PARTITIONED TIME STEPPING METHOD FOR FULLY EVOLUTIONARY
STOKES-DARCY FLOW WITH BEAVERS-JOSEPH INTERFACE
CONDITIONS
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Abstract. In this report, a partitioned time stepping algorithm for transient flow in a porous medium
coupled to a free flow in embedded conduits is analyzed. The coupled flow is modeled by the fully evolutionary
Stokes-Darcy problem. This method requires only solve one, uncoupled Stokes and Darcy sub-physics and sub-
domain per time step. On the interface between the matrix and conduit, Beavers-Joseph interface conditions,
instead of the simplified Beavers-Joseph-Saffman condition, are imposed. Under a modest time step restriction
of the form At < C where C = C(physical parameters) we prove stability of the method. We also derive error
estimates. Numerical tests illustrate the validity of the theoretical results.
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1. Introduction. The transport of substances coupling between surface water and ground-
water is an important problem of great current interest. In many countries, groundwater is a
major source of drinkable and industrial water. Groundwater systems are so tightly bonded
with the lives of human beings that they are also very susceptible to contamination.

Generally speaking, in conduit domain, the Stokes equation, are commonly used. In the
matrix domain, one popular choice is to use Darcy law. For the coupled Stokes-Darcy model,
two boundary conditions are well-accepted: the continuity of the normal velocity across the
interface which is a consequence of the the conservation of mass, and the balance of force
normal to the interface (2.6). Actually, there have been a few studies of the numerical solutions
of the coupled Stokes-Darcy equations, see [5, 6, 10, 11, 13]. All the work, however, consider
only the steady state case and utilize the simplified interface conditions such as the Beavers-
Joseph-Saffman-Jone condition. Among the fewer papers (so far) on the numerical analysis
of the fully evolutionary Stokes-Darcy problem (consider herein), Mu and Zhu [12] study a
partitioned method which we build upon herein. Cao, Gunzburger, Hu, Hua, Wang and Zhao [3,
4] study a fully, monolithically coupled implicit method for the much harder and physically more
accurate case of Beavers-Joseph coupling condition (without Saffman’s simplication), which we
considered herein. The main mathematical difficulty in adopting the Beavers-Joseph interface
conditions is that the bilinear form in the weak formulation is not coercive. The remedy is a
novel rescaling (which can be interpreted as pre-conditioning) of the Darcy equation [4], which
turns out that the bilinear form for the new system satisfies a Garding-type inequality for a
sufficiently large scaling factor n. This essentially leads to the well-posedness of the system.

In this report, we propose a partitioned time stepping method for fully evolutionary Stokes-
Darcy problem with the classical empirical Beavers-Joseph interface condition which was pro-
posed in the seminal work [2]. This method requires only solve one, uncoupled Stokes and
Darcy sub-physics and sub-domain solve per time step. Most importantly, both subdomain
solvers are used as a black box, each time step involves passing information across the interface
followed by solving the individual subproblems independently. We still rescale Darcy equation
with the scaling factor 7 as the coupled scheme [3] does, moreover, we prove that sufficient large
1 enables us to complete convergence and error analysis of the partitioned method.
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The organization of the paper is as follows: in Section 2, we provide the formulation and
the coupled method for the fully evolutionary Stokes-Darcy system. We present the partitioned
sheme and analyze its stability in Section 3. In section 4, we analyze the error estimations
for velocity and pressure. Numerical tests are reported in Section 5, followed by conclusion in
Seciton 6.

2. Stokes-Darcy system with Beavers-Joseph interface condition.

2.1. Formulation of the problem. Specifically, let us consider a conduit-matrix system
consist of two domain, the conduit domain €2, and the matrix domain 2,,, see the figure 2.1,
where Q.,Q,, C R¥(d = 2,3) are bounded domains, Q. N Q,, = 0 and T,y = Q,, N Q, T =
O\ Tem and Ty = 0Q \ T

cm

Fic. 2.1. The global domain Q2 consisting of the matriz region 2y and the conduit region 2., separated by
the interface T'cp, .

In the matrix domain €2,,, the flow is governed by

S0t +V vy = fo in Q,,,
(2.1) Vin = —KV¢,, in Q,,
¢m(0) = ¢o, in O,

which includes, in the first equation, the saturated flow model and, in the second equation,
Darcy’s law [1]. In (2.1), 0; := %,vm denotes the specific discharge, ¢,, the hydraulic (piezo-
metric) head, S the mass storativity coefficient, K(x) denotes the hydraulic conductivity tensor
of the porous media, which is assumed to be symmetric and positive definite but could be
location dependent (heterogeneous), and fs a sink/source term. The unknown ¢,, denotes the
hydraulic (piezometric) head, which is linearly related to the dynamic pressure of the fluid p,,
defined as ¢, = z+ %, where p denotes the density, g the gravitational acceleration, and z the
relative depth from an arbitrary fixed reference height. By substituting the second equation in
(2.1) into the first one, we obtain the parabolic equation that governs the hydraulic head:

(2.2) SOpm +V - (~KVm) = fo in Q.
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In the following, we will refer to (2.2) simply as the Darcy equation. We impose the homogeneous
Dirichlet condition along the boundary of the matrix:

(2.3) ¢m =0 onl,,.
In the conduit domain €., the flow is governed by the Stokes equations:

Ove =V - (—pl+2uD(v,.)) +fi  in Q.,
(2.4) V-v.=0 in .,
Vc(o) = Vo in Qc,

where v, denotes the fluid velocity, p the kinematic pressure, D(v.)) := 1(Vv, + (Vv,)T) the
deformation tensor, v the kinematic viscosity of the fluid, and f; a general body forcing term
that includes gravitational acceleration. For the sake of simplicity, the homogeneous Dirichlet
condition is imposed on the boundary of the conduit:

(2.5) ve=0 onl,.

We use the subscripts m and c¢ to indicate where the variables belong. We omit these subscripts
in what follows whenever there is no possibility for confusion.

In addition to the boundary conditions (2.3) and (2.5) imposed along the boundary of the
matrix or conduit, respectively, we apply the Beavers-Joseph interface boundary conditions on
I'.;, that coupled the solutions in the two domains:

Ve Nem = Vi " Nem on chv

(2.6) _nchT(VCvp)ncm = g(ém — 2) on ey,
d

_PT(T(Vcap)ncm) = %PT(VC — Vm) on ch7

trace(II)

where n.,, denotes the unit normal vector on I';,, pointing from €. to 2,,, the stress tensor
T(ve,p) := —pl + 2vD(v,). P-(:) the projection onto the local tangent plane on T, g the
gravitational acceleration, a denotes a constant parameter which depends on the properties of
the porous material as well as the geometrical setting of the coupled problem, IT represents
the intrinsic permeability that satisfies the relation K = %. It should be notice that II and
K differ by a factor of a constant. Thus, all the assumptions on K such as symmetric positive
definiteness also carry over to II.

The first two interface boundary conditions in (2.6) are quite natural, as discussed in [4].
The first condition guarantees the conservation of the mass, i.e., the exchange of fluid between
the two domains is conservative. The second condition represents the balance of two driving
forces, the kinematic pressure in the matrix and the normal component of the normal stress in
the free flow, in the normal direction along the interface. The last equation in (2.6) is the well-
known Beavers-Joseph condition [2]. However, whether the Beavers-Joseph interface condition
leads to a well-posed problem is still unclear. If the term v, — v, is replaced by v, the the
Beavers-Joseph condition reduces to the Beavers-Joseph-Saffman-Jones condition [8, 14] which
is prevalently used.

2.2. Weak formulation of the fully evolutionary Stokes-Darcy model. For s > %,
define the Hilbert spaces
H,:={we (H*(Q:)? |w=0on T.},
fﬁ,o ={p € H*(Qm) | ¢=0o0nT\,},
Q= Lz(QC)a



and the product Hilbert spaces

L? = (L2(Q.)? x L* (),
H® :=H:, x H, .

=2 c,

A norm on @ is given by
llallo := llallz2(.)
for ¢ € Q and a norm in H® is given by

)1/2

|lw]]s == (HWH%HS(QC))UZ + Il ?’-IS(Qm)

for w = (w,p) € H®. In what follows, we use W to denote H' and V the divergence free
subspace of W, i.e.,

V:=H, ,, x Hy o,

c,div

where Hi,dm ={w e Hi,o | divw = 0}. In particularly, we use the notations of the norm
hereafter,

llullo == [[ullz2(.), [[Vullo = [[ull = [Julla @)

181l := 118l L2 (2, IV Ollo = 101l = [2lla2, ,(2,0)-

If we define the bilinear forms a : W x W — R and b: W x Q — R in the following way,
foru=(u,¢) and v = (v,9) in W and ¢ in Q,

a(u,v) := 21//Q u:vdQ. + é/ﬂ (KV ) - VipdSd,,

1
+ g/ (bV : ncmdrcm B / u- ncm'(/)drcm
Tem S Jron
vavd

2.7 + —F——P(u+KV9) - vdlem,
27) Tem A/ trace(II) ( ?)
and
(2.8) b(u,q) := —/ qV - udf..
Q.

then the weak formulation for the Stokes-Darcy problem is: seek u = (u,¢) € W and p € @
such that

<o, v > +a(u,v)+b(v,p) =<F,v> VveW,
(2.9) b(u,q) =0 VgeqQ,
u(0) = u,

The difficulty with the (2.9) is that the bilinear form a is not coercive, to overcome this
difficulty, Cao and his co-workers [4] multiply (2.2) with a scaling factor 7 to drive a new bilinear
form for the weak formulation. Obviously, the scaling factor does not change the Darcy equation
itself. However, the interface conditions can be modified accordingly in order to preserve the
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solution of the Stokes-Darcy problem. To this end, they modified the variational formulation
as follows: seek u = (u,¢) € W and p € @ such that
<O, v >y +ay(u,v) +b(v,p) =<F,v>, VveWw,

(2.10) b(u,q) =0 VgeQ,
(0) = uy,

I=

c

where
<0, v >pi=< 0, v > + < n0ih, Y >,

and new bilinear form

ay(u,v) = 2u/Q

+ g/ OV - Nepdlen — ﬁ/ u - N Pdl e
Lem S Jr

van/d P
Tom A/ trace(II) T

as well as the linear functional F : W — R by

u: vdQ. + % / (KV @) - VbdQ,,
Qm,

(2.11) + u+KVe) - vdlep,,

<E7E >77::< f17w>c +g <f2)(10>m +g/ ZW'ncmdrcm,
ch

where f; and f; are functionals on H} ; and H}, (, respectively, and < -,- >. and < -, >, are
the dualities induced by the L? inner product on Q. and €,,, respectively. The last integral
results from the second equation in (2.6). The effect of the integral is to add the hydrostatic
pressure profile of the problem. For convenience of discussion, it is omitted hereafter, although
it is taken into account in the numerical tests.

Note that without further assumptions on the regularity of the domain spaces of ay(-,-),
we have that V¢ € L?(Q,,) and thus does not have a well-defined trace on 94, for a general
hydraulic conductivity tensor K. Nevertheless, if the hydraulic conductivity is isotropic every-
where, i.e., when the permeability tensor II(x) = k(x)I, where k is a scalar function and I is
the identity matrix, then the last term of a,(-,-) is wall defined in the sense that(see [4, 9] for
more details)

va/d P
Tem A/ trace(1I) T

1
O e

u+ KVo) - vdlep,

u) + %kPT(Vq’))) - Pvdl e,

1 g
2.12 =va —P.(u) Pr(v)+ ZVEV.d - Pr(v) T o
(212) | P+ VRS 0 P}
Here V.9 = —gjﬁ T+ —gf; To which is exactly the tangential derivative, and the integral of

V¢ - P (v) on I'.p, is understood to be the value of the functional V. ¢|r,, € (Héf(f‘cm))’
applied to P, (v)|r,,, € H&é2(1"cm).

A slightly simpler approach is to take the Leray-Hopf projection, and we work on the
divergence free subspace only, i.e., see u = (u,¢) € V and p € @ such that

(2.13) <o, v >, +a,(u,v) =<F,v>, VveV
5



for almost all ¢,0 < ¢t < T. From [4, 3|, we know that when 7 is sufficiently large, the weak
solution for the Stokes-Darcy problem uniquely exists.

In order to derive the coupled Backward-Euler discretization for Stokes-Darcy problem, we
partition Q. and €, into mesh {T*}(j = ¢, m) with Q; = UKE{Tjh}I_(. We assume that the
cells K € {7} are affine equivalent and the grids of {7,*} and {7,}'} match along I'c,. On the
other hand, we divide the time interval [0, T] into N subintervals [t t"*1](n = 0,1,---, N —1),
satisfying

0=t'<tl<. - <tV TN =T

Let At, =t™ —t"~! be the time step with the biggest one At = mazi<n<nQDtp.
We introduce the finite element spaces W” and Q" which are div-stable: there exists a
constant 0 > 0, independent of h, such that

(2.14) W"=H!xH} cW,Q" CQ,
b Vh h
(2:15) oggwm;ﬁmléhﬁ%o>ﬁ
and
(2.16) Vi ={v" e W" [ b(v",¢") =0, ¥ ¢" € Q"}.

We also assume Korn’s inequality (see [4])
(2.17) (D"),D(v") = Cilv"IF v v e WP
and the trace inequality
(2.18) V" 1220y < Col WG IV IIE ¥ v e W,
If using Poincare inequality to the right-hand side of the trace inequality, we have
(2.19) Iv"l|z2re, < CallV"[[i - ¥ v" e W,

here C, Cs, C3 are the strictly positive constants independent of K, v and « but depend on the
domain 2.

Based on the weak form (2.10), [3] proposed a fully, monolithically coupled implicit Euler
scheme as follows:
Algorithm 2.1(Coupled scheme): given (ul),p?) € W" x Q", find (gzﬂ,pzﬂ) e Wh x Qh
such that

E;LH_l B E;LL n+1 n+1 n+1 h

(2.20) < BN L Fan(w,™ ", vy) +0(vy, 0,7 ) = <E"T vy, >y Vv, e WE

(2.21) buy ™, gn) =0 Y a, € Q"

forn=0,1,---, N — 1, where F"' := F(t"*1).

Under the certain assumptions, Cao and his co-worker have derived the error estimation as
follows [3]:

(2.22) (™) = o, < C(R% + At),
1
where |[v|o,; := (HV”%L?(QC))d + ||772¢||%2(Qm))1/2-

The main purpose of this report is to present a partitioned time stepping method for the
Stokes-Darcy problem, which requires only to solve one, uncoupled Stokes and Darcy sub-
problem in each sub-domain per time step. We will analyze its error estimations below and
compare it with result of the above coupled method.
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3. Partitioned time stepping method. In this section, we present the partitioned time
stepping method for the Stokes-Darcy problem and analyze its stability in sequence.

Algorithm 3.1(Partitioned scheme):

Step 1: In Q, find (u}™,pp*h) € H x Q" satisfies

va) + 20(D(u ), D(va)) + b(vi, oy ) = (f17, va)

d
(31) -9 ¢th . ncmdrcm Va\[

Tern ~ Jr..., trace(Il)
(3.2) b(uptt gn) =0 Y g, € Q",
Step 2: In Q,,, find ¢}"' € H! satisfies

Pr(upt™ + KVo}) - vidlen Vv, € HY,

n+1 _ (bn

(33) n(*h

) + TV T) = BUETL ) + / ' NemtndTen

for all vy, € HI.

3.1. Stability of the method. Under a modest time step restriction, we prove stability
of the partitioned time stepping method for the Stokes-Darcy problem.

THEOREM 3.1. Suppose that the scaling parameter n satisfies that n > 43”‘29, and the time
n n Ch
step size A\t satisfies the following condition:
nC3 022\/593)At <1
2\/S3Clgk nv2C1k -7
then we have
" " Civ At ngkAt
||uh||o+n||¢h\|o+ Hu"“—uh|\3+n\|¢z+1—¢h|\3>+ a1 + 22 o 1
2
g+l WVAt n+1
o= Z I 1By-s 0y + S o
n=0
CivAt ngkAt
(3.4) +||ua\|<2)+77|\¢o\|3+THUoHl —a—llooll3),

where C(T) denote a constant which depends on the the final time T, Ci and Cy are the
constants which are related to Korn’s inequality and trace inequality, respectively.

Proof. Setting vj, = 2Atu}™ in (3.1) and using the identity 2(a—b, a) = |a|>—[b|>+|a—b|?,
as well as b(u "'H,pZ'H) =0, we have
, 2valt
Ty ™ HIE = [Jup 113 + [lup ™ — uplIf + 4vAt| Dy )]G + v 1P, (DI r,,)
= 2At(F] T up ) — 2A¢tg / opu) ™ ngydl e,

Tem

(3.5) —2agVENt < V4, Pr(u) ) >

1/2

(Ho)?(Tem))’ ,Hof? (Tem)

Choosing ¢ = 2At¢} ™! in (3.3) and using the identity 2(a — b,a) = |a|> — [b]> + |a — b]? gives

n n n 2ngkLt -,
n(lr 1 = lerlls + llon™ — orlle) + S5 llon I3
_ 2nit 2nAt

(36) ( n+1 n+1) +

n n+1
S 2 [} h S - uh * ncm¢h drcm.
cm
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Adding these two equations and using Korn’s inequality (2.17), we have

[l 1 = e 8+ Ty ™ = wgll + ndllen ™ IE = 1ehll5 + 6™ — @hllf)

" 2ngkAt |, ., 2vait n
HACw A [T + =l I + i 1P n ()

2nAt n+l n+l
?(2 o)

1 1
uZ ncm¢z+ dl'em —9/ ¢Zuz+ ncmdrcm)
Tem

< 2A(E ! up ) +
n
PYANA G
e
n+1
(3.7) —QQgWAt <V.op, P, ( ) >(Hé()/2(rcm))/ HY2 (o)

For the first two terms on the right-hand side, using Young and Holder inequalities, we have

2nAt At
2O i) + T (L 6 < 20w+ S I )
ngkAt o, At L,
(3.8) G ORI + T I s,

For the first two interface boundary term, by using Young, trace (2.18) and Hélder inequalities,
it follows that

2At(% / uj - Ilcmd)ZJ’_ldI’cm B g/ (quZ-H Nepdlep)
Tem Tem

< =l el |2 160 L2 (e, + 20t ™ - nem L2 0o, 10722 (0,0

27702At 1/2 1/2 n 1/2 n 1/2 n 1/2 1/2 1/2 1/2
< =g lhagllo g 1205 1o 6713 + 202 Atglhug 6" g 112l k16 107113/

Cingk n3C3
< At n+1 At n+1
<\ ZEE A 651+ | g ARl
01779747 n n 259304 n n

) o At 67 + [ At o7 o

Civ/A\t ngkAt n Civ/At T]gkAt
< —5—lhilly + llgn 1T + — R+ llonll?

77022 n2 n+1y12 02\/57 nal o
o Tag il + AR 4l 12).
y e UG + il HIE) + © m e AU IE + lloR 1)

For the last term on the right-hand side, by using the imbedding inequality and Holder inequal-
ity, it leads to

2 a gVEAL < Vil Pr(™) > s g sz )
< 2agVEAL VG| 4172 1P ()

< 20&9\fﬁt\|¢h|\Hl(a,,,>|\u"+1||H1<Qc)
2
a? g kAt
—=——llohllt.

(Dem))’ ||H1/2 Tem)

(3.9) < CywAt|lup 3 +

Combining these estimates with (3.7), we obtain

[y FHIG = a1 + Ty ™ = w5+ (e 17 = orlls + llen™ = ohlI3)
8



CivAt 1 ngk et a?g*k ngk
U Iaplf) + 2 At I - (SELE o+ 22 Adfgp
VA2 ZAN N
< 500 I -1y + o Sgk £ -1 )
77022 n+1 02 \/ S n+1
+,7 u +nllo At(||a +nll¢
2\/W (H h||0 || h ||0) \/W (|| h HO H h||0)
o? g ’k ngk -~ ngk 4Sa’g ~ nC2 C2./Sg3
Assuming that +4L, < 3L, e, n 2> o, we also denote C = Wz n2 TN

then summing over n from n =0 to N — 1, we arrive at

n n n n ChvAt ngk:At
||uh||0+7l||¢h||o+z [luy ™t =[5 +nllop ™ = onlle) + [Jup (17 + [l
. = nVAt
At Z (a3 +allen ™ 11B) Z 1 1 o) Z 15 1 @)
n=0
CivAt ngk:At
(3.10) +[luo|[5 + mllgoll5 + = uo [t + [|oll3-
It follows from Gronwall inequality that when CAt < 1,
Clz/At gk:At

— [y | +

(i’ ([ +nllon’ Ho+z (lay ™ = i1 + nllo) ™ = o1l5) + 16w 113

fn nVAt n
ZH +1HH 1(Q)—’_ S k ZHf +1HH 1(Q2m)

Civ At ngkAt
2

(3.11)  +|[uo|l3 + nll¢o|[S + [luol|? + = —1l%ol3)-

0

4. Error Estimate. In this section, we analyze the convergence rate of the method.
First of all, we assume that the true solution satisfies the following assumptions: for w(t) =
(u(t), ¢(t)), we have

w,(t) € LQ(O,T; W), wy,(t) € Lz(O,T; L2) NL=(0,T; W), w,,(t) € L=(0,T; LQ)-

Let us define a projection operator P, : (w(t),p(t)) € W x Q — (P,w(t), Pup(t)) € W" x
Q"Vte0,T] by

an(Paw(t),v,,) + b(va, Pap(t)) = an(w(t),v,) + b(vy,p(t)) Vv, € W",
b(Prw(t),qn) =0 Vg, € QM

Note that P, is a linear operator, and under a certain smoothness assumption on (w(t),p(t)),
the following approximation properties hold:

(4.1) [|Phw(t) — w(t)|lo < Ch?,
(4.2) [[Pnw(t) — w(t)|l1 < Ch,
(4.3) || Pap(t) = p(t)]lo < Ch.
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Furthermore, we will use the following notations, we denote (P,w(t), P,p(t)) by (w(t),p(t)) for
simplification. Then

n+1 _ (thrl) o ﬁn+1 +ﬁn+1 u2+1 L 6111—0—1 +5IL+1,

Iy o 1 1 1
n+1 (tn+ ) ¢n+1 +¢n+1 _ ¢Z+ L E;H_ +6;L+ ,
Mn—l—l :p(tn—i-l) _pn—o—l _’_pn—&-l _p’;LL+1 é €Z+l + 6Z+1.

In particular, (69,69) = (0,0). Obviously, from the definition of P, we have
et o + [le5 o < B2, [ler ™l + 1les T < Chs llegi o < Ch.

For convenience, let us introduce the following nations. We denote the backward divided
difference operator d; by

(4.4) dwitt == =" forn=0,---,N—1.

)

We also denote

n+1
+1_ dewy, T — diwy

(45) dttW At y

form=1,---,N —1.
In the following, we need to estimate the 57+, 71! and 5"“ in the according norms. Note

that (w"+! pntl) € V" x Q" satisfies the following equations: for all vy, = (Vh,¥n) € V' qe
Q"

=n+1l _ =n
% vi) + 20(D@"T), D(vh)) + b(va, 5T = (00, vi) + (£ va)
_ Vd -
46 - il : cmdrcm - LPT ﬁn+1 + KV ntl % drcma
(+0) o, @ b, Jiracem o
Tn+1 n
(o )+ LT ) = (O3 )+ L3 )
YAN S
(47) +Q/ ﬁn+1 . ncmwhdrcma
S Iren
where
—n+1 _ =n
ot — % — (")
_ [ﬁnJrl —an B (t’ﬂ+1) (tn)} B (tn+1) (tn) (thrl)}
n At At At
A 0n+1 +02,—‘,2-17
and
Tn+1 on
n+1l _ ¢ - ¢ n+1
9¢ == T - ¢t(t )
ot —gn ("t — ("), o™t —o(t")
-5 B (B ou( )]

é 0n+1 0n+1'
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It is easy to verify that the following properties of 677", 674", 6541, 054" hold:

gt

u(t" ) —u(” 1
92”51—(1%—1)—( )At ( ):Kt/ (P, — Iuy(t)dt,
tn
which implies
1 gl gl
@8 =g [ e Duaae < 5 [ 1@ - Dule
Q Jtn
and
gt

At = u(t"th) —u(t") — Atuy (") = / (" — tyug(t)dt,
tﬂ,

which means

1 tn+1 tn+1
@) = ([ @ - tuadtde <ot [ uale
Q tn tm
In the same way, we can obtain the similar results for 9““ and 0;42'1,
o
(1.10) 05518 < 55 [ 1R = Dl
tn
tn+1
(4.11) I35 IE < ot [ Nl
tn

We also need to estimates the following two terms in error analysis.
tn+1
= wf < Clae ) —ue)E = [ ([ uie)ax
(9] tn

tn+l tn+1 tn+1

(4.12) < c/(/ |Vut(t)|2dt/ 1dt)dx < CAt/ ||| [2dt,
Q Jn tm tm
¢t

(413) ||§" — |2 < CAL / 6| 2.
t’VL

Under the preparation above, we can obtain the following error estimate for velocity.

THEOREM 4.1. (Error for the velocity) Under the assumption of Theorem 3.1 for the
scaling parameter and the time step size, then we have

Cl Z/At

(ha(e™) w1 + 552 () — 6|12
<C(T )(h4+At2).

(™) = ail |3 + nllo(t™) — o3 [[5 +

Proof. Subtracting (3.1)-(3.3) from (4.6)-(4.7), we have

5n+1 _ g B
(1Ttl,v;l) + 20(D(8Y), D(vp)) + b(vi, 61 = —g / (@™ — ¢7)vh - NomdTom
T

va/d
Tom A/ trace(II)
11

(4.14) + (00T vy — P (07T + K(V™ T — Vo)) - vidD e,



st — oy n

(415) = 77(02+17 'l/)h) + % / (ﬁnJrl - UZ) . ncm'l/)hd]-—‘cm'

cm

Yn) + & (KVo3T, V)

Setting vj, = 2At67 ! in (4.14) and using the identity 2(a — b, a) = |a|> — |b]? + |a — b|?, as well
as b(o7+ ont1) =0, we have
" , n n 2valnt "
167G — 167115 + 11677 — 67117 + 4w At|ID(6T G + == Pr (67 )| Z2(r

Vk

= QAt(93+1a 61L+1) - QQAt/ (an+1 - an + 53)5?+1 : ncmchm
Tem

(416)  —2agVEAL < V(" — " + 65), P (07 > B2y HY (Torm) -

em)

Choosing 9, = 2At65™" in (4.15) and using the identity 2(a — b,a) = |a|? — |b> + |a — b|?, we
have

2ngk A\t
S

a2

(105 HIE = 1163115 + 1165+ — 65115) +
2nAt

5 (@ — @ 4 67) - 0 05 AT -
FCVYL

(4.17) = 2At (05, 657 +

Adding these two equations together and using Korn’s inequality (2.17), we have

16718 = NP 11E + 1107 = 67115 + n(lloz H[§ — Na5115 + 163 — d3113)

Mgkt
HAC OIS+ 101
<205, 57 + 208m(05T 65+
_ _ mAt
ngAt/ (@™ — §™)EH - nmdD o + TIT @ — @) - e 05 dl e,
Tem Lem

—20gVEAt < Vo (¢"H = ¢"), Pr(o7H) 2 (HY2(Com))  HY2 (Dom)

11100
ImAt
il i / 8T - Dm0 dT e
S Jrom

(418)  —2agVEAL < V. (63), P-(67+1) > CHA2 (o)) Y (P

_QQAt/ 635?+1 ‘N dlem +
Tem

For the first four terms on the right-hand side, by using (4.8)-(4.11) with Young’s, Poincaré
and Holder inequalities, it gives that

2007, 67 + 20tn(05 1, 65

3vCi At 20(Q) At 25vnC(Q) At

< 2O o+ 2 gy 4 TS etz 21D
< OB g 4 RO s
D [ i+ 20 [

19 20D "y g DAL [T

12



For the second two terms on the right-hand side of (4.18, by using trace inequality (2.19) and
(4.12)-(4.13), we have

_ _ 2n/\t
—2g/\t / (" — ™07 D dT e + ”S @ = @) - D63 dl ey
Tem Cem
CivAt, ., ngkAt |, 4g CINt, - “n 2vCEAL | . o
< SR 4 Ty S 6 = 6+ T e -
< ClVAtH(anrlH? n ngkAt||6n+1H2 " 4CgQC§At2 / +1 16 ||2dt n 20nyC§At2 /tn+1 I Hth
- 4 195y, 1721 Civ i i gkS i ti

Moreover, by using imbedding inequality, the fifth term on the right-hand side of (4.18) can be
estimated as follows,

—2agVEkNAt < V(" — ¢, P, (0711 >

(HoL?(Tem))' \HA 2 (Dem)

CivAt, ., 402 g2kt | -, —n
< Sl + S -
e mt . 1022 knt2 (1
(4.20 e A R e

For the last three terms on the right-hand side of (4.18), from the trace inequality (2.18), we
have

oAt
’7? / 8T - Dm0 AT oy — 291 / DI AR
Tem Tem

—Zag\/EAt < VT((SQ), P-,—((S{LJFI) >(H(%2(ch))’,H(%2(ch)

C’luAt ngkit | . CivAt | .,
I + S0 - S5
gkAt n a?g? kAt
FIER I + Crvt |+ LI g
nC3 A\t n " C3\/Sg3/\t | .,
(4.21) e (107113 + 1l103 7 1R) + =2 = (871G + mll33113)-

2\/S3Clgk T]\/2Clk

Combining (4.19)-(4.21) with (4.18), we arrive at

18715 = 1167113 + 1167+ = 07115 + n(ll6z 115 — 105115 + 1165 — 5"H3)

CIVAt n+1 n ’I’]gkAt n+1(|2 ngk Ot g k
+ Lo — 671 + oo — (I + SR aiap
M(IWII%MH(SQ“H%HL V59 AL 15712 4l 6312
o 2\/5301916 nv 201]€
3c) [ L. 30@Ae )
et [P = Dl + 25200 [
| 250C(@Q)n o L. 2SvC(@Qmaee [ )
—_— P, -1 dt + —m——— dt
S e Doar+ EEECISE [ o
| Aogcgar L. 20meRae [t
_— dt + ———— dt
AL / o+ el R OV
ACa2g2 kNt [
I
1V tn

13



Thus, as the stability condition, we assume that n > % and using the above definition of

C, summing over n from n =0 to N — 1, it follows that

N-1
" " CivAt ngkAt
15213 +llag 13 + S (IS5 — 5313 +llag ™ — a31) + 222 + RO sy
n=0
= C Z/At ngk/\t
- " n 1
At TG+ nllsHIE) + 187115 + nll65115 + l18111F + =g, 192112
=0
3C(Q) 3C(Q) AL
+ 5Crv (Pr = Dwel[Z2(0 712y + WHuttH%z(aT;Lz)
2SI/C( n 25vC(Q)nAt?
TH(Ph — Déull7200.1.22) + g—k||¢’tt||%2(o,T;L2)
4Cg2C2 N 12 CnrC2At? 4C a2 gk At?
+T§||¢t”%2(0,T’H1) + W”WH%%O,T;HU + T||¢’t||L2(O,T;H1)'
It follows from Gronwall inequality that when CAt <1,
N—1
n n n n CluAt ngkAt
152115 + nllo2" 115 + D (1167+ = 67115 +mllog ™+ — 65115) + 167 11% + 11657113
n=0
C’ll/At ngkAt
< C(T)(|167113 + nlld31[5 + 16211% + 163113
3C(Q) 3C(Q )At2
+ 20w (P — )utH%Z(O,T;LQ) + 2017||utt||L2(0 T3L2)
25vC(Q)n 2SvC(Q)nAt?
TH(Ph - I)@H%?(O,T;L?) + g—k||¢tt||%2(O,T;L2)
4CgQC'§At2 CnuvC3AL? 4Ca? g2k At?

Crv pellZ2 0 7.m1y + WHUtHL?(O,T;Hl) + TH@HH(O,T;Hl))-

Finally, from triangle inequality and the approximation properties (4.1)-(4.2), as well as the
assumptions for the error of initial data, we obtain the final result (4.14). O
Next, we analyze the convergence of pressure for the decoupled scheme. Note that

(4.23) o™ = 2 llo < Mlei ™ lo + 116+ o,

so we only need to estimate |[07||o, to this end, let us start with the following lemma which
estimates the error for ||d:67"|o.

LEMMA 4.2. Under the assumption of Theorem 4.1 for the scaling parameter n and time
step size /A\t, we have

N-1 N-1
1deS 15 +m > (dedy ™ — dedT |5 + nllded |15 +n > 1oyt — didy I3
n=1 n=1
CivAt = 12 nkgAt n+1 1,4
(4.24) +— > (s 1T + Z 6312 < C(AL+ At™1hY).
n=1

Proof. Subtracting equation (4.14)-(4.15) on the two adjacent levels, we have

di 67T — dy oy

(0 ) + 20(D(dT ), D)) + b(vn, ) = (dib )

14



R [ @ = e mend
(4.25) - /F B %det&?“ + KV = 6 = 6"+ 6 )VidTom,
77(%7%’%) %(Kth5§L+1> Vo) = n(deby ™, vn)
(4.26) + @/ @ —up — 0"+ ul ) 0 YRdlen.

Taking vj, = 2Atdt6?+1 and 1, = 2Atdt6§+1 and observing that b(dté?ﬂ,é:j“‘l — (53) =0,
after adding the resulting equations together, using the Korn’s inequality (2.17), we arrive at

2ua/t "
deST TG = [1deTI[G + |dedy ™ — dedT |G + 4C1v A |dp 7 + NG 1P (di67 D) 720y
n n n n 2nkgAt . o
+ 0(||ded3 G — [1ded3 |G + [|deds ™ — did3|[3) + ||deo3 (|3

Sv
< 2 At(dfy ™ de T + 2000 (05, dy6y )

- 29/ ((En-l—l (bn + an n 1) t6?+1 : ncmdrcm

/ A"t —u - A" 4wl 0, di 0y AT e,

C’VYL
l/axf
Tom tra,ce

< 2 At(d, 0", dt5"+1) + 20t (d 03", dyoy )

— 2 / (" — 20" + " V) d 67T neydT ey — gAL / di 65 d 67 Ny dT e,

Pr(KV(¢" T — ¢ — @™ + 617 1))dp67 T dD e

20/t
/ a"t —2a" +a" ) ngndidy T dl e + ”S / A6} Doy di 65T o,
I

cm

—2ag\f k< V(" — 20" 4+ ¢" 1Y), Po(den ) >
(4.27) = 20gVEAL < V(d;03), Pr(dyo? ) >

(H1/2(ch))’ 1/2(Fc’m)

(H§? (Dem))  Hyd? (Tem)

Note that
dontt = dtezjl + dﬂffgl, dtngrl = dtegjl + dtﬁgél,
where
it _p oy uEth) = 2u(t") +u(tnl)
dte =(P,—1) YN
. (") — 20(t") + p(t" 1)
dify 1 = (P = 1) NE
and
diby' = Atz A —u (") — Atag ()] = [u(t") — u(E" ) — Aty (1))}

15



1

= _i(utt<sn0) —Wst(5n1)),

didyh' = M {[6(t") = 6(t") — Dt (™)) = [B(t") — B(t" ") = Atgu ()]}
1
= _§(¢tt(sn2) - ¢tt(3n3))7
for some sp0, Sp2 € (£, ") 8,1, 803 € ("1, "), thus
n+ly12 _ _ 2
(4.28) O = o, max 1Py = Dua(®)f
Furthermore,
(4.29) At]|d 0752 < A—tg max || (t)||2
’ Pu2 110 = "y iy ggnrn 1M 0
Similarly,
(4.30) AUOGE = ot max 1P = D
N3
n+1 =" 2
(431) AtldggE IR < S ma 16w
Furthermore, we will use the following estimate results:
9" = 20" + ¢"[|1 < [Jo(t" ™) = 2(t") + 6(t" 1)1 < A max ¢ (t)]1,
tn—1<g<gn+1
@ —2a" + @ < @) = 2u(t") +u@ [ < A max fJug(t)]]1-

tn—1 StStn+l

Now we start to estimate the terms on the right-hand side of (4.27). For the first two terms,
using Young and Poincaré inequality, together with the above estimate (4.28)-(4.31), we obtain

20(dy 0y, dy 07 HY) + 20n(dy 0t dySy )

nkgAt 2C(Q)A ZUSVAt

< Xty + B sy 1 + 2 a0+ 22 a1
< 2OV g + ”kg“ndw"*lul
S2OOBE s NP Dua @R+ 5 e a1
aap) + 25 tnlrgggw||<Ph—I>¢tt<t>|3+Aftn s )

where C(2) is the parameter depending on the domain Q. For the third term and fifth term
on the right-hand side of (4.27), by using trace inequality (2.19), we have

S
2710
3 l | n+1

nkgAt n
< I|de5 13 +

27]”03 | |ﬁn+1
gkSAt

2
ol (@ —2a" + 0" ) - ngnd 0y dl, — 29 /

— 20" + 0" |y [[deS5 ]2 + 29Cs]|6" T —

(&nJrl - 2(]371 + anil)dtfsil—‘rl : ncmdrcm

Cem
26" + ¢"[|1lde87 |1
Cll/At

——llded
4g 202 | - - -
_2— —n—1 3 n+1_2 n n||2
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kg/\t Civ/\t
< L lldds T+ = ldis
27]1/0 A3 4g2C2 N3
(4.33) +gl€735 o HAX s (0)[F + TSZ/ o HAX e (1)]]3-

From trace inequality (2.18), the forth term and sixth term on the right-hand side of (4.27) can
be estimated as follows,

2nAt
UT : A0 - Do 00 dT oy — gL /F 485 dy 6™ - D dTom
C VAt n gkAt n C I/At n gkAt n
S lldedp 1T + 185 + =5 —[1dedT 17 + 1033
77022At 2 n+1()2 \/59 At n+1
4.34 +————=({|d:07||5 + nl|d:0 dy07 +nl|deog||5)-
( ) 2\/@(” t 1”0 77” tY2 HO) \/W (H t HO 77” t || )

For the last two terms on the right-hand side of (4.27), by using imbedding inequality, we obtain

—2agVE < V(¢" T = 28" + "), Py (dy7T) >
< 20gVE|[6" T — 20" + " 1| |di 67|

(Ho4?(Tem))! Hof > (Tem)

Cll/At 4azg2k _ _ o
d5n+1 n+172n n—112
e + G 187 =267 + 6
C’ll/At a1 VRYed VAN = 9
(435) I + 52 max (lou
and
n+1
_2ag\/%At < VT(dtég),PT(dt(Sl ) >(H3é2(ch))’,Hé({2(ch)
< 20gVEAL|dy 85 |[1]1desT |1
a?g?kNt
(4.36) < Covt]|dd 1 + gfndta”m

Combining (4.32)-(4.36) with (4.27), we have

1T IS = 11dedT 1[5 + [1dedy ™ — dedP 1[5 +n([1ded T[T — [1ded3 15 + [1ded ™ — ded3[[5)

+ DL s 1R~ 1) + Lo i - (LD SRy
< Qj%uwm% s 13 + VLR a4 a1
+% B (P — Dag (8|15 + Ath i St e (D1[5)
ISV (P Doa0 2 s 0l
e WL GRS Pl
(4.37) +W” max (1o @Il
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As the same as Theorem 4.1, assuming that n > 4‘%0‘12g and using the above definition of C,

summing over n from n =1 to N — 1, we have

N-1 N-1
ded ¥ 1[5+ D [1dedi ™ — dedTlI5 + nlldedy’ 1§ +1 Y |ldeds ™ — diS3 I3
n=1 n=1
C’ VAt ngkAt
et 1 + =10
N—1

DY ([T (G A+ e [G)
n=1

I3 + 313+ 2 gl + B
236;?11/) (0<t<T [|[(Pn — Dug (t)]]3 + ATtQ Jnax, [t (£)]15)
+ 215 (s 1P, =~ Dou(I3 + S s o)1)
+W0@a<x e (1)1 4925%’520@%'%( gl
(4.38) +M max_||¢u(t)|]7,

Civ 0<t<T

then it follows from the Gronwall inequality that when CAt < 1,

¥ + 3 15T — il + 1R +1 Y ™ — 1R
n=1 n=1
YR 0+ RO g 2
)13 + nlldea} I3 + Cl”AtHdtalHl LR
20 s, P~ Dy 0118+ 25 s [ 1)
5 s 1P, = D15 + 25 o 1w 011
2L o o+ 22 s (160001

402 g2k A\t?
Cv 0<t<T

(4.39) x |on (813}

For the four terms on the right-hand side, by using (4.22) with n = 0, we have

~ C VAt ngkAt
(2 = CAD(1161]15 + nll3]15) + —5—II8t 11T + 162112

3C( ) 3C( YA

< dI1:) )ut||0+Tllutt||3
25vC(Q)nAt 25vC(Q)nAt

+g(,€’|<Ph—f>¢t||3 2O COAE 1
4C’gQC’QAt3 2CvCENE3 4C a2 g2 kA3

(1.40) + Lo+ T Sl + T
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Thus, when CAt < 1, which means 2 — CAt > 1, by applying the approximate properties of
P, the above inequality reduces to

Ch Z/At ngkAt

16111 + nllo2 115 + 163113 +
< 3C(Q)Ath4 3C(Q)AL

162117
25vC(Q)nLth? n 25vC (22 )nAt

— 201V 201V HuttHO gk ||¢tt||0
409202At3 2CvCENE3 4C a2 g2k At3
@an o+ IS o+ Tl S el
Thus
CVAt gkAt
||dt5i|\3+77\|dt51\|(2) ——IId:51 1% + ||dt51\|1
-6 5 Clz/At 5 gkAt 50
—|| o+ H 215 + = ||1 || 2|13
1 Cll/At gkAt
:A—ﬁméinamnaém |\61||1 e ||5;|m
(4.42) < C(ATIRY + At),

where C is a constant depends on S,v, g, k,n,a,Cy,Cs, Q. Finally, combining (4.42) and the
approximate properties of P, with (4.39), we claim the theorem. O

THEOREM 4.3. (Error for the pressure) Under the assumptions of Theorem 4.1, we have

4.43 p(t™ ) — pi | < C(AL? + At™2R?).
h

Proof. From (4.14), we have

b(Vh, 5n+1) = _(dt5?+1avh) - QV(D(5?+1)vD(Vh)) -9 ((EH-H — OV Nepdlem
" N

cm

Nz _
(O vy) — _YVE p (7t L R(VE — Vo)) - vadTom
( h) r.. \/m ( 1 ( ¢ ¢h)) h
ro _
(4.44) < vl (|lded7 o + (20 + ﬁ)\lﬁmlll + (g + gaVE)[[6" T = @l + (1027 ]o)-

Therefore, from the discrete inf-sup condition (2.14), it follows that

— n vo n on n mn
167 o < CB7H(|1ded7 ™ o + 20 + —=) 16711 + (g + gavE)[[6™ T — gl + (1027 ]o)

vk
<Cp 1Hldt51+1||0+(21/+ﬁ)llﬁﬂlhJrll%“llo
+ (g +gavk) (At max  [lé(t)]l + 163 ]])]-

tngtgtn«l»l
By using (4.8)-(4.9) and Theorem 4.1 and Lemma 4.2, we have
(4.45) 162F |0 < C(ALY2 + At 2R).

Thus, by using triangle inequality, (4.43) follows from (4.45) and (4.3). O
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5. Numerical tests. In this section, we present some results of numerical tests which
confirm the theoretical analysis.

Assume Q,, = [0,1] x [1,2] and Q. = [0,1] x [0, 1] with interface Iz, = (0,1) x {1}. The
exact solution is given by

(ul,u2) = ([z*(y — 1)* + y]cos(t), [—gx(y —1)® 4 2 — wsin(mz)]cos(t)),
p = [2 — wsin(nx)|sin(0.57y)cos(t),
¢ = [2 — msin(mz)]|[l — y — cos(my)]cos(t).

Here the initial conditions, boundary conditions, and the forcing terms follows the solution.

The finite element spaces are constructed by using the well-known MINI elements (P1b—P1)
for the Stokes problem and the linear Lagrangian elements (P1) for the Darcy flow. The code
was implemented by using the software package FreeFEM++[7]. For the monolithically coupled
scheme, the GMRES routine is used to solve the (non-symmetric) coupled system. For the
uncoupled scheme, a multi-frontal Gauss LU factorization is implemented to solve the SPD
sub-systems. For simplicity, we set « = 0.1 and n = 10.

For the simplicity of notations, we denote (u”™,p"™, #"™) the solutions for the mono-
lithically coupled scheme Algorithm 2.1, and accordingly, we denote

ezﬂn —uhm u(tm%ez,m _ ph,m _p(tm),eg,m — ¢h,m _ ¢(tm).

On the other hand, (u}’,pi*, ¢7*) denotes the solutions for the partitioned scheme Algorithm
3.1, accordingly, we denote

€hu = Wy —u(t™), e, = pp’ —p(t™), ey = o' — (™).

First, we compare the convergence performance and CPU time for both the coupled scheme
and the partitioned scheme. In Table 5.1-5.2, we consider both schemes at time t™ = 1.0, with
varying mesh h but fixed time step At. T'wo schemes achieve similar precision, although the
monolithically coupled scheme is slightly more accurate than the partitioned scheme. However,
the monolithically coupled scheme required much more CPU time than the partitioned scheme.
The relative advantage of the partitioned scheme increases as the mesh size decreases. On
the other hand, in Table 5.3-5.4, we consider both schemes at the same time ™ = 1.0, with
varying time step At but fixed mesh h = %. Two schemes almost get the same accuracy, but
the coupled scheme still needs much more CPU time than the partitioned scheme. In all, we
can conclude that the partitioned scheme is comparable with the coupled scheme, but much
cheaper and more efficient than the coupled one.

Next, we focus on the partitioned scheme, and demonstrate its orders of convergence with
respect to the spacing h and the time step At. Following [12], we introduce a more accurate
approach to examine the orders of convergence with respect to the time step At or the mesh
size h due to the approximation errors O(AtY) + O(h*). For example, assuming

Vil (x, 1) R v (x, 1) 4 Oy (x, ™) A + Cy(x, t™)hH,
it follows that

At

ot 1
Vi (e, ™) = viE (6,17 & O (o, ) (1= o) AL,
1

(5.1) Vi (e ™) = v (x 87 & Calx 7 (1= g,
Thus,
VA (e t™) = v ™)l g gn

pV,h,i = A A ~
vy (e tm) = vy (e tm)l - 20 =1
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At m % m 47 Y
v G t™) = vy Gt 4T =2 — 9
Pv.iti =~ AT o &t o 2r—1 T
(v (e, 8m) =" (x|l

Here, v can be u, p or ¢ and ¢ can be 0 or 1. Thus, while py 4., pv,at; approach to 4.0 and
2.0, it means that the convergence orders will approach to 2.0 and 1.0, respectively.

Using these definitions, in Table 5.5, we study the convergence orders for the partitioned
scheme with a fixed time step At = 0.01 and varying spacing h = 1/2,1/4,1/8,1/16,1/32.
Observe from Table 5.5 that pun0, psno is a little larger than 4.0, and pun,1, Pp,h,0, Pé k1
approach to 2.0, which suggest that the concerned orders of convergence in space for u and
¢ in L?-norm are all O(h?) and in H'-norm are all O(h), the pressure p in L?-norm is O(h).
However, in Table 5.6, we study the convergence order with a fixed spacing h = 1/8 and varying
time step At = 0.2, 0.1, 0.05, 0.025, 0.0125. The numerical experiments strongly suggest that
the orders of convergence in time for all variables should be O(At), which implies that the error
estimates for u and ¢ in L2-norm is optimal, however, the error estimates for the H'-norm of
u and ¢ might not be optimal for the partitioned scheme, and may be further improved from
O(AtY?) to O(At) by a finer analysis, this is an open problem for further work.

TABLE 5.1
The convergence performance and CPU time of the coupled scheme at time t™ = 1.0, with varying mesh
h but fixed time step At = 0.01.

h et ™ lo et ™ || lley ™ lo llel ™ llo el ™ llo CPU

% 0.267314 1.55801 1.23503 0.153039 1.37635 3.369

i 0.076279 1.06164 0.91369 0.058034 0.86910 7.569

% 0.026057 0.44886 0.36556 0.011133 0.38736 30.810

% 0.022761 0.28795 0.25357 0.003486 0.19702 138.184

3% 0.023625 0.24447 0.21791 0.002030 0.10135 621.395
TABLE 5.2

The convergence performance and CPU time of the partitioned scheme at time t™ = 1.0, with varying
mesh h but fixed time step At = 0.01.

h llet™[lo llew™ Il llep ™ [lo ez ™ llo ez ™ llo CPU

% 0.267313 1.55801 1.23624 0.153051 1.37634 1.758

i 0.073254 0.83724 0.57534 0.046875 0.79330 2.625

% 0.026164 0.46064 0.37295 0.013239 0.40969 12.726

% 0.022889 0.28703 0.25593 0.003836 0.19585 40.404

3% 0.023669 0.24438 0.21924 0.002398 0.10168 170.097
TABLE 5.3

The convergence performance and CPU time of the coupled scheme at time t™ = 1.0, with varying time
step At but fixred mesh h = %‘

At llew™ llo llew™ Il lleg™ o [leg ™ 1o [leg ™ 1lo CPU
0.2 0.025843 0.448095 0.358632 0.011945 0.387217 3.057
0.1 0.025958 0.448506 0.362193 0.011494 0.387284 5.242
0.05 0.026019 0.448707 0.364065 0.011297 0.387323 8.986
0.025 0.026045 0.448806 0.364996 0.011190 0.387343 13.728
0.0125 0.026053 0.448848 0.365446 0.011142 0.387353 23.727
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TABLE 5.4
The convergence performance and CPU of the partitioned scheme at time t™ = 1.0, with varying time step
At but fized mesh h = é.

At [leqallo lleq)l1 lleqpllo llensllo |leqsllo CPU

0.2 0.026371 0.470571 0.402374 0.014093 0.409713 0.873

0.1 0.026215 0.465084 0.386249 0.013490 0.409691 1.248

0.05 0.026176 0.462564 0.378732 0.013205 0.409692 2.168

0.025 0.026168 0.461379 0.375187 0.013068 0.409696 4.352

0.0125 0.026167 0.460808 0.373477 0.012999 0.409699 8.642
TABLE 5.5

Convergence orders of O(h*) of the partitioned scheme at time t™ = 1.0, with varying mesh h but fized
time step At = 0.01.

h [lug” —ullo Pu,h0 [lugy” = willy Pu,h1 [lpi* = P llo Pp,h,0
Z 0.215206 3.69422 1.65540 1.91733 1.00526 1.85609
3 0.058255 3.67166 0.86339 1.89901 0.54160 2.03378
5 0.015866 3.99297 0.45465 2.06079 0.26630 2.34875
= 0.003974 0.22062 0.11338
h o5 = ¢ llo P,h,0 167" — ¢4 llo Pé.h,1
z 0.133931 3.40479 1.30793 1.67328
3 0.039336 3.61042 0.78165 1.87898
3 0.010895 4.85791 0.41599 2.05800
= 0.002243 0.20213

TABLE 5.6

Convergence orders of O(AtY) of the partitioned at time t™ = 1.0, with varying time step At but fized

mesh h = %.

At lJupn, — U’%Ho punto  ||[UR; — U%Hl puntr PR — P’%Ho Pp,At,0
0.2 1.82652¢-3 1.88614 2.23601e-2 1.87735 3.85061e-2 1.87848
0.1 9.68391e-4 1.94752 1.19104e-2 1.94395 2.04985e-2 1.94289
0.05 4.97242e-4 1.97488 6.12692e-3 1.97327 1.05506e-2 1.97240
0.025 2.51783e-4 3.10496e-3 5.34910e-3
As l[pRs — ’% 0 Penso  |OR, — ’ZT 0 PéAs1
0.2 8.55442¢-4 2.04615 3.71811e-3 2.02567
0.1 4.18074e-4 2.02602 1.83549¢-3 2.01520
0.05 2.06352e-4 2.01349 9.10823e-4 2.00804
0.025 1.02485e-4 4.53588e-4

At last, It is also of practical interest to compare the effects of the Beavers-Joseph inter-
face conditions with the simplified Beavers-Joseph-Saffman conditions. [12] have studied the
decoupled scheme with the simplified Beavers-Joseph-Saffman conditions. Here, for simplicity,
we set a = 0.1, and solve the Stokes-Darcy problem with simplified Beavers-Joseph-Saffman
conditions by using the method provided in [12] and list the experiment results in Table 5.7.
Comparing Table 5.7 with Table 5.1, it is easy to see that, while « is small enough, both decou-
pled scheme in [12] and the partitioned scheme Algorithm 3.1 obtain the good approximation
solutions, and the convergence performance are almost similar, which means the Beaver-Joseph
interface conditions are also reasonable.
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TABLE 5.7

The convergence performance of the partitioned scheme in [12] with simplified Beavers-Joseph-Saffman
condition at time t™ = 1.0, with varying mesh size but fived time step At = 0.01.

h e ™o llew™ Il llep™ llo [leg ™ 1lo [leg ™ 1lo CPU
I 0.267313 1.55801 1.23624 0.153051 1.37634 2.087
: 0.073890 0.83457 0.58647 0.046805 0.79332 4.407
) 0.025638 0.44917 0.32231 0.012886 0.40971 11.969
L 0.021387 0.25669 0.20009 0.003190 0.19572 43.932
= 0.021871 0.20074 0.16927 0.001629 0.10131 177.778

6. conclusions. In this report, we propose a partitioned time stepping method for the
fully evolutionary Stokes-Darcy problem with Beavers-Joseph interface condition. we conclude
that if we choose the scaling parameter 7 large enough and the time step At small enough,
then the partitioned method is stable and convergent.
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