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Abstract. In this report, a partitioned time stepping algorithm for transient flow in a porous medium
coupled to a free flow in embedded conduits is analyzed. The coupled flow is modeled by the fully evolutionary
Stokes-Darcy problem. This method requires only solve one, uncoupled Stokes and Darcy sub-physics and sub-
domain per time step. On the interface between the matrix and conduit, Beavers-Joseph interface conditions,
instead of the simplified Beavers-Joseph-Saffman condition, are imposed. Under a modest time step restriction
of the form 4t ≤ C where C = C(physical parameters) we prove stability of the method. We also derive error
estimates. Numerical tests illustrate the validity of the theoretical results.
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1. Introduction. The transport of substances coupling between surface water and ground-
water is an important problem of great current interest. In many countries, groundwater is a
major source of drinkable and industrial water. Groundwater systems are so tightly bonded
with the lives of human beings that they are also very susceptible to contamination.

Generally speaking, in conduit domain, the Stokes equation, are commonly used. In the
matrix domain, one popular choice is to use Darcy law. For the coupled Stokes-Darcy model,
two boundary conditions are well-accepted: the continuity of the normal velocity across the
interface which is a consequence of the the conservation of mass, and the balance of force
normal to the interface (2.6). Actually, there have been a few studies of the numerical solutions
of the coupled Stokes-Darcy equations, see [5, 6, 10, 11, 13]. All the work, however, consider
only the steady state case and utilize the simplified interface conditions such as the Beavers-
Joseph-Saffman-Jone condition. Among the fewer papers (so far) on the numerical analysis
of the fully evolutionary Stokes-Darcy problem (consider herein), Mu and Zhu [12] study a
partitioned method which we build upon herein. Cao, Gunzburger, Hu, Hua, Wang and Zhao [3,
4] study a fully, monolithically coupled implicit method for the much harder and physically more
accurate case of Beavers-Joseph coupling condition (without Saffman’s simplication), which we
considered herein. The main mathematical difficulty in adopting the Beavers-Joseph interface
conditions is that the bilinear form in the weak formulation is not coercive. The remedy is a
novel rescaling (which can be interpreted as pre-conditioning) of the Darcy equation [4], which
turns out that the bilinear form for the new system satisfies a G̊arding-type inequality for a
sufficiently large scaling factor η. This essentially leads to the well-posedness of the system.

In this report, we propose a partitioned time stepping method for fully evolutionary Stokes-
Darcy problem with the classical empirical Beavers-Joseph interface condition which was pro-
posed in the seminal work [2]. This method requires only solve one, uncoupled Stokes and
Darcy sub-physics and sub-domain solve per time step. Most importantly, both subdomain
solvers are used as a black box, each time step involves passing information across the interface
followed by solving the individual subproblems independently. We still rescale Darcy equation
with the scaling factor η as the coupled scheme [3] does, moreover, we prove that sufficient large
µ enables us to complete convergence and error analysis of the partitioned method.
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The organization of the paper is as follows: in Section 2, we provide the formulation and
the coupled method for the fully evolutionary Stokes-Darcy system. We present the partitioned
sheme and analyze its stability in Section 3. In section 4, we analyze the error estimations
for velocity and pressure. Numerical tests are reported in Section 5, followed by conclusion in
Seciton 6.

2. Stokes-Darcy system with Beavers-Joseph interface condition.

2.1. Formulation of the problem. Specifically, let us consider a conduit-matrix system
consist of two domain, the conduit domain Ωc and the matrix domain Ωm, see the figure 2.1,
where Ωc,Ωm ⊂ Rd(d = 2, 3) are bounded domains, Ωc ∩ Ωm = ∅ and Γcm = Ωm ∩ Ωc,Γc =
∂Ωc \ Γcm and Γm = ∂Ωm \ Γcm.

Fig. 2.1. The global domain Ω consisting of the matrix region Ωm and the conduit region Ωc, separated by
the interface Γcm.

In the matrix domain Ωm, the flow is governed by

S∂tφm +∇ · vm = f2 in Ωm,

vm = −K∇φm in Ωm,(2.1)
φm(0) = φ0, in Ωm,

which includes, in the first equation, the saturated flow model and, in the second equation,
Darcy’s law [1]. In (2.1), ∂t := ∂

∂t ,vm denotes the specific discharge, φm the hydraulic (piezo-
metric) head, S the mass storativity coefficient, K(x) denotes the hydraulic conductivity tensor
of the porous media, which is assumed to be symmetric and positive definite but could be
location dependent (heterogeneous), and f2 a sink/source term. The unknown φm denotes the
hydraulic (piezometric) head, which is linearly related to the dynamic pressure of the fluid pm,
defined as φm = z+ pm

ρg , where ρ denotes the density, g the gravitational acceleration, and z the
relative depth from an arbitrary fixed reference height. By substituting the second equation in
(2.1) into the first one, we obtain the parabolic equation that governs the hydraulic head:

S∂tφm +∇ · (−K∇φm) = f2 in Ωm.(2.2)
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In the following, we will refer to (2.2) simply as the Darcy equation. We impose the homogeneous
Dirichlet condition along the boundary of the matrix:

φm = 0 on Γm.(2.3)

In the conduit domain Ωc, the flow is governed by the Stokes equations:

∂tvc = ∇ · (−pI+ 2νD(vc)) + f1 in Ωc,

∇ · vc = 0 in Ωc,(2.4)
vc(0) = v0 in Ωc,

where vc denotes the fluid velocity, p the kinematic pressure, D(vc)) := 1
2 (∇vc + (∇vc)T ) the

deformation tensor, ν the kinematic viscosity of the fluid, and f1 a general body forcing term
that includes gravitational acceleration. For the sake of simplicity, the homogeneous Dirichlet
condition is imposed on the boundary of the conduit:

vc = 0 on Γc.(2.5)

We use the subscripts m and c to indicate where the variables belong. We omit these subscripts
in what follows whenever there is no possibility for confusion.

In addition to the boundary conditions (2.3) and (2.5) imposed along the boundary of the
matrix or conduit, respectively, we apply the Beavers-Joseph interface boundary conditions on
Γcm that coupled the solutions in the two domains:

vc · ncm = vm · ncm on Γcm,

−nT
cmT(vc, p)ncm = g(φm − z) on Γcm,(2.6)

−Pτ (T(vc, p)ncm) =
αν
√

d√
trace(Π)

Pτ (vc − vm) on Γcm,

where ncm denotes the unit normal vector on Γcm pointing from Ωc to Ωm, the stress tensor
T(vc, p) := −pI + 2νD(vc). Pτ (·) the projection onto the local tangent plane on Γcm, g the
gravitational acceleration, α denotes a constant parameter which depends on the properties of
the porous material as well as the geometrical setting of the coupled problem, Π represents
the intrinsic permeability that satisfies the relation K = Πg

ν . It should be notice that Π and
K differ by a factor of a constant. Thus, all the assumptions on K such as symmetric positive
definiteness also carry over to Π.

The first two interface boundary conditions in (2.6) are quite natural, as discussed in [4].
The first condition guarantees the conservation of the mass, i.e., the exchange of fluid between
the two domains is conservative. The second condition represents the balance of two driving
forces, the kinematic pressure in the matrix and the normal component of the normal stress in
the free flow, in the normal direction along the interface. The last equation in (2.6) is the well-
known Beavers-Joseph condition [2]. However, whether the Beavers-Joseph interface condition
leads to a well-posed problem is still unclear. If the term vc − vm is replaced by vc, the the
Beavers-Joseph condition reduces to the Beavers-Joseph-Saffman-Jones condition [8, 14] which
is prevalently used.

2.2. Weak formulation of the fully evolutionary Stokes-Darcy model. For s > 1
2 ,

define the Hilbert spaces

Hs
c,0 := {w ∈ (Hs(Ωc))d | w = 0 on Γc},

Hs
m,0 := {ϕ ∈ Hs(Ωm) | ϕ = 0 on Γm},
Q := L2(Ωc),
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and the product Hilbert spaces

L2 := (L2(Ωc))d × L2(Ωm),
Hs := Hs

c,0 ×Hs
m,0.

A norm on Q is given by

||q||0 := ||q||L2(Ωc)

for q ∈ Q and a norm in Hs is given by

||w||s := (||w||2(Hs(Ωc))d + ||ϕ||2Hs(Ωm))
1/2

for w = (w, ϕ) ∈ Hs. In what follows, we use W to denote H1, and V the divergence free
subspace of W, i.e.,

V := H1
c,div ×H1

m,0,

where H1
c,div = {w ∈ H1

c,0 | divw = 0}. In particularly, we use the notations of the norm
hereafter,

||u||0 := ||u||L2(Ωc), ||∇u||0 = ||u||1 := ||u||H1
c,0(Ωc),

||φ||0 := ||φ||L2(Ωm), ||∇φ||0 = ||φ||1 := ||φ||H1
m,0(Ωm).

If we define the bilinear forms a : W ×W → R and b : W ×Q → R in the following way,
for u = (u, φ) and v = (v, ψ) in W and q in Q,

a(u,v) := 2ν

∫

Ωc

u : vdΩc +
1
S

∫

Ωm

(K∇φ) · ∇ψdΩm

+ g

∫

Γcm

φv · ncmdΓcm − 1
S

∫

Γcm

u · ncmψdΓcm

+
∫

Γcm

να
√

d√
trace(Π)

Pτ (u +K∇φ) · vdΓcm,(2.7)

and

b(u, q) := −
∫

Ωc

q∇ · udΩc.(2.8)

then the weak formulation for the Stokes-Darcy problem is: seek u = (u, φ) ∈ W and p ∈ Q
such that

< ∂tu,v > +a(u,v) + b(v, p) = < F,v > ∀ v ∈ W,

b(u, q) = 0 ∀ q ∈ Q,(2.9)
u(0) = u0,

The difficulty with the (2.9) is that the bilinear form a is not coercive, to overcome this
difficulty, Cao and his co-workers [4] multiply (2.2) with a scaling factor η to drive a new bilinear
form for the weak formulation. Obviously, the scaling factor does not change the Darcy equation
itself. However, the interface conditions can be modified accordingly in order to preserve the
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solution of the Stokes-Darcy problem. To this end, they modified the variational formulation
as follows: seek u = (u, φ) ∈ W and p ∈ Q such that

< ∂tu,v >η +aη(u,v) + b(v, p) = < F,v >η ∀ v ∈ W,

b(u, q) = 0 ∀ q ∈ Q,(2.10)
u(0) = u0,

where

< ∂tu,v >η:=< ∂tu,v > + < η∂tφ, ψ >,

and new bilinear form

aη(u,v) := 2ν

∫

Ωc

u : vdΩc +
η

S

∫

Ωm

(K∇φ) · ∇ψdΩm

+ g

∫

Γcm

φv · ncmdΓcm − η

S

∫

Γcm

u · ncmψdΓcm

+
∫

Γcm

να
√

d√
trace(Π)

Pτ (u +K∇φ) · vdΓcm,(2.11)

as well as the linear functional F : W → R by

< F,w >η:=< f1,w >c +
η

S
< f2, ϕ >m +g

∫

Γcm

zw · ncmdΓcm,

where f1 and f2 are functionals on H1
c,0 and H1

m,0, respectively, and < ·, · >c and < ·, · >m are
the dualities induced by the L2 inner product on Ωc and Ωm, respectively. The last integral
results from the second equation in (2.6). The effect of the integral is to add the hydrostatic
pressure profile of the problem. For convenience of discussion, it is omitted hereafter, although
it is taken into account in the numerical tests.

Note that without further assumptions on the regularity of the domain spaces of aη(·, ·),
we have that ∇φ ∈ L2(Ωm) and thus does not have a well-defined trace on ∂Ωm for a general
hydraulic conductivity tensor K. Nevertheless, if the hydraulic conductivity is isotropic every-
where, i.e., when the permeability tensor Π(x) = k(x)I, where k is a scalar function and I is
the identity matrix, then the last term of aη(·, ·) is wall defined in the sense that(see [4, 9] for
more details)

∫

Γcm

να
√

d√
trace(Π)

Pτ (u +K∇φ) · vdΓcm

= να
√

d

∫

Γcm

1√
trace(Π)

(Pτ (u) +
g

ν
kPτ (∇φ)) · PτvdΓcm

= να

∫

Γcm

{ 1√
k

Pτ (u) · Pτ (v) +
g

ν

√
k∇τφ · Pτ (v)}dΓcm(2.12)

Here ∇τφ = ∂φ
∂τ1

τ1 + ∂φ
∂τ2

τ2 which is exactly the tangential derivative, and the integral of

∇τφ · Pτ (v) on Γcm is understood to be the value of the functional ∇τφ|Γcm
∈ (H1/2

00 (Γcm))′

applied to Pτ (v)|Γcm
∈ H

1/2
00 (Γcm).

A slightly simpler approach is to take the Leray-Hopf projection, and we work on the
divergence free subspace only, i.e., see u = (u, φ) ∈ V and p ∈ Q such that

< ∂tu,v >η +aη(u,v) =< F,v >η ∀ v ∈ V(2.13)
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for almost all t, 0 < t ≤ T. From [4, 3], we know that when η is sufficiently large, the weak
solution for the Stokes-Darcy problem uniquely exists.

In order to derive the coupled Backward-Euler discretization for Stokes-Darcy problem, we
partition Ωc and Ωm into mesh {T h

j }(j = c,m) with Ωj = ∪K∈{T h
j }K̄. We assume that the

cells K ∈ {T h
j } are affine equivalent and the grids of {T h

c } and {T h
m} match along Γcm. On the

other hand, we divide the time interval [0, T ] into N subintervals [tn, tn+1](n = 0, 1, · · · , N −1),
satisfying

0 = t0 < t1 < · · · < tN−1 < tN = T.

Let 4tn = tn − tn−1 be the time step with the biggest one 4t = max1≤n≤N4tn.
We introduce the finite element spaces Wh and Qh which are div-stable: there exists a

constant β > 0, independent of h, such that

Wh = Hh
c ×Hh

m ⊂ W, Qh ⊂ Q,(2.14)

inf
0 6=qh∈Qh

sup
0 6=vh∈Wh

b(vh, qh)
||vh||1||qh||0 > β.(2.15)

and

Vh = {vh ∈ Wh | b(vh, qh) = 0, ∀ qh ∈ Qh}.(2.16)

We also assume Korn’s inequality (see [4])

(D(vh),D(vh)) ≥ C1||vh||21 ∀ vh ∈ Wh,(2.17)

and the trace inequality

||vh||L2(Γcm) ≤ C2||vh||
1
2
0 ||vh||

1
2
1 ∀ vh ∈ Wh,(2.18)

If using Poincare inequality to the right-hand side of the trace inequality, we have

||vh||L2(Γcm) ≤ C3||vh||1 ∀ vh ∈ Wh,(2.19)

here C1, C2, C3 are the strictly positive constants independent of K, ν and α but depend on the
domain Ω.

Based on the weak form (2.10), [3] proposed a fully, monolithically coupled implicit Euler
scheme as follows:
Algorithm 2.1(Coupled scheme): given (u0

h, p0
h) ∈ Wh × Qh, find (un+1

h , pn+1
h ) ∈ Wh × Qh

such that

<
un+1

h − un
h

4t
,vh >η +aη(un+1

h ,vh) + b(vh, pn+1
h ) = < Fn+1vh >η ∀ vh ∈ Wh,(2.20)

b(un+1
h , qh) = 0 ∀ qh ∈ Qh,(2.21)

for n = 0, 1, · · · , N − 1, where Fn+1 := F(tn+1).
Under the certain assumptions, Cao and his co-worker have derived the error estimation as

follows [3]:

||u(tn+1)− un+1
h ||0,η ≤ C(h2 +4t),(2.22)

where ||v||0,η := (||v||2(L2(Ωc))d + ||η 1
2 ψ||2L2(Ωm))

1/2.

The main purpose of this report is to present a partitioned time stepping method for the
Stokes-Darcy problem, which requires only to solve one, uncoupled Stokes and Darcy sub-
problem in each sub-domain per time step. We will analyze its error estimations below and
compare it with result of the above coupled method.
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3. Partitioned time stepping method. In this section, we present the partitioned time
stepping method for the Stokes-Darcy problem and analyze its stability in sequence.

Algorithm 3.1(Partitioned scheme):
Step 1: In Ωc, find (un+1

h , pn+1
h ) ∈ Hh

c ×Qh satisfies

(
un+1

h − un
h

4t
,vh) + 2ν(D(un+1

h ),D(vh)) + b(vh, pn+1
h ) = (fn+1

1 ,vh)

−g

∫

Γcm

φn
hvh · ncmdΓcm −

∫

Γcm

να
√

d√
trace(Π)

Pτ (un+1
h +K∇φn

h) · vhdΓcm ∀ vh ∈ Hh
c ,(3.1)

b(un+1
h , qh) = 0 ∀ qh ∈ Qh,(3.2)

Step 2: In Ωm, find φn+1
h ∈ Hh

m satisfies

η(
φn+1

h − φn
h

4t
, ψh) +

η

S
(K∇φn+1

h ,∇ψh) =
η

S
(fn+1

2 , ψh) +
η

S

∫

Γcm

un
h · ncmψhdΓcm(3.3)

for all ψh ∈ Hh
m.

3.1. Stability of the method. Under a modest time step restriction, we prove stability
of the partitioned time stepping method for the Stokes-Darcy problem.

Theorem 3.1. Suppose that the scaling parameter η satisfies that η ≥ 4Sα2g
C1

, and the time
step size 4t satisfies the following condition:

(
ηC2

2

2
√

S3C1gk
+

C2
2

√
Sg3

η
√

2C1k
)4t ≤ 1,

then we have

||uN
h ||20 + η||φN

h ||20 +
N−1∑
n=0

(||un+1
h − un

h||20 + η||φn+1
h − φn

h||20) +
C1ν4t

2
||uN

h ||21 +
ηgk4t

2Sν
||φN

h ||21

≤ C(T )(
4t

2C1ν

N−1∑
n=0

||fn+1
1 ||2H−1(Ωc)

+
ην4t

Sgk

N−1∑
n=0

||fn+1
2 ||2H−1(Ωm)

+||u0||20 + η||φ0||20 +
C1ν4t

2
||u0||21 +

ηgk4t

2Sν
||φ0||21),(3.4)

where C(T ) denote a constant which depends on the the final time T , C1 and C2 are the
constants which are related to Korn’s inequality and trace inequality, respectively.

Proof. Setting vh = 24tun+1
h in (3.1) and using the identity 2(a−b, a) = |a|2−|b|2+|a−b|2,

as well as b(un+1
h , pn+1

h ) = 0, we have

||un+1
h ||20 − ||un

h||20 + ||un+1
h − un

h||20 + 4ν4t||D(un+1
h )||20 +

2να4t√
k

||Pτ (un+1
h )||2L2(Γcm)

= 24t(fn+1
1 ,un+1

h )− 24tg

∫

Γcm

φn
hun+1

h · ncmdΓcm

− 2αg
√

k4t < ∇τφn
h, Pτ (un+1

h ) >
(H

1/2
00 (Γcm))′,H1/2

00 (Γcm)
(3.5)

Choosing ψ = 24tφn+1
h in (3.3) and using the identity 2(a− b, a) = |a|2 − |b|2 + |a− b|2 gives

η(||φn+1
h ||20 − ||φn

h||20 + ||φn+1
h − φn

h||20) +
2ηgk4t

Sν
||φn+1

h ||21

=
2η4t

S
(fn+1

2 , φn+1
h ) +

2η4t

S

∫

Γcm

un
h · ncmφn+1

h dΓcm.(3.6)
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Adding these two equations and using Korn’s inequality (2.17), we have

||un+1
h ||20 − ||un

h||20 + ||un+1
h − un

h||20 + η(||φn+1
h ||20 − ||φn

h||20 + ||φn+1
h − φn

h||20)
+4C1ν4t||un+1

h ||21 +
2ηgk4t

Sν
||φn+1

h ||21 +
2να4t√

k
||Pτ (un+1

h )||2L2(Γcm)

≤ 24t(fn+1
1 ,un+1

h ) +
2η4t

S
(fn+1

2 , φn+1
h )

+24t(
η

S

∫

Γcm

un
h · ncmφn+1

h dΓcm − g

∫

Γcm

φn
hun+1

h · ncmdΓcm)

−2αg
√

k4t < ∇τφn
h, Pτ (un+1

h ) >
(H

1/2
00 (Γcm))′,H1/2

00 (Γcm)
.(3.7)

For the first two terms on the right-hand side, using Young and Hölder inequalities, we have

24t(fn+1
1 ,un+1

h ) +
2η4t

S
(fn+1

2 , φn+1
h ) ≤ 2C1ν4t||un+1

h ||21 +
4t

2C1ν
||fn+1

1 ||2H−1(Ωc)

+
ηgk4t

Sν
||φn+1

h ||21 +
ην4t

Sgk
||fn+1

2 ||2H−1(Ωm).(3.8)

For the first two interface boundary term, by using Young, trace (2.18) and Hölder inequalities,
it follows that

24t(
η

S

∫

Γcm

un
h · ncmφn+1

h dΓcm − g

∫

Γcm

φn
hun+1

h · ncmdΓcm)

≤ 2η4t

S
||un

h · ncm||L2(Γcm)||φn+1
h ||L2(Γcm) + 24tg||un+1

h · ncm||L2(Γcm)||φn
h||L2(Γcm)

≤ 2ηC24t

S
||un

h||1/2
0 ||un

h||1/2
1 ||φn+1

h ||1/2
0 ||φn+1

h ||1/2
1 + 2C24tg||un+1

h ||1/2
0 ||un+1

h ||1/2
1 ||φn

h||1/2
0 ||φn

h||1/2
1

≤
√

C1ηgk

S
4t||un

h||1||φn+1
h ||1 +

√
η3C4

2

S3C1gk
4t||un

h||0||φn+1
h ||0

+

√
C1ηgk

2S
4t||un+1

h ||1||φn
h||1 +

√
2Sg3C4

2

C1ηk
4t||un+1

h ||0||φn
h||0

≤ C1ν4t

2
||un

h||21 +
ηgk4t

2Sν
||φn+1

h ||21 +
C1ν4t

2
||un+1

h ||21 +
ηgk4t

4Sν
||φn

h||21

+
ηC2

2

2
√

S3C1gk
4t(||un

h||20 + η||φn+1
h ||20) +

C2
2

√
Sg3

η
√

2C1k
4t(||un+1

h ||20 + η||φn
h||20).

For the last term on the right-hand side, by using the imbedding inequality and Hölder inequal-
ity, it leads to

2 α g
√

k4t < ∇τφn
h, Pτ (un+1

h ) >
(H

1/2
00 (Γcm))′,H1/2

00 (Γcm)

≤ 2αg
√

k4t||∇φn
h||(H1/2

00 (Γcm))′ ||Pτ (un+1
h )||

H
1/2
00 (Γcm)

≤ 2αg
√

k4t||φn
h||H1(Ωm)||un+1

h ||H1(Ωc)

≤ C1ν4t||un+1
h ||21 +

α2g2k4t

C1ν
||φn

h||21.(3.9)

Combining these estimates with (3.7), we obtain

||un+1
h ||20 − ||un

h||20 + ||un+1
h − un

h||20 + η(||φn+1
h ||20 − ||φn

h||20 + ||φn+1
h − φn

h||20)
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+
C1ν4t

2
(||un+1

h ||21 − ||un
h||21) +

ηgk

2Sν
4t||φn+1

h ||21 − (
α2g2k

C1ν
+

ηgk

4Sν
)4t||φn

h||21

≤ 4t

2C1ν
||fn+1

1 ||2H−1(Ωc)
+

ην4t

Sgk
||fn+1

2 ||2H−1(Ωm)

+
ηC2

2

2
√

S3C1gk
4t(||un

h||20 + η||φn+1
h ||20) +

C2
2

√
Sg3

η
√

2C1k
4t(||un+1

h ||20 + η||φn
h||20).

Assuming that α2g2k
C1ν + ηgk

4Sν ≤ ηgk
2Sν , i.e., η ≥ 4Sα2g

C1
, we also denote C̃ = ηC2

2

2
√

S3C1gk
+ C2

2

√
Sg3

η
√

2C1k
,

then summing over n from n = 0 to N − 1, we arrive at

||uN
h ||20 + η||φN

h ||20 +
N−1∑
n=0

(||un+1
h − un

h||20 + η||φn+1
h − φn

h||20) +
C1ν4t

2
||uN

h ||21 +
ηgk4t

2Sν
||φN

h ||21

≤ C̃4t
N−1∑
n=0

(||un+1
h ||20 + η||φn+1

h ||20) +
4t

2C1ν

N−1∑
n=0

||fn+1
1 ||2H−1(Ωc)

+
ην4t

Sgk

N−1∑
n=0

||fn+1
2 ||2H−1(Ωm)

+||u0||20 + η||φ0||20 +
C1ν4t

2
||u0||21 +

ηgk4t

2Sν
||φ0||21.(3.10)

It follows from Gronwall inequality that when C̃4t ≤ 1,

||uN
h ||20 + η||φN

h ||20 +
N−1∑
n=0

(||un+1
h − un

h||20 + η||φn+1
h − φn

h||20) +
C1ν4t

2
||uN

h ||21 +
ηgk4t

2Sν
||φN

h ||21

≤ C(T )(
4t

2C1ν

N−1∑
n=0

||fn+1
1 ||2H−1(Ωc)

+
ην4t

Sgk

N−1∑
n=0

||fn+1
2 ||2H−1(Ωm)

+||u0||20 + η||φ0||20 +
C1ν4t

2
||u0||21 +

ηgk4t

2Sν
||φ0||21).(3.11)

4. Error Estimate. In this section, we analyze the convergence rate of the method.
First of all, we assume that the true solution satisfies the following assumptions: for w(t) =
(u(t), φ(t)), we have

wt(t) ∈ L2(0, T ;W), wtt(t) ∈ L2(0, T ;L2) ∩ L∞(0, T ;W), wttt(t) ∈ L∞(0, T ;L2).

Let us define a projection operator Ph : (w(t), p(t)) ∈ W × Q → (Phw(t), Php(t)) ∈ Wh ×
Qh,∀ t ∈ [0, T ] by

aη(Phw(t),vh) + b(vh, Php(t)) = aη(w(t),vh) + b(vh, p(t)) ∀ vh ∈ Wh,

b(Phw(t), qh) = 0 ∀ qh ∈ Qh.

Note that Ph is a linear operator, and under a certain smoothness assumption on (w(t), p(t)),
the following approximation properties hold:

||Phw(t)−w(t)||0 ≤ Ch2,(4.1)
||Phw(t)−w(t)||1 ≤ Ch,(4.2)
||Php(t)− p(t)||0 ≤ Ch.(4.3)
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Furthermore, we will use the following notations, we denote (Phw(t), Php(t)) by (w̄(t), p̄(t)) for
simplification. Then

en+1
1 = u(tn+1)− ūn+1 + ūn+1 − un+1

h , εn+1
1 + δn+1

1 ,

en+1
2 = φ(tn+1)− φ̄n+1 + φ̄n+1 − φn+1

h , εn+1
2 + δn+1

2 ,

µn+1 = p(tn+1)− p̄n+1 + p̄n+1 − pn+1
h , εn+1

µ + δn+1
µ .

In particular, (δ0
1 , δ0

2) = (0, 0). Obviously, from the definition of Ph, we have

||εn+1
1 ||0 + ||εn+1

2 ||0 ≤ Ch2, ||εn+1
1 ||1 + ||εn+1

2 ||1 ≤ Ch, ||εn+1
µ ||0 ≤ Ch.

For convenience, let us introduce the following nations. We denote the backward divided
difference operator dt by

dtwn+1
h =

wn+1
h −wn

h

4t
, for n = 0, · · · , N − 1.(4.4)

We also denote

dttwn+1
h =

dtwn+1
h − dtwn

h

4t
, for n = 1, · · · , N − 1.(4.5)

In the following, we need to estimate the δn+1
1 , δn+1

2 and δn+1
µ in the according norms. Note

that (w̄n+1, p̄n+1) ∈ Vh ×Qh satisfies the following equations: for all vh = (vh, ψh) ∈ Vh, q ∈
Qh,

(
ūn+1 − ūn

4t
,vh) + 2ν(D(ūn+1),D(vh)) + b(vh, p̄n+1

h ) = (θn+1
u ,vh) + (fn+1

1 ,vh)

− g

∫

Γcm

φ̄n+1vh · ncmdΓcm −
∫

Γcm

να
√

d√
trace(Π)

Pτ (ūn+1 +K∇φ̄n+1) · vhdΓcm,(4.6)

η(
φ̄n+1 − φ̄n

4t
, ψh) +

η

S
(K∇φ̄n+1,∇ψh) = η(θn+1

φ , ψh) +
η

S
(fn+1

2 , ψh)

+
η

S

∫

Γcm

ūn+1 · ncmψhdΓcm,(4.7)

where

θn+1
u =

ūn+1 − ūn

4t
− ut(tn+1)

= [
ūn+1 − ūn

4t
− u(tn+1)− u(tn)

4t
]− [

u(tn+1)− u(tn)
4t

− ut(tn+1)]

, θn+1
u,1 + θn+1

u,2 ,

and

θn+1
φ =

φ̄n+1 − φ̄n

4t
− φt(tn+1)

= [
φ̄n+1 − φ̄n

4t
− φ(tn+1)− φ(tn)

4t
]− [

φ(tn+1)− φ(tn)
4t

− φt(tn+1)]

, θn+1
φ,1 + θn+1

φ,2 .
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It is easy to verify that the following properties of θn+1
u,1 , θn+1

u,2 , θn+1
φ,1 , θn+1

φ,2 hold:

θn+1
u,1 = (Ph − I)

u(tn+1)− u(tn)
4t

=
1
4t

∫ tn+1

tn

(Ph − I)ut(t)dt,

which implies

||θn+1
u,1 ||20 =

1
4t2

∫

Ω

(
∫ tn+1

tn

(Ph − I)ut(t)dt)2dx ≤ 1
4t

∫ tn+1

tn

||(Ph − I)ut||20dt.(4.8)

and

4tθn+1
u,2 = u(tn+1)− u(tn)−4tut(tn+1) =

∫ tn+1

tn

(tn+1 − t)utt(t)dt,

which means

||θn+1
u,2 ||20 =

1
4t2

∫

Ω

(
∫ tn+1

tn

(tn+1 − t)utt(t)dt)2dx ≤ 4t

∫ tn+1

tn

||utt||20dt.(4.9)

In the same way, we can obtain the similar results for θn+1
φ,1 and θn+1

φ,2 ,

||θn+1
φ,1 ||20 ≤

1
4t

∫ tn+1

tn

||(Ph − I)φt||20dt,(4.10)

||θn+1
φ,2 ||20 ≤ 4t

∫ tn+1

tn

||φtt||20dt.(4.11)

We also need to estimates the following two terms in error analysis.

||ūn+1 − ūn||21 ≤ C||u(tn+1)− u(tn)||21 = C

∫

Ω

(
∫ tn+1

tn

∇ut(t))2dx

≤ C

∫

Ω

(
∫ tn+1

tn

|∇ut(t)|2dt

∫ tn+1

tn

1dt)dx ≤ C4t

∫ tn+1

tn

||ut||21dt,(4.12)

||φ̄n+1 − φ̄n||21 ≤ C4t

∫ tn+1

tn

||φt||21dt.(4.13)

Under the preparation above, we can obtain the following error estimate for velocity.

Theorem 4.1. (Error for the velocity) Under the assumption of Theorem 3.1 for the
scaling parameter and the time step size, then we have

||u(tN )− uN
h ||20 + η||φ(tN )− φN

h ||20 +
C1ν4t

2
(||u(tN )− uN

h ||21 +
ηgk4t

4Sν
||φ(tN )− φN

h ||21
≤ C(T )(h4 +4t2).

Proof. Subtracting (3.1)-(3.3) from (4.6)-(4.7), we have

(
δn+1
1 − δn

1

4t
,vh) + 2ν(D(δn+1

1 ),D(vh)) + b(vh, δn+1
µ ) = −g

∫

Γcm

(φ̄n+1 − φn
h)vh · ncmdΓcm

+ (θn+1
u ,vh)−

∫

Γcm

να
√

d√
trace(Π)

Pτ (δn+1
1 +K(∇φ̄n+1 −∇φn

h)) · vhdΓcm,(4.14)
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η(
δn+1
2 − δn

2

4t
, ψh) +

η

S
(K∇δn+1

2 ,∇ψh)

= η(θn+1
φ , ψh) +

η

S

∫

Γcm

(ūn+1 − un
h) · ncmψhdΓcm.(4.15)

Setting vh = 24tδn+1
1 in (4.14) and using the identity 2(a− b, a) = |a|2− |b|2 + |a− b|2, as well

as b(δn+1
1 , δn+1

µ ) = 0, we have

||δn+1
1 ||20 − ||δn

1 ||20 + ||δn+1
1 − δn

1 ||20 + 4ν4t||D(δn+1
1 )||20 +

2να4t√
k

||Pτ (δn+1
1 )||2L2(Γcm)

= 24t(θn+1
u , δn+1

1 )− 2g4t

∫

Γcm

(φ̄n+1 − φ̄n + δn
2 )δn+1

1 · ncmdΓcm

−2αg
√

k4t < ∇τ (φ̄n+1 − φ̄n + δn
2 ), Pτ (δn+1

1 ) >
(H

1/2
00 (Γcm))′,H1/2

00 (Γcm)
.(4.16)

Choosing ψh = 24tδn+1
2 in (4.15) and using the identity 2(a− b, a) = |a|2 − |b|2 + |a− b|2, we

have

η(||δn+1
2 ||20 − ||δn

2 ||20 + ||δn+1
2 − δn

2 ||20) +
2ηgk4t

Sν
||δn+1

2 ||21

= 24tη(θn+1
φ , δn+1

2 ) +
2η4t

S

∫

Γcm

(ūn+1 − ūn + δn
1 ) · ncmδn+1

2 dΓcm.(4.17)

Adding these two equations together and using Korn’s inequality (2.17), we have

||δn+1
1 ||20 − ||δn

1 ||20 + ||δn+1
1 − δn

1 ||20 + η(||δn+1
2 ||20 − ||δn

2 ||20 + ||δn+1
2 − δn

2 ||20)
+4C1ν4t||δn+1

1 ||21 +
2ηgk4t

Sν
||δn+1

2 ||21
≤ 24t(θn+1

u , δn+1
1 ) + 24tη(θn+1

φ , δn+1
2 )

−2g4t

∫

Γcm

(φ̄n+1 − φ̄n)δn+1
1 · ncmdΓcm +

2η4t

S

∫

Γcm

(ūn+1 − ūn) · ncmδn+1
2 dΓcm

−2αg
√

k4t < ∇τ (φ̄n+1 − φ̄n), Pτ (δn+1
1 ) >

(H
1/2
00 (Γcm))′,H1/2

00 (Γcm)

−2g4t

∫

Γcm

δn
2 δn+1

1 · ncmdΓcm +
2η4t

S

∫

Γcm

δn
1 · ncmδn+1

2 dΓcm

−2αg
√

k4t < ∇τ (δn
2 ), Pτ (δn+1

1 ) >
(H

1/2
00 (Γcm))′,H1/2

00 (Γcm)
.(4.18)

For the first four terms on the right-hand side, by using (4.8)-(4.11) with Young’s, Poincaré
and Hölder inequalities, it gives that

24t(θn+1
u , δn+1

1 ) + 24tη(θn+1
φ , δn+1

2 )

≤ 3νC14t

2
||δn+1

1 ||21 +
ηgk4t

2Sν
||δn+1

2 ||21 +
2C(Ω)4t

3C1ν
||θn+1

u ||20 +
2SνηC(Ω)4t

gk
||θn+1

φ ||20

≤ 3νC14t

2
||δn+1

1 ||21 +
ηgk4t

2Sν
||δn+1

2 ||21

+
2C(Ω)
3C1ν

∫ tn+1

tn

||(Ph − I)ut||20dt +
2C(Ω)4t2

3C1ν

∫ tn+1

tn

||utt||20dt

+
2SνηC(Ω)

gk

∫ tn+1

tn

||(Ph − I)φt||20dt +
2SνηC(Ω)4t2

gk

∫ tn+1

tn

||φtt||20dt.(4.19)
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For the second two terms on the right-hand side of (4.18, by using trace inequality (2.19) and
(4.12)-(4.13), we have

−2g4t

∫

Γcm

(φ̄n+1 − φ̄n)δn+1
1 · ncmdΓcm +

2η4t

S

∫

Γcm

(ūn+1 − ūn) · ncmδn+1
2 dΓcm

≤ C1ν4t

4
||δn+1

1 ||21 +
ηgk4t

2Sν
||δn+1

2 ||21 +
4g2C2

34t

C1ν
||φ̄n+1 − φ̄n||21 +

2ηνC2
34t

gkS
||ūn+1 − ūn||21

≤ C1ν4t

4
||δn+1

1 ||21 +
ηgk4t

2Sν
||δn+1

2 ||21 +
4Cg2C2

34t2

C1ν

∫ tn+1

tn

||φt||21dt +
2CηνC2

34t2

gkS

∫ tn+1

tn

||ut||21dt.

Moreover, by using imbedding inequality, the fifth term on the right-hand side of (4.18) can be
estimated as follows,

−2αg
√

k4t < ∇τ (φ̄n+1 − φ̄n), Pτ (δn+1
1 ) >

(H
1/2
00 (Γcm))′,H1/2

00 (Γcm)

≤ C1ν4t

4
||δn+1

1 ||21 +
4α2g2k4t

νC1
||φ̄n+1 − φ̄n||21

≤ C1ν4t

4
||∇δn+1

1 ||20 +
4Cα2g2k4t2

νC1

∫ tn+1

tn

||φt||21dt.(4.20)

For the last three terms on the right-hand side of (4.18), from the trace inequality (2.18), we
have

2η4t

S

∫

Γcm

δn
1 · ncmδn+1

2 dΓcm − 2g4t

∫

Γcm

δn
2 δn+1

1 · ncmdΓcm

−2αg
√

k4t < ∇τ (δn
2 ), Pτ (δn+1

1 ) >
(H

1/2
00 (Γcm))′,H1/2

00 (Γcm)

≤ C1ν4t

2
||δn

1 ||21 +
ηgk4t

2Sν
||δn+1

2 ||21 +
C1ν4t

2
||δn+1

1 ||21

+
ηgk4t

4Sν
||δn

2 ||21 + C1ν4t||δn+1
1 ||21 +

α2g2k4t

C1ν
||δn

2 ||21

+
ηC2

24t

2
√

S3C1gk
(||δn

1 ||20 + η||δn+1
2 ||20) +

C2
2

√
Sg34t

η
√

2C1k
(||δn+1

1 ||20 + η||δn
2 ||20).(4.21)

Combining (4.19)-(4.21) with (4.18), we arrive at

||δn+1
1 ||20 − ||δn

1 ||20 + ||δn+1
1 − δn

1 ||20 + η(||δn+1
2 ||20 − ||δn

2 ||20 + ||δn+1
2 − δn

2 ||20)

+
C1ν4t

2
(||δn+1

1 ||21 − ||δn
1 ||21) +

ηgk4t

2Sν
||δn+1

2 ||21 − (
ηgk

4Sν
+

α2g2k

C1ν
)4t||δn

2 ||21

≤ ηC2
24t

2
√

S3C1gk
(||δn

1 ||20 + η||δn+1
2 ||20) +

C2
2

√
Sg34t

η
√

2C1k
(||δn+1

1 ||20 + η||δn
2 ||20)

+
3C(Ω)
2C1ν

∫ tn+1

tn

||(Ph − I)ut||20dt +
3C(Ω)4t2

2C1ν

∫ tn+1

tn

||utt||20dt

+
2SνC(Ω)η

gk

∫ tn+1

tn

||(Ph − I)φt||20dt +
2SνC(Ω)η4t2

gk

∫ tn+1

tn

||φtt||20dt

+
4Cg2C2

34t2

C1ν

∫ tn+1

tn

||φt||21dt +
2CηνC2

34t2

gkS

∫ tn+1

tn

||ut||21dt

+
4Cα2g2k4t2

C1ν

∫ tn+1

tn

||φt||21dt.(4.22)
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Thus, as the stability condition, we assume that η ≥ 4Sα2g
C1

and using the above definition of
C̃, summing over n from n = 0 to N − 1, it follows that

||δN
1 ||20 + η||δN

2 ||20 +
N−1∑
n=0

(||δn+1
1 − δn

1 ||20 + η||δn+1
2 − δn

2 ||20) +
C1ν4t

2
||δN

1 ||21 +
ηgk4t

4Sν
||δN

2 ||21

≤ C̃4t
N−1∑
n=0

(||δn+1
1 ||20 + η||δn+1

2 ||20) + ||δ0
1 ||20 + η||δ0

2 ||20 +
C1ν4t

2
||δ0

1 ||21 +
ηgk4t

4Sν
||δ0

2 ||21

+
3C(Ω)
2C1ν

||(Ph − I)ut||2L2(0,T ;L2) +
3C(Ω)4t2

2C1ν
||utt||2L2(0,T ;L2)

+
2SνC(Ω)η

gk
||(Ph − I)φt||2L2(0,T ;L2) +

2SνC(Ω)η4t2

gk
||φtt||2L2(0,T ;L2)

+
4Cg2C2

34t2

C1ν
||φt||2L2(0,T ′H1) +

CηνC2
34t2

gkS
||ut||2L2(0,T ;H1) +

4Cα2g2k4t2

C1ν
||φt||2L2(0,T ;H1).

It follows from Gronwall inequality that when C̃4t ≤ 1,

||δN
1 ||20 + η||δN

2 ||20 +
N−1∑
n=0

(||δn+1
1 − δn

1 ||20 + η||δn+1
2 − δn

2 ||20) +
C1ν4t

2
||δN

1 ||21 +
ηgk4t

4Sν
||δN

2 ||21

≤ C(T )(||δ0
1 ||20 + η||δ0

2 ||20 +
C1ν4t

2
||δ0

1 ||21 +
ηgk4t

4Sν
||δ0

2 ||21

+
3C(Ω)
2C1ν

||(Ph − I)ut||2L2(0,T ;L2) +
3C(Ω)4t2

2C1ν
||utt||2L2(0,T ;L2)

+
2SνC(Ω)η

gk
||(Ph − I)φt||2L2(0,T ;L2) +

2SνC(Ω)η4t2

gk
||φtt||2L2(0,T ;L2)

+
4Cg2C2

34t2

C1ν
||φt||2L2(0,T ;H1) +

CηνC2
34t2

gkS
||ut||2L2(0,T ;H1) +

4Cα2g2k4t2

C1ν
||φt||2L2(0,T ;H1)).

Finally, from triangle inequality and the approximation properties (4.1)-(4.2), as well as the
assumptions for the error of initial data, we obtain the final result (4.14).

Next, we analyze the convergence of pressure for the decoupled scheme. Note that

||p(tn+1)− pn+1
h ||0 ≤ ||εn+1

µ ||0 + ||δn+1
µ ||0,(4.23)

so we only need to estimate ||δn+1
µ ||0, to this end, let us start with the following lemma which

estimates the error for ||dtδ
n+1
1 ||0.

Lemma 4.2. Under the assumption of Theorem 4.1 for the scaling parameter η and time
step size 4t, we have

||dtδ
N
1 ||20 + η

N−1∑
n=1

||dtδ
n+1
1 − dtδ

n
1 ||20 + η||dtδ

N
2 ||20 + η

N−1∑
n=1

||dtδ
n+1
2 − dtδ

n
2 ||20

+
C1ν4t

2

N−1∑
n=1

||dtδ
n+1
1 ||21 +

ηkg4t

4Sν

N−1∑
n=1

||dtδ
n+1
2 ||21 ≤ C(4t +4t−1h4).(4.24)

Proof. Subtracting equation (4.14)-(4.15) on the two adjacent levels, we have

(
dtδ

n+1
1 − dtδ

n
1

4t
,vh) + 2ν(D(dtδ

n+1
1 ),D(vh)) + b(vh, dtδ

n+1
µ ) = (dtθ

n+1
u ,vh)
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− g

4t

∫

Γcm

(φ̄n+1 − φn
h − φ̄n + φn−1

h )vh · ncmdΓcm

−
∫

Γcm

να
√

d√
trace(Π)

Pτ (dtδ
n+1
1 +

1
4t
K∇(φ̄n+1 − φn

h − φ̄n + φn−1
h ))vhdΓcm,(4.25)

η(
dtδ

n+1
2 − dtδ

n
2

4t
, ψh) +

η

S
(K∇dtδ

n+1
2 ,∇ψh) = η(dtθ

n+1
φ , ψh)

+
η

S4t

∫

Γcm

(ūn+1 − un
h − ūn + un−1

h ) · ncmψhdΓcm.(4.26)

Taking vh = 24tdtδ
n+1
1 and ψh = 24tdtδ

n+1
2 and observing that b(dtδ

n+1
1 , δn+1

µ − δn
µ) = 0,

after adding the resulting equations together, using the Korn’s inequality (2.17), we arrive at

||dtδ
n+1
1 ||20 − ||dtδ

n
1 ||20 + ||dtδ

n+1
1 − dtδ

n
1 ||20 + 4C1ν4t||dtδ

n+1
1 ||21 +

2να4t√
k

||Pτ (dtδ
n+1
1 )||2L2(Γcm)

+ η(||dtδ
n+1
2 ||20 − ||dtδ

n
2 ||20 + ||dtδ

n+1
2 − dtδ

n
2 ||20) +

2ηkg4t

Sν
||dtδ

n+1
2 ||21

≤ 2 4t(dtθ
n+1
u , dtδ

n+1
1 ) + 24tη(dtθ

n+1
φ , dtδ

n+1
2 )

− 2g

∫

Γcm

(φ̄n+1 − φn
h + φ̄n − φn−1

h )dtδ
n+1
1 · ncmdΓcm

+
2η

S

∫

Γcm

(ūn+1 − un
h − ūn + un−1

h ) · ncmdtδ
n+1
2 dΓcm

− 2
∫

Γcm

να
√

d√
trace(Π)

Pτ (K∇(φ̄n+1 − φn
h − φ̄n + φn−1

h ))dtδ
n+1
1 dΓcm

≤ 2 4t(dtθ
n+1
u , dtδ

n+1
1 ) + 24tη(dtθ

n+1
φ , dtδ

n+1
2 )

− 2g

∫

Γcm

(φ̄n+1 − 2φ̄n + φ̄n−1)dtδ
n+1
1 · ncmdΓcm − g4t

∫

Γcm

dtδ
n
2 dtδ

n+1
1 · ncmdΓcm

+
2η

S

∫

Γcm

(ūn+1 − 2ūn + ūn−1) · ncmdtδ
n+1
2 dΓcm +

2η4t

S

∫

Γcm

dtδ
n
1 · ncmdtδ

n+1
2 dΓcm

− 2αg
√

k < ∇τ (φ̄n+1 − 2φ̄n + φ̄n−1), Pτ (dtδ
n+1
1 ) >

(H
1/2
00 (Γcm))′,H1/2

00 (Γcm)

− 2αg
√

k4t < ∇τ (dtδ
n
2 ), Pτ (dtδ

n+1
1 ) >

(H
1/2
00 (Γcm))′,H1/2

00 (Γcm)
(4.27)

Note that

dtθ
n+1
u = dtθ

n+1
u,1 + dtθ

n+1
u,2 , dtθ

n+1
φ = dtθ

n+1
φ,1 + dtθ

n+1
φ,2 ,

where

dtθ
n+1
u,1 = (Ph − I)

u(tn+1)− 2u(tn) + u(tn−1)
4t2

dtθ
n+1
φ,1 = (Ph − I)

φ(tn+1)− 2φ(tn) + φ(tn−1)
4t2

and

dtθ
n+1
u,2 =

1
4t2

{[u(tn+1)− u(tn)−4tut(tn+1)]− [u(tn)− u(tn−1)−4tut(tn)]}
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= −1
2
(utt(sn0)− utt(sn1)),

dtθ
n+1
φ,2 =

1
4t2

{[φ(tn+1)− φ(tn)−4tφt(tn+1)]− [φ(tn)− φ(tn−1)−4tφt(tn)]}

= −1
2
(φtt(sn2)− φtt(sn3)),

for some sn0, sn2 ∈ (tn, tn+1), sn1, sn3 ∈ (tn−1, tn), thus

4t||dtθ
n+1
u,1 ||20 = 4t max

tn−1≤t≤tn+1
||(Ph − I)utt(t)||20.(4.28)

Furthermore,

4t||dtθ
n+1
u,2 ||20 ≤

4t3

4
max

tn−1≤t≤tn+1
||uttt(t)||20.(4.29)

Similarly,

4t||dtθ
n+1
φ,1 ||20 = 4t max

tn−1≤t≤tn+1
||(Ph − I)φtt(t)||20,(4.30)

4t||dtθ
n+1
φ,2 ||20 ≤

4t3

4
max

tn−1≤t≤tn+1
||φttt(t)||20.(4.31)

Furthermore, we will use the following estimate results:

||φ̄n+1 − 2φ̄n + φ̄n||1 ≤ ||φ(tn+1)− 2φ(tn) + φ(tn−1)||1 ≤ 4t2 max
tn−1≤t≤tn+1

||φtt(t)||1,

||ūn+1 − 2ūn + ūn−1||21 ≤ ||u(tn+1)− 2u(tn) + u(tn−1)||1 ≤ 4t2 max
tn−1≤t≤tn+1

||utt(t)||1.

Now we start to estimate the terms on the right-hand side of (4.27). For the first two terms,
using Young and Poincaré inequality, together with the above estimate (4.28)-(4.31), we obtain

24t(dtθ
n+1
u , dtδ

n+1
1 ) + 24tη(dtθ

n+1
φ , dtδ

n+1
2 )

≤ 3C1ν4t

2
||dtδ

n+1
1 ||21 +

ηkg4t

2Sν
||dtδ

n+1
2 ||21 +

2C(Ω)4t

3C1ν
||dtθ

n+1
u ||20 +

2ηSν4t

kg
||dtθ

n+1
φ ||20

≤ 3C1ν4t

2
||dtδ

n+1
1 ||21 +

ηkg4t

2Sν
||dtδ

n+1
2 ||21

+
2C(Ω)4t

3C1ν
( max
tn−1≤t≤tn+1

||(Ph − I)utt(t)||20 +
4t2

4
max

tn−1≤t≤tn+1
||uttt(t)||20)

+
2ηSν4t

kg
( max
tn−1≤t≤tn+1

||(Ph − I)φtt(t)||20 +
4t2

4
max

tn−1≤t≤tn+1
||φttt(t)||20),(4.32)

where C(Ω) is the parameter depending on the domain Ω. For the third term and fifth term
on the right-hand side of (4.27), by using trace inequality (2.19), we have

2η

S

∫

Γcm

(ūn+1 − 2ūn + ūn−1) · ncmdtδ
n+1
2 dΓcm − 2g

∫

Γcm

(φ̄n+1 − 2φ̄n + φ̄n−1)dtδ
n+1
1 · ncmdΓcm

≤ 2ηC3

S
||ūn+1 − 2ūn + ūn−1||1||dtδ

n+1
2 ||1 + 2gC3||φ̄n+1 − 2φ̄n + φ̄n||1||dtδ

n+1
1 ||1

≤ ηkg4t

2Sν
||dtδ

n+1
2 ||21 +

C1ν4t

4
||dtδ

n+1
1 ||21

+
2ηνC2

3

gkS4t
||ūn+1 − 2ūn + ūn−1||21 +

4g2C2
3

C1ν4t
||φ̄n+1 − 2φ̄n + φ̄n||20

16



≤ ηkg4t

2Sν
||dtδ

n+1
2 ||21 +

C1ν4t

4
||dtδ

n+1
1 ||21

+
2ηνC2

34t3

gkS
max

tn−1≤t≤tn+1
||utt(t)||21 +

4g2C2
34t3

C1ν
max

tn−1≤t≤tn+1
||φtt(t)||21.(4.33)

From trace inequality (2.18), the forth term and sixth term on the right-hand side of (4.27) can
be estimated as follows,

2η4t

S

∫

Γcm

dtδ
n
1 · ncmdtδ

n+1
2 dΓcm − g4t

∫

Γcm

dtδ
n
2 dtδ

n+1
1 · ncmdΓcm

≤ C1ν4t

2
||dtδ

n
1 ||21 +

ηgk4t

2Sν
||dtδ

n+1
2 ||21 +

C1ν4t

2
||dtδ

n+1
1 ||21 +

ηgk4t

4Sν
||dtδ

n
2 ||21

+
ηC2

24t

2
√

S3C1gk
(||dtδ

n
1 ||20 + η||dtδ

n+1
2 ||20) +

C2
2

√
Sg34t

η
√

2C1k
(||dtδ

n+1
1 ||20 + η||dtδ

n
2 ||20).(4.34)

For the last two terms on the right-hand side of (4.27), by using imbedding inequality, we obtain

−2αg
√

k < ∇τ (φ̄n+1 − 2φ̄n + φ̄n−1), Pτ (dtδ
n+1
1 ) >

(H
1/2
00 (Γcm))′,H1/2

00 (Γcm)

≤ 2αg
√

k||φ̄n+1 − 2φ̄n + φ̄n−1||1||dtδ
n+1
1 ||1

≤ C1ν4t

4
||dtδ

n+1
1 ||21 +

4α2g2k

C1ν4t
||φ̄n+1 − 2φ̄n + φ̄n−1||21

≤ C1ν4t

4
||dtδ

n+1
1 ||21 +

4α2g3k4t3

C1ν
max

tn−1≤t≤tn+1
||φtt(t)||21.(4.35)

and

−2αg
√

k4t < ∇τ (dtδ
n
2 ), Pτ (dtδ

n+1
1 ) >

(H
1/2
00 (Γcm))′,H1/2

00 (Γcm)

≤ 2αg
√

k4t||dtδ
n
2 ||1||dtδ

n+1
1 ||1

≤ C1ν4t||dtδ
n+1
1 ||21 +

α2g2k4t

C1ν
||dtδ

n
2 ||21.(4.36)

Combining (4.32)-(4.36) with (4.27), we have

||dtδ
n+1
1 ||20 − ||dtδ

n
1 ||20 + ||dtδ

n+1
1 − dtδ

n
1 ||20 + η(||dtδ

n+1
2 ||20 − ||dtδ

n
2 ||20 + ||dtδ

n+1
2 − dtδ

n
2 ||20)

+
C1ν4t

2
(||dtδ

n+1
1 ||21 − ||dtδ

n
1 ||21) +

ηkg4t

2Sν
||dtδ

n+1
2 ||21 − (

ηkg4t

4Sν
+

α2g2k4t

C1ν
)||dtδ

n
2 ||21

≤ ηC2
24t

2
√

S3C1gk
(||dtδ

n
1 ||20 + η||dtδ

n+1
2 ||20) +

C2
2

√
Sg34t

η
√

2C1k
(||dtδ

n+1
1 ||20 + η||dtδ

n
2 ||20)

+
2C(Ω)4t

3C1ν
( max
tn−1≤t≤tn+1

||(Ph − I)utt(t)||20 +
4t2

4
max

tn−1≤t≤tn+1
||uttt(t)||20)

+
2ηSν4t

kg
( max
tn−1≤t≤tn+1

||(Ph − I)φtt(t)||20 +
4t2

4
max

tn−1≤t≤tn+1
||φttt(t)||20)

+
2ηνC2

34t3

gkS
max

tn−1≤t≤tn+1
||utt(t)||21 +

4g2C2
34t3

C1ν
max

tn−1≤t≤tn+1
||φtt(t)||21

+
4α2g2k4t3

C1ν
max

tn−1≤t≤tn+1
||φtt(t)||21.(4.37)

17



As the same as Theorem 4.1, assuming that η ≥ 4Sα2g
C1

and using the above definition of C̃,
summing over n from n = 1 to N − 1, we have

||dtδ
N
1 ||20 +

N−1∑
n=1

||dtδ
n+1
1 − dtδ

n
1 ||20 + η||dtδ

N
2 ||20 + η

N−1∑
n=1

||dtδ
n+1
2 − dtδ

n
2 ||20

+
C1ν4t

2
||dtδ

N
1 ||21 +

ηgk4t

4Sν
||dtδ

N
2 ||21

≤ C̃4t
N−1∑
n=1

(||dtδ
n+1
1 ||20 + η||dtδ

n+1
2 ||20)

+||dtδ
1
1 ||20 + η||dtδ

1
2 ||20 +

C1ν4t

2
||dtδ

1
1 ||21 +

ηgk4t

4Sν
||dtδ

1
2 ||21

+
2C(Ω)
3C1ν

( max
0≤t≤T

||(Ph − I)utt(t)||20 +
4t2

4
max

0≤t≤T
||uttt(t)||20)

+
2ηSν

kg
( max
0≤t≤T

||(Ph − I)φtt(t)||20 +
4t2

4
max

0≤t≤T
||φttt(t)||20)

+
2ηνC2

34t2

gkS
max

0≤t≤T
||utt(t)||21 +

4g2C2
34t2

C1ν
max

0≤t≤T
||φtt(t)||21

+
4α2g2k4t2

C1ν
max

0≤t≤T
||φtt(t)||21,(4.38)

then it follows from the Gronwall inequality that when C̃4t ≤ 1,

||dtδ
N
1 ||20 +

N−1∑
n=1

||dtδ
n+1
1 − dtδ

n
1 ||20 + η||dtδ

N
2 ||20 + η

N−1∑
n=1

||dtδ
n+1
2 − dtδ

n
2 ||20

+
C1ν4t

2
||dtδ

N
1 ||21 +

ηgk4t

4Sν
||dtδ

N
2 ||21

≤ C(T ){||dtδ
1
1 ||20 + η||dtδ

1
2 ||20 +

C1ν4t

2
||dtδ

1
1 ||21 +

ηgk4t

4Sν
||dtδ

1
2 ||21

+
2C(Ω)
3C1ν

( max
0≤t≤T

||(Ph − I)utt(t)||20 +
4t2

4
max

0≤t≤T
||uttt(t)||20)

+
2ηSν

kg
( max
0≤t≤T

||(Ph − I)φtt(t)||20 +
4t2

4
max

0≤t≤T
||φttt(t)||20)

+
2ηνC2

34t2

gkS
max

0≤t≤T
||utt(t)||21 +

4g2C2
34t2

C1ν
max

0≤t≤T
||φtt(t)||21

+
4α2g2k4t2

C1ν
max

0≤t≤T
||φtt(t)||21}.(4.39)

For the four terms on the right-hand side, by using (4.22) with n = 0, we have

(2− C̃4t)(||δ1
1 ||20 + η||δ1

2 ||20) +
C1ν4t

2
||δ1

1 ||21 +
ηgk4t

2Sν
||δ1

2 ||21

≤ 3C(Ω)4t

2C1ν
||(Ph − I)ut||20 +

3C(Ω)4t3

2C1ν
||utt||20

+
2SνC(Ω)η4t

gk
||(Ph − I)φt||20 +

2SνC(Ω)η4t3

gk
||φtt||20

+
4Cg2C2

34t3

C1ν
||φt||21 +

2CηνC2
34t3

gkS
||ut||21 +

4Cα2g2k4t3

C1ν
||φt||21.(4.40)
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Thus, when C̃4t ≤ 1, which means 2 − C̃4t ≥ 1, by applying the approximate properties of
Ph, the above inequality reduces to

||δ1
1 ||20 + η||δ1

2 ||20 +
C1ν4t

2
||δ1

1 ||21 +
ηgk4t

2Sν
||δ1

2 ||21

≤ 3C(Ω)4th4

2C1ν
+

3C(Ω)4t3

2C1ν
||utt||20 +

2SνC(Ω)η4th4

gk
+

2SνC(Ω)η4t3

gk
||φtt||20

+
4Cg2C2

34t3

C1ν
||φt||21 +

2CηνC2
34t3

gkS
||ut||21 +

4Cα2g2k4t3

C1ν
||φt||21.(4.41)

Thus

||dtδ
1
1 ||20 + η||dtδ

1
2 ||20 +

C1ν4t

2
||dtδ

1
1 ||21 +

ηgk4t

4Sν
||dtδ

1
2 ||21

= ||δ
1
1 − δ0

1

4t
||20 + η||δ

1
2 − δ0

2

4t
||20 +

C1ν4t

2
||δ

1
1 − δ0

1

4t
||21 +

ηgk4t

4Sν
||δ

1
2 − δ0

2

4t
||21

=
1
4t2

[||δ1
1 ||20 + η||δ1

2 ||20 +
C1ν4t

2
||δ1

1 ||21 +
ηgk4t

4Sν
||δ1

2 ||21]

≤ Ĉ(4t−1h4 +4t),(4.42)

where Ĉ is a constant depends on S, ν, g, k, η, α, C1, C3,Ω. Finally, combining (4.42) and the
approximate properties of Ph with (4.39), we claim the theorem.

Theorem 4.3. (Error for the pressure) Under the assumptions of Theorem 4.1, we have

||p(tn+1)− pn+1
h ||0 ≤ C(4t

1
2 +4t−

1
2 h2).(4.43)

Proof. From (4.14), we have

b(vh, δn+1
µ ) = −(dtδ

n+1
1 ,vh)− 2ν(D(δn+1

1 ),D(vh))− g

∫

Γcm

(φ̄n+1 − φn
h)vh · ncmdΓcm

+ (θn+1
u ,vh)−

∫

Γcm

να
√

d√
trace(Π)

Pτ (δn+1
1 +K(∇φ̄n+1 −∇φn

h)) · vhdΓcm

≤ ||vh||1(||dtδ
n+1
1 ||0 + (2ν +

να√
k

)||δn+1
1 ||1 + (g + gα

√
k)||φ̄n+1 − φn

h||1 + ||θn+1
u ||0).(4.44)

Therefore, from the discrete inf-sup condition (2.14), it follows that

||δn+1
µ ||0 ≤ Cβ−1(||dtδ

n+1
1 ||0 + (2ν +

να√
k

)||δn+1
1 ||1 + (g + gα

√
k)||φ̄n+1 − φn

h||1 + ||θn+1
u ||0)

≤ Cβ−1[||dtδ
n+1
1 ||0 + (2ν +

να√
k

)||δn+1
1 ||1 + ||θn+1

u ||0

+ (g + gα
√

k)(4t max
tn≤t≤tn+1

||φt(t)||1 + ||δn
2 ||1)].

By using (4.8)-(4.9) and Theorem 4.1 and Lemma 4.2, we have

||δn+1
µ ||0 ≤ C(4t1/2 +4t−

1
2 h2).(4.45)

Thus, by using triangle inequality, (4.43) follows from (4.45) and (4.3).
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5. Numerical tests. In this section, we present some results of numerical tests which
confirm the theoretical analysis.

Assume Ωm = [0, 1] × [1, 2] and Ωc = [0, 1] × [0, 1] with interface Γcm = (0, 1) × {1}. The
exact solution is given by

(u1, u2) = ([x2(y − 1)2 + y]cos(t), [−2
3
x(y − 1)3 + 2− πsin(πx)]cos(t)),

p = [2− πsin(πx)]sin(0.5πy)cos(t),
φ = [2− πsin(πx)][1− y − cos(πy)]cos(t).

Here the initial conditions, boundary conditions, and the forcing terms follows the solution.
The finite element spaces are constructed by using the well-known MINI elements (P1b−P1)

for the Stokes problem and the linear Lagrangian elements (P1) for the Darcy flow. The code
was implemented by using the software package FreeFEM++[7]. For the monolithically coupled
scheme, the GMRES routine is used to solve the (non-symmetric) coupled system. For the
uncoupled scheme, a multi-frontal Gauss LU factorization is implemented to solve the SPD
sub-systems. For simplicity, we set α = 0.1 and η = 10.

For the simplicity of notations, we denote (uh,m, ph,m, φh,m) the solutions for the mono-
lithically coupled scheme Algorithm 2.1, and accordingly, we denote

eh,m
u = uh,m − u(tm), eh,m

p = ph,m − p(tm), eh,m
φ = φh,m − φ(tm).

On the other hand, (um
h , pm

h , φm
h ) denotes the solutions for the partitioned scheme Algorithm

3.1, accordingly, we denote

em
h,u = um

h − u(tm), em
h,p = pm

h − p(tm), em
h,φ = φm

h − φ(tm).

First, we compare the convergence performance and CPU time for both the coupled scheme
and the partitioned scheme. In Table 5.1-5.2, we consider both schemes at time tm = 1.0, with
varying mesh h but fixed time step 4t. Two schemes achieve similar precision, although the
monolithically coupled scheme is slightly more accurate than the partitioned scheme. However,
the monolithically coupled scheme required much more CPU time than the partitioned scheme.
The relative advantage of the partitioned scheme increases as the mesh size decreases. On
the other hand, in Table 5.3-5.4, we consider both schemes at the same time tm = 1.0, with
varying time step 4t but fixed mesh h = 1

8 . Two schemes almost get the same accuracy, but
the coupled scheme still needs much more CPU time than the partitioned scheme. In all, we
can conclude that the partitioned scheme is comparable with the coupled scheme, but much
cheaper and more efficient than the coupled one.

Next, we focus on the partitioned scheme, and demonstrate its orders of convergence with
respect to the spacing h and the time step 4t. Following [12], we introduce a more accurate
approach to examine the orders of convergence with respect to the time step 4t or the mesh
size h due to the approximation errors O(4tγ) + O(hµ). For example, assuming

v4t
h (x, tm) ≈ v(x, tm) + C1(x, tm)4tγ + C2(x, tm)hµ,

it follows that

v4t
h (x, tm)− v

4t
2

h (x, tm) ≈ C1(x, tm)(1− 1
2γ

)4tγ ,

v4t
h (x, tm)− v4t

h
2

(x, tm) ≈ C2(x, tm)(1− 1
2µ

)hµ.(5.1)

Thus,

ρv,h,i =
||v4t

h (x, tm)− v4t
h
2

(x, tm)||i
||v4t

h
2

(x, tm)− v4t
h
4

(x, tm)||i
≈ 4µ − 2µ

2µ − 1
= 2µ.
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ρv,4t,i =
||v4t

h (x, tm)− v
4t
2

h (x, tm)||i
||v

4t
2

h (x, tm)− v
4t
4

h (x, tm)||i
≈ 4γ − 2γ

2γ − 1
= 2γ .

Here, v can be u, p or φ and i can be 0 or 1. Thus, while ρv,h,i, ρv,4t,i approach to 4.0 and
2.0, it means that the convergence orders will approach to 2.0 and 1.0, respectively.

Using these definitions, in Table 5.5, we study the convergence orders for the partitioned
scheme with a fixed time step 4t = 0.01 and varying spacing h = 1/2, 1/4, 1/8, 1/16, 1/32.
Observe from Table 5.5 that ρu,h,0, ρφ,h,0 is a little larger than 4.0, and ρu,h,1, ρp,h,0, ρφ,h,1

approach to 2.0, which suggest that the concerned orders of convergence in space for u and
φ in L2-norm are all O(h2) and in H1-norm are all O(h), the pressure p in L2-norm is O(h).
However, in Table 5.6, we study the convergence order with a fixed spacing h = 1/8 and varying
time step 4t = 0.2, 0.1, 0.05, 0.025, 0.0125. The numerical experiments strongly suggest that
the orders of convergence in time for all variables should be O(4t), which implies that the error
estimates for u and φ in L2-norm is optimal, however, the error estimates for the H1-norm of
u and φ might not be optimal for the partitioned scheme, and may be further improved from
O(4t1/2) to O(4t) by a finer analysis, this is an open problem for further work.

Table 5.1
The convergence performance and CPU time of the coupled scheme at time tm = 1.0, with varying mesh

h but fixed time step 4t = 0.01.

h ||eh,m
u ||0 ||eh,m

u ||1 ||eh,m
p ||0 ||eh,m

φ ||0 ||eh,m
φ ||0 CPU

1
2 0.267314 1.55801 1.23503 0.153039 1.37635 3.369
1
4 0.076279 1.06164 0.91369 0.058034 0.86910 7.569
1
8 0.026057 0.44886 0.36556 0.011133 0.38736 30.810
1
16 0.022761 0.28795 0.25357 0.003486 0.19702 138.184
1
32 0.023625 0.24447 0.21791 0.002030 0.10135 621.395

Table 5.2
The convergence performance and CPU time of the partitioned scheme at time tm = 1.0, with varying

mesh h but fixed time step 4t = 0.01.

h ||eh,m
u ||0 ||eh,m

u ||1 ||eh,m
p ||0 ||eh,m

φ ||0 ||eh,m
φ ||0 CPU

1
2 0.267313 1.55801 1.23624 0.153051 1.37634 1.758
1
4 0.073254 0.83724 0.57534 0.046875 0.79330 2.625
1
8 0.026164 0.46064 0.37295 0.013239 0.40969 12.726
1
16 0.022889 0.28703 0.25593 0.003836 0.19585 40.404
1
32 0.023669 0.24438 0.21924 0.002398 0.10168 170.097

Table 5.3
The convergence performance and CPU time of the coupled scheme at time tm = 1.0, with varying time

step 4t but fixed mesh h = 1
8
.

4t ||eh,m
u ||0 ||eh,m

u ||1 ||eh,m
p ||0 ||eh,m

φ ||0 ||eh,m
φ ||0 CPU

0.2 0.025843 0.448095 0.358632 0.011945 0.387217 3.057
0.1 0.025958 0.448506 0.362193 0.011494 0.387284 5.242
0.05 0.026019 0.448707 0.364065 0.011297 0.387323 8.986
0.025 0.026045 0.448806 0.364996 0.011190 0.387343 13.728
0.0125 0.026053 0.448848 0.365446 0.011142 0.387353 23.727
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Table 5.4
The convergence performance and CPU of the partitioned scheme at time tm = 1.0, with varying time step

4t but fixed mesh h = 1
8
.

4t ||em
h,u||0 ||em

h,u)||1 ||em
h,p||0 ||em

h,φ||0 ||em
h,φ||0 CPU

0.2 0.026371 0.470571 0.402374 0.014093 0.409713 0.873
0.1 0.026215 0.465084 0.386249 0.013490 0.409691 1.248
0.05 0.026176 0.462564 0.378732 0.013205 0.409692 2.168
0.025 0.026168 0.461379 0.375187 0.013068 0.409696 4.352
0.0125 0.026167 0.460808 0.373477 0.012999 0.409699 8.642

Table 5.5
Convergence orders of O(hµ) of the partitioned scheme at time tm = 1.0, with varying mesh h but fixed

time step 4t = 0.01.

h ||um
h − um

h
2
||0 ρu,h,0 ||um

h − um
h
2
||1 ρu,h,1 ||pm

h − pm
h
2
||0 ρp,h,0

1
2 0.215206 3.69422 1.65540 1.91733 1.00526 1.85609
1
4 0.058255 3.67166 0.86339 1.89901 0.54160 2.03378
1
8 0.015866 3.99297 0.45465 2.06079 0.26630 2.34875
1
16 0.003974 0.22062 0.11338
h ||φm

h − φm
h
2
||0 ρφ,h,0 ||φm

h − φm
h
2
||0 ρφ,h,1

1
2 0.133931 3.40479 1.30793 1.67328
1
4 0.039336 3.61042 0.78165 1.87898
1
8 0.010895 4.85791 0.41599 2.05800
1
16 0.002243 0.20213

Table 5.6
Convergence orders of O(4tγ) of the partitioned at time tm = 1.0, with varying time step 4t but fixed

mesh h = 1
8
.

4t ||um
4t − um

4t
2
||0 ρu,4t,0 ||um

4t − um
4t
2
||1 ρu,4t,1 ||pm

4t − pm
4t
2
||0 ρp,4t,0

0.2 1.82652e-3 1.88614 2.23601e-2 1.87735 3.85061e-2 1.87848
0.1 9.68391e-4 1.94752 1.19104e-2 1.94395 2.04985e-2 1.94289
0.05 4.97242e-4 1.97488 6.12692e-3 1.97327 1.05506e-2 1.97240
0.025 2.51783e-4 3.10496e-3 5.34910e-3
4s ||φm

4s − φm
4s
2
||0 ρφ,4s,0 ||φm

4s − φm
4s
2
||0 ρφ,4s,1

0.2 8.55442e-4 2.04615 3.71811e-3 2.02567
0.1 4.18074e-4 2.02602 1.83549e-3 2.01520
0.05 2.06352e-4 2.01349 9.10823e-4 2.00804
0.025 1.02485e-4 4.53588e-4

At last, It is also of practical interest to compare the effects of the Beavers-Joseph inter-
face conditions with the simplified Beavers-Joseph-Saffman conditions. [12] have studied the
decoupled scheme with the simplified Beavers-Joseph-Saffman conditions. Here, for simplicity,
we set α = 0.1, and solve the Stokes-Darcy problem with simplified Beavers-Joseph-Saffman
conditions by using the method provided in [12] and list the experiment results in Table 5.7.
Comparing Table 5.7 with Table 5.1, it is easy to see that, while α is small enough, both decou-
pled scheme in [12] and the partitioned scheme Algorithm 3.1 obtain the good approximation
solutions, and the convergence performance are almost similar, which means the Beaver-Joseph
interface conditions are also reasonable.
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Table 5.7
The convergence performance of the partitioned scheme in [12] with simplified Beavers-Joseph-Saffman

condition at time tm = 1.0, with varying mesh size but fixed time step 4t = 0.01.

h ||eh,m
u ||0 ||eh,m

u ||1 ||eh,m
p ||0 ||eh,m

φ ||0 ||eh,m
φ ||0 CPU

1
2 0.267313 1.55801 1.23624 0.153051 1.37634 2.087
1
4 0.073890 0.83457 0.58647 0.046805 0.79332 4.407
1
8 0.025638 0.44917 0.32231 0.012886 0.40971 11.969
1
16 0.021387 0.25669 0.20009 0.003190 0.19572 43.932
1
32 0.021871 0.20074 0.16927 0.001629 0.10131 177.778

6. conclusions. In this report, we propose a partitioned time stepping method for the
fully evolutionary Stokes-Darcy problem with Beavers-Joseph interface condition. we conclude
that if we choose the scaling parameter η large enough and the time step 4t small enough,
then the partitioned method is stable and convergent.
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