the residual is estimated when the true solution u(t), φ(t)

is inserted for all variables u, ũ, û, φ, φ̃ and φ̂ in (3.1). As this eliminates the dif-
ferences between the "hat" and the "tilde" variables, it shows that CNsplit has
the same consistency error as the (monolithic / fully coupled) Crank-Nicolson time
discretization.

4. A
������ �� S�������� �� SD�����, BE�����1/2 �
� CN�����

Since the partitioned methods considered treat some variables in some steps
explicitly, a timestep restriction for stability in unavoidable. This section gives a
stability proof by energy methods in the form that implies stability over long time
intervals and elucidates the timestep restriction required for the four methods.

4.1. SDsplit Stability. We prove conditional stability (with a timestep restric-
tion linked to the spacial meshwidth) of SDsplit in this subsection. The timestep
restriction is of the form

△t < Cmin {S0, kmin}h.
To be precise, define

△T0 :=
2

ρg(C∗fC
∗
p)
2CINV

min

{
S0µ

CPF (Ωf )
,
ρkmin
CPF (Ωp)

}
h.
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Theorem 1. Suppose that for some α, 0 < α < 1,

(4.1) △t ≤ (1− α)△T0.

Then SDsplit is stable:

1

2

[
ρ||uNh ||2f + ρgS0||φNh ||2p

]
+△t

N−1∑

n=0

△tρgS0
2
||φ

n+1/2
h − φnh
△t ||2p

+
αρgS0
2

△t
N−1∑

n=0

△t||φ
n+1/2
h − φn+1h

△t ||2p +
αρ

2
△t

N−1∑

n=0

△t||u
n+1
h − unh
△t ||2f(4.2)

≤ 1

2

[
ρ||u0h||2f + ρgS0||φ0h||2p

]
+
ρgC2PF (Ωp)

2kmin
△t

N−1∑

n=0

||fn+1/2p ||2p

+
C2PF (Ωf )

2µ
△t

N−1∑

n=0

||fn+1f ||2f +
ρgC2PF (Ωp)

4kmin
△t

N−1∑

n=0

||fn+1p ||2p.

Proof. In the first 1/3 step of SDsplit, take ψ =△tφn+1/2h . This gives

1

2
ρgS0(||φn+1/2h ||2p − ||φnh||2p + ||φn+1/2h − φnh||2p) +

△t
2
ap(φ

n+1/2
h , φ

n+1/2
h )

=
△t
2
ρg(fn+1/2p , φ

n+1/2
h )p +

△t
2
cI(u

n
h, φ

n+1/2
h ).

Take v = △tun+1h , q = pn+1h in the 2/3 step and add. This gives

1

2
ρ(||un+1h ||2f − ||unh||2f + ||un+1h − unh||2f ) +△taf (un+1h , un+1h )

= △t(fn+1f , un+1h )f −△tcI(un+1h , φ
n+1/2
h ).

In the 3/3 step, take ψ = △tφn+1h :

1

2
ρgS0(||φn+1h ||2p − ||φ

n+1/2
h ||2p + ||φn+1h − φn+1/2h ||2p) +

△t
2
ap(φ

n+1
h , φn+1h )

=
△t
2
ρg(fn+1p , φn+1h )p +

△t
2
cI(u

n+1
h , φn+1h ).

Adding, we obtain:

1

2
ρgS0(||φn+1h ||2p − ||φnh||2p) +

1

2
ρ(||un+1h ||2f − ||unh||2f )

+
1

2
ρgS0(||φn+1/2h − φnh||2p + ||φn+1h − φn+1/2h ||2p) +

1

2
ρ||un+1h − unh||2f

+
△t
2
ap(φ

n+1/2
h , φ

n+1/2
h ) +

△t
2
ap(φ

n+1
h , φn+1h ) +△taf (un+1h , un+1h )

=
△t
2
ρg(fn+1/2p , φ

n+1/2
h )p +△t(fn+1f , un+1h )f +

△t
2
ρg(fn+1p , φn+1h )p

+
△t
2
cI(u

n
h, φ

n+1/2
h )−△tcI(un+1h , φ

n+1/2
h ) +

△t
2
cI(u

n+1
h , φn+1h ).
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Consider the interface terms (the last line):

Interface Terms =
△t
2
cI(u

n
h, φ

n+1/2
h )−△tcI(un+1h , φ

n+1/2
h ) +

△t
2
cI(u

n+1
h , φn+1h ).

Rewrite the interface term as a difference by splitting the middle term. This gives

Interface Terms =
△t
2
cI(u

n
h, φ

n+1/2
h )− △t

2
cI(u

n+1
h , φ

n+1/2
h )

−△t
2
cI(u

n+1
h , φ

n+1/2
h ) +

△t
2
cI(u

n+1
h , φn+1h )

=
△t
2
cI(u

n
h − un+1h , φ

n+1/2
h )− △t

2
cI(u

n+1
h , φ

n+1/2
h − φn+1h ).

Lemma 2, the Poincaré-Friedrichs and inverse inequalities give the two bounds

△t
2
|cI(un − un+1, φn+1/2)| ≤

≤ ρg△t
4
||K1/2∇φn+1/2h ||2p +

ρg(C∗fC
∗

p)
2CINV CPF (Ωp)h

−1△t
4kmin

||unh − un+1h ||2f .

△t
2
|cI(un+1h , φ

n+1/2
h − φn+1h )| ≤

≤ µ△t
4
||∇un+1h ||2f +

ρ2g2(C∗fC
∗

p)
2CINVCPF (Ωf )h−1△t

4µ
||φn+1/2h − φn+1h ||2p.

Next, we bound the right-hand side in a standard way:

△t
2
ρg(fn+1/2p , φ

n+1/2
h ) ≤ ρg△t

8
||K1/2∇φn+1/2h ||2p +

ρgC2PF (Ωp)△t
2kmin

||fn+1/2p ||2p,

△t(fn+1f , un+1h ) ≤ C2PF (Ωf )△t
2µ

||fn+1f ||2f +
µ△t
2
||∇un+1h ||2f ,

△t
2
ρg(fn+1p , φn+1h ) ≤ ρg△t

4
||K1/2∇φn+1h ||2p +

ρgC2PF (Ωp)△t
4kmin

||fn+1p ||2p.

For the left side. apply coercivity:

△t
2
ap(φ

n+1/2
h , φ

n+1/2
h ) ≥ ρg△t

2
||K1/2∇φn+1/2h ||2p,

△taf (un+1h , un+1h ) ≥ µ△t||∇un+1h ||2f ,
△t
2
ap(φ

n+1
h , φn+1h ) ≥ ρg△t

2
||K1/2∇φn+1h ||2p.
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Combine, we arrive at:

1

2
ρgS0(||φn+1h ||2p − ||φnh||2p) +

1

2
ρ(||un+1h ||2f − ||unh||2f ) +

1

2
ρgS0||φn+1/2h − φnh||2p

+(
1

2
ρgS0 −

ρ2g2(C∗fC
∗

p)
2CINVCPF (Ωf )h−1△t

4µ
)||φn+1/2h − φn+1h ||2p

+(
1

2
ρ−

ρg(C∗fC
∗

p)
2CINVCPF (Ωp)h−1△t
4kmin

)||un+1h − unh||2f

≤ ρgC2PF (Ωp)△t
2kmin

||fn+1/2p ||2p +
C2PF (Ωf )△t

2µ
||fn+1f ||2f +

ρgC2PF (Ωp)△t
4kmin

||fn+1p ||2p.

Sum this over n = 0, 1, · · · , N − 1 . We have:

1

2

[
ρ||uNh ||2f + ρgS0||φNh ||2p

]
+
1

2
ρgS0

N−1∑

n=0

||φn+1/2h − φnh||2p

+(
1

2
ρgS0 −

ρ2g2(C∗fC
∗

p)
2CINV CPF (Ωf )h

−1△t
4µ

)
N−1∑

n=0

||φn+1/2h − φn+1h ||2p

+(
1

2
ρ−

ρg(C∗fC
∗

p)
2CINV CPF (Ωp)h

−1△t
4kmin

)
N−1∑

n=0

||un+1h − unh||2f

≤ 1

2

[
ρ||u0h||2f + ρgS0||φ0h||2p

]
+
ρgC2PF (Ωp)△t

2kmin

N−1∑

n=0

||fn+1/2p ||2p+

+
C2PF (Ωf )△t

2µ

N−1∑

n=0

||fn+1f ||2f +
ρgC2PF (Ωp)△t

4kmin

N−1∑

n=0

||fn+1p ||2p.

Stability follows under the two conditions below, which are equivalent to the time
step restriction △t ≤ (1− α)△T0:

1

2
ρgS0 −

ρ2g2(C∗fC
∗

p)
2CINV CPF (Ωf )h

−1△t
4µ

≥ αρgS0
2
,

1

2
ρ−

ρg(C∗fC
∗

p)
2CINV CPF (ΩP )h

−1△t
4kmin

≤ αρ
2
.

�

4.2. BEsplit1 Stability. Define

△T1 := 2min{µkminS0
16ρ

(C∗fC
∗
p)
4 (ρg)2

, 1},

△T2 :=
2min{1, gS0}
gC∗fC

∗
pCINV

h,

△T3 = 2ρgS0µh
(
ρgC∗fC

∗

p

)−2
(CINV CPF (Ωf ))

−1

△T4 =
2min{1, ρ}

ρg(1 +C2PF (Ωp))
kmin,

Parameters := (1 +C2PF (Ωp))(C
2
PF (Ωf ) + d)

ρg

kminµ
.
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Note that △T1 and △T4 are independent of h but depend on kmin and S0 as
△T1 ≃ S0kmin and △T4 ≃ kmin. △T2 and △T3 are independent of kmin but depend
on h and S0 as △T2/3 ≃ S0h. The combination of physical parameters Parameters
is independent of h and S0 but depends on all the other physical parameters. When
µ = O(1), the meshwidth h in the porous medium is moderate and kmin, S0 are
small the above restrictions mean

either △t ≤ Cmax{kmin, S0kmin, S0h} or C
√
µkmin ≥ 1.

Theorem 2 (Uniform in time stability of BEsplit1). Suppose either the problem
parameters satisfy

Parameters ≤ 1,
or there is an 0 < α < 1 such that △t satisfies the time step restriction

△t ≤ (1− α)max{△T1,△T2,△T3,△T4}
Then, (BEsplit1) is stable uniformly in time. Specifically, if the timestep restric-

tion with △T3 is active then:

1

2

[
ρ||uNh ||2f + ρgS0||φNh ||2p

]
+

+△t
N−1∑

n=0

[
△t
2
ρ||u

n+1
h − unh
△t ||2f

+αaf (u
n+1
h , un+1h ) + ap(φ

n+1
h , φn+1h )] ≤ 1

2

[
ρ||u0h||2f + ρgS0||φ0h||2p

]

+△t
N−1∑

n=0

[
(fn+1f , un+1h )f + ρg(f

n+1
p , φn+1h )p

]
.

If any of the other timestep restrictions are active then for any N > 0, there holds

α
[
ρ||uNh ||2f + ρgS0||φNh ||2p

]
+

+
△t
2

N−1∑

n=0

[af (u
n+1
h + unh, u

n+1
h + unh) + ap(φ

n+1
h + φnh, φ

n+1
h + φnh)]

≤ α
[
ρ||u0h||2f + ρgS0||φ0h||2p

]
+

+△t
N−1∑

n=0

[
(fn+1f , un+1h + unh)f + ρg(f

n+1
p , φn+1h + φnh)p

]
.

Proof. In (BEsplit1) set vh = u
n+1
h + unh, qh = pn+1h , average the incompressibility

condition at successive time levels and add. We use

af (u
n+1
h , un+1h + unh) =

1

2
af (u

n+1
h , un+1h )− 1

2
af (u

n
h, u

n
h)+

+
1

2
af (u

n+1
h + unh, u

n+1
h + unh).(4.3)

This gives:

1

2

[
2ρ||un+1h ||2f +△taf (un+1h , un+1h )

]
− 1
2

[
2ρ||unh||2f +△taf (unh, unh)

]
+(4.4)

+
△t
2
af (u

n+1
h + unh, u

n+1
h + unh) +△tcI(φnh, un+1h + unh) =△t(fn+1f , un+1h + unh)f .
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Similarly, in the porous media equation, set ψh = φn+1h + φnh . We use here

ap(φ
n+1
h , φn+1h + φnh) =

1

2
ap(φ

n+1
h , φn+1h )− 1

2
ap(φ

n
h, φ

n
h)+

+
1

2
ap(φ

n+1
h + φnh, φ

n+1
h + φnh).

This gives

1

2

[
2ρgS0||φn+1h ||2p +△tap(φn+1h , φn+1h )

]
− 1
2

[
2ρgS0||φnh||2p +△tap(φnh, φnh)

]
(4.5)

+
△t
2
ap(φ

n+1
h + φnh, φ

n+1
h + φnh)−△tcI(φn+1h + φnh, u

n+1
h ) = △tρg(fn+1p , φn+1h + φnh)p.

Add (4.4) and (4.5). Consider the sum of the two coupling terms that results

Coupling = △t
[
cI(φ

n
h, u

n+1
h + unh)− cI(φn+1h + φnh, u

n+1
h )

]
=

= △t
[
cI(φ

n
h, u

n
h)− cI(φn+1h , un+1h )

]
.

Let us denote Cn = cI(φ
n
h, u

n
h) and

En =
1

2

[
2ρ||unh||2f + 2ρgS0||φnh||2p +△taf (unh, unh) +△tap(φnh, φnh)

]
,

Dn =
1

2
af (u

n+1
h + unh, u

n+1
h + unh) +

1

2
ap(φ

n+1
h + φnh, φ

n+1
h + φnh).

Adding the two energy estimates and using the above reduction of the coupling
term reduces the total energy estimate to

[
En+1 −△tCn+1

]
− [En −△tCn] +

+△tDn = △t
(
(fn+1f , un+1h + unh)f + ρg(f

n+1
p , φn+1h + φnh)p

)
.

Summing this up from n = 0 to n = N − 1 results in

[
EN −△tCN

]
+△t

N−1∑

n=0

Dn =
[
E0 −△tC0

]
+

+△t
N−1∑

n=0

[
(fn+1f , un+1h + unh)f + ρg(f

n+1
p , φn+1h + φnh)p

]
.

Stability and the stated energy inequality thus follows provided

EN −△tCN > 0 for every N .

We have already shown that

Dn ≥ µ

2
||∇

(
un+1h + unh

)
||2f +

ρgkmin
2

||∇
(
φn+1h + φnh

)
||2p,

|Cn| ≤ µ

2
||∇unh||2f +

ρgkmin
2

||∇φnh||2p +
ρ

2
||unh||2f +

(C∗fC
∗

p )
4 (ρg)

3

32ρµkmin
||φnh||2p.

Thus,

En −△tCn ≥ ρ||unh||2f + ρgS0||φnh||2p +
△t
2

(
µ||∇unh||2f + ρgkmin||∇φnh||2p

)
(4.6)

−△t[µ
2
||∇unh||2f +

ρgkmin
2

||∇φnh||2p +
ρ

2
||unh||2f +

(C∗fC
∗

p)
4 (ρg)3

32ρµkmin
||φnh||2p].
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Thus stability follows provided

△t
(C∗fC

∗

p)
4 (ρg)3

32ρµkmin
≤ (1− α)ρgS0, or

△t ≤ (1− α)µkminS0
32ρ

(C∗fC
∗
p )
4 (ρg)2

≡ (1− α)△T1.

Alternate conditions are obtained using different estimates of the coupling /
interface term. Indeed, using Lemma 2

|Cn| = |cI(unh, φnh)| ≤ ρgC∗fC∗pCINV h−1
(
1

2
||unh||2f +

1

2
||φnh||2p

)
.

Thus stability follows provided

△t
h
ρgC∗fC

∗

pCINV ≤ 2(1− α)min{ρ, ρgS0}, or

△t ≤ (1− α)2min{1, gS0}
gC∗fC

∗
pCINV

h ≡ (1− α)△T2,

which is the second condition.
For the condition Parameters ≤ 1, that by Lemma 2

|Cn| ≤ ρgkmin
2

||∇φnh||2p +
ρg(1 +C2PF (Ωp))

2kmin
||unh||2DIV

≤ ρgkmin
2

||∇φnh||2p +
ρg(1 +C2PF (Ωp))

2kmin
(||unh||2f + d||∇unh||2f )

≤ ρgkmin
2

||∇φnh||2p +
ρg(1 +C2PF (Ωp))

2kmin
(C2PF (Ωf ) + d)||∇unh||2f

Thus the method is also stable if the problem data satisfies

ρg(1 +C2PF (Ωp))

2kmin
(C2PF (Ωf ) + d) ≤

µ

2
or

Parameters = (1 +C2PF (Ωp))(C
2
PF (Ωf ) + d)

ρg

kminµ
≤ 1

The condition involving △T3 requires a separate stability proof. In (BEsplit1)
set vh = u

n+1
h , qh = p

n+1
h and add. We use

(un+1h − unh, un+1h )f =
1

2

[
||un+1h ||2f − ||unh||2f

]
+
1

2
||un+1h − unh||2f ,

and similarly for φ. This gives:
ρ

2

[
||un+1h ||2f − ||unh||2f

]
+
ρ

2
||un+1h − unh||2f +△taf (un+1h , un+1h )+

+△tcI(φnh, un+1h ) = △t(fn+1f , un+1h )f .

Similarly, in the porous media equation, set ψh = φn+1h , we get

1

2

[
ρgS0||φn+1h ||2p − ρgS0||φnh||2p + ρgS0||φn+1h − φnh||2p

]
+△tap(φn+1h , φn+1h )

−△tcI(φn+1h , un+1h ) = △tρg(fn+1p , φn+1h )p.

Add these two equations and consider the sum of the two coupling terms that result:

|Coupling| =△t|cI(φnh, un+1h )− cI(φn+1h , un+1h )| =△t|cI(φn+1h − φnh, un+1h )|.
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The following bound holds by an analogous proof as that of in Lemma 2:

|Coupling| ≤ ρgS0
2
||φn+1h − φnh||2p+

+△t
[ △t
2ρgS0

(
ρgC∗fC

∗

p

)2
CINV h

−1||un+1h ||f ||∇un+1h ||f
]

≤ ρgS0
2
||φn+1h − φnh||2p+

+△t
[ △t
2ρgS0µ

(
ρgC∗fC

∗

p

)2
CINV h

−1CPF (Ωf )af (u
n+1
h , un+1h )

]
.

The remainder of the proof follows the above pattern and is complete, provided

△t
2ρgS0µ

(
ρgC∗fC

∗

p

)2
CINV h

−1CPF (Ωf ) ≤ 1− α, or

△t < (1− α) 2ρgS0µ(
ρgC∗fC

∗
p

)2
CINVCPF (Ωf )

h ≡ (1− α)△T3.

For the △T4 condition, we exploit the added grad-div stabilization. By the third
inequality of Lemma 2

|Coupling| ≤ △tρgkmin
2

||∇φ||2p+△t
ρg(1 +C2PF (Ωp))

2kmin
||u||2+△tρg(1 +C

2
PF (Ωp))

2kmin
||∇·u||2.

The last term can be subsumed into the grad-div stabilization term provided

△tρg(1 +C
2
PF (Ωp))

2kmin
≤ 1.

The other two terms are subsumed into the system energy. Stability thus follows
provided

ρ||unh||2f + ρgS0||φnh||2p +
△t
2

(
µ||∇unh||2f + ρgkmin||∇φnh||2p

)

−
[
△tρgkmin

2
||∇φ||2p +△t

ρg(1 +C2PF (Ωp))

2kmin
||u||2

]
> 0.

This requires

△tρg(1 +C
2
PF (Ωp))

2kmin
≤ ρ

Thus, stability follows under these two conditions, i.e., if

△t ≤ min{1, ρ} 2kmin
ρg(1 +C2PF (Ωp))

=△T4.

The rest of the proof follows by summing. �

4.3. BEsplit2 stability. Due to the similarity of the analysis for BEsplit2 to
BEsplit1, we present the aspects of the proof that differ only. Define

△T5 : =
2kminh

g(C∗fC
∗
p)
2CPF (Ωp)CINV

△T6 : =
2

g (1 +C2PF (Ωp))
kmin.
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We prove uniform in time stability under a time step restriction of the form that
occurred in BEsplit1 with △T3 replaced by △T5 and △T4 replaced by △T6. Thus,
for small S0 the active constraint is expected to be

△t < △T6 ≃ Ckmin

which is independent of both h and S0. Thus, BEsplit1/2 are promising for the
quasi-static approximation and for problems with very small S0 and moderate kmin.

Theorem 3 (Uniform in time and S0 stability). Consider the method (BEsplit2).
Suppose that there is an α, 0 < α < 1, such that either the problem parameters
satisfy

Parameters ≤ 1− α,

or △t satisfies the time step restriction

△t ≤ (1− α)max{△T1,△T2,△T5,△T6}.

Then, BEsplit2 is stable uniformly in time and uniformly in S0. Specifically, for
any N > 0 we have the energy inequality (which also proves stability)

1

2

[
ρ||uNh ||2f + ρ||∇ · uNh ||2f + ρgS0||φNh ||2p

]
+

+△t
N−1∑

n=0

[△t
2
ρgS0||

φn+1h − φnh
△t ||2p + af (un+1h , un+1h ) + αap(φ

n+1
h , φn+1h )

]

≤ 1

2

[
ρ||u0h||2f + ρ||∇ · u0h||2f + ρgS0||φ0h||2p

]
+△t

N−1∑

n=0

[
(fn+1f , un+1h )f + ρg(f

n+1
p , φn+1h )p

]
.

Proof. The derivation of the stability conditions involving Parameters and △T1,
△T2 is very similar to the case of BEsplit1. We therefore move to the condition
involving △T5 and T6.
In (BEsplit2) set ψh = φ

n+1
h , vh = u

n+1
h , qh = p

n+1
h , and add. We use

−(unh, un+1h )f = −
1

2
(unh, u

n
h)f −

1

2
(un+1h , un+1h )f +

1

2
(un+1h − unh, un+1h − unh)f ,

and similarly for the (∇ · unh,∇ · un+1h )f terms and the analogous terms in the φ
equation. This gives:

1

2

[
ρ||un+1h ||2f + ρ||∇ · un+1h ||2f + ρgS0||φn+1h ||2p

]
− 1
2

[
ρ||unh||2f + ρ||∇ · unh||2f + ρgS0||φnh||2p

]
+

+
1

2

[
ρ||un+1h − unh||2f + ρ||∇ · (un+1h − unh)||2f + ρgS0||φn+1h − φnh||2p

]

+△t
[
af (u

n+1
h , un+1h ) + ap(φ

n+1
h , φn+1h )

]

+△tcI(φn+1h , un+1h − unh) = △t(fn+1f , un+1h )f +△tρg(fn+1p , φn+1h )p.

Consider the sum of the two coupling terms

Coupling =△tcI(φn+1h , un+1h − unh).
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For the condition involving △T5,

|Coupling| ≤ △tρgC∗fC∗pC
1

2

PF (Ωp)(CINV h
−1)

1

2 ||∇φn+1h ||p||un+1h − unh||f

≤ 1

2
ρ||un+1h − unh||2f +

g(C∗fC
∗

p)
2CPF (Ωp)CINV h

−1△t2
2kmin

ap(φ
n+1
h , φn+1h )

Subsuming the above two terms in the obvious places, the method is stable if

△t ≤ 2kminh

g(C∗fC
∗
p)
2CPF (Ωp)CINV

= △T5.

For the stability condition involving△T6, we have, using Lemma 2 and ap(φ
n+1
h , φn+1h ) ≥

ρgkmin||∇φn+1h ||p,

|Coupling| ≤ △t (ρg) ||φn+1h ||H1(Ωp)||un+1h − unh||DIV

≤ △t (ρg)
√
1 +C2PF (Ωp)||∇φn+1h ||p||un+1h − unh||DIV

≤ 1

2

[
ρ||un+1h − unh||2f + ρ||∇ · (un+1h − unh)||2f

]

+
1

2
△t2 g

kmin

(
1 +C2PF (Ωp)

)
ap(φ

n+1
h , φn+1h ).

Thus

1

2

[
ρ||un+1h ||2f + ρ||∇ · un+1h ||2f + ρgS0||φn+1h ||2p

]
− 1
2

[
ρ||unh||2f + ρ||∇ · unh||2f + ρgS0||φnh||2p

]
+

+
1

2
ρgS0||φn+1h − φnh||2p +△t[af (un+1h , un+1h )+

+(1− 1
2
△tg

(
1 +C2PF (Ωp)

)
k−1min)ap(φ

n+1
h , φn+1h )]

≤ △t(fn+1f , un+1h )f +△tρg(fn+1p , φn+1h )p.

Stability then follows under the timestep restriction

(1− 1
2
△tg

(
1 +C2PF (Ωp)

)
k−1min) ≥ α > 0

which is equivalent to

△t ≤ (1− α) 2

g (1 +C2PF (Ωp))
kmin ≡ (1− α)△T6.

�

4.4. Stability of CNsplit. CNsplit computes two partitioned approximations

(ûnh, p̂
n
h, φ̂

n

h) and (ũnh, p̃
n
h, φ̃

n

h) ∈ Xh
f ×Qhf ×Xh

p for n ≥ 1 whereupon

(CNsplit) (un+1h , pn+1h , φn+1h ) =
1

2
[(ûn+1h , p̂n+1h , φ̂

n+1

h ) + (ũn+1h , p̃n+1h , φ̃
n+1

h )],

that is, the new approximation to each variable is the average of the two com-
puted approximations. Since the unit ball in a Hilbert space is convex, stability of
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(un+1h , pn+1h , φn+1h ) follows from stability of (ûn+1h , p̂n+1h , φ̂
n+1

h ) and (ũn+1h , p̃n+1h , φ̃
n+1

h ).
We thus prove stability of the two individual sub-problems. Define

△T6 :=
√
2S0√

gC∗pC
∗

fCINV
h

We prove long time stability under a time step condition of the form

△t < C
√
S0h.

Theorem 4 (Stability of one step of CNsplit). Consider (CNsplit-a) one step of
the CNsplit method. Suppose there is an 0 < α < 1/2 such that △t satisfies the
time step restriction

△t ≤ (1− α)△T6
Then, CNsplit-a is stable uniformly in time over possibly long time intervals.

Specifically, for every N ≥ 1

α
[
ρ||ûNh ||2f + ρgS0||φ̂

N

h ||2p
]

+△t
N−1∑

n=0

1

2

[
af (û

n+1
h + ûnh, û

n+1
h + ûnh) + ap(φ̂

n+1

h + φ̂
n

h, φ̂
n+1

h + φ̂
n

h)
]

≤ ρ||û0h||2f + ρgS0||φ̂
0

h||2p −△tcI(φ̂
0

h, û
0
h)

+△t
N−1∑

n=0

[
(f
n+1/2
f , ûn+1h + ûnh)f + ρg(f

n+1/2
p , φ̂

n+1

h + φ̂
n

h)p
]
.

Proof. In (CNsplit-a) set vh = û
n+1
h + ûnh, qh = p̂

n+1
h , average the incompressibility

condition at successive time levels and add. This gives:

ρ||ûn+1h ||2f − ρ||ûnh||2f +
△t
2
af (û

n+1
h + ûnh, û

n+1
h + ûnh)+

+△tcI(φ̂
n

h, û
n+1
h + ûnh) = △t(f

n+1/2
f , ûn+1h + ûnh)f .

Similarly, in the porous media equation, set ψh = φ̂
n+1

h + φ̂
n

h . This gives

ρgS0||φ̂
n+1

h ||2p − ρgS0||φ̂
n

h||2p +
△t
2
ap(φ̂

n+1

h + φ̂
n

h, φ̂
n+1

h + φ̂
n

h)

−△tcI(φ̂
n+1

h + φ̂
n

h, û
n+1
h ) = △tρg(fn+1/2p , φ̂

n+1

h + φ̂
n

h).

Add and consider the sum of the two coupling terms

Coupling = △t
[
cI(φ̂

n

h, û
n+1
h + ûnh)− cI(φ̂

n+1

h + φ̂
n

h, û
n+1
h )

]

= △t
[
cI(φ̂

n

h, û
n
h)− cI(φ̂

n+1

h , ûn+1h )
]

Let us denote Cn = cI(φ̂
n

h, û
n
h) and

En = ρ||ûnh||2f + ρgS0||φ̂
n

h||2p,

Dn =
1

2
af (û

n+1
h + ûnh, û

n+1
h + ûnh) +

1

2
ap(φ̂

n+1

h + φ̂
n

h, φ̂
n+1

h + φ̂
n

h).
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Adding the two energy estimates and using the above reduction of the coupling
term reduces the total energy estimate to

[
En+1 −△tCn+1

]
− [En −△tCn] +

+△tDn = △t
(
(f
n+1/2
f , ûn+1h + ûnh)f + ρg(f

n+1/2
p , φ̂

n+1

h + φ̂
n

h)p
)

Sum this inequality from n = 0 to N − 1. The energy inequality thus follows
provided

EN −△tCN ≥ αEN for every N .

Consider △tCN . Dropping super and subscripts and applying Lemma 2 gives

△t|C| ≤ △tρgC∗pC∗fCINV h−1||u||f |||φ||p

≤ ρgS0
2
||φ||2p +

△t2
2ρgS0

[
ρgC∗pC

∗

fCINV h
−1
]2 ||u||2f .

We thus have stability provided

△t2
2ρgS0

[
ρgC∗pC

∗

fCINV h
−1
]2
< ρ or △t < △T6.

Under the timestep restriction △t ≤
√
1− α△T6 which is implied by △t ≤ (1 −

α)△T6 we have

ρ||ûn+1h ||2f + ρgS0||φ̂
n+1

h ||2p −△tcI(φ̂
n+1

h , ûn+1h ) ≥ α
[
ρ||ûn+1h ||2f + ρgS0||φ̂

n+1

h ||2p
]
.

This proves stability of the first half step. �

Now we consider the second half step.

Theorem 5 (Stability of one step of CNsplit). Consider (CNsplit-b). Suppose
there is an α, 0 < α < 1, such that △t satisfies the time step restriction

△t ≤ (1− α)△T6
Then, it is stable over long time intervals. Specifically, for every N ≥ 1

α
[
ρ||ũNh ||2f + ρgS0||φ̃

N

h ||2p
]

+△t
N−1∑

n=0

1

2

[
af (ũ

n+1
h + ũnh, ũ

n+1
h + ũnh) + ap(φ̃

n+1

h + φ̃
n

h, φ̃
n+1

h + φ̃
n

h)
]

≤
[
ρ||ũ0h||2f + ρgS0||φ̃

0

h||2p +△tcI(φ̃
0

h, ũ
0
h)
]

+△t
N−1∑

n=0

[
(f
n+1/2
f , ũn+1h + ũnh)f + ρg(f

n+1/2
p , φ̃

n+1

h + φ̃
n

h)p
]
.

The proof is essentially the same as for the first half-step and is thus omitted.

5. N������� E�������
��

We present numerical experiments to test the algorithms presented herein. First,
using the exact solution introduced in [MZ10], we test accuracy. One new aspect is
that we also test mass conservation errors across the interface I, the last columns of
Tables 1 through 4. While mixed methods are expected to have better conservation
properties than the non-mixed formulation we use and we anticipate some penalties
for uncoupling the problem across I, we find the mass conservation errors are quite
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acceptable in this limited test. Second, we test stability over longer time intervals
and small values of kmin and S0. In these tests the splitting based partitioned meth-
ods appear to be stable for larger timestep sizes than the IMEX based partitioned
methods we have tested previously in [LTT11] and that good partitioned methods
are available when one parameter is small. When both are small, a very small
timestep is required for stability for the four methods. The code was implemented
using the software package FreeFEM++.

5.1. Test 1. For the first test we select the velocity and pressure field given in
[MZ10]. Let the domain Ω be composed of Ωf = (0, 1)×(1, 2) and Ωp = (0, 1)×(0, 1)
with the interface Γ = (0, 1)× {1}. The exact velocity field is given by

u1(x, y, t) = (x
2(y − 1)2 + y) cos t ,

u2(x, y, t) =

(
−2
3
x(y − 1)3 + 2− π sin(πx)

)
cos t ,

p(x, y, t) = (2− π sin(πx)) sin
(π
2
y
)
cos t ,

φ(x, y, t) = (2− π sin(πx))(1− y − cos(πy)) cos t.
To check the rates of convergence, take the time interval 0 ≤ t ≤ 1 and in this
first test the physical parameters ρ, g, µ,K, S0 and α are simply set to 1. We uti-
lize Taylor-Hood P2−P1 finite elements for the Stokes subdomain and continuous
piecewise quadratic finite element for the Darcy subdomain. The boundary condi-
tions on the exterior boundaries (not including the interface I) are inhomogeneous
Dirichlet: uh = uexact, φh = φexact on the exterior boundaries. The initial data
and source terms are chosen to correspond the exact solution.

For convenience, we denote ‖·‖I = ‖·‖L2(0,T ;L2(I)), ‖·‖∞=‖·‖L∞(0,T ;L2(Ωf|p)) and

‖ · ‖2=‖ · ‖L2(0,T ;L2(Ωf|p)). We show below in Table 1—4 the errors of approximated
velocity and Darcy pressure in several different norms. In the last columns of the
tables are the errors in mass conservation on I.

h ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖φ−φh‖∞ ‖φ−φh‖I ‖(ufh − u
p
h) · n‖I

1/5 2.921e-3 7.194e-2 4.030e-3 4.626e-3 2.280e-1
1/10 8.954e-4 2.181e-2 1.183e-2 1.661e-3 4.070e-2
1/20 4.198e-4 5.751e-3 6.367e-4 9.080e-4 9.566e-3
1/40 2.105e-4 1.959e-3 3.399e-4 4.977e-4 2.376e-3
1/80 1.057e-4 8.328e-4 1.771e-4 2.668e-4 5.047e-4

T���� 1. The convergence performance for SDsplit method. The
time step ∆t is set to be equal to mesh size h.

From the tables, we see that SDsplit, BEsplit1 and BEsplit2 are first order
methods while CNsplit is second order accuracy, as predicted. Further, the error
levels of the first order methods seem quite acceptable as are the mass conservation
errors across I.

5.2. Test 2. Stokes-Darcy flows with small hydraulic conductivity tensor and stora-
tivity coefficient are of special interest in some applications. We test herein and
compare the performance of our proposed methods for uncoupling Stokes-Darcy
flows for three cases: small kmin and O(1) S0, O(1) kmin and small S0 and small
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h ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖φ−φh‖∞ ‖φ−φh‖I ‖(ufh − u
p
h) · n‖I

1/5 3.448e-3 7.371e-2 4.289e-3 4.766e-3 2.278e-1
1/10 1.657e-3 2.343e-2 1.163e-3 1.665e-3 4.694e-2
1/20 8.405e-4 7.200e-3 5.409e-4 8.126e-3 9.531e-3
1/40 4.239e-4 2.923e-3 2.705e-4 4.081e-4 2.369e-3
1/80 2.128e-4 1.367e-3 1.356e-4 2.046e-4 5.035e-4

T���� 2. The convergence performance for BEsplit1 method. The
time step ∆t is set to be equal to mesh size h.

h ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖φ−φh‖∞ ‖φ−φh‖I ‖(ufh − u
p
h) · n‖I

1/5 2.768e-3 7.130e-2 9.738e-3 1.649e-2 2.547e-1
1/10 9.282e-4 2.164e-2 4.833e-3 8.441e-3 7.087e-2
1/20 4.390e-4 5.610e-3 2.447e-3 4.231e-3 2.722e-2
1/40 2.196e-4 1.860e-3 1.233e-3 2.119e-3 1.212e-2
1/80 1.100e-4 7.739e-4 6.188e-4 1.060e-3 6.258e-3

T���� 3. The convergence performance for BEsplit2 method. The
time step ∆t is set to be equal to mesh size h.

h ‖u−uh‖∞ ‖∇u−∇uh‖2 ‖φ−φh‖∞ ‖φ−φh‖I ‖(ufh − u
p
h) · n‖I

1/5 3.044e-3 7.789e-2 7.647e-3 1.112e-2 2.284e-1
1/10 4.323e-4 2.259e-2 1.520e-3 2.085e-3 4.795e-2
1/20 5.466e-5 5.193e-3 3.654e-4 4.961e-4 9.849e-3
1/40 7.829e-6 1.270e-3 9.081e-5 1.227e-4 2.487e-3
1/80 1.573e-6 3.187e-4 2.265e-5 3.056e-5 5.273e-4

T���� 4. The convergence performance for CNsplit method. The
time step ∆t is set to be equal to mesh size h.

kmin and small S0. The last case is separated into several sub-cases to distinguish
’extremely small’ and ’moderately small’ S0 and kmin. Our test here is to check
the largest timestep for which the four methods are stable over long time inter-
vals. Since the problem is linear we can take the body force terms to be zero. The
true solution decays as t → ∞, so any growth in the approximate solution is an
instability. We take the initial condition

u1(x, y, 0) = (x
2(y − 1)2 + y) ,

u2(x, y, 0) =

(
−2
3
x(y − 1)3 + 2− π sin(πx)

)
,

p(x, y, 0) = (2− π sin(πx)) sin
(π
2
y
)
,

φ(x, y, 0) = (2− π sin(πx))(1− y − cos(πy)).
Define the kinetic energy En = ‖unh‖2f + ‖φnh‖2p. The final time Tf in our experi-
ment is 10.0 and the system parameters are simply set to be 1.0, except hydraulic
conductivity kmin and storativity coefficient S0. We take the mesh size h = 1/10
and run the experiment with different time-step sizes. With each value of ∆t, we
compute the kinetic energy at final time, i.e., EN where N = Tf/∆t. However, we
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F���� 1. EN for time-step sizes and different splitting methods
with kmin = 1 and S0 = 10−12

use 10250 as a ’cut-off’ value for En. If En exceeds 10250 at some n, we stop and
output En, the kinetic energy at that point. By looking at these figures, we can
estimate the largest ∆t for which numerical methods is stable.

Since Stokes flows and porous media flows are not typically high velocity flows,
and since the domains are large with associated significant costs for subdomain
solves, the ability to take large timesteps is desirable. In the stability tests for small
parameter kmin or S0 the three first order methods are superior. They are stable
for larger timesteps, as predicted by the theory. The CNsplit method generally
requires a much smaller timestep to attain stability. Thus, in some of the figures,
the largest timesteps needed for the stability of CNsplit are not shown in some
cases. To present the CNsplit case, Figure 7 gives a graph showing stability of
CNsplit alone with numerous small values of S0 and kmin.

6. C�
�����
� �
� ���
 ��������

In both our analysis and tests on problems kmin and S0 are small it seems that
stability over long time intervals (and the associated time step restriction) is a
key issue in uncoupling the Stokes-Darcy problem. With one small parameter, the
first order splitting methods had significant advantages in stability and are a good
option when kmin or S0 is small.



SPLITTING STOKES-DARCY FLOWS 23

F���� 2. EN using different△t sizes for different splitting meth-
ods with kmin = 1 and S0 = 10−12.

Many other open problems remain. Finding partitioned methods stable for large
timesteps when both kmin, S0 are small is an open problem. Further, while the
first order methods gave acceptable error levels, more accuracy is always desirable.
The stability of higher order partitioned methods for large timesteps and small
parameters also is also largely an open problem. We have not tried to optimize the
dependence of the timestep barriers upon the domain size. This is an important
and open problem, especially for domains with large aspect ratios. At this point we
do not know if a partitioned method exists with timestep restriction independent of
S0, kmin, µ and h. If kmin, µ→ 0 the problem reduces to ut+Cφ = 0 and φt−Cu = 0
and any such algorithm would be an explicit method for an abstract wave-like
equation written as a first order system. The behavior of numerical methods (both
partitioned time stepping methods and iterative decoupling methods for use with
monolithic time discretizations) in the quasi-static limit (as S0 → 0) is an open
question critical in applications to aquifers since quasi static models are common,
e.g., [CR08] for an example and [M11] for a first step to its resolution. In many
problems kmin and S0 are both small and the double asymptotics of both parameters
is important and open. Since fluid flow acts on different time scales in free flow and
in porous media, developing algorithms with good properties that allow different
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F���� 3. EN using different△t sizes for different splitting meth-
ods with kmin = 10

−3 and S0 = 10
−3

time step sizes in the two domains (multi-rate or asynchronous methods) is an
important and largely open challenge.

7. A�)
�*�������
��

The author WL had a stimulating E-mail exchange with Professor Jan Verwer
in January 2011 on the Stokes-Darcy coupling. This exchange led to considera-
tion of splitting methods and the development of the ideas herein. We gratefully
acknowledge Professor Verwer who inspired our work.
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