
1

Mathematical Architecture of Approximate Deconvolution
Models of Turbulence?

A. Labovschii1, W. Layton2, C. Manica3, M. Neda4, L. Rebholz5, I. Stanculescu6, and C. Trenchea7

1 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, ayl2@pitt.edu
2 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, wjl+@pitt.edu
3 Departamento de Matemática Pura e Aplicada, Federal University of Rio Grande do Sul, Porto Alegre-RS-

Brazil, cac15+@pitt.edu
4 Department of Mathematical Sciences, University of Nevada, Las Vegas, NV, monika.neda@unlv.edu
5 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, ler6@math.pitt.edu
6 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, ius1+@pitt.edu
7 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, trenchea@pitt.edu

Summary. This report presents the mathematical foundation of approximate deconvolution LES models together
with the model phenomenology downstream of the theory.

Key words: deconvolution, energy cascade, helicity, MHD

1.1 Introduction

One of the most interesting approaches to generate LES models is via approximate deconvolution or ap-
proximate / asymptotic inverse of the filtering operator G. Approximate deconvolution models (ADMs) are
systematic (rather than ad hoc). See, for example, [1, 2, 55, 57, 56, 58] for the work of Stolz, Adams, Kleiser
and coworkers and [23, 24, 25, 26] for Geurts’ work. They can achieve high theoretical accuracy and shine in
practical tests; they contain few or no fitting/tuning parameters. The ADM approach has thus proven itself
to be very promising with fundamental reasons for their effectiveness, which we discuss herein. The basic
(and ill-posed) problem of approximate de-convolution is: (Section 1.2)

given u ( + noise) find useful approximations D(ū) of u
that lead to accurate and stable LES models.

Indeed, given an approximate deconvolution operator D with accuracy O(δα) :

φ = Dφ+O(δα) for smooth functions φ

the closure problem can be solved approximately to accuracy O(δα) by

uu⇐ D(u)D(u) ( +O(δα) ).

With the above closure approximation inserted in the SFNSE and adding a time relaxation term χ(w −
D(w)) we obtain an ADM given by

wt +∇ · (D(w)D(w))− ν4w +∇q + χ(w −D(w)) = f(x) , and ∇ · w = 0.

The key to an ADMs physical fidelity and robust mathematical theory is having the correct global energy
balance. In Section 1.3 we show that provided D and I −D are SPD, with the weighted norms (v, w)D :=
(DNv, w)L2(Ω) and ‖w‖2D := (w,w)D, we have

1
2

[‖w(T )‖2D + δ2‖∇w(T )‖2D] +
∫ T

0

ν‖∇w(t)‖2D + νδ2‖4w(t)‖2D + χ(w −D(w), w)Ddt

=
1
2

[‖u0‖2D + δ2‖∇u0‖2D] +
∫ T

0

(f, w(t))D dt.
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This energy equality is the key to both the rigorous theory (Section 1.3) and turbulent phenomenology
(Section 1.4). In fact, its derivation gives a roadmap to development of both for LES models for coupled
NS systems (we develop the theory for MHD turbulence in Section 1.6). A correct prediction of turbulent
flow means getting the energy balance and rotational structures correct. In the large, this means the ADMs
energy and helicity statistics (an open problem for rigorous analysis). Kraichnan’s phenomenology (Section
1.4) predicts correctness of the ADM statistics over the resolved scales:

Ê(k) ' αmodelε2/3modelk
−5/3, Ĥ(k) ' Cmodelγmodelε−1/3

modelk
−5/3, for k ≤ π

δ
.

This theory is mostly developed in the absence of boundaries. In the presence of boundaries the difficult
problems of commutativity, near wall modeling and filtering through a boundary still arise. These problems
have motivated reconsideration of the oldest ideas in fluid dynamics: using simple regularizations of the NSE
instead of complex models. We have shown that deconvolution can produce dramatic improvement in NSE
regularizations as well. Two are presented in Section 1.5: the Leray deconvolution regularization and the
deconvolution NS-alpha regularization.

Overall, we see that strong stability + high accuracy leads to good things in LES models. The ADM
approach is one path (of several) of obtaining both simultaneously. We also believe that deconvolution ideas
have strong independent value and can be used to improve most (or all) LES models and NSE regularizations.

1.2 Approximate Deconvolution

The basic problem in approximate deconvolution is:

given u+ noise, find u approximately. (1.1)

Typically, the averaging operator is not stably invertible, so various approximate deconvolutions are neces-
sary:

1. The van Cittert deconvolution operator.
The van Cittert method of approximate deconvolution, see [8], constructs a family DN of inverses to G
using N steps of fixed point iterations.

Algorithm 1.2.1 [van Cittert Algorithm]: Given an averaging operator G, choose u0 = u. For n =
0, 1, 2, ..., N − 1 perform un+1 = un + {u−Gun}. Set DNu := uN .

A mathematical theory of the van Cittert deconvolution operator and LES models is developing [1, 7, 20]
and [35]. For example, it is known that if G is SPD then DN : L2(Q) → L2(Q) is a bounded operator.
For N = 0, 1, and 2 the transfer function of DN is D̂0 = 1, D̂1 = 2 − 1

k2+1 = 2k2+1
k2+1 , and D̂2 =

1 + 1
k2+1 +

(
k2

k2+1

)2

, Figure 1.1. (a).
2. The Accelerated van Cittert deconvolution operator.

Relaxation parameters can be included in Algorithm 1.2.1 at little additional computational cost.

Algorithm 1.2.2 [Accelerated van Cittert Algorithm]: Given relaxation parameters ωn, choose u0 = u.
For n = 0, 1, 2, ..., N − 1 perform un+1 = un + ωn{u−Gun}. Set Dω

Nu := uN .

Proposition 1. Let the averaging operator be the differential filter Gϕ := (−δ24 + I)−1ϕ. If the re-
laxation parameters ωi are positive, for i = 0, 1, ..., N , then the Accelerated van Cittert deconvolution
operator Dω

N : L2(Q)→ L2(Q) is symmetric positive definite.

Proof. The proof follows from [[42], Lemma 3.2].

The transfer functions ofDω
N forN = 1 and 2 are D̂ω

1 = 1+ω0
k2

k2+1 , D̂ω
2 = 1+(ω0+ω1) 1

k2+1−ω0ω1
1

(k2+1)2 .
Optimal values of the relaxation parameters ωi, for i = 0, 1, 2, 3, 4 were calculated in [42], Table 1. With
these values, in Figure 1.1. (b) we plot Dω

N for N = 1 and 2 and exact deconvolution.
The graphs of the transfer functions have high order contact at 0. Thus DN and Dω

N lead to a very
accurate solution of the deconvolution problem.

3. Tichonov regularization deconvolution operator. Given u and 1 > µ > 0, since G is SPD, an
approximate solution to the deconvolution problem (1.1) can be calculated as the unique minimizer in
L2(Q) of the functional

Fµ(v) =
1
2

(Gv,v)− (u,v) +
µ

2
(v −Gv,v).
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(a) (b)

Fig. 1.1. (a) Transfer functions of G−1 and DN (N=0,1,2); (b) Exact and Accelerated DN (N=1,2)

Fig. 1.2. Exact and Tichonov Deconvolution (µ = 0.1, 0.01)

The resulting family of Tichonov regularization deconvolution operators is

Dµ = ((1− µ)G+ µI)−1. (1.2)

The family of operators Dµ has the following properties, [53]
• for any µ > 0, Dµ is a bounded SPD operator,
• limµ→0Dµϕ = ϕ for all ϕ ∈ L2(Q).
The transfer function of the Tichonov deconvolution operator is

D̂µ =
1 + k2

1 + µk2
.

To plot D̂µ, we consider µ = 0.1, and 0.01. Figure 1.2 shows that as µ→ 0, Dµ becomes very accurate.

1.3 Theory of Approximate deconvolution models

In the absence of boundaries, the exact SFNSE can be rewritten as

ut +∇ · (D(u)D(u))− ν4u+∇p+∇ · (uu−D(u)D(u)) = f(x) , and ∇ · u = 0. (1.3)

An LES model results from dropping the residual stress / consistency error uu − D(u)D(u). The smaller
the consistency error , the closer the model is to the exact SFNSE and (hopefully) the closer the model’s
solution is to the exact u. The residual stress / consistency error, uu−D(u)D(u), is directly related to the
deconvolution error u−D(u) since

uu−D(u)D(u) = [u−D(u)]u+D(u)[u−D(u)].
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Thus, the more accurately the deconvolution problem can be solved, the more accurately (on the large scales)
the closure problem is approximated.
The approximate deconvolution model results from dropping the residual stress tensor τ on the right-hand
side of the SFNSE (1.3) and adding the high order relaxation term χ(w−D(w)). Thus, this tensor represents
the model consistency error.

1.3.1 The Zeroth Order Model

The zeroth order van Cittert operator is D = I or, equivalently, the simple approximation φ = φ + O(δ2).
This gives the simplest N = 0 closure model

uu⇐ u u+O(δ2)

and yields the zeroth order ADM:

wt +∇ · (w w)− ν4w +∇q = f(x), and ∇ · w = 0. (1.4)

The zeroth order model is not of sufficient accuracy for practical computations. It has, however, proven to be
an important, even breakthrough test bed of mathematical ideas in LES. All the key mathematical results
for approximate deconvolution models were first proven for the zeroth order model and the proofs in the
general case were based on the ideas developed for it. We start with the most important example.

Theorem 1. (from [33]) Consider (1.4) with L-periodic boundary conditions and the initial condition
w(x, 0) = u0(x).

Φ = A−1Φ, A = −δ2∆+ 1.

Let the averaging operator be the differential filter: Then, weak solutions to the zeroth order model exist
uniquely and satisfy the energy equality:

1
2
[
‖w(t)‖2 + δ2‖∇w(t)‖2

]
+
∫ t

0

[
ν‖∇w(t′)‖2 + νδ2‖4w(t′)‖2

]
dt′ =

1
2
‖u0(t)‖2 +

∫ t

0

(f(t′), w(t′))dt′.

Proof. (Sketch) The key to the model, like the NSE, is to make the nonlinear term vanish by an appropriate
choice of test function. In the zeroth order model’s case we observe

(∇ · (w w), Aw) = (A−1∇ · (w w), Aw) = (∇ · (w w), w) = ( as for the NSE case) = 0.

Thus, the key to the model is taking the inner product of (1.4) with Aw. Since

(∇q, Aw) = (q,∇ ·Aw) = (q, A∇ · w) = 0,

we have
(wt, Aw) + (∇ · (w w), Aw)− ν(4w,Aw) + (∇q,Aw) = (f(t), Aw). (1.5)

Integrating by parts each term gives

1
2
d

dt
[(w,w) + δ2(∇w,∇w)] + [ν(∇w,∇w) + δ2(4w,4w)] = (f(t), w).

This energy estimate has many important consequences.

• Existence, uniqueness and regularity of strong solutions, [34].
• Correct prediction of turbulent flow statistics for homogeneous, isotropic turbulence through the resolved

scales and accelerated attenuation of energy thereafter, [41].
• Convergence (modulo a subsequence) of the models solution as the averaging radius δj → 0 to a weak

solution of the Navier Stokes equations, [34].
• Optimal estimates of the model error (‖uNSE −wLES‖) is bounded by the model’s consistency error (or

residual stress), [34].
• Exact conservation of a model energy in the appropriate case (zero viscosity and body force). This implies

in particular, global existence for the zeroth order Euler-deconvolution model obtained by setting ν = 0,
see [34, 33].

• A first result that the zeroth order model does not induce non-physical vorticial structures, and correct
prediction of vorticities for low regularity flow data, see [34, 44].
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The problem of non-periodic boundaries can be vexing because it includes the issues of filtering through
a boundary and finding effective boundary conditions for (non-local) flow averages or near-wall laws. In
[MM05] both important problems were resolved by a clean and computationally attractive formulation of
averaging that seems to extend to the general N th order model. Also, a complete numerical analysis of
variational discretizations of the model was performed, i.e., the problem of numerical errors in the model
was resolved. Interestingly, stability was delicate but with the correct filtering: no additional numerical or
model dissipation is needed for a stable simulation. With other seemingly natural filtering procedures, the
model’s discrete kinetic energy was seen to blow up in finite time.

1.3.2 Energy balance of general ADMs

The extension to the van Cittert family was accomplished by Dunca [19] and Dunca and Epshteyn [20]. With
D = DN and χ = 0, they showed

1
2

[‖w(T )‖2D+δ2‖∇w(T )‖2D]+
∫ T

0

ν‖∇w(t)‖2D+νδ2‖4w(t)‖2Ddt=
1
2
[
‖u0‖2D+δ2‖∇u0‖2D

]
+
∫ T

0

(f, w(t))Ddt.

(1.6)

The main differences between N = 0 and n ≥ 1 cases are that the consistence error is very high: C(Re)δ2N+2

vs. O(δ2) and the while the zeroth order model is exactly Galilean invariant, [33], while the N th model is
Galilean invariant to O(δ2N+2).

Beyond van Cittert deconvolution (above), current research, e.g., Stanculescu [53], investigates general
deconvolution models. LetD denote an approximate deconvolution operator, so that ‖D‖L(L2(Ω)→L2(Ω)) <∞
and

‖D‖L(L2(Ω)→L2(Ω)) <∞ and D φ ' φ in some useful sense.

The associated base approximate deconvolution is

wt +∇ · (Dw Dw)− ν4w +∇q = f(x) , and ∇ · w = 0. (1.7)

Like the N = 0 case, the consistency error / residual stress tensor of the base ADM is

τ(u, u) = D(u) D(u)− uu.

Finding the energy balance of the general model depends upon: given w, construct an associated function
Φ(w) with

(∇ · (DwDw), Φ(w)) = · · · = (v · ∇v, v) = 0.

Taking Φ(w) = ADw we find (with v = D(w)) from (1.7)

(∇ · (DwDw), ADw) = (A−1∇ · (DwDw), ADw) = (∇ · (D(w)D(w)), D(w)) =
= (v · ∇v , v) = (as for the NSE case) = 0.

This gives, following the zeroth order case, the energy estimate (1.6) since we have

(wt, ADw)− ν(4w,ADw) = (f(x, t), ADw). (1.8)

This is deconvolution weighted version of the same energy estimate as the N = 0 case (compare (1.6) with
Theorem 1). If the operators involved commute (as is expected in the periodic case) and the operator D is
SPD then this just represents a weighting of the usual L2 norm and inner product.

We thus have the fundamental compatability conditions that

4, A,D commute, and D is SPD.

As an example, in the periodic case the Laplacian and the Stokes operator coincide, apart from their domains
of definition. Both the differential filter A and the van Cittert approximate deconvolution operators are
functions of the Laplacian (specifically, D = f(A) and A = g(4)). Thus all three operators commute. The
assumption that D is SPD is thus the essential condition.

Proposition 2. Let G be the differential filter G = A−1 where A = −δ2∆ + 1. Then, the van Cittert
approximate deconvolution operator is symmetric positive definite.
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Proof. Both A−1 and (I −A−1) are SPD. For example, (I −A−1) is a SPD since

(φ, (I −A−1)φ) = (letting ψ = A−1φ) = δ4‖4ψ‖2 + δ2‖∇ψ‖2 > 0

for φ 6= 0. The operator DN can thus be written as a sum of SPD operators:

DN =
N∑
n=0

(I −A−1)n

When D is SPD, we can work with associated weighted norms.
Using weighted norms, integrating by parts each term in the energy equation gives

1
2
d

dt
[‖v‖2D + δ2‖∇v‖2D] + [ν‖∇v‖2D + νδ2‖4v‖2D] = (f(t), w)D.

The above clearly identifies the ADM energy and energy dissipation rate. The ADM kinetic energy, conserved
exactly if ν = f = 0, and energy disipation rate are given by

EADM (w) =
1
2

1
|Ω|

[‖w‖2D + δ2‖∇w‖2D], εADM (w) :=
ν

|Ω|
‖∇w‖2D +

νδ2

|Ω|
‖4w‖2D.

These are the essential ingredients (together with complementing mathematical technicalities) of the following
result of Stanculescu [53].

Theorem 2 (ADM Energy Equality). Suppose that 4, A,D commute, D is SPD. Then, a unique strong
solution of the general ADM exists. Further, the following energy equality holds

EADM (w)(t) +
∫ t

0

εADM (w)(t′)dt′ = EADM (w)(0) +
∫ t

0

1
|Ω|

(f, w)(t′)dt′.

From the energy equality, mathematical and physical theories of the approximate deconvolution model
with SPD deconvolution operators parallel the zeroth order model. For example, the following results are
known.

• The Leray theory of the model: Existence, uniqueness and regularity of strong solutions, Layton and
Lewandowski [33, 34], Dunca [19], Dunca and Epstein [20], Stanculescu [53], Berselli, Iliescu and Layton
[7] and convergence modulo a subsequence to a weak solution of the Navier-Stokes equations:

wADM → uNSE , as δj → 0.

• High Accuracy: High accuracy for the large scales. For van Cittert deconvolution:

max
[0,T ]
‖u− w‖2 +

∫ T

0

ν‖∇(u− w)‖2dt′ ≤ C(u,Re)δ4N+4.

• Physical fidelity: correct prediction of turbulent flow statistics. Model phenomenology predicts an
energy cascade and helicity with the correct statistics through the resolved scales and an accelerated
energy attenuation thereafter, ([39, 40, 37], see also Section 1.4):

Ê(k) ≈ C〈εmodel〉
2
3 k−

5
3 , and Ĥ(k) ≈ C〈γmodel〉〈εmodel〉−1/3k−5/3 over kmin ≤ k ≤ 1/δ.

1.4 Phenomenology of Approximate deconvolution models

In 1961 helicity’s inviscid invariance was discovered [46]. (See also [45]). Helicity is a rotationally meaningful
quantity that can be checked for accuracy in a simulation. There is considerable evidence that both energy
and helicity exhibit cascades and the details of their respective cascades are intertwined, e.g. [4]. Recent
theoretical studies, which have been experimentally confirmed by [9], have suggested that for homogeneous,
isotropic turbulence averaged fluid velocities exhibit a joint energy and helicity cascade through the inertial
range of wave numbers given by

E(k) = CEε
2/3k−5/3, H(k) = CHγε

−1/3k−5/3,

where k is wave number, ε the time averaged energy dissipation rate, γ the time averaged helicity dissipation
rate and CE , CH constants of proportionality for energy and helicity respectively, see [10, 11, 18].
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1.4.1 Energy Cascade of Approximate deconvolution models

The correctness of an LES model is prediction of Energy cascades of LES models were first studied by
Muschinsky [47], and later by Holm, Olson and Titi [21] followed by [39, 40] for ADMs. If we set χ = 0 and
apply A to the ADM it becomes:

∂

∂t

[
w − δ24w

]
+DN (w) · ∇DN (w)− ν

[
4w − δ242w

]
+∇P = f , in Ω × (0, T ).

Since DN is spectrally equivalent to the identity (uniformly in k, δ, nonuniformly in N) the nonlinear
interaction DN (w) ·∇DN (w) (like those in the NSE) will pump energy from large scales to small scales. The
viscous terms in the above equation will damp energy at the small scales (more strongly than in the NSE in
fact). Lastly, when ν = 0, f ≡ 0 the model’s kinetic energy is exactly conserved.

Emodel(w)(t) = Emodel(w0).

Thus, the family of ADMs satisfies all the requirements for the existence of a Richardson - like energy
cascade for Emodel. We thus proceed to develop a similarity theory for ADM’s (paralleling the K-41 theory
of turbulence) using the Π-theorem, see e.g. [17].

The units of a variable will be denoted by [·]. Select the variables:

• Emodel - time averaged energy spectrum of model with [Emodel] = length3time−2 ,
• εmodel - time averaged energy dissipation rate of the model with [εmodel(k)] = length2time−3 ,
• k - wave-number with [k] = length−1 and
• δ - averaging radius with [δ] = length .

Choosing primary dimensions mass, length and time, form 2 dimensionless ratios, Π1 and Π2. Choosing
ε and k for the repeating variables we obtain Π1 = εamodelk

bEmodel and Π2 = εcmodelk
dδ for some a, b, c, d

real numbers. Equating the exponents of the corresponding dimensions in both dimensionless groups and
applying the Π-theorem gives

Emodel = ε
2/3
modelk

−5/3f(kδ).

Economy of explanation suggests that f(Π2) = αmodel, (see [40]). In this case we have

Emodel(k) = αmodelε
2/3
modelk

−5/3.

However, interesting conclusions result from the difference between E(w)(t) and Emodel(w)(t). Based on
Parseval’s equality we have Emodel(k) = (I + δ2k2)−1E(k) so

E(k) =
αmodelε

2/3
modelk

−5/3

1 + δ2k2
. (1.9)

Equation (1.9) gives precise information about how small scales are truncated by the base (ξ = 0) ADMs.
Indeed, there are two wave-number regions depending on which term in the denominator is dominant: 1 or
δ2k2. The transition point is the cutoff wave-number k = π

δ . We thus have (Figure 1.3)

E(k) ' αmodelε2/3modelk
−5/3, for k ≤ π

δ
, E(k) ' αmodelε2/3modelδ

−2k−11/3, for k ≥ π

δ
.

Next, we give a summary of the similar explored studies.

• Kraichnan’s dynamic analysis applied to ADM’s. In [40, 37] the dynamical argument of Kraichnan [29]
was used to study the non-dimensional function f(Π2). The dynamic argument strongly supports the
case f(Π2) ≡ constant.

• The microscale of ADMs. In [40], the microscale of the ADMs was shown when χ = 0 to be

ηmodel ' Re−
3
10L

2
5 δ

3
5 (N + 1)−

3
10 .

• The joint helicity-energy cascade. A joint energy and helicity cascade has been shown to exist for homoge-
neous, isotropic turbulence generated by approximate deconvolution models in [37]. The model’s energy
and helicity both cascade at the correct O(k−5/3) rate for inertial range wave numbers up to the cutoff
wave number of O( 1

δ ), and at O(k−11/3) afterward until the model’s energy and helicity microscale.
• Time relaxation. The above analysis of this section presupposes that the relaxation term in the original

model of ADMs is zero. Its effects were studied separately in [41]. Relaxation induces a micro-scale,
ηmodel ≈ δ and triggers decay of eddies.

• Other filters. With the differential filter (−δ2∆ + 1)−1, scales begin to be truncated at l = O(δ) by an
enhanced decay of the energy and helicity of k−11/3. The exponent −11/3 occurs because the filter decays
as k−2. For example, with a Gaussian filter, the cutoff wave-number kC = π/δ.
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Fig. 1.3. Spectrum of kinetic energy of ADMs

1.5 Deconvolution regularizations of the Navier-Stokes equations

Two regularizations of the (unfiltered) Navier-Stokes equations have recently been proposed and studied.
They are the Leray-deconvolution model [36, 38, 50],

vt +DNv · ∇v +∇q − ν∆v = f, ∇ · v = 0, (1.10)

and the NS-α-deconvolution model [48, 49],

vt −DNv × (∇× v) +∇q − ν∆v = f, ∇ ·DNv = 0. (1.11)

Both of these families of models are high-order accurate O(δ2N+2). Also, (1.10) and (1.11) are generalizations
of the Leray-α [14, 43] and NS-α models [12, 13, 21, 22, 27], respectively. Although both the Leray-α (N = 0
in (1.10)) and NS-α (N = 0 in (1.11)) models are well known to have excellent mathematical properties for
solution existence, uniqueness and regularity, their accuracy as models of the unfiltered NSE is inadequate
for practical computations. From the filtering process, these models’ accuracies are reduced to at best O(δ2).

1.5.1 The Leray-deconvolution regularization of the NSE

The Leray-deconvolution model (1.10) was proposed in [36], motivated by the low accuracy of the Leray-α
model. The Leray regularization [33] has many excellent mathematical properties [14]. However, the Leray-α
model has, at best, consistency error of O(δ2).

The model studied in [36], called the Leray-deconvolution model, is: let u0 ∈ H0, f ∈ H−1 and for fixed
T > 0 and filtering radius δ > 0, find (v, q) satisfying

v ∈ L2(0, T ;H1) ∩ L∞(0, T ;H0), q ∈ L2(0, T ;L2
#), vt ∈ L2(0, T ;H−1), (1.12)

vt +DNv · ∇v +∇q − ν∆v = DNf (1.13)
v(0) := v0 = DNu0 (1.14)

where the # denotes zero-mean periodic. The consistency error of (1.12)-(1.14) is O(δ2N+2) for smooth
NSE solutions, and thus its accuracy can be increased by cutting the filering radius (and thus the mesh
width in a computation), or by holding the filtering radius constant and increasing the order of approximate
deconvolution N .

Theorem 3. (from [36]) The problem (1.12-1.14) admits a unique solution v ∈ L∞(0, T ;H1)∩L2(0, T ;H2)
which satisfies the energy equality

‖v(t)‖2 + 2ν
∫ t

0

‖∇v‖2 dt′ = ‖v0‖2 +
∫ t

0

(DNf, v) dt′. (1.15)

Theorem 3 shows the desirable mathematical properties of the Leray-α model extend to the family of Leray-
deconvolution models of arbitrarily high-order accuracy.

Another advantage of Leray-deconvolution is that it lends itself to efficient computation. The filter-and-
deconvolve process can be efficiently treated (as in Baker [5]). By time-extrapolating the first term of the
nonlinearity, O(∆t2) accuracy is maintained and only known terms are filtered and deconvolved. This allows
van Cittert approximate deconvolution to be applied in a very efficient manner.
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Numerical methods for computing solutions to the Leray-deconvolution method were studied in [38].
Using the following discrete definitions for discrete filtering (A−1

h φ := φ
h
) and discrete deconvolution (Dh

N )
in a finite element space Xh,

δ2(∇φh,∇χ) + (φ
h
, χ) = (φ, χ) ∀χ ∈ Xh, Dh

Nφ :=
N∑
n=0

(I −A−1
h )nφ. (1.16)

It is proven in [38] that the consistency of discretely applying approximate deconvolution to a discretely
filtered variable is of high order.

Lemma 1. (from [38]) If Xh is comprised of degree k continuous piecewise polynomials,

‖φ−Dh
Nφ

h‖ ≤ C(N,φ)(δhk + hk+1 + δ2N+2). (1.17)

This lemma is the key in [38] to showing solutions of trapezoidal finite element schemes for Leray-
deconvolution converge at the rate of O(∆t2 +hk+h2N+2), provided sufficient regularity of the true solution
and the filtering radius is chosen on the order of the mesh width. This convergence result shows the advantage
of using approximate deconvolution, as choosing N to balance the exponents allows for optimal convergence.
For N = 0 (i.e. Leray-α), optimal convergence cannot be obtained if k ≥ 3.

In [38], two and three dimensional numerical examples of trapezoidal in time finite element schemes for
Leray-deconvolution are given. The 3d computations were done in Matlab using Taylor-Hood tetrahedral
elements on an h = 1/32 mesh. The 3d tests compared errors for the scheme applied to the NSE and
Leray-deconvolution for N = 0, 1, 2, and compared conservation properties in the simulations.

Fig. 1.4. The figure below shows L2 and H1 error vs time for linear extrapolated Crank-Nicholson finite ele-
ment schemes with h = 1/32, Re=5000, and f computed from the known solution u = 〈cos(2π(z + t)), sin(2π(z +
t)), sin(2π(x+ y + t))〉.
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Figure 1.4 shows error versus time for extrapolated trapezoidal finite elements schemes for the NSE, and
Leray-deconvolution N = 0, 1, 2 on the periodic unit box. The Reynolds number was Re=5000, and f and
u0 were computed from the known solution u = 〈cos(2π(z + t)), sin(2π(z + t)), sin(2π(x+ y+ t))〉. From the
figure, it is seen the errors in the Leray-deconvolution models increases at a much slower rate than for the
NSE. For the L2 error, a dramatic decrease in error can be seen in the N = 1, 2 models vs. N = 0 and NSE.

Figure 1.5 shows, for the extrapolated trapezoidal finite element scheme computations for the NSE
and Leray-deconvlution N = 0, 1, 2, energy and helicity versus time for a flow with initial condition u0 =
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Fig. 1.5. Energy and helicity vs. time of an extrapolated Crank-Nicholson scheme simulation of a flow with initial
condition u0 = 〈cos(2πz), sin(2πz), sin(2πx + y)〉, ν = f = 0, and h = 1/32 for the NSE and LerayDC N = 0, 1, 2.
Energy is conserved by all the schemes, but LerayDC schemes approximately conserves helicity while the NSE scheme
does not.
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〈cos(2πz), sin(2πz), sin(2π(x + y))〉, no viscosity or external force (ν = f = 0), and an h = 1/32 uniform
discretization of the periodic unit cube. In the continuous case, all of these models conserve both energy and
helicity under these conditions. For all four models simulations, energy is exactly conserved; this is enforced
by the scheme. In the helicity graph, it is seen the Leray-deconvolution models approximately conserve
helicity while the NSE simulation does not.

Two dimensional numerical examples are also given in [38] for two dimensional transitional flow (ν =
1/600) over a forward and backward facing step. Figure 1.6 shows the true solution of this problem, run
for the Navier-Stokes equations on a very fine mesh (45, 138 degrees of freedom), and show the solution at
times 10, 20, 30, and 40 seconds. Here it is seen that eddies form behind the step, shed, and new eddies
form. Since the purpose of turbulence modeling is to use them with many less d.o.f. than for a DNS, we
run the same problem on a much coarser mesh (only 5, 845 d.o.f.) for the Leray-α model and for the Leray-
deconvolution N = 2 models. Figure 1.8 shows the results for the Leray-α model: an eddy forms behind the
step and stretches out. This corresponds to the model being too dissipative and the Leray-α model not being
sufficient to model the NSE on the same coarse mesh. However, for the Leray-deconvolution N = 2 model
shown in Figure 1.7 on that same mesh, eddies are seen to break off and new ones form behind the step.

Fig. 1.6. DNS of Navier-Stokes with 45,138 degrees of freedom
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The analysis and computations of [36, 38] make a strong case that preserve desirable solution properties,
add accuracy, decrease error in computations without decreasing mesh width, and increase physical fidelity.

1.5.2 The NS-α-deconvolution regularization of the NSE

The NS-α-deconvolution model [48] is a helicity-corrected Leray-deconvolution model. One drawback of
Leray-deconvolution is an inaccurate treatment of three dimensional rotation. Helicity is as important as
energy for understanding three dimensional turbulent flow [45]. Helicity is input at the large scales and
cascaded by the nonlinear effects to the small scales where viscous forces drive it to zero [18, 10]. Thus
a physically accurate turbulence model should do the same; however, the nonlinear effects of the Leray-
deconvolution model non-physically create and dissipate helicity [50]. By adding a helicity-correcting term
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Fig. 1.7. Leray-deconvolution N = 2 simulation on 5,845 degree of freedom mesh
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Fig. 1.8. Leray-α (N = 0 Leray-deconvolution) simulation on 5,845 degree of freedom mesh
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to Leray-deconvolution (see [48]), a model which treats helicity in a physically accurate manner is recovered:
the NS-α-deconvolution model.

Since NS-α-deconvolution has only very recently been proposed, the mathematical theory behind this
model has not yet been developed as far as that of the Leray-deconvolution model (but this work is currently
underway!). What has been proven is that the NS-α-deconvolution model conserves both a model energy
and helicity, and is nonlinearly stable [48]. We formally state these results next, after defining the natural
energy and energy dissipation norms of NS-α-deconvolution:

‖v‖2E(NSαD) := (v,DNv) =
1
2
‖v‖2D +

δ2

2
‖∇v‖2D

‖v‖2ε(NSαD) := (∇v,∇DNv) = ‖∇v‖2D + δ2‖∆v|2D
Theorem 4. (From [48]) Solutions of NS-α-deconvolution on a periodic domain in three dimensions, for
ν = f = 0, conserve both energy and helicity: For T > 0, and provided sufficient smoothness,

ENSαD(T ) = ‖v(T )‖E(NSαD) = ‖v(0)‖E(NSαD) = ENSαD(0)
H(T ) = (v(T ),∇× v(T )) = (v(0),∇× v(0) = H(0)

Theorem 5. If (v, q) is a solution to (1.11) on a domain Ω given ν > 0, f ∈ L2(0, T ;H−1(Ω)), and initial
velocity v0 ∈ H1(Ω), then the velocity at time T is bounded by the data:

‖v(T )‖2E(NSαD) + ν

∫ T

0

‖∇v(t)‖2ε(NSαD) dt ≤ ‖v0‖
2
E(NSαD) + C(N)ν−1‖f‖2L2(0,T ;H−1)

Similar to the accuracy improvement in numerical methods given by Leray-deconvolution (N ≥ 1) over
Leray-α (N = 0), improved accuracy in computational schemes for NS-α can be obtained with the use of
approximate deconvolution. In [49], a trapezoidal in time finite element numerical scheme for NS-α that
preserves both energy and helicity is analyzed, and also generalized to an analogous scheme for NS-α-
deconvolution. The convergence analysis for the generalized scheme shows its velocity converges to a NSE
solution at the rate of O(∆t2 + hk + h2N+2), where (Pk, Pk−1), k ≥ 2 elements are used. Hence for Taylor-
Hood elements (k = 2), optimal convergence is obtained when N = 0, but for the higher order elements,
using N = 0 will give suboptimal convergence rates. However, by increasing N so that 2N + 2 ≥ k, optimal
convergence rates can be obtained. Numerical results to test this theory are currently underway, as are
experiments to compare the NS-α scheme (N = 0) to the NS-α-deconvolution (N ≥ 1) scheme.
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1.6 Complex fluids: the case of MHD turbulence

Magnetically conducting fluids arise in important applications including plasma physics, geophysics and as-
tronomy. In many of these, turbulent MHD (magnetohydrodynamics [3]) flows are typical. The difficulties of
accurately modeling and simulating turbulent flows are magnified many times over in the MHD case. They
are evinced by the more complex dynamics of the flow due to the coupling of Navier-Stokes and Maxwell
equations via the Lorentz force and Ohm’s law. The MHD equations are related to engineering problems
such as plasma confinement, controlled thermonuclear fusion, liquid-metal cooling of nuclear reactors, elec-
tromagnetic casting of metals, MHD sea water propulsion.

The mathematical description of the problem proceeds as follows. Assuming the fluid to be viscous and
incompressible, the governing equations are the Navier-Stokes and pre-Maxwell equations, coupled via the
Lorentz force and Ohm’s law (see e.g. [52]). Let Ω = (0, L)3 be the flow domain, and u(t, x), p(t, x), B(t, x)
be the velocity, pressure, and the magnetic field of the flow, driven by the velocity body force f and magnetic
field force curl g. Then u, p,B satisfy the MHD equations:

ut +∇ · (uuT )− 1
Re
∆u+

S

2
∇(B2)− S∇ · (BBT ) +∇p = f,

Bt +
1

Rem
curl(curlB) + curl (B × u) = curl g,

∇ · u = 0,∇ ·B = 0,

(1.18)

in Q = (0, T )×Ω, with the initial data: u(0, x) = u0(x), B(0, x) = B0(x) in Ω, and with periodic boundary
conditions (with zero mean). Here Re, Rem, and S are nondimensional constants that characterize the flow:
the Reynolds, the magnetic Reynolds and the coupling number, respectively. For derivation of (1.18), physical
interpretation and mathematical analysis, see [16, 32, 51, 28] and the references therein.

If aδ1 , aδ2 denote two local, spacing averaging operators that commute with the differentiation, then
averaging (1.18) gives the following non-closed equations for uδ1 , B

δ2
, pδ1 in (0, T )×Ω:

uδ1t +∇ · (uuT
δ1

)− 1
Re
∆uδ1−S∇ · (BBT

δ1
)+∇

(S
2
B2

δ1 +pδ1
)

=f
δ1
,

B
δ2
t +

1
Rem

curl(curlB
δ2)+∇ · (BuT

δ2
)−∇ · (uBT

δ2
) = curl gδ2 ,

∇ · uδ2 = 0, ∇ ·Bδ2 = 0.

(1.19)

The usual closure problem which we study here arises because uuT
δ1 6= uδ1 uδ1 , BBT

δ1 6= B
δ1
B
δ1 , uBT

δ2 6=
uδ1 BT

δ2
. To isolate the turbulence closure problem from the difficult problem of wall laws for near wall

turbulence, we study (1.18) hence (1.19) subject to periodic boundary conditions. The closure problem is to

replace the tensors uuT
δ1

, BBT
δ1

, uBT
δ2

with tensors T (uδ1 , uδ1), T (B
δ2
, B

δ2), T (uδ1 , B
δ2), respectively,

depending only on uδ1 , B
δ2 and not u,B. There are many closure models proposed in large eddy simulation

reflecting the centrality of closure in turbulence simulation. Calling w, q,W the resulting approximations to
uδ1 , pδ1 , B

δ2 , we are led to considering the following model

wt +∇ · (wwT
δ1

)− 1
Re
∆ w − S∇ · (W WT

δ1
) +∇q = f

δ1
,

WT +
1

Rem
curl(curlW ) +∇ · (WwT

δ2
)−∇ · (wWT

δ2
) = curl gδ2 ,

∇ · w = 0, ∇ ·W = 0,

(1.20)

subject to w(x, 0) = uδ10 (x),W (x, 0) = B
δ2
0 (x) and periodic boundary conditions (with zero means).

We show that the LES MHD model (1.20) has the mathematical properties which are expected of a
model derived from the MHD equations by an averaging operation and which are important for practical
computations using (1.20).

The model considered can be developed for quite general averaging operators, see e.g. [1]. The choice
of averaging operator in (1.20) is the differential filter (−δ2∆+ I)−1. (We use different lengthscales for the
Navier-Stokes and Maxwell equations). We recall the solenoidal space

D(Ω) = {φ ∈ C∞(Ω) : φ periodic with zero mean,∇ · φ = 0},

and the closures of D(Ω) in the usual L2(Ω) and H1(Ω) norms :

H = {φ ∈ H0
2 (Ω),∇ · φ = 0 in D(Ω)′}2, V = {φ ∈ H1

2 (Ω),∇ · φ = 0 in D(Ω)′}2.
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We define the operator A ∈ L (V, V ′) by setting

〈A (w1,W1), (w2,W2)〉 =
∫
Ω

(
1

Re
∇ w1 · ∇w2 +

S

Rem
curlW1curlW2

)
dx,

for all (wi,Wi) ∈ V . The operator A is an unbounded operator on H, with the domain D(A ) = {(w,W ) ∈
V ; (∆w,∆W ) ∈ H} and we denote again by A its restriction to H. We define also a continuous tri-linear
form B0 on V × V × V by setting

B0((w1,W1), (w2,W2), (w3,W3)) =
∫
Ω

(
∇ · (w2wT1

δ1
)w3

−S∇ · (W2WT
1

δ1
)w3 +∇ · (W2wT1

δ2
)W3 −∇ · (w2WT

1

δ2
)W3

)
dx

and a continuous bilinear operator B(·) : V → V with

〈B(w1,W1), (w2,W2)〉 = B0((w1,W1), (w1,W1), (w2,W2))

for all (wi,Wi) ∈ V .
In terms of V,H,A ,B(·) we can rewrite (1.20) as

d

dt
(w,W )+A (w,W )(t)+B((w,W )(t))=(f

δ1
, curl gδ2), t ∈ (0, T ),

(w,W )(0) = (uδ10 , B
δ2
0 ),

(1.21)

where (f , curl g) = P (f, curl g), and P : L2(Ω)→ H is the Leray-Hodge projection [15, 54].
Let (u0

δ1 , B0
δ2) ∈ H, f

δ1
, curl gδ2 ∈ L2(0, T ;V ′). The measurable functions w,W : [0, T ] × Ω → R3 are

called weak solutions of (1.21) if w,W ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), and w,W satisfy∫
Ω

w(t)φdx+
∫ t

0

∫
Ω

(
1

Re
∇w(τ)∇φ+ w(τ) · ∇w(τ)

δ1
φ− SW (τ) · ∇W (τ)

δ1
φ

)
dxdτ

=
∫
Ω

u0
δ1φdx+

∫ t

0

∫
Ω

f(τ)
δ1
φdxdτ,∫

Ω

W (t)ψdx+
∫ t

0

∫
Ω

(
1

Rem
∇W (τ)∇ψ + w(τ) · ∇W (τ)

δ2
ψ −W (τ) · ∇w(τ)

δ2
ψ

)
dxdτ

=
∫
Ω

B0
δ2
ψdx+

∫ t

0

∫
Ω

curl g(τ)
δ2
ψ dxdτ,

∀t ∈ [0, T ), φ, ψ ∈ D(Ω).
The main result in [31] states that the weak solution of the MHD LES model (1.20) exists globally in

time, for large data and general Re,Rem > 0 and that it satisfies an energy equality while initial data and
the source terms are smooth enough.

Theorem 6. Let δ1, δ2 > 0 be fixed. For any (u0
δ1 , B0

δ2) ∈ V and (f
δ1
, curl gδ2) ∈ L2(0, T ;H), there exists a

unique strong solution w,W to (1.20). The strong solution also belongs to L∞(0, T ;H1(Ω))∩L2(0, T ;H2(Ω))
and wt,Wt ∈ L2((0, T )×Ω). Moreover, the following energy equality holds for t ∈ [0, T ]:

E(t) +
∫ t

0

ε(τ)dτ = E(0) +
∫ t

0

P(τ)dτ,

where

E(t)=
δ1

2

2
‖∇w(t, ·)‖20 +

1
2
‖w(t, ·)‖20 +

δ2
2S

2
‖∇W (t, ·)‖20 +

S

2
‖W (t, ·)‖20,

ε(t)=
δ1

2

Re
‖∆w(t, ·)‖20+

1
Re
‖∇w(t, ·)‖20+

δ2
2S

Rem
‖∆W (t, ·)‖20+

S

Rem
‖∇W (t, ·)‖20,

P(t)=(f(t), w(t)) + S(curl g(t),W (t)).

In the proof we use the semigroup approach proposed in [6] for the Navier-Stokes equations, based on the
machinery of nonlinear differential equations of accretive type in Banach spaces. The other results derived
for the model (1.20) in [31] concern: (i) regularity of the solution, (ii) error estimates for the model, (iii)
conservation laws: the model conserves exactly the approximate physical quantities and (iv) conservation
Alfvén waves: the model predicts the Alfvén waves correctly. Using a least-squares method, we compute
in [30] the radii δ1, δ2 defining the averaging differential operators such the solution w,W to (1.20) best
approximate any given velocity and magnetic fields u◦, B◦.
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