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Abstract

A mathematical and numerical model describing chemical transport in a Stokes-
Darcy flow system is discussed. The flow equations are solved through domain de-
composition using classical finite element methods in the Stokes region and mixed
finite element methods in the Darcy region. The local discontinuous Galerkin (LDG)
method is used to solve the transport equation. Models dealing with coupling between
Stokes and Darcy equations have been extensively discussed in the literature. This
paper focuses on the approximation of the transport equation. Stability of the LDG
scheme is analyzed and an a priori error estimate is proved. Several numerical exam-
ples verifying the theory and illustrating the capabilities of the method are presented.

Keywords: Stokes-Darcy flow, coupled flow and transport, error estimates, local dis-
continuous Galerkin.

1 Introduction
Coupling the Stokes and Darcy equation has become a very active area of research because
of its potential for practical applications. Such models can be used to describe physiologi-
cal phenomena like the blood motion in the vessels, hydrological systems in which surface
water percolates through rocks and sand, and various industrial processes involving filtra-
tion. One serious problem today is surface water and groundwater contamination resulting
from leaky underground storage tanks, chemical spills, and various human activities. A
model coupling the Stokes-Darcy equations with a transport equation can be used to study
the spread of pollution released in the water and assess the danger.

There are number of stable and convergent numerical methods developed for the cou-
pled Stokes-Darcy flow system, see e.g., [25, 21, 26, 29, 23]. We will concentrate on the
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methods developed in [25, 29]. Both methods utilize a mixed finite element (MFE) method
in the porous media domain, which computes the velocity directly and with high accu-
racy. Furthermore the MFE method incorporates the Neumann boundary condition (2.6)
into the velocity approximating space, which allows for a more accurate treatment of the
inflow boundary condition (2.13) in the transport problem, see (3.4). Also, MFE methods
provide locally mass conservative velocities, a property critical for the transport problem
in order to avoid creating artificial mass sources and sinks. The method developed in [29]
is especially suited for coupling with transport, since there a discontinuous Galerkin (DG)
approximation is used for the Stokes equation, giving locally mass conservative velocities
in the Stokes region as well.

The focus of this paper is the coupling of the Stokes-Darcy flow system with an advection-
diffusion equation that models transport of a chemical. For the numerical approximation of
the transport problem we employ the local discontinuous Galerkin (LDG) method [15, 13],
which conserves mass locally and approximates sharp fronts accurately. The method can
be defined on general grids and allows one to vary the degree of the approximating polyno-
mial space from element to element. The LDG method can be thought of as a discontinuous
mixed finite element method, since it approximates both the concentration and the diffusive
flux. Primal DG discretizations of advection-diffusion equations have also been studied
[32] and could be applied for our problem. For the sake of space we limit our presentation
to LDG discretizations. Couplings of Darcy flow with DG approximations for transport
have been studied in [31, 20].

In this paper we develop stability and convergence analysis for the concentration and the
diffusive flux in the transport equation. The numerical error is a combination of the LDG
discretization error and the error from the discretization of the Stokes-Darcy velocity. The
former is shown to be of the order O(hk), where k is the polynomial degree in the LDG
approximating space. This is similar to existing bounds in the literature for stand-alone
LDG discretizations [15, 13, 10]. The error terms coming from the Stokes-Darcy flow
discretization are of optimal order, similar to the bounds obtained in [25, 29]. This is an
improvement of O(h) from the result in [18], where the Darcy velocity discretization error
is incorporated into the error analysis of the transport equation. We also extend previous
LDG transport analysis [15, 18, 10, 13] to non-divergence free velocity.

The rest of the paper is organized as follows. In Section 2 we present the model flow-
transport problem. The Stokes-Darcy flow discretization and the LDG transport discretiza-
tion are given in Sections 3 and 4, respectively. Section 5 is devoted to the stability of the
LDG scheme. The error analysis of the LDG method is presented in Section 6. The paper
ends with numerical experiments in Section 7.

2 Model problem
In our model we consider a fluid region Ω1 ⊂ R

d, d = 2, 3, in which the flow is governed
by the Stokes equations (2.1)–(2.3) and a porous medium Ω2 ⊂ R

d in which Darcy’s law
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(2.4)–(2.6) holds. The two regions are separated by an interface Γ12 through which the fluid
can flow in both directions. Let ni be the outward unit normal vector to ∂Ωi, i = 1, 2, let τ j ,
j = 1, d−1, be an orthonormal system of tangential vectors on Γ12, and let Γi := ∂Ωi\Γ12.
Let ui : Ωi → R

d and pi : Ωi → R denote, respectively, the velocity and the pressure in
Ωi. Let De(u1) and T(u1, p1) and denote, respectively, the deformation rate tensor and the
stress tensor:

De(u1) =
1

2
(∇u1 + ∇uT

1 ), T(u1, p1) = −p1I + 2µDe(u1),

where µ is the fluid viscosity. Let f1 ∈ (L2(Ω1))
d be body force in Ω1 and let g1 ∈

(H1/2(Γ1))
d be boundary velocity data. In Ω2, K is a symmetric and positive definite rock

permeability tensor with components bounded from above, f2 ∈ (L2(Ω2))
d represents the

gravity force, q2 ∈ L2(Ω2) is a source (sink) function satisfying the solvability condition
(2.7), and g2 ∈ L2(Ω2) is boundary normal velocity data. In addition we also assume that
on Γ12 the interface conditions (2.8)–(2.10) are satisfied. The flow model is

−∇ · T ≡ −2µ∇ · De(u1) + ∇p1 = f1 in Ω1, (2.1)
∇ · u1 = 0 in Ω1, (2.2)

u1 = g1 on Γ1, (2.3)

µK−1u2 + ∇p2 = f2 in Ω2, (2.4)
∇ · u2 = q2 in Ω2, (2.5)
u2 · n2 = g2 on Γ2, (2.6)

∫

Ω2

q2 dx =

∫

Γ1

g1 · n1 dσ +

∫

Γ2

g2 dσ, (2.7)

u1 · n1 + u2 · n2= 0 on Γ12, (2.8)
−n1 · T · n1 ≡ p1 − 2µn1 · De(u1) · n1= p2 on Γ12, (2.9)

−
√

Kj

µα
n1 · T · τ j ≡ −

√

Kj

α
2n1 · De(u1) · τ j= u1 · τ j, j = 1, d− 1, on Γ12.(2.10)

Conditions (2.8) and (2.9) impose continuity of flux and normal stress, respectively. Con-
dition (2.10) is known as the Beavers-Joseph-Saffman law [5, 30], where Kj = τ j ·K · τ j

and α > 0 is an experimentally determined dimensionless constant.
The Stokes-Darcy flow system is coupled with the transport equation on Ω = Ω1 ∪ Ω2:

φct + ∇ · (cu − D∇c) = φs , ∀(x, t) ∈ Ω × (0, T ), (2.11)

where c(x, t) is the concentration of some chemical component, 0 < φ∗ ≤ φ(x) ≤ φ∗ is
the porosity of the medium in Ω2 (it is set to 1 in Ω1), D(x, t) is the diffusion/dispersion
tensor assumed to be symmetric and positive definite, s(x, t) is a source term, and u is
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the velocity field defined by u|Ωi
= ui , i = 1, 2. The model is completed by the initial

condition
c(x, 0) = c0(x) , ∀x ∈ Ω (2.12)

and the boundary conditions

(cu − D∇c) · n = (cinu) · n on Γin, (2.13)
(D∇c) · n = 0 on Γout. (2.14)

Here Γin := {x ∈ ∂Ω : u · n < 0}, Γout := {x ∈ ∂Ω : u · n ≥ 0}, and n is the unit
outward normal vector to ∂Ω. We will also use the notation Γ = ∂Ω.

Throughout the paperK will denote a generic constant independent of the discretization
parameters h1, h2, and h. We will use the following standard notation. For a domain
G ⊂ R

d, the L2(G) inner product and norm for scalar and vector valued functions are
denoted (·, ·)G and ‖ · ‖G, respectively. The norms and seminorms of the Sobolev spaces
W k,p(G), k ∈ R, p > 0 are denoted by ‖ · ‖k,p,G and | · |k,p,G, respectively. The norms and
seminorms of the Hilbert spaces Hk(G) are denoted by ‖ · ‖k,G and | · |k,G, respectively.
We omit G in the subscript if G = Ω. For a section of the domain or element boundary
S ⊂ R

d−1 we write 〈·, ·〉S and ‖ · ‖S for the L2(S) inner product (or duality pairing) and
norm, respectively.

3 Stokes-Darcy flow discretization
Let Th,i be a a shape-regular affine finite element partition of Ωi [12] with a maximum
element diameter hi, i = 1, 2. We allow for the traces of the grids on Γ12 to be non-
matching and assume that no point of the interface boundary ∂Γ12 belongs to the interior
of a face of an element of Th,2. We consider two possibilities for the flow discretization on
Ω1.

The first choice, which follows [25], is to let Xh,1 ×Mh,1 be any of the known con-
forming and stable Stokes finite element spaces, for example the MINI elements [4], the
Taylor–Hood elements [33], or the conforming Crouzeix–Raviart elements [17]. We as-
sume that Xh,1 and Mh,1 include at least polynomials of degree k1 and k1 − 1 respectively
(k1 ≥ 1).

The second choice, following [29], is to let Xh,1×Mh,1 be a pair of discontinuous piece-
wise polynomial spaces such that on each element of Th,1 the space Xh,1 contains vectors
with components polynomials of degree k1 and the space Mh,1 contains polynomials of
degree k1 − 1. In this second case we assume that Ω ⊂ R

2.
In both cases, for the discretization of the Darcy model in Ω2, we take Xh,2×Mh,2 to be

any of the standard mixed finite element spaces, the RT spaces [28, 27], the BDM spaces
[8], the BDFM spaces [7], the BDDF spaces [6], or the CD spaces [11]. We assume that
Xh,1 and Mh,2 contain at least polynomials of degree k2 and l2, respectively.

The analysis in both [25] and [29] allows for non-matching grids across Γ12, even
though this is not explicitly stated in [25].
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Let

Xh = Xh,1 × Xh,2, Mh = {w = (w1, w2) ∈Mh,1 ×Mh,2 : (w1, 1)Ω1
+ (w2, 1)Ω2

= 0}

and

Xh,0 = {v = (v1,v2) ∈ Xh : 〈v1 · n1 + v2 · n2, µ〉Γ12
= 0 ∀µ ∈ Xh,2 · n2}.

To save space we will only present the method based on conforming Stokes elements
[25]. We refer the reader to [29] for details on the discontinuous Stokes discretization for
the coupled Stokes-Darcy problem. Let

X0
h,1 = {v ∈ Xh,1 : v = 0 on Γ1},

X0
h,2 = {v ∈ Xh,2 : v · n = 0 on Γ2},

X0
h = X0

h,1 × X0
h,2, and X0

h,0 = X0
h ∩ Xh,0.

Let ug ∈ H(div; Ω) be such that ug|Ω1
∈ H1(Ω1), ug = g1 on Γ1 and ug · n2 = g2 on Γ2.

Let Ug ∈ Xh,0 be a suitable approximation to ug. The numerical scheme for the coupled
Stokes-Darcy flow problem is: find U ∈ X0

h,0 + Ug and P ∈Mh such that

a(U,v) + b(v, P ) = (f ,v), ∀v ∈ X0
h,0, (3.1)

b(U, w) = −(q2, w)Ω2
, ∀w ∈Mh, (3.2)

where a(·, ·) = a1(·, ·) + a2(·, ·), b(·, ·) = b1(·, ·) + b2(·, ·),

a1(u1,v1) = (2µD(u1),D(v1))Ω1
+

d−1
∑

j=1

〈

µα
√

Kj

u1 · τ j,v1 · τ j

〉

Γ12

,

a2(u2,v2) = (µK−1u2,v2)Ω2
, and bi(vi, wi) = −(∇ · vi, wi)Ωi

, i = 1, 2.

We take Ug to be any function in Xh,0 such that Ug = Qh,1g1 on Γ1 and Ug · n2 = Qh,2g2

on Γ2, where Qh,1 is the L2(Γ1)-projection onto Xh,1|Γ1
and Qh,2 is the L2(Γ2)-projection

onto Xh,2 · n2|Γ2
. The computed flow solution is independent of the choice of Ug and

depends only on Qh,1g1 and Qh,2g2. For the homogeneous boundary conditions case, it
was shown in [25] that the above method has a unique solution satisfying

‖u − U‖X + ‖p− P‖M ≤ K(hk1

1 + hk2+1
2 + hl2+1

2 ), (3.3)

assuming u and p are smooth enough, where

‖v‖2
X = ‖v1‖2

H1(Ω1) + ‖v2‖2
L2(Ω2) + ‖∇ · v2‖2

L2(Ω2), ‖w‖M = ‖w‖L2(Ω).

The results easily extend to the non-homogeneous case considered here.
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Since U · n is used in the inflow boundary condition for the transport equation, it is
important that it approximates u · n accurately on Γin. In particular, we assume that

‖(u − U) · n‖Γin
≤ K(hk1+1

1 + hk2+2
2 ). (3.4)

On Γ1 ∩ Γin this is satisfied due to the approximation properties of Qh,1. To satisfy (3.4)
on Γ2 ∩ Γin we need to postprocess U on each element E ∈ Th,2 such that E ∩ Γin 6= ∅.
To be precise let us denote the velocity mixed finite element space on E by Xk2

h,2(E). Since
Xk2

h,2(E) ⊂ Xk2+1
h,2 (E), we have that U ∈ Xk2+1

h,2 (E). Let Ũ ∈ Xk2+1
h,2 (E) be such that

Ũ agrees with U at all finite element nodes that are not on Γin and Ũ · n2 = Qk2+1
h,2 g2 on

∂E ∩Γin. Clearly the postprocessed velocity satisfies (3.4). Moreover, the normal velocity
on all interior edges (faces) of E is preserved and the error bound (3.3) still holds. From a
computational point of view, only the integrals on Γin in the transport scheme are affected
by this postprocessing. To keep the notation simple, in the following U will denote the
postprocessed velocity.

4 Formulation of the LDG method for transport
We rewrite the transport equation in a mixed form by introducing the diffusive flux

z = −D∇c. (4.1)

The system (2.11)-(2.14) is equivalent to

φct + ∇ · (cu + z) = φs, (4.2)
(cu + z) · n = cinu · n on Γin, (4.3)

z · n = 0 on Γout. (4.4)

Let Th be a shape-regular finite element partition of Ω. We denote by hE the diameter of
an element E and set h to be the maximum element diameter. We assume that no element
E overlaps with both Γin and Γout and that each element E has a Lipschitz boundary ∂E.
The partition Th may be different from Th,1 and Th,2. Let WE = H1(E), VE = (WE)d,
and let nE be the outward unit normal on ∂E. We will need some notation for values of
discontinuous functions on element edges (faces in 3D). Let

W =
{

w ∈ L2(Ω) : on each E ∈ Th, w ∈WE

}

,

V = {v ∈ (L2(Ω))d : on each E ∈ Th, v ∈ VE}.
Let w ∈ W . For any E ∈ Th and any x ∈ ∂E we define

w−(x) = lim
s→0−

w(x + snE), w+(x) = lim
s→0+

w(x + snE), (4.5)
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w(x) =
1

2

(

w+(x) + w−(x)
)

, and wu(x) =

{

w−(x) if u · nE ≥ 0
w+(x) if u · nE < 0

. (4.6)

For a vector function v ∈ V, v−, v+, and v are defined in a similar way.
Assuming that the solution to (4.2)–(4.4) is smooth enough, multiplying by appropriate

test functions on every element E and integrating by parts, we obtain the following weak
formulation. For every E ∈ Th, c ∈WE and z ∈ VE satisfy

(

D−1z,v
)

E
− (c,∇ · v)E +

〈

c,v− · nE

〉

∂E
= 0, ∀v ∈ VE, (4.7)

(φct, w)E − (cu + z,∇w)E +
〈

(cu + z) · nE, w
−
〉

∂E\Γ
+

〈

cu · nE, w
−
〉

∂E∩Γout

= (φs, w)E −
〈

cinu · nE, w
−
〉

∂E∩Γin

, ∀w ∈ WE.
(4.8)

Let Wh,E ⊂ WE denote the space of all polynomials on E of degree ≤ kE , kE ≥ 1,
and let Vh,E = (Wh,E)d. Let k = minE kE . On each element E, c(·, t) and z(·, t) are
approximated by C(·, t) ∈ Wh,E and Z(·, t) ∈ Vh,E respectively. Let

Wh :=
{

w ∈ L2(Ω) : on each E ∈ Th, w ∈Wh,E

}

,

Vh := {v ∈ (L2(Ω))d : on each E ∈ Th, v ∈ Vh,E}.
Let C0 ∈Wh be the L2-projection of c0:

∀E ∈ Th,
(

C0 − c0, w
)

E
= 0 , ∀w ∈ Wh,E. (4.9)

The semi-discrete LDG method is defined as follows: for each t ∈ [0, T ] find C(·, t) ∈Wh

and Z(·, t) ∈ Vh such that on each E ∈ Th

(

D−1Z,v
)

E
− (C,∇ · v)E +

〈

C,v− · nE

〉

∂E\Γ

+
〈

C−,v− · nE

〉

∂E∩Γ
= 0, ∀v ∈ Vh,E, t ∈ [0, T ),

(4.10)

(φCt, w)E − (CU + Z,∇w)E +
〈

(CuU + Z) · nE, w
−
〉

∂E\Γ

+
〈

C−U · nE, w
−
〉

∂E∩Γout

= (φs, w)E

−
〈

cinU · nE, w
−
〉

∂E∩Γin

,∀w ∈ Wh,E, t ∈ (0, T ),

(4.11)

C(·, 0) = C0. (4.12)

In the above scheme we assume that high enough quadrature rules are used, so that the
numerical integration error is dominated by the discretization error. Note that the computed
velocity U is needed to evaluate element and edge integrals in (4.11). As a result U needs
to be evaluated at any quadrature point in E or on ∂E. Since we allow for the flow and
transport grids to differ and the velocity approximation could be discontinuous, U may not
be well defined at a given quadrature point. This problem is handled by decomposing E
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into sub-elements according to its intersection with the flow grid. More precisely, let EXh

i ,
i = 1, . . . ,mE be the elements of the flow grid that overlap with E. Then we have

∫

E

ϕdx =

mE
∑

i=1

∫

E∩E
Xh

i

ϕdx,

∫

∂E

ϕdσ =

mE
∑

i=1

∫

∂E∩E
Xh

i

ϕdσ.

The computed velocity U is well defined on all sub-elements and sub-edges.
In this paper we restrict our attention to the semi-discrete formulation. Standard meth-

ods such as Euler or Runge-Kutta can be employed for the time discretization, see, e.g.
[16].

5 Stability of the LDG scheme
The stability argument is based on the analysis in [13]. The main difference here is that we
allow for velocity with non-zero divergence.

By adding equations (4.10) and (4.11), summing over all the elements and integrating
over t, we obtain the equivalent formulation

BU(C,Z;w,v) = −
∫ T

0

〈

cinU · n, w−
〉

Γin

dt+

∫ T

0

(φs, w) dt,

∀ (w,v) ∈ C0(0, T ;Wh × Vh),

(5.1)

where

BU(C,Z;w,v) :=

∫ T

0

∑

E

{

(φCt, w)E − (CU + Z,∇w)E

+
〈

C−U · nE, w
−
〉

∂E∩Γout

+
〈

(CuU + Z) · nE, w
−
〉

∂E\Γ
+

(

D−1Z,v
)

E

− (C,∇ · v)E +
〈

C,v− · nE

〉

∂E\Γ
+

〈

C−,v− · nE

〉

∂E∩Γ

}

dt.

(5.2)

Taking w = C and v = Z, we have

BU(C,Z;C,Z) = Θ1 + Θ2 + Θ3, (5.3)

where

Θ1 =

∫ T

0

∑

E

{

(φCt, C)E + (D−1Z,Z)E

}

dt,

Θ2 =

∫ T

0

∑

E

{

− (CU,∇C)E + 〈CuU · nE, C
−〉∂E\Γ + 〈C−U · nE, C

−〉∂E∩Γout

}

dt,

Θ3 =

∫ T

0

∑

E

{

− (Z,∇C)E + 〈Z · nE, C
−〉∂E\Γ − (C,∇ · Z)E

+ 〈C,Z− · nE〉∂E\Γ + 〈C−,Z− · nE〉∂E∩Γ

}

dt.

(5.4)
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Since
(φCt, C)E =

1

2

d

dt
(φ1/2C, φ1/2C)E

we can write

Θ1 =
1

2
‖φ1/2C(T )‖2 − 1

2
‖φ1/2C(0)‖2 +

∫ T

0

‖D−1/2Z‖2dt. (5.5)

We continue with the bound on Θ2. Integration by parts gives

(CU,∇C)E =
1

2

∫

∂E

(C−)2U · nE dσ − 1

2

∫

E

C2∇ · U dx.

Then we have

Θ2 =

∫ T

0

∑

E

{

−1

2
〈C−U · nE, C

−〉∂E\Γ − 1

2
〈C−U · nE, C

−〉∂E∩Γin

+
1

2
〈C−U · nE, C

−〉∂E∩Γout
+

1

2
(C2,∇ · U)E + 〈CuU · nE, C

−〉∂E\Γ

}

dt

=

∫ T

0

∑

E

{

1

2
(C2,∇ · U)E +

1

2
〈|U · nE|, (C−)2〉∂E∩Γ

+〈(Cu − 1

2
C−)U · nE, C

−〉∂E\Γ

}

dt

=

∫ T

0

{

1

2
(C2,∇ · U) +

1

2
〈|U · n|, (C−)2〉Γ

+
∑

E

〈(Cu − 1

2
C−)U · nE, C

−〉∂E\Γ

}

dt.

(5.6)

It is convenient to express the sum over the elements in the last term in (5.6) as a sum
over the interior element edges (faces) {e}. Let e ∈ ∂E be an interior edge (face) of the
element E. For w ∈Wh and v ∈ Vh we set on e

[w] = (w− − w+)nE, [v] = (v− − v+) · nE.

Note that these definitions do not depend on which element E is taken as a reference. Let
us also fix arbitrarily a unit normal vector on e, denoted by ne.

Since

1

2
[C2] =

1

2
((C−)2 − (C+)2)nE =

1

2
(C− + C+)(C− − C+)nE = C[C],
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we can write
∑

E

〈(Cu − 1

2
C−)U · nE, C

−〉∂E\Γ =
∑

e

〈U · (Cu[C] − 1

2
[C2]), 1〉e

=
∑

e

〈U · (Cu[C] − C[C]), 1〉e

=
∑

e

〈U · [C](Cu − C), 1〉e

=
1

2

∑

e

〈|U · ne|, [C] · [C]〉e,

(5.7)

where we used in the last equality that on any e ∈ ∂E

U · [C](Cu − C) = U · nE(C− − C+)

({

C−,U · nE ≥ 0
C+,U · nE < 0

}

− C− + C+

2

)

= U · nE(C− − C+)
(C− − C+)

2
sign(U · nE) =

1

2
|U · ne|[C] · [C].

Substituting (5.7) into (5.6) we obtain

Θ2 =
1

2

∫ T

0

{

(C2,∇ · U) + 〈|U · n|, (C−)2〉Γ +
∑

e

〈|U · ne|, [C] · [C]〉e
}

dt. (5.8)

To estimate Θ3 we use the Green’s formula to obtain

Θ3 =

∫ T

0

∑

E

{

−〈Z− · nE, C
−〉∂E\Γ +

1

2

〈

(Z+ + Z−) · nE, C
−
〉

∂E\Γ

+
1

2

〈

C+ + C−,Z− · nE

〉

∂E\Γ

}

dt

=

∫ T

0

∑

E

{

1

2
〈C+,Z− · nE〉∂E\Γ +

1

2
〈Z+ · nE, C

−〉∂E\Γ

}

dt

= 0,

(5.9)

where the last equality follows from the fact that on each interior edge (face) the contribu-
tions from the two adjacent elements cancel, due to the opposite directions of the outward
normal vectors.

A combination of (5.3), (5.5), (5.8), and (5.9) gives

BU(C,Z;C,Z) =
1

2
‖φ1/2C(T )‖2 − 1

2
‖φ1/2C(0)‖2 +

∫ T

0

‖D−1/2Z‖2dt

+
1

2

∫ T

0

{

(C2,∇ · U) + 〈|U · n|, (C−)2〉Γ +
∑

e

〈|U · ne|, [C] · [C]〉e
}

dt.

(5.10)
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Combining (5.1) and (5.10), and using Young’s inequality

ab ≤ ε

2
a2 +

1

2ε
b2 , a, b ∈ R , ε > 0 (5.11)

with ε = 1, we obtain

1

2
‖φ1/2C(T )‖2 +

∫ T

0

‖D−1/2Z‖2dt

≤ 1

2
‖φ1/2C(0)‖2 +

1

2

∫ T

0

(C2, (∇ · U)−) dt

+
1

2

∫ T

0

〈|U · n|, (cin)2〉Γin
dt+

∫ T

0

‖φ1/2s‖ ‖φ1/2C‖dt,

(5.12)

where

(∇ · U)− :=

{

0, ∇ · U ≥ 0,
−∇ · U, ∇ · U < 0.

For the second term on the right in (5.12) we have

1

2

∫ T

0

(C2, (∇ · U)−) dt ≤ 1

2
‖φ−1(∇ · U)−‖0,∞

∫ T

0

‖φ1/2C(t)‖2 dt,

and the use of Gronwall’s inequality implies

‖φ1/2C(T )‖2 + 2

∫ T

0

‖D−1/2Z‖2dt

≤ eLT

(

‖φ1/2C(0)‖2 +

∫ T

0

〈|U · n|, (cin)2〉Γin
dt+ 2

∫ T

0

‖φ1/2s‖ ‖φ1/2C‖dt
)

,

(5.13)

where
L := ‖φ−1(∇ · U)−‖0,∞. (5.14)

Using (4.9),
‖φ1/2C(0)‖ ≤ (φ∗)1/2‖c0‖. (5.15)

To complete the stability analysis we need the following result shown in [13].

Lemma 5.1 Suppose that for all T > 0

χ2(T ) +R(T ) ≤ A(T ) + 2

∫ T

0

B(t)χ(t)dt,

where R,A and B are nonnegative functions. Then

√

χ2 +R(T ) ≤ sup
0≤t≤T

A1/2(t) +

∫ T

0

B(t)dt.
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Let us define the norm |||(C,Z)||| by

|||(C,Z)|||2 := ‖φ1/2C(T )‖2 + 2

∫ T

0

‖D−1/2Z‖2dt. (5.16)

Then, using (5.13), (5.15), and Lemma 5.1, we obtain the following stability result.

Theorem 5.1 The solution to the semi-discrete LDG method (4.10)–(4.12) satisfies

|||(C,Z)||| ≤ e
LT

2

(

φ∗‖c0‖2 +

∫ T

0

〈|U · n|, (cin)2〉Γin
dt

)1/2

+ eLT

∫ T

0

‖φ1/2s‖ dt,
(5.17)

where L is defined in (5.14).

Remark 5.1 The stability estimate above depends on ‖∇ · U‖0,∞ and ‖U · n‖0,∞,Γin
. In

Ω1, L∞ bounds on the computed Stokes velocity, see e.g. [22], can be used to control these
terms by ‖u‖1,∞,Ω1

. In Ω2, (3.2) implies that ∇ · U is the L2(Ω2) projection of ∇ · u in
Mh,2; therefore ‖∇ ·U‖0,∞,Ω2

≤ K‖∇ · u‖0,∞,Ω2
. Similarly, since U · n2 = Qh,2u · n2 on

Γ2 ∩ Γin, we have that ‖U · n2‖0,∞,Γ2∩Γin
≤ K‖u · n2‖0,∞,Γ2∩Γin

.

6 Error analysis of the LDG scheme
Let Πc ∈ Wh, Πz ∈ Vh, and Πu ∈ Vh denote the L2-projections of c, z, and u, respec-
tively:

∀E ∈ Th, (c− Πc, w)E = 0 , ∀w ∈ Wh,E, (6.1)
∀E ∈ Th, (z − Πz,v)E = 0 , ∀v ∈ Vh,E, (6.2)
∀E ∈ Th, (u − Πu,v)E = 0 , ∀v ∈ Vh,E. (6.3)

The L2-projection has the approximation property [12]

‖q − Πq‖m,p,E ≤ Khl−m
E ‖q‖l,p,E, 0 ≤ m ≤ l ≤ kE + 1, 1 ≤ p ≤ ∞, (6.4)

where q is either a scalar or a vector function. We will also make use of the trace inequality
[3]

∀ e ∈ ∂E, ‖χ‖e ≤ K
(

h
−1/2
E ‖χ‖E + h

1/2
E |χ|1,E

)

∀χ ∈ H1(E). (6.5)

Using (6.4) and (6.5),

‖q − Πq‖e ≤ Kh
l−1/2
E ‖q‖l,E, 1 ≤ l ≤ kE + 1. (6.6)

For polynomial functions, (6.5) and the inverse inequality [12]

‖w‖1,E ≤ Kh−1
E ‖w‖E. (6.7)
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imply
‖w‖e ≤ Kh

−1/2
E ‖w‖E. (6.8)

Similarly to the discrete variational formulation (5.1), the weak solution of (4.7)–(4.8)
satisfies

Bu(c, z;w,v) = −
∫ T

0

〈

cinu · n, w−
〉

Γin

dt+

∫ T

0

(φs, w) dt,

∀ (w,v) ∈ C0(0, T ;W × V).

(6.9)

Subtracting (5.1) from (6.9) gives

Bu(c, z;w,v) −BU(C,Z;w,v) = −
∫ T

0

〈

cin(u − U) · n, w−
〉

Γin

dt. (6.10)

Let ψc = C−Πc, ψz = Z−Πz, θc = c−Πc, and θz = z−Πz. Setting (w,v) = (ψc, ψz)
in (6.10), the expression on the left becomes

Bu(θc, θz;ψc, ψz) +Bu(Πc,Πz;ψc, ψz) −BU(ψc, ψz;ψc, ψz) −BU(Πc,Πz;ψc, ψz),

hence (6.10) can be written as

BU(ψc, ψz;ψc, ψz) = Bu(θc, θz;ψc, ψz) +Bu(Πc,Πz;ψc, ψz)

−BU(Πc,Πz;ψc, ψz) +

∫ T

0

〈

cin(u − U) · n, ψ−
c

〉

Γin

dt.
(6.11)

For the error due to the velocity approximation we have

Bu(Πc,Πz;ψc, ψz) −BU(Πc,Πz;ψc, ψz)

=

∫ T

0

∑

E

{−(Πc(u − U),∇ψc)E + 〈(Πc)u (u − U) · nE, ψ
−
c 〉∂E\Γ

+ 〈(Πc)−(u − U) · nE, ψ
−
c 〉∂E∩Γout

} dt

=

∫ T

0

∑

E

{(∇ · (Πc(u − U)), ψc)E + 〈((Πc)u − (Πc)−)(u − U) · nE, ψ
−
c 〉∂E\Γ

− 〈(Πc)−(u − U) · nE, ψ
−
c 〉∂E∩Γin

} dt.
(6.12)

Substituting (6.12) into (6.11) and using the definition (5.2) for Bu(θc, θz;ψc, ψz), we ob-
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tain

BU(ψc, ψz;ψc, ψz) =

∫ T

0

∑

E

{(φ(θc)t, ψc)E − (θcu,∇ψc)E − (θz,∇ψc)E

+ 〈θu
c u · nE, ψ

−
c 〉∂E\Γ + 〈θz · nE, ψ

−
c 〉∂E\Γ + 〈θ−c u · nE, ψ

−
c 〉∂E∩Γout

+ (D−1θz, ψz)E − (θc,∇ · ψz)E + 〈θc, ψz
− · nE〉∂E\Γ + 〈θ−c , ψz

− · nE〉∂E∩Γ

+ (∇ · (Πc(u − U)), ψc)E + 〈((Πc)u − (Πc)−)(u − U) · nE, ψ
−
c 〉∂E\Γ

+ 〈(cin − (Πc)−)(u − U) · nE, ψ
−
c 〉∂E∩Γin

} dt.
(6.13)

We now rewrite the summation over the elements in (6.13) in terms of a summation over
the interior edges (faces) where it is relevant:

BU(ψc, ψz;ψc, ψz) =

∫ T

0

∑

E

{(φ(θc)t, ψc)E − (θcu,∇ψc)E − (θz,∇ψc)E

+ (D−1θz, ψz)E − (θc,∇ · ψz)E + (∇ · (Πc(u − U)), ψc)E

+ 〈((Πc)u − (Πc)−)(u − U) · nE, ψ
−
c 〉∂E\Γ}dt

+

∫ T

0

∑

e

{〈θu
c u, [ψc]〉e + 〈θz, [ψc]〉e + 〈θc, [ψz]〉e} dt

+

∫ T

0

{〈θ−c u · n, ψ−
c 〉Γout

+ 〈θ−c , ψz
− · n〉Γ

+ 〈(cin − (Πc)−)(u − U) · n, ψ−
c 〉Γin

} dt ≡ T1 + T2 + ...+ T13.

(6.14)

Using (5.10) and (4.9), (6.14) implies

1

2
‖φ1/2ψc(T )‖2+

∫ T

0

‖D−1/2ψz‖2dt ≤ 1

2

∫ T

0

(ψ2
c , (∇·U)−) dt+T1+T2+...+T13. (6.15)

For the first term on the right above we have

1

2

∫ T

0

(ψ2
c , (∇ · U)−) dt ≤ 1

2
‖φ−1(∇ · U)−‖0,∞

∫ T

0

‖φ1/2ψc(t)‖2 dt. (6.16)

We continue with bounds on the other terms on the right in (6.15).
From the definition of the L2-projections (6.1) and (6.2) it follows that

T3 = T5 = 0. (6.17)

Applying the Cauchy-Schwarz inequality, we obtain for T1

T1 =

∫ T

0

(φ1/2(θc)t, φ
1/2ψc) dt ≤ (φ∗)1/2

∫ T

0

‖(θc)t‖ ‖φ1/2ψc‖ dt. (6.18)
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For the bound of T2 we will use the L2-projection of u onto the space of piecewise constant
vectors Π0u satisfying

∀E ∈ Th, (u − Π0u, 1)E = 0, ‖u − Π0u‖0,p,E ≤ KhE‖u‖1,p,E , 1 ≤ p ≤ ∞.

Using (6.1) we have

T2 = −
∫ T

0

∑

E

(θcu,∇ψc)E dt =

∫ T

0

∑

E

(θc(Π0u − u),∇ψc)E dt

≤ K‖u‖1,∞

∫ T

0

∑

E

hE‖θc‖E‖∇ψc‖E dt ≤ K‖u‖1,∞

∫ T

0

∑

E

‖θc‖E‖ψc‖E dt

≤ K‖u‖1,∞φ
−1/2
∗

∫ T

0

‖θc‖‖φ1/2ψc‖ dt,

(6.19)

where we used (6.7) for the second inequality. Handling T4 is straightforward, using (5.11)
with ε = 1/2:

T4 =

∫ T

0

∑

E

(D−1θz, ψz)E dt ≤
∫ T

0

‖D−1/2θz‖2dt+
1

4

∫ T

0

‖D−1/2ψz‖2dt. (6.20)

Using (6.4), we have for T6:

T6 =

∫ T

0

∑

E

(∇ · (Πc(u − U)), ψc)E dt

=

∫ T

0

∑

E

{(∇Πc · (u − U), ψc)E + (Πc∇ · (u − U), ψc)E} dt

≤ φ−1/2
∗

∫ T

0

∑

E

(‖∇Πc‖0,∞,E‖u − U‖E + ‖Πc‖0,∞,E‖∇ · (u − U)‖E)‖φ1/2ψc‖E dt

≤ Kφ−1/2
∗

∫ T

0

‖c‖1,∞‖u − U‖X‖φ1/2ψc‖ dt.
(6.21)

For T7 we have

T7 =

∫ T

0

∑

E

〈((Πc)u − (Πc)−)(u − U) · nE, ψ
−
c 〉∂E\Γ dt

≤
∫ T

0

∑

E

‖(Πc)u − (Πc)−‖0,∞,∂E\Γ‖(u − U) · nE‖∂E\Γ‖ψ−
c ‖∂E\Γ dt.

(6.22)

Note that

‖(Πc)u − (Πc)−‖0,∞,∂E ≤ ‖(Πc)u − c‖0,∞,∂E + ‖c− (Πc)−‖0,∞,∂E ≤ ‖c− Πc‖0,∞,δ(E),
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where δ(E) is the union of all elements that share an edge (face) with E. For the second
term on the right in (6.22) we have

‖(u − U) · ne‖e ≤ ‖(u − Πu) · ne‖e + ‖(Πu − U) · ne‖e

≤ K(‖(u − Πu) · ne‖e + h
−1/2
E ‖Πu − U‖E)

≤ K(‖(u − Πu) · ne‖e + h
−1/2
E ‖u − Πu‖E + h

−1/2
E ‖u − U‖E),

where second inequality follows from an application of (6.8). Therefore for T7 we obtain,
using (6.8) again,

T7 ≤ K

∫ T

0

‖θc‖0,∞

∑

E

(‖(u − Πu) · nE‖∂E\Γ + h
−1/2
E ‖u − Πu‖E

+ h
−1/2
E ‖u − U‖E)h

−1/2
E ‖ψc‖E

≤ Kφ−1/2
∗

∫ T

0

‖c‖1,∞(h1/2‖(u − Πu) · n‖Eh
+ ‖u − Πu‖ + ‖u − U‖)‖φ1/2ψc‖,

(6.23)

where ‖w‖Eh
= (

∑

e ‖w‖2
e)

1/2. Similarly, for T8 we have

〈θu
c u, [ψc]〉e ≤ Kφ−1/2

∗ ‖u · ne‖0,∞,e‖θu
c ‖eh

−1/2
E ‖φ1/2ψc‖E,

therefore

T8 ≤ K‖u‖0,∞φ
−1/2
∗

∫ T

0

h−1/2‖θu
c ‖Eh

‖φ1/2ψc‖. (6.24)

Similarly,

T9 ≤ Kφ−1/2
∗

∫ T

0

h−1/2‖θz · n‖Eh
‖φ1/2ψc‖, (6.25)

and

T10 =

∫ T

0

∑

e

〈θc, [ψz]〉e dt

≤ K(D∗)1/2

∫ T

0

h−1/2‖θc‖Eh
‖D−1/2ψz‖ dt

≤ K2D∗

∫ T

0

h−1‖θc‖2
Eh
dt+

1

4

∫ T

0

‖D−1/2ψz‖2 dt,

(6.26)

using (5.11) with ε = 1/2 for the last inequality. In a similar way we obtain

T11 ≤ K‖u‖0,∞φ
−1/2
∗

∫ T

0

h−1/2‖θ−c ‖Γout
‖φ1/2ψc‖ dt, (6.27)
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T12 ≤ KD∗

∫ T

0

h−1‖θ−c ‖2
Γ dt+

1

4

∫ T

0

‖D−1/2ψz‖2 dt, (6.28)

and

T13 ≤ Kφ−1/2
∗

∫ T

0

(‖cin‖0,∞,Γin
+ ‖c‖0,∞,Γin

)h−1/2‖(u − U) · n‖Γin
‖φ1/2ψc‖ dt. (6.29)

A combination of (6.15)–(6.29), the use of Gronwall’s inequality for the term in (6.16),
and an application of Lemma 5.1 imply

|||(ψc, ψz)||| ≤ K

∫ T

0

(

‖D−1/2θz‖ + h−1/2‖θc‖Eh
+ h−1/2‖θ−c ‖Γ

+ ‖(θc)t‖ + ‖θc‖ + ‖u − U‖X + h1/2‖(u − Πu) · n‖Eh

+ ‖u − Πu‖ + ‖u − U‖ + h−1/2‖θu
c ‖Eh

+ h−1/2‖θz · n‖Eh

+h−1/2‖θ−c ‖Γout
+ h−1/2‖(u − U) · n‖Γin

)

dt,

(6.30)

where K = K(eLT ). The above bound, combined with the velocity error bounds (3.3) and
(3.4) and the approximation properties (6.4) and (6.6), implies the following convergence
result.

Theorem 6.1 If the solution to the coupled system (2.1)–(2.14) is smooth enough, then the
solution to the semi-discrete transport LDG method (4.10)–(4.12) satisfies

|||(c− C, z − Z)||| ≤ K(hk + hk1

1 + hk2+1
2 + hl2+1

2 ). (6.31)

7 Numerical results
In this section we present results from several computational experiments. The first three
confirm the theoretical convergence rates for problems with given analytical solutions,
while the last two illustrate the behavior of the method for realistic problems of coupled
surface-subsurface flows with contaminant transport. In all tests the computational domain
is taken to be Ω = Ω1∪Ω2, where Ω1 = [0, 1]×[1

2
, 1] and Ω2 = [0, 1]×[0, 1

2
]. For simplicity

we have used
T(u1, p1) = −p1I + µ∇u1

in the Stokes equation in Ω1. The flow equations are solved via domain decomposition
using the Taylor-Hood triangular finite elements in Ω1 and the lowest order Raviart Thomas
rectangular finite elements in Ω2. In the LDG discretization of the transport equation we
chose Wh,E to be the space of bilinear functions on E. With these choices,

k1 = 2, k2 = l2 = 0, and k = 1.
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The grid for the Stokes discretization in Ω1 is obtained by first partitioning the domain into
rectangles and then dividing each rectangle along its diagonal into two triangles. The flow
grids in Ω1 and Ω2 match on the interface. The LDG transport grid on Ω is the rectangular
grid used for the flow discretization (on Ω1 this is the grid before subdividing into triangles).

The computed Stokes-Darcy velocity U is used in the transport scheme by first project-
ing it onto the space of piecewise bilinear functions on the transport grid. In the Stokes
region the computed Taylor-Hood velocity vector is quadratic on each triangle and it is
simply evaluated at the vertices of each rectangle. In the Darcy region the velocity vector
at each vertex is recovered by combining the Raviart-Thomas normal velocities on the two
edges forming the vertex.

7.1 Convergence tests
In the three convergence tests we use a second order Runge-Kutta method to discretize
the transport equation in time. The final time is T = 2 and the time step is ∆t = 10−3,
all numbers being dimensionless. The time step is chosen small enough so that the time
discretization error is smaller than the spatial discretization error even for the finest grids
used. In the convergence tests with nonzero diffusion we take D = 10−3 I, where I is the
identity matrix. To handle the purely hyperbolic case D = 0, we introduce an auxiliary
variable z̃ = −∇c and set z = Dz̃, following an approach from [2] for mixed finite element
methods for elliptic problems. The LDG analysis for this formulation has been carried out
in [13]. In all convergence tests we take φ = 1.

The true solution of the transport equation for all three tests is

c(x, y, t) = t(cos(πx) + cos(πy))/π.

It is chosen to satisfy the outflow boundary condition (2.14) on ∂Ω. The source function s
is obtained by plugging into (2.11) the true solution functions for the concentration and the
velocity specified below. The sign of the normal component of the true velocity determines
whether the inflow or the outflow boundary condition is used for the transport equation. The
initial condition function c0 and the inflow condition function cin are obtained by evaluating
the true concentration at t = 0 and x ∈ Γin, respectively.

In Test 1 the velocity field is chosen to be smooth across the interface:

u1 = u2 =

[

sin( x
G

+ ω)ey/G

−cos( x
G

+ ω)ey/G

]

,

p1 = (
G

K
− µ

G
)cos(

x

G
+ ω)e1/(2G) + y − 0.5,

p2 =
G

K
cos(

x

G
+ ω)ey/G,

where

µ = 0.1, K = 1, α = 0.5, G =

√
µK

α
, and ω = 1.05.
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The velocity u1 in the Stokes region is divergence free. The right hand sides f1 and f2 for
the Stokes-Darcy flow system are obtained by plugging the above functions into (2.1) and
(2.4), respectively. For the Stokes region, the velocity u1 is specified on the left and top
boundaries, and the normal and tangential stresses n1 · T · n1 and n1 · T · τ 1 are specified
on the right boundary. In the Darcy region, the normal velocity u2 · n2 is specified on the
left boundary and the pressure is specified on the bottom and right boundaries.

In Test 2 the velocity field is continuous, but not smooth, across the interface between
the two subdomains:

u1 =

[

(2 − x)(1.5 − y)(y − ξ)

−y3

3
+ y2

2
(ξ + 1.5) − 1.5ξy − 0.5

]

,

u2 =

[

(2 − x)(0.5 − ξ)
χ(y + 0.5)

]

,

p1 =
1

K
(
x2

2
− 2x)(0.5 − ξ) − 11χ

8K
+ µ(0.5 − ξ) + y − 0.5,

p2 =
1

K
(
x2

2
− 2x)(0.5 − ξ) +

χ

K
(−y

2 + y

2
− 1),

where
ξ =

1 −G

2(1 +G)
, χ =

−30ξ − 17

48
, β = −0.3,

and µ, K, α, and G are defined as in Test 1.
In Test 3 the normal velocity is continuous, but the tangential velocity is discontinuous

across the interface:

u1 =

[

(2 − x)(1.5 − y)(y − ξ)

−y3

3
+ y2

2
(ξ + 1.5) − 1.5ξy − 0.5 + sin(ωx)

]

,

u2 =

[

ω cos(ωx)y
χ(y + 0.5) + sin(ωx)

]

,

p1 = −sin(ωx) + χ

2K
+ µ(0.5 − ξ) + cos(πy),

p2 = − χ

K

(y + 0.5)2

2
− sin(ωx)y

K
,

where ω = 6 and the other parameters are defined as in Test 2.
In all three tests, the solutions are designed to satisfy the interface conditions (2.8)–

(2.10).
The computed velocity field in Test 3 is shown in Figure 1. Note that the flow domain

decomposition scheme correctly imposes continuity of the normal velocity, but allows for
discontinuous tangential velocity across the interface.

The convergence rates for the transport equation are studied by solving the coupled
flow-transport system on several levels of grid refinement. We test convergence with and
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Figure 1: Computed velocity field in Test 3: discontinuous tangential velocity. Left: hori-
zontal velocity; right: vertical velocity.

D = 10−3 I D = 0
mesh ‖c− C‖L∞(L2) rate ‖z − Z‖L2(L2) rate ‖c− C‖L∞(L2) rate

4x4 5.50e-02 5.31e-04 5.54e-02
8x8 1.44e-02 1.93 2.39e-04 1.15 1.46e-02 1.93

16x16 3.75e-03 1.95 1.09e-04 1.13 3.81e-03 1.93
32x32 9.84e-04 1.93 5.09e-05 1.10 1.01e-03 1.92
64x64 2.60e-04 1.92 2.43e-05 1.07 2.71e-04 1.90

Table 1: Computed numerical errors and convergence rates for Test 1: smooth velocity.

without diffusion. The numerical errors and convergence rates for the three tests are re-
ported in Tables 1,2, and 3. In all three cases we observe experimental convergence of order
O(h2) for the concentration error in L∞(0, T ;L2(Ω)) and approaching O(h) for the diffu-
sive flux error in L2(0, T ;L2(Ω)). Our theoretical results predict O(h) for both variables.
Similar second order convergence for the concentration has been observed numerically in
the literature for the stand-alone transport equation, see e.g. [1]. Higher order convergence
O(hk+1) for the L2(0, T ;L2(Ω)) error of the concentration has been obtained theoretically
by adding penalty terms [19, 9]. In our case there are additional terms contributing to
the transport numerical error that are coming from the discretization error in the Stokes-
Darcy velocity. For our particular choice of flow discretization these terms are O(h2) from
Stokes and O(h) from Darcy. The observed second order convergence of the concentration
may be due to the superconvergence of the Raviart-Thomas velocity at the edge midpoints,
which are used to obtain the bilinear velocity for the transport scheme. Further theoretical
investigation of this phenomenon will be a topic of future work.
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D = 10−3 I D = 0
mesh ‖c− C‖L∞(L2) rate ‖z − Z‖L2(L2) rate ‖c− C‖L∞(L2) rate

4x4 5.57e-02 4.33e-04 5.63e-02
8x8 1.39e-02 2.00 2.01e-04 1.10 1.41e-02 2.00

16x16 3.48e-03 2.00 9.62e-05 1.07 3.51e-03 2.00
32x32 8.69e-04 2.00 4.70e-05 1.03 8.77e-04 2.00
64x64 2.17e-04 2.00 2.33e-05 1.01 2.19e-04 2.00

Table 2: Computed numerical errors and convergence rates for Test 2: continuous velocity.

D = 10−3 I D = 0
mesh ‖c− C‖L∞(L2) rate ‖z − Z‖L2(L2) rate ‖c− C‖L∞(L2) rate

4x4 1.99e+00 8.95e-03 2.07e+00
8x8 3.27e-01 2.60 2.71e-03 1.72 3.39e-01 2.61

16x16 8.48e-02 1.95 1.20e-03 1.18 9.04e-02 1.91
32x32 2.23e-02 1.93 5.33e-04 1.17 2.59e-02 1.80
64x64 5.60e-03 2.00 1.77e-04 1.59 7.76e-03 1.74

Table 3: Computed numerical errors and convergence rates for Test 3: discontinuous tan-
gential velocity.

7.2 Contaminant transport examples
We present two simulations of coupled surface-subsurface flow and contaminant transport.
The Stokes region Ω1 represents a lake or a river, which interacts with an aquifer occupying
the Darcy region Ω2. The porous medium is heterogeneous with permeability varying
approximately two orders of magnitude, see Figure 2.

In both examples we use the following flow boundary conditions. In the Stokes region
we set parabolic inflow on the left boundary, no normal flow and zero tangential stress on
the top boundary, and zero normal and tangential stress on the right (outflow) boundary. In
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Figure 2: Permeability of the porous medium in the contaminant transport examples.
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Figure 3: Computed velocity field in the contaminant transport examples. Left: horizontal
velocity; right: vertical velocity.

the Darcy region we set no flow on the left and right boundaries and specify pressure on
the bottom boundary to simulate a gravity force. The computed velocity field for the two
simulations is shown in Figure 3.

In Example 1, a plume of contaminant present at the initial time in the surface water re-
gion is transported into the porous media. In Example 2, inflow of contaminant is specified
on part of the left boundary in the surface water region. The contaminant front eventually
reaches and penetrates into the subsurface water region.

The diffusion tensor is chosen to be DΩ1
= 10−6I in the Stokes region, and

DΩ2
= φdmI + dl|u|T + dt|u|(I − T)

in the Darcy region, where T = uu

|u|2
and the parameters values are φ = 0.4, dm = dl =

dt = 10−5 . Here dm represents mollecular diffusion, while dl and dt represent longitudinal
and transverse dispersion, respectively. The simulations were carried out using the forward
Euler method for the temporal discretization with ∆t = 10−3 on a square 80 × 80 mesh.

Due to the discontinuity in the initial (Example 1) or boundary (Example 2) conditions
and small diffusion/dispersion values, the simulations exhibit steep concentration gradients.
In such cases a slope limiting procedure is often employed in the LDG scheme to remove
oscillations [14, 1]. Our approach is based on [24]. For each element local extremum is
avoided by comparing the averages of the concentration over the edges with the averages
of the concentration over the neighboring elements. The concentration values at the ver-
tices are reconstructed by imposing mass conservation on the element. The procedure is
equivalent to an optimization problem with parametrized equality constraints. Tighter con-
straints introduce more numerical diffusion and lead to a smoother solution. More relaxed
constraints allow for better approximation of propagating sharp fronts.
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Figure 4: Initial plume, t=0.0. The arrows represent the computed Stokes-Darcy velocity.

Plots of the contaminant concentration at various simulation times are shown in Fig-
ures 4–8 for Example 1 and Figures 9–11 for Example 2. Both two and three dimensional
views are included for better illustration of the steep concentration gradients.

In Example 1, the plume stays compact while in the surface water region. When it
reaches the groundwater region, it starts to spread due to the heterogeneity of the porous
media. The discontinuity in the tangential velocity along the interface causes some of the
contaminant to lag behind and even move in the opposite direction. Similar behavior is
observed in Example 2, where the contaminant front maintains a relatively flat interface in
the surface water region and spreads non-uniformly in the porous media. In both cases, the
LDG method with slope limiter preserves sharp discontinuities in the concentration without
numerical oscillations.
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Figure 7: The plume spreads through the porous medium, t=9.0.
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Figure 8: Most of the plume has been transported to the porous medium, t=16.0.
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Figure 9: The front enters the surface water region, t=2.0. The arrows represent the com-
puted Stokes-Darcy velocity.
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Figure 10: The front reaches the porous medium, t=11.0.
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Figure 11: The front propagates inside the porous medium, t=17.0.
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