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Abstract

The rotation form of the Navier-Stokes equations nonlinearity is commonly used in
high Reynolds number flow simulations. It was pointed out by a few authors (and not
widely known apparently) that it can also lead to a less accurate approximate solution
than the usual u · ∇u form. We give a different explanation of this effect related to (i)
resolution of the Bernoulli pressure, and (ii) the scaling of the coupling between velocity
and pressure error with respect to the Reynolds number. We show analytically that
(i) the difference between the two nonlinearities is governed by the difference in the
resolution of the Bernoulli and kinematic pressures, and (ii) a simple, linear grad-div
stabilization ameliorates much of the bad scaling of the error with respect to Re. We
also give experiments that show bad velocity approximation is tied to poor pressure
resolution in either form.

1 Introduction

The nonlinearity in the Navier-Stokes equations (NSE) can be written in several ways,
which, while equivalent for the continuous NSE, lead to discretizations with different al-
gorithmic costs, conserved quantities, and approximation accuracy, e.g., Gresho [9] and
Gunzburger [10]. These forms include the convective form, the skew symmetric form and
the rotation form, given respectively by

u · ∇u, u · ∇u +
1
2
(div u)u, and (∇× u)× u.

The algorithmic advantages and superior conservation properties of the rotation form (sum-
marized in Section 2.2) have led to it being a very common choice for turbulent flow simu-
lations, see, e.g., Ch.7. in [5] and [22].
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It is known from Horiuti [14, 15] and Zang [30] that the rotation form can lead to a
less accurate approximate solution when discretized by commonly used numerical methods.
Horiuti [14] and Zang [30] each give numerical experiments and accompanying analytic ar-
guments suggesting that the accuracy loss may happen due, respectively, to discretization
errors in the near wall regions (Horiuti, for finite difference methods) and to greater aliasing
errors (Zang, for spectral methods). We have noticed the same loss of accuracy in experi-
ments from [18, 24] (for finite element methods) and suggest herein a third possibility that
it is due to a combination of:

1. The Bernoulli or dynamic pressure P = p + 1
2 |u|2 is generically much more complex

than the pressure p, and thus

2. Meshes upon which p is fully resolved are typically under resolved for P , and

3. As the Reynolds number increases, the discrete momentum equation with either form
of the nonlinearity magnifies the pressure error’s effect upon the velocity error.

We will see, for example, that in the usual formulation Velocity Error ∼ Re * Pressure
Error, (2.13). Thus, interestingly, some of the loss of accuracy, although triggered by the
nonlinear term, is due to connections between variables already present in the linear Stokes
problem.

In finite element methods (FEM) the inf-sup condition for stability of the pressure places
a strong condition linking velocity and pressure degrees of freedom. This condition, while
quite technical when precisely stated, roughly implies that for lower order approximations
the pressure degrees of freedom should correspond to the velocity degrees of freedom on
a mesh one step coarser than the velocity mesh, while for higher order finite elements the
polynomial degree of pressure approximations is less than the polynomial degree of velocity
approximations. Thus, in either case for velocities u and Bernoulli pressures P with the
same complex structures, as the mesh is refined the velocity will be often fully resolved
before the Bernoulli pressure is well-resolved, see the experiments in Section 3.3 involving
flow around a cylinder. Further, when an artificial problem, constructed so the pressure
and Bernoulli pressure reverse complexity, is solved the observed error behavior is reversed:
the convective form has much greater error than the rotation form, Section 3.2.

The question of resolution is reminiscent of Horiuti’s argument based on truncation
errors in boundary layers. For example, even for a simple Prandtl-type, laminar boundary
layer, the pressure p will be approximately constant in the near wall region while the
Bernoulli pressure P = p + 1/2|u|2 will share the O(Re−1/2) boundary layer of the velocity
field.

Point 3 is possibly related to aliasing errors; interestingly, the aliasing error in using dif-
ferent forms of the nonlinearity is governed by the resolution of the (Bernoulli or kinematic)
pressure. Our suggestion of a “fix” of using grad− div stabilization (see Section 2.3) works
in our tests because it addresses point 3 without requiring extra resolution.

Stabilization of grad − div type reduces the error in divuh , see (2.15), and its (bad)
scaling with respect to the Reynolds number. Moreover, since when divuh = 0 the nonlinear
terms are equivalent, this stabilization causes the three schemes to produce more closely
related solutions.

Generally speaking, adding the grad − div terms to the finite element formulation is
not a new idea. These terms are part of the streamline-upwinding Petrov-Galerkin method
(SUPG) in [8, 12, 29]. However, in practice these terms are often omitted, and until recently
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it was not clear if they are needed for technical reasons of the analysis of SUPG type methods
only or play an important role in computations. The role of the grad − div stabilization
was again emphasized in the recent studies of the (stabilized) finite element methods for
incompressible flow problems, see e.g. [2, 3, 20, 21, 23], also in conjunction with the rotation
form, see [24].

We shall thus compare FEM (or other variational) discretizations of the rotation form
of the NSE, given by

ut − u× ω +∇P − ν∆u = f , (1.1)
div u = 0, (1.2)

with the usual convection form, given by:

ut + u · ∇u +∇p− ν∆u = f , (1.3)
div u = 0, (1.4)

and the skew-symmetric form, given by:

ut + u · ∇u +
1
2
(div u)u +∇p− ν∆u = f , (1.5)

div u = 0, (1.6)

These are related by

P = p +
1
2
|u|2 and ω = curlu.

Finally, we note that the rotation and convection (or skew-symmetric) forms lead to
linear algebra systems with different numerical properties, which occur in time-stepping or
iterative algorithms for the NSE problem. While there is an extensive literature on solvers
for the convection form, see e.g. [7], not so many results are known for the rotation form.
However the few available demonstrate some interesting superior properties of the rotation
form in this respect. In [26, 24] it was shown that the rotation form enables one to take
into account the skew-symmetric part of the matrix in such a way that a special pressure
Schur complement preconditioner is robust with respect to all problem parameters and
becomes even more effective when ν → 0. Such type of result is still missing for the Oseen
type systems with the convective terms. An effective multigrid method for the velocity
subproblem of the linearized Navier-Stokes system in the rotation form was analyzed in
[25]. Finally, in [1] the special factorization of the linearized Navier-Stokes system was
studied, which appears to be well suited for the rotation form.

2 Differences between the nonlinearities

We now illustrate some differences between the three different forms of the NSE nonlinearity.
First we discuss the Bernoulli pressure, which is used instead of usual pressure, with the
rotation form of the nonlinearity, and present a bound (based on the velocity part of the
Bernoulli pressure) for the rotation form FEM residual in the convective form FEM. Next,
we elaborate the difference in conservation laws of the (FEM discretized) nonlinearities.
Lastly in this section, we present a brief description of grad−div stabilization, discuss how
it reduces the differences between the nonlinearities, and show how its use allows for better
scaling of velocity error with the Reynolds number.
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2.1 Rotation form and Bernoulli pressure

The resolution of the Bernoulli pressure (a linear effect) also critically influences the dif-
ference between the nonlinearity in the convective and rotation forms. We show that it
depends upon the resolution of (the zero mean part of) the kinetic energy in the pressure
space. This is the dominant part of the Bernoulli pressure. To quantify this dependence,
consider the rotation-form-FEM for the simplest nonlinear (internal) flow problem, the equi-
librium NSE under no-slip boundary conditions. Let Uh, Qh denote the velocity-pressure
finite element spaces. The usual L2(Ω) inner product and norm are always denoted by (·, ·)
and ‖ · ‖. The velocity-Bernoulli pressure approximations uh, Ph satisfy

ν(∇uh,∇vh)− (uh × curluh,vh) + (qh, div uh)− (Ph,div vh) = (f ,vh) (2.1)

for all vh, qh ∈ Uh, Qh. If Vh denotes the usual space of discretely divergence free velocities

Vh := {vh ∈ Uh : (qh,div vh) = 0, ∀qh ∈ Qh},

then the approximate velocity uh from (2.1) satisfies

ν(∇uh,∇vh)− (uh × curluh,vh) = (f ,vh) ∀vh ∈ Vh. (2.2)

Similarly, the FEM formulation for the convective form formulation is given by

ν(∇uh,∇vh) + (uh · ∇uh,vh) = (f ,vh) ∀vh ∈ Vh. (2.3)

The natural measure of the distance of the rotation forms approximate velocity from
satisfying the convective forms discrete equations is the norm of residual of the former in
the latter. Define this residual rh ∈ Vh via the Riesz representation theorem as usual by

(rh,vh) := (f ,vh)− [ν(∇uh,∇vh)− (uh · ∇uh,vh)],∀vh ∈ Vh. (2.4)

Proposition 2.1. Let uh be the solution of (2.1) and let rh be its residual in (2.3), defined
by (2.4) above. Let ‖v‖2

H(div) = ‖v‖2 + ‖div v‖2, and

M = mean(
1
2
|uh|2) =

1
|Ω|

∫

Ω

1
2
|uh|2dx

Then,

‖rh‖−1 ≤ sup
v∈Vh, div vh 6=0

(rh,vh)
‖∇ · vh‖ ≤ inf

qh∈Qh

‖[1
2
|uh|2 −M ]− qh‖.

Proof. Using the vector identity −uh × curluh +∇(1
2 |uh|2) = uh · ∇uh gives that, for any

real number M , (and in particular for M = mean(1
2 |uh|2)),

(rh,vh) = −(∇(
1
2
|uh|2 −M),vh) = −([

1
2
|uh|2 −M ]− qh,∇ · vh), ∀qh ∈ Qh.

(We have integrated by parts and used (qh, div vh) = 0, ∀qh ∈ Qh.) The Cauchy-Schwarz
inequality and duality implies that, as claimed,

sup
v∈Vh,div vh 6=0

(rh,vh)
‖∇ · vh‖ ≤ inf

qh∈Qh

‖[1
2
|uh|2 −M ]− qh‖.
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2.2 Conservation properties of the nonlinearities

The conservation properties of an algorithm can provide insight into both the physical fi-
delity and accuracy of its solutions. Fundamental quantities of the NSE such as energy
(E = 1

2‖u‖2), helicity (H = (u,∇ × u)), and in 2d enstrophy (Ens = 1
2 ‖∇ × u‖), play

critical roles in the organization of a flow’s structures. The NSE holds delicate physical
balances for each of these quantities, and these balances reveal how each term of the NSE
contributes to their development. An NSE algorithm enforcing similar balances (e.g. dis-
crete analogs) for energy, and helicity or 2d enstrophy is thus more likely to admit solutions
with similar physical characteristics as the true solution.

To gain insight into the balances admitted by an algorithm, conservation laws are typi-
cally studied in the periodic case without external or viscous forces. Although this case is
of little practical interest, if an algorithm fails to uphold conservation in this flow setting, it
has little hope for predicting correct physical balances in irregular domains and/or complex
boundary conditions.

Consider now conservation laws for energy and helicity in Crank-Nicolson FEM schemes
for the NSE with rotation form (1.1)-(1.2), convective form (1.3)-(1.4), and skew-symmetric
form (1.5)-(1.6). The schemes are defined by: given u0

h ∈ Vh, f ∈ L2(0, T ;V ′
h), timestep

∆t > 0, kinematic viscosity ν > 0, end time T , find ui
h ∈ Vh for i = 1, 2, ..., T

∆t satisfying
rotation form:

1
∆t

(un+1
h −un

h,vh) +br(u
n+ 1

2
h ,u

n+ 1
2

h ,vh)+ν(∇u
n+ 1

2
h ,∇vh) = (fn+ 1

2 ,vh) ∀vh ∈ Vh (2.5)

Convective form:
1

∆t
(un+1

h − un
h,vh) + bc(u

n+ 1
2

h ,u
n+ 1

2
h ,vh) + ν(∇u

n+ 1
2

h ,∇vh) = (fn+ 1
2 ,vh) ∀vh ∈ Vh (2.6)

Skew-symmetric:

1
∆t

(un+1
h −un

h,vh) +bs(u
n+ 1

2
h ,u

n+ 1
2

h ,vh)+ν(∇u
n+ 1

2
h ,∇vh) = (fn+ 1

2 ,vh) ∀vh ∈ Vh (2.7)

where

br(u
n+ 1

2
h ,u

n+ 1
2

h ,vh) = −(u
n+ 1

2
h × (curlu

n+ 1
2

h ),vh)

bc(u
n+ 1

2
h ,u

n+ 1
2

h ,w) = (u
n+ 1

2
h · ∇u

n+ 1
2

h ,vh)

bs(u
n+ 1

2
h ,u

n+ 1
2

h ,w) = (u
n+ 1

2
h · ∇u

n+ 1
2

h +
1
2
(div u

n+ 1
2

h )u
n+ 1

2
h ,vh).

By choosing vh = u
n+ 1

2
h in each scheme and eliminating viscous and external forces, it

is revealed that ‖un+1
h ‖2 = ‖un

h‖2 and thus energy is conserved in the rotation (2.5) and
skew-symmetric (2.7) schemes. For the convective form, however, we do not have exact

energy conservation. Instead (using (qh,∇ · un+ 1
2

h ) = 0 in the last step)

1
2
‖un+1

h ‖2 =
1
2
‖un

h‖2 + ∆t(u
n+ 1

2
h · ∇u

n+ 1
2

h ,u
n+ 1

2
h ) =

1
2
‖un

h‖2 + ∆t(
1
2
(u

n+ 1
2

h )2,∇ · un+ 1
2

h )

(2.8)

=
1
2
‖un

h‖2 + ∆t inf
qh∈Qh

([
1
2
(u

n+ 1
2

h )2 −M ]− qh,∇ · un+ 1
2

h ), (2.9)

where M = mean(
1
2
|un+ 1

2
h |2) =

1
|Ω|

∫

Ω

1
2
|un+ 1

2
h |2dx. (2.10)
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Exact energy conservation in the convective form scheme (2.6) thus depends on divu
n+ 1

2
h

(and the resolution of the key component of the Bernoulli pressure in the pressure space),
which is nonzero since incompressibility is only weakly enforced. Hence it is possible (and
well known to be likely) that these “small” errors in the energy balance at each time step
can accumulate and significantly alter the solution.

Regarding helicity (3d) and enstrophy (2d) conservation, by choosing vh = PVh
(curluh)

in the three schemes, it can be seen that none of the schemes conserve helicity; indeed all of
the three nonlinearities alters helicity. However, it was shown in [27] that if the curl in the
rotation form nonlinearity is replaced with the Vh-projected curl, then the rotation scheme
will conserve helicity. To our knowledge, no such alterations can be made to (2.6) or (2.7)
to maintain physical treatment of helicity. It is pointed out in [14] that for finite difference
schemes, the rotation form shows superior conservation properties to the convective form
in that rotation form conserves mean momentum, energy, helicity, enstrophy and vorticity
versus just mean momentum and energy for the convective form.

2.3 Grad− div stabilization

The three forms of the nonlinearity, and thus the three schemes (2.5),(2.6), and (2.7) are
equivalent when divuh = 0. Since this condition is only weakly enforced, divuh may
grow large enough to cause significant differences between the schemes; as our numerical
experiments show, this is especially true near boundaries for the rotation form. Grad− div
stabilization can help to correct this error for steady, incompressible flow [24], and through
our experiments in Sections 3.2 and 3.4 we show that this stabilization technique is also
effective for unsteady flow.

To understand better the role of adding the grad − div term to the finite element
formulation we consider the model case of the Stokes problem:

−ν∆u +∇p = f , and div u = 0 in Ω,

u = 0 on ∂Ω.
(2.11)

Given normal velocity-pressure finite element spaces Uh, Qh, satisfying the discrete inf-sup
condition, the grad− div stabilized FEM for this problem is: Pick stabilization parameter
γ ≥ 0 and find uh, ph ∈ Uh, Qh satisfying

ν(∇uh,∇vh) + γ(div uh, div vh)− (ph, div vh) + (qh,div uh)
= (f ,vh), ∀ vh, qh ∈ Uh, Qh. (2.12)

For the case γ = 0 a common argument is to rescale the equations by p̃ = ν−1p, f̃ = ν−1f .
This leads to a parameter-independent Stokes problem with a new pressure variable and
right-hand side. One can then use known results for this Stokes problem (in {u, p̃}) and
transform back to the {u, p} variables. The first and most basic result in the numerical
analysis of the (parameter-independent) rescaled Stokes problem is that

‖∇(u− uh)‖ ≤ C( inf
vh∈Uh

‖∇(u− vh)‖+ inf
qh∈Qh

‖p̃− qh‖).

Converting back to the original dependent variables gives

‖∇(u− uh)‖ ≤ C( inf
vh∈Uh

‖∇(u− vh)‖+
1
ν

inf
qh∈Qh

‖p− qh‖). (2.13)
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This has the interpretation that: Velocity Error ∼Re * Pressure Error. For example, a
further development of these estimates give the error bound in the rescaled variables

‖∇(u− uh)‖+ ‖p̃− p̃h‖ ≤ Ch(‖∇∇u‖+ ‖∇p̃‖).

In the original variables this immediately yields

‖∇(u− uh)‖+
1
ν
‖p− ph‖ ≤ Ch(‖∇∇u‖+

1
ν
‖∇p‖), (2.14)

with a constant C that is independent of ν. Numerical experiments, see [23], shows that
(2.14) is sharp. If γ > 0, (2.12) cannot be so rescaled unless γ = ν. Otherwise, for (2.12)
the following estimate is valid ([23], Th. 4.2 and 4.3)

ν
1
2 ‖∇(u− uh)‖+ γ

1
2 ‖div (u− uh)‖+ ‖p− ph‖ ≤ Ch((ν

1
2 + γ

1
2 )‖∇∇u‖+ ‖∇p‖) (2.15)

with a constant C that is independent of ν and γ. Estimates (2.14) and (2.15) suggest that
for small enough ν we have

for γ = 0 : ‖∇(u− uh)‖ ' h (‖∇∇u‖+
1
ν
‖∇p‖)

for γ = 1 : ‖∇(u− uh)‖ ' h√
ν

(‖∇∇u‖+ ‖∇p‖).

Thus, large pressure gradients compared to the velocity second derivatives may lead to a
poor convergence of the finite element velocity if one does not include grad − div stabi-
lization. Otherwise, the dependence of ‖∇(u− uh)‖ on ν is much milder.

3 Three numerical experiments

We consider three carefully chosen examples that, we believe, give strong support for the
scenario of accuracy loss described in the introduction. We use the software FreeFem++ [13]
to run the numerical tests. The models are discretized with the Crank-Nicolson method in
time and with the Taylor-Hood finite elements (continuous piecewise quadratic polynomials
for the velocity and linears for the pressure) in space; the nonlinear system is solved by a
fixed point iteration.

3.1 Test 1: Poiseuille flow

In Ω = (0, 4) × (0, 1), a parabolic inflow v(x, t) = 0 and u(x, y, t) = 1
2ν y(1 − y) (at x = 0)

is prescribed. No-slip boundary conditions are given at the top and bottom, and the do-
nothing boundary condition is prescribed at the outflow. The exact solution is well known
to be v(x, y) = 0, u(x, y) = 1

2ν y(1 − y), p(x, y) = −x + 4, and we take it as our initial
condition. The key conserved quantity in the flow is the flux through any cross section
given by

Q(x) =
∫

0<y<1
u(x, y)dy =

1
12ν

Note that u = (u, v) and p are in the finite element spaces so that we expect that
discretization of the convective and skew symmetric form of the NSE will have very small
errors (comparable to the errors from numerical integration and solution of the linear and
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nonlinear systems arising). On the other hand, if the rotation form is used the exact solution
is

v(x, y) = 0,

u(x, y) =
1
2ν

y(1− y),

P (x, y) = p(x, y) +
1

8ν2
y2(1− y)2,

is not in the pressure finite element space. Thus, in the rotation form there will be discretiza-
tion errors in P that influence as well the velocity error through the discrete momentum
equation, since

P /∈ Qh and ‖P‖ = O(ν−2). (3.1)

To test Poiseuille flow we take the time step 4t = 0.01 and number of time steps = 100,
so the final time is T = 1.

For the flux computations we find that expressing the nonlinearity in different forms
does not affect the true value of the flux for Re = 1. Results are presented in Table 1.

Number of degrees of freedom

338 1028 3853
convective form 6.24593 · 10−8 6.24593 · 10−8 6.24593 · 10−8

skew-symmetric form 4.92659 · 10−7 6.2396 · 10−8 6.24593 · 10−8

rotation form 1.04348 · 10−7 6.42264 · 10−8 6.25398 · 10−8

Table 1: Relative flux errors at Re = 1.

Next we test the coupling between velocity and pressure errors by computing the error
on a fixed mesh for Re = 1 and Re = 10 (decreasing ν). We present the results at the final
time T = 1 and at the mesh level with number of degrees of freedom being 1028 in Table 2.

Reynolds number ‖u− uh‖∞,0 ‖∇u−∇uh‖2,0 ‖p− ph‖∞,0 ‖∇p−∇ph‖2,0

convective form
1 1.27984 · 10−11 4.0987 · 10−11 3.48078 · 10−9 2.02411 · 10−10

10 1.2750 · 10−11 4.22028 · 10−11 3.17668 · 10−9 1.26608 · 10−10

skew-symmetric form
1 6.56789 · 10−5 6.42861 · 10−4 1.0656 · 10−2 4.84275 · 10−3

10 8.42768 · 10−2 7.99285 · 10−1 9.18175 · 10−1 7.86798 · 10−1

rotation form ‖P − P h‖∞,0 ‖|∇P −∇P h|‖2,0

1 1.17773 · 10−5 2.14543 · 10−4 8.35095 · 10−3 1.26205 · 10−2

10 7.42883 · 10−3 2.10991 · 10−1 8.3435 · 10−1 1.26174

Table 2: Velocity and pressure errors for NSE in test 1: various forms and Reynolds numbers.

From Table 2, the convective form of NSE performs best with respect to the size of
the velocity and pressure errors. The velocity and pressure errors for the skew-symmetric
form are bigger than the corresponding errors for the convective form It is known that
skew-symmetric form of the nonlinear term of NSE imposes difficulties for simulation of
Poiseuille flow, [16, 11], which we also observe here.
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We also observe that while the velocity errors are smaller for the rotation form compared
to the skew-symmetric form, the error in the (Bernoulli) pressure gradient is larger than the
(usual) pressure gradient error of the skew-symmetric form. Note that for rotation form,
the pressure error ‖p− ph‖∞,0 and the velocity error ‖∇(u− uh)‖2,0 seem to scale like Re3,
and ‖u− uh‖∞,0 seems to scale like Re2. Poor scaling with Re can be improved in the case
of Stokes and rotation form steady NSE with the use of grad− div stabilization, and is our
motivation in later test problems to use this stabilization.

3.2 Test 2: Resolution vs. nonlinearity

The relative importance of resolution of pressures vs. nonlinearity can be tested by arti-
ficially reversing p and P in Test 1 in a (completely) synthetic test problem. Thus, we
take:

u(x, y) =
1
2ν

y(1− y), v(x, y) = 0 P (x, y) = −x + 4

so that
p(x, y) = −x + 4− 1

8ν2
y2(1− y)2,

These are inserted in the Navier-Stokes equations to obtain a right-hand side f = f(x, y, ν):

f(x, y; ν) := (0,
1

4ν2
(y2(1− y)− y(1− y)2) )T

The resolution of p vs. P is exactly reversed from Test 1. We present the error behavior at
the final time T = 1 and at the mesh level with number of degrees of freedom being 1028
in Table 3.

Reynolds number ‖u− uh‖∞,0 ‖∇u−∇uh‖2,0 ‖p− ph‖∞,0 ‖∇p−∇ph‖2,0

convective form
1 6.51439 · 10−5 6.66111 · 10−4 1.06432 · 10−2 1.34122 · 10−2

10 4.50658 · 10−2 4.76032 · 10−1 8.92802 · 10−1 1.3361
skew-symmetric form

1 1.19698 · 10−5 2.18059 · 10−4 3.71786 · 10−4 1.2624 · 10−2

10 7.65648 · 10−3 2.15944 · 10−1 3.90984 · 10−2 1.26198
rotation form ‖P − P h‖∞,0 ‖∇P −∇P h‖2,0

1 3.19832 · 10−12 1.05429 · 10−11 9.36552 · 10−6 5.77438 · 10−11

10 3.19792 · 10−12 1.08799 · 10−11 9.35505 · 10−5 3.40516 · 10−11

Table 3: Velocity and pressure errors for NSE in test 2: various forms and Reynolds nume-
bers.

Table 3 shows that discretization errors are present if the solution does not belong to
the finite element space. The computed errors from Test 2 are the mirror image (up to
the preset accuracy used for the various linear and nonlinear iterative solvers’ stopping
criteria )of the error behavior in the previous test. Thus it is clear that, without grad− div
stabilization, in the rotation form it is the resolution of the Bernoulli pressure determine
the quality of the overall velocity approximation.
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3.3 Test 3: Flow around a cylinder

Next we consider the benchmark problem of flow around a circular cylinder offset slightly
in a channel, from [28], see Figure 1. The primary feature is the von Karman vortex street.
To explore resolution vs. solution quality for the two formulations we test at a Reynolds
number slightly above the critical one for vortex shedding and we have the simple test:
Vortex street formed yes or no.

The time dependent inflow and outflow profile are

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41− y)

u2(0, y, t) = u2(2.2, y, t) = 0.

No slip boundary conditions are prescribed along the top and bottom walls and the initial
condition is u(x, y, 0) = 0. The viscosity is set at ν = 10−3, the external force f = 0, and
the Reynolds number of the flow, based on the diameter of the cylinder and on the mean
velocity inflow is 0 ≤ Re ≤ 100. The time step is chosen to be ∆t = 0.005.

Figure 1: Cylinder Domain

Freefem generated two Delaunay meshes for testing this problem, the finest of which is
able to resolve the problem for the NSE in either (rotation or skew symmetric) form. These
are shown in Figure 2.

Figure 2: Shown above are two levels of mesh refinement provided by Freefem for computing
flow around a cylinder. The meshes provide, respectively, 14,455, and 56,702 degrees of
freedom for the computations.

The velocity field calculated on mesh 1 is shown in Figures 3 and 4. Note that
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• with the skew symmetric form the vortex street is well defined already on mesh 1
(coarse mesh);

• with the rotation form the mesh 1 simulations fails.

• with the rotation form and grad − div stabilization, the mesh 1 simulation forms a
vortex street
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Figure 3: Shown above is the velocity field at times t = 2, 3, 5, 6, 7, 8 for the NSE solved
on mesh 1 with the skew-symmetric form of the nonlinearity. The vortex street forms
successfully.

The pressure (and accuracy thereof) is critical for the formation of the vortex street. To
test the resolution hypothesis, we move to mesh 2, which fully resolves both formulations.
Figures 5 and 6 plot p (from skew-symmetric formulation) and P (from rotation formula-
tion), respectively, and from these plots we see indication that P contains much smaller
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Figure 4: Shown above is the velocity field at times t = 2, 3, 5, 6, 7, 8 for the NSE solved on
mesh 1 with the rotation form of the nonlinearity. The vortex street fails to form.

transition regions than p. The difference can also be seen when the L2 norm of ∇p, ∇P are
plotted versus time, in Figure 7.

Figure 8 shows the effect of the grad − div stabilization of the solution computed in
mesh 1 with γ = 1 and the rotation form. Without the stabilization, the rotation form is
unable to predict the correct behavior. With grad− div stabilization, the correct behavior
is predicted already on mesh 1.
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Figure 5: Shown above is the Bernoulli pressure P at times t = 2, 4, 5, 6, 7, 8 from NSE
rotation Form on mesh 2, where a vortex street forms successfully.

3.4 Test 4: Channel flow over a forward and backward facing step

The most distinctive feature of this common test problem is the formation and detachment
of vortices behind the step (a more detailed discussion of this test problem can be found in
Gunzburger [10] and John and Liakos [17]). We study the behavior of NSE schemes using
the convective form, the skew-symmetric form, the rotation form, and the rotation form
with grad-div stabilization (with γ = 0.5). The simulations are performed on the same
domain , which is meshed with Delaunay triangulation (provided by Freefem), yielding
24,598 degree of freedom systems. We set Re = 600 (slightly above the critical Reynolds
number for which eddies are known to shed), and take timestep ∆t = 0.005.

Results are presented for a parabolic inflow profile, given by u = (u1, u2)T , with u1 =
y(10− y)/25, u2 = 0. The no-slip boundary condition is prescribed on the top and bottom
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Figure 6: Shown above is the usual pressure p at times t = 2, 4, 5, 6, 7, 8 from NSE Skew-
Symmetric Form on mesh 2, where a vortex street forms successfully.

boundary, as well as on the step. At the outflow the standard do-nothing boundary condition
is imposed.

We conclude that the NSE with the convective and skew-symmetric forms of the nonlin-
earity give the appropriate shedding of eddies behind the step. The NSE with the rotation
form fails to describe the flow correctly, but the rotation form with grad− div stabilization
successfully captures the generation and detachment of eddies.

As an interesting but tangential observation, the do-nothing outflow boundary condition
is not satisfactory for use with the rotation form which means that, until the outflow
boundary issue is resolved for the rotation form, for practical purposes one has to use a
domain which is sufficiently large so that the do-nothing boundary condition is applied far
enough from region of interest. As we see in Figure 12, numerical artifacts are seen near
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Figure 7: Shown here is a comparison of the L2 norm of pressure gradients from simulations
of 2d flow around a cylinder on Meshes 1 and 2. P denoted Bernoulli pressure from the
rotation form scheme, and usual pressure from the convective form scheme is denoted by p.
It is clear that ∇P is larger during the development (or lack thereof) of a vortex street.

the outflow boundary.

4 Conclusions

Although the convective, skew-symmetric and rotation forms of the nonlinearity are equiv-
alent in the continuous NSE, in finite element discretizations the rotation form offers better
physical properties (in terms of conservation laws), superior properties for iterative algo-
rithm development, is typically more stable than the convective form, and is less expensive
than computing the skew-symmetric form.

However, using rotation form requires the use of the Bernoulli pressure, which is gener-
ically significantly more complex than the usual pressure of the convective and skew-
symmetric forms. Bernoulli pressure is thus not as easily resolved, which causes significantly
worse results in our benchmark problems for the rotation form scheme. Fortunately, with
the use of grad− div stabilization, the inaccuracy in the Bernoulli pressure associated with
using rotation form seems to be localized in the pressure error and have much reduced (or
even minimal) effect upon the velocity error.
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Figure 8: Shown above is the velocity field at times t = 2, 3, 5, 6, 7, 8 for the NSE solved on
mesh 1 with the rotation form of the nonlinearity and with grad − div stabilization. Here
the vortex street forms succesfully.
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Figure 9: NSE with convective form of nonlinearity
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Figure 10: NSE with skew-symmetric form of nonlinearity
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Figure 11: NSE with rotation form of nonlinearity

17



 T=10

0 10 20 30 40
0

2

4

6

8

10
 T=20 

0 10 20 30 40
0

2

4

6

8

10

 T=30 

0 10 20 30 40
0

2

4

6

8

10
T=40

0 10 20 30 40
0

2

4

6

8

10

Figure 12: NSE with grad− div stabilization for the rotation form
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