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Abstract

We establish interior velocity superconvergence estimates for mixed finite element
approximations of second order elliptic problems on non-matching rectangular and
quadrilateral grids. Both mortar and non-mortar methods for imposing the interface
conditions are considered. In both cases it is shown that a discrete L2-error in the
velocity in a compactly contained subdomain away from the interfaces converges
of order O(h1/2) higher than the error in the whole domain. For the non-mortar
method we also establish pressure superconvergence, which is needed in the velocity
analysis. Numerical results are presented in confirmation of the theory.
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1 Introduction

The use of non-matching multiblock grids in discretizations of partial differ-
ential equations provides great flexibility in meshing highly irregular domains
and accurately handling internal features, e.g., faults and geological layers
in porous media. At the same time, special care has to be taken to impose
properly interface continuity conditions. The computational error due to the
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non-matching grids affects the overall accuracy of the solution. In this paper
we study how this interface error propagates into the interior of the subdo-
mains.

We consider the second order elliptic equation written as a first order system

u = −K∇p in Ω, (1.1)

∇ · u = f in Ω, (1.2)

p = g on ∂Ω, (1.3)

where Ω ⊂ R
d, d = 2 or 3, and K is a symmetric, uniformly positive definite

tensor with L∞(Ω) components. The above system models single-phase flow
in porous media among many other applications. Here p is the pressure, u

is the Darcy velocity, and K represents the rock permeability divided by the
fluid viscosity. We assume that K(x) satisfies

∀x ∈ Ω, k0ξ
T ξ ≤ ξT K(x)ξ ≤ k1ξ

T ξ, ∀ ξ ∈ R
d. (1.4)

The Dirichlet boundary conditions are considered merely for simplicity of the
presentation. Neumann boundary conditions u · ν = gN and Robin boundary
conditions −αp+u·ν = gR, where ν is the outward unit normal vector on ∂Ω,
can also be considered. We assume that the problem (1.1)–(1.3) is H2-regular,
i.e., there exists a positive constant C depending only on K and Ω such that

‖p‖2 ≤ C(‖f‖ + ‖g‖3/2,∂Ω), (1.5)

where H2 is the standard Hilbert space of functions having second order weak
derivatives in L2. Sufficient conditions for (1.5) are, for example, K ∈ C0,1(Ω)
and Ω is convex or ∂Ω is smooth enough [20,22].

We study the approximation of (1.1)–(1.3) by mixed finite element methods
on non-matching grids. Mixed methods are of interest due to their local mass
conservation and high accuracy for both pressure and velocity, especially on
structured grids. Multiblock discretizations allow for modeling highly irregular
domains, while keeping the subdomain grids relatively simple. As a result the
use of mixed finite element subdomain discretizations can lead to accurate and
efficient methods.

Continuity of flux and pressure must be imposed on interfaces. We consider
two approaches, a mortar and a non-mortar method. In the mortar mixed finite
element method [1,21,34] a mortar finite element pressure Lagrange multiplier
is introduced on the interfaces to impose weakly continuity of flux. If the mor-
tar space contains polynomials of degree one order higher than the traces of
subdomain velocities, the method is optimally convergent and even supercon-
vergent in certain cases [1,34]. We refer the reader to [6,7,16,23,33] for some
examples of applications of mortar spaces to other types of discretizations.
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In the non-mortar mixed finite element method [3], interface conditions are
imposed without the use of a mortar space. On each subdomain, a partially
hybridized mixed method is employed. Lagrange multiplier pressures are in-
troduced on the element faces (or edges) on the subdomain interfaces Γ as
in [4,11,19]. Since the grids are non-matching across Γ, the Lagrange multi-
pliers are double-valued. Robin type conditions are imposed on Γ to couple
the subdomain problems. The method has an advantage if adaptive local re-
finement techniques are to be used, since there is no mortar grid to refine.
Such refinement could be difficult to implement in the mortar mixed method,
since accuracy depends subtly on the relations between the mortar grid and
the traces of the grids of the subdomain blocks [1], see the mortar condition
(2.28).

In this paper we combine cutoff function and superconvergence techniques to
establish interior error estimates for the velocity in mortar and non-mortar dis-
cretizations. We refer to [2,15,17,18,24] for relevant superconvergence results
for mixed finite element methods on rectangular and quadrilateral elements.
There are also examples of the use of cutoff functions in the context of mixed
finite element methods. In [14], interior and superconvergence estimates are
established in negative norms for linear and semi-linear elliptic problems. Inte-
rior estimates are established in [2] for a cell-centered finite difference version
of the mixed method, as well as in [31] for an enhanced velocity mixed finite
element method. Here we establish interior superconvergence for the velocity
in mortar and non-mortar mixed finite element methods. For both methods,
if the grids are rectangular or mildly distorted quadrilateral, we show that
the velocity converges of order O(h1/2) higher in a compactly contained sub-
domain than in the whole domain. In the mortar case the superconvergence
is the same as in single block discretizations with no boundary error. As a
tool in the analysis we prove pressure superconvergence for the non-mortar
method using a duality argument. Our analysis shows that the numerical er-
ror depends on the smoothness of the solution on every subdomain up to
the interface. Numerical experiments confirm both the interior superconver-
gence for smooth solutions, as well as deterioration of interior convergence for
singular solutions.

The remainder of the paper is organized as follows. In the next section we recall
the mortar and non-mortar mixed finite element methods and their conver-
gence properties. Section 3 is devoted to the interior error analysis for the
mortar method. The non-mortar method is analyzed in Section 4. Numerical
experiments confirming the theory are presented in Section 5.

3



2 Formulation of the methods and preliminaries

We will use the following standard notation. For D ⊂ R
d, let (·, ·) and ‖ · ‖D

be the L2(D) inner product and norm, respectively. Denote the norm in the
Hilbert space Hs(D) by ‖ · ‖s,D. We may omit the subscript D if D = Ω.
Similar notation is used for S ⊂ ∂Ω, with the exception that the L2(S) inner
product or duality pairing is denoted by 〈·, ·〉S. We denote by c and C generic
positive constants, independent of the discretization parameter h.

The velocity and pressure functional spaces for the mixed weak formulation
of (1.1)–(1.3) are defined as usual [11] to be

V = H(div; Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)}, W = L2(Ω),

with norms

‖v‖V = (‖v‖2 + ‖∇ · v‖2)1/2, ‖w‖W = ‖w‖.

A weak solution of (1.1)–(1.3) is a pair u ∈ V, p ∈ W such that

(K−1u,v) = (p,∇ · v) − 〈g,v · ν〉∂Ω, v ∈ H(div; Ω), (2.1)

(∇ · u, w) = (f, w), w ∈ L2(Ω). (2.2)

It is well known (see, e.g., [11,28]) that (2.1)–(2.2) has a unique solution.

Let Ω be decomposed into non-overlapping subdomains (blocks) Ωi so that
Ω = ∪n

i=1Ωi and Ωi ∩Ωj = ∅ for i 6= j. Let Γi,j = ∂Ωi ∩ ∂Ωj for i 6= j, Γi,i = ∅,
Γ = ∪1≤i<j≤nΓi,j, and Γi = ∂Ωi∩Γ = ∂Ωi\∂Ω denote interior block interfaces.
We assume that the interfaces are flat. The blocks need not share complete
faces, i.e., they need not form a conforming partition. Denote by

Vi = H(div; Ωi), Wi = L2(Ωi)

the subdomain functional spaces. To cast the problem (1.1)–(1.3) in a multi-
block form, we write on each block Ωi

u = −K∇p in Ωi, (2.3)

∇ · u = f in Ωi, (2.4)

p = g on ∂Ωi ∩ ∂Ω, (2.5)

and on each interface Γi,j

pi = pj, ui · νi + uj · νj = 0,

i.e., both the pressure and the flux are continuous across Γi,j. Here, ν i is the
outer unit normal to ∂Ωi and for any f defined on Ω, we denote both f |Ωk

and its trace f |Γk
by fk.
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Let Th,i be a conforming, shape-regular, quasi-uniform finite element partition
of Ωi, 1 ≤ i ≤ n, of maximal element diameter hi [13]. To simplify the pre-
sentation, we let h = max1≤i≤n hi and analyze the methods in terms of this
single value h. We allow for the possibility that the subdomain partitions Th,i

and Th,j do not align on Γi,j. Define Th = ∪n
i=1Th,i and let

Vh,i × Wh,i ⊂ Vi × Wi

be any of the usual mixed finite element spaces defined on Th,i (see [11], Section
III.3), the Raviart-Thomas (RT) spaces [27,25], the Brezzi-Douglas-Marini
(BDM) spaces [10], the Brezzi-Douglas-Fortin-Marini (BDFM) spaces [9], the
Brezzi-Douglas-Duràn-Fortin (BDDF) spaces [8], or the Chen-Douglas (CD)
spaces [12]. We consider the above spaces on affine elements in R

2 and R
3 as

well as RT and BDFM spaces on convex quadrilateral elements in R
2. The

order of the spaces is assumed to be the same on every subdomain. In the
affine case, let Vh,i contain the polynomials of degree k and Wh,i contain the
polynomials of degree l. For these spaces we have either l = k or l = k−1, with
the former true for RT and BDFM spaces. The mixed finite element spaces
on quadrilaterals are defined via a transformation to the reference square Ê.
For each element E, there exists a bijection mapping FE : Ê → E. Let DFE

be the Jacobian matrix and let JE = |det(DFE)|. If V̂(Ê) and Ŵ (Ê) are the
mixed finite element spaces on Ê, then the spaces on E are defined via the
transformations [29,11]

v =
1

JE
DFEv̂ ◦ F−1

E , w = ŵ ◦ F−1
E .

The vector transformation is called the Piola transformation and preserves the
normal components of the velocity vectors on the edges. It satisfies [11]

(∇ · v, w)E = (∇̂ · v̂, ŵ)Ê. (2.6)

The pressure superconvergence result for the non-mortar method will be shown
for all of the above spaces on affine elements in R

2 and R
3, as well as for the

RT and BDFM spaces in R
2 on h2-parallelograms, see (2.7). Interior super-

convergence of the velocity in both methods will be shown for the RT and
BDFM spaces on h2-uniform quadrilateral grids, see (2.7)–(2.8), and, if K is
a diagonal tensor, on rectangular grids in R

3.

Following the terminology from [18], a quadrilateral is called a h2-parallelo-
gram if it is a h2-perturbation of a parallelogram:

‖(r2 − r1) − (r3 − r4)‖ ≤ Ch2, (2.7)

where ri, i = 1, . . . 4, are the vertices of the quadrilateral, see Figure 1. A
quadrilateral partition is called h2-uniform, if each element is a h2-parallelo-
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r2 = r′1

r′2

r′3r4

r1

r3 = r′4

Fig. 1. h2-uniform quadrilateral grid.

gram and any two adjacent elements form a h2-parallelogram, i.e.,

‖(r2 − r1) − (r′2 − r′1)‖ ≤ Ch2, (2.8)

where r′i, i = 1, . . . 4, are the vertices of the adjacent element, see Figure 1.
We note that h2-uniform grids can be constructed by uniform refinements
of an initial quadrilateral grid or by smooth mapping of uniformly refined
rectangular grids.

The velocity and pressure mixed finite element spaces on Ω are defined as
follows:

Vh =
n
⊕

i=1

Vh,i, Wh =
n
⊕

i=1

Wh,i.

Note that the normal components of vectors in Vh are continuous between
elements within each block Ωi, but not across Γ.

We introduce some projection operators needed in the analysis. For any of the
standard mixed spaces there exists a projection operator Πi : (Hε(Ωi))

d∩Vi →
Vh,i (for any ε > 0), satisfying that for any q ∈ (Hε(Ωi))

d ∩ Vi,

(∇ · (Πiq − q), w) = 0 ∀w ∈ Wh, (2.9)

〈(Πiq − q) · ν i,v · ν i〉Γi
= 0 ∀v ∈ Vh,i. (2.10)

Define Π :
⊕n

i=1 Vi → Vh such that Π|Ωi
= Πi. On affine elements,

∇ ·Vh,i = Wh,i. (2.11)

On quadrilateral elements, (2.6) implies that on any element E

∇ · Vh,i(E) =
1

JE
Wh,i(E). (2.12)

Since JE 6= constant, (2.11) does not hold for quadrilaterals.

Let Q̂ be the L2(Ê)-orthogonal projection onto Ŵ (Ê), satisfying for any ϕ̂ ∈
L2(Ê),

(ϕ̂ − Q̂ϕ̂, ŵ) = 0, ŵ ∈ Ŵ (Ê).
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Let Qh : L2(Ω) → Wh be the projection operator satisfying for any ϕ ∈ L2(Ω),

Qhϕ = Q̂ϕ̂ ◦ F−1
E on allE.

It is easy to see that, due to (2.6),

(ϕ − Qhϕ,∇ · v) = 0, ∀v ∈ Vh. (2.13)

For any φ ∈ L2(Γi), let φi ∈ Vh,i · ν i|Γi
be its L2(Γi)-orthogonal projection

satisfying

〈φ − φi,v · νi〉Γi
= 0, ∀v ∈ Vh,i. (2.14)

The projection operators have the following approximation properties:

‖ϕ − Qhϕ‖ ≤ C‖ϕ‖th
t, 0 ≤ t ≤ l + 1, (2.15)

‖∇ · (q − Πiq)‖Ωi
≤ C‖∇ · q‖t,Ωi

ht, 0 ≤ t ≤ l + 1, (2.16)

‖q − Πiq‖Ωi
≤ C‖q‖r,Ωi

hr, 1 ≤ r ≤ k + 1, (2.17)

‖φ − φi‖Γi,j
≤ C‖φ‖r,Γi,j

hr, 0 ≤ r ≤ k + 1, (2.18)

‖(q − Πiq) · ν i‖Γi,j
≤ C‖q‖r,Γi,j

hr, 0 ≤ r ≤ k + 1. (2.19)

Bounds (2.18)–(2.19) are standard L2-projection approximation results [13];
bounds (2.15), (2.16), and (2.17) can be found in [11,28] for affine elements
and in [30,5] for h2-parallelograms.

In the analysis, we will also use the trace theorem

‖q‖r,Γi,j
≤ C‖q‖r+1/2,Ωi

, r > 0, (2.20)

(see [20, Theorem 1.5.2.1]).

2.1 Mortar mixed finite element method

If the solution (u, p) of (2.1)–(2.2) belongs to H(div; Ω)×H1(Ω), it is easy to
see that it satisfies, for 1 ≤ i ≤ n,

(K−1u,v)Ωi
= (p,∇ · v)Ωi

− 〈p,v · νi〉Γi
− 〈g,v · νi〉∂Ωi\Γi

,v ∈ Vi, (2.21)

(∇ · u, w)Ωi
= (f, w)Ωi

, w ∈ Wi. (2.22)

Equation (2.21) is obtained by integrating by parts (2.3) locally on Ωi.

Let Th,i,j be a shape-regular, quasi-uniform affine finite element partition of
Γi,j and let T Γ,h = ∪1≤i<j≤nTh,i,j. Recall that k is associated with the degree
of the polynomials in Vh · ν. Denote by Mh,i,j ⊂ L2(Γi,j) the mortar finite
element space on Γi,j containing at least either the continuous or discontinuous
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piecewise polynomials of degree k + 1 on Th,i,j. Let

Mh =
⊕

1≤i<j≤n

Mh,i,j

be the mortar finite element space on Γ. In the mortar mixed finite element
approximation of (2.1)–(2.2) we seek uh ∈ Vh, ph ∈ Wh, and λh ∈ Mh such
that, for 1 ≤ i ≤ n,

(K−1uh,v)Ωi
= (ph,∇ · v)Ωi

− 〈λh,v · νi〉Γi
(2.23)

− 〈g,v · νi〉∂Ωi\Γi
, v ∈ Vh,i,

(∇ · uh, w)Ωi
= (f, w)Ωi

, w ∈ Wh,i, (2.24)
n
∑

i=1

〈uh · νi, µ〉Γi
= 0, µ ∈ Mh. (2.25)

Note that we have a standard mixed finite element method within each block
Ωi and (2.24) enforces local conservation over each element. It is clear from
(2.21) and (2.23) that λh ∈ Mh is an approximation to the pressure p on Γ.
Equation (2.25) enforces weak flux continuity across Γ with respect to the
mortar space Mh.

For the purpose of the analysis, it is convenient to eliminate λh from the
mortar mixed method (2.23)–(2.25) by restricting Vh to the space of weakly
continuous velocities

V0
h =

{

v ∈ Vh :

n
∑

i=1

〈vi · νi, µ〉Γi
= 0 ∀µ ∈ Mh

}

.

Problem (2.23)–(2.25) is equivalent to finding uh ∈ V0
h and ph ∈ Wh such that

(K−1uh,v) =

n
∑

i=1

(ph,∇ · v)Ωi
− 〈g,v · ν〉∂Ω, v ∈ V0

h, (2.26)

n
∑

i=1

(∇ · uh, w)Ωi
= (f, w), w ∈ Wh. (2.27)

Existence and uniqueness of a solution to (2.23)–(2.25) are shown in [34,1]
along with optimal convergence and superconvergence for both pressure and
velocity under the following condition.

Assumption 2.1 Assume that there exists a constant C independent of h
such that

‖µ‖Γi,j
≤ C(‖µi‖Γi,j

+ ‖µj‖Γi,j
), µ ∈ Mh, 1 ≤ i < j ≤ n. (2.28)
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Remark 2.1 The condition (2.28) imposes a limit on the number of mortar
degrees of freedom and is easily satisfied in practice (see, e.g., [34,26]).

Assuming (2.28), the following superconvergence error estimates were shown
in [1]:

‖Πu − uh‖ ≤ C
n
∑

i=1

(‖p‖k+5/2,Ωi
+ ‖u‖k+3/2,Ωi

)hk+3/2, (2.29)

‖Qhp − ph‖ ≤ C

n
∑

i=1

(‖p‖r+2,Ωi
+ ‖u‖r+1,Ωi

+ ‖∇ · u‖r+1,Ωi
)hr+2,

r = min(k, l). (2.30)

Bound (2.29) was shown only for RT elements on rectangular grids. In the
analysis we will also use the optimal velocity error estimate [1]

‖Πu− uh‖ ≤ C

n
∑

i=1

(‖p‖k+2,Ωi
+ ‖u‖k+1,Ωi

)hk+1. (2.31)

The analysis in [1] is carried out for affine elements. It is easy to check that
the estimates (2.30) and (2.31) also hold for h2-parallelograms. The velocity
superconvergence estimate (2.29) relies on the projection error orthogonality

(K−1(Πiu− u),v)Ωi
≤ Chk+2‖u‖k+2,Ωi

‖v‖Ωi
, v ∈ Vh,i, (2.32)

which was shown in [15], Theorem 3.1, for RT and BDFM spaces on rectangu-
lar elements in R

2 and R
3 and a diagonal tensor K. The results in [18] extend

(2.32) to h2-uniform quadrilaterals and full tensor coefficients. In particular,
it is shown in [18], Theorem 5.1, that

(K−1(Πiu − u),v)Ωi
≤ Chk+2(‖u‖k+2,Ωi

‖v‖Ωi
+ ‖u‖k+1,Ωi

‖∇ · v‖Ωi
),

∀v ∈ Vh,i, v · νi = 0 on ∂Ωi,
(2.33)

and

(K−1(Πiu − u),v)Ωi
≤ Chk+3/2

(

‖u‖k+3/2,Ωi
‖v‖Ωi

+ ‖u‖k+1,Ωi
‖∇ · v‖Ωi

), ∀v ∈ Vh,i.
(2.34)

Using (2.34), it can be easily shown that (2.29) also holds for h2-uniform
quadrilateral grids and full tensor coefficients. In this paper we employ (2.33)
to establish interior velocity superconvergence of order O(hk+2−ǫ).

2.2 Non-mortar mixed finite element method

The non-mortar approach of [3] is based on using Robin type conditions for
imposing continuity of pressures and fluxes across interfaces. To put the prob-
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lem (2.1)–(2.2) in a multiblock form, choose a parameter α > 0 and write on
each interface Γi,j

αpi − ui · ν i = αpj + uj · νj , αpj − uj · νj = αpi + ui · ν i. (2.35)

The Robin type interface conditions (2.35) imply

pi = pj, ui · νi + uj · νj = 0,

i.e., both the pressure and the flux are continuous across Γi,j.

The non-mortar mixed finite element method is based on discretizing the
subdomain variational equations (2.21)–(2.22) combined with a discrete weak
imposition of the interface conditions (2.35). Let Λh,i to be the hybrid mixed
finite element Lagrange multiplier space on Γi [4,19], i.e.,

Λh,i = Vh,i · ν i.

In the non-mortar mixed finite element approximation of (2.1)–(2.2) we seek
(ũh, p̃h) ∈ Vh × Wh and λ̃h,i ∈ Λh,i such that for 1 ≤ i ≤ n,

(K−1ũh,v)Ωi
= (p̃h,∇ · v)Ωi

− 〈λ̃h,i,v · νi〉Γi
(2.36)

− 〈g,v · νi〉∂Ωi\Γ, v ∈ Vh,i,

(∇ · ũh, w)Ωi
= (f, w)Ωi

, w ∈ Wh,i, (2.37)

〈αλ̃h,i − ũh,i · νi, µi〉Γi
=

n
∑

j=1

〈αλ̃h,j + ũh,j · νj, µi〉Γi,j
, µi ∈ Λh,i. (2.38)

We can replace (2.38) with the condition that for 1 ≤ i ≤ n

n
∑

j=1

〈α(λ̃h,i − λ̃h,j), µi〉Γi,j
=

n
∑

j=1

〈ũh,i · νi + ũh,j · νj , µi〉Γi,j
, µi ∈ Λh,i. (2.39)

Existence and uniqueness of a solution to (2.36)–(2.38) are shown in [3] along
with optimal convergence for both pressure and velocity:

‖p − p̃h‖ + ‖u− ũh‖ +

(

α
∑

i,j

‖λ̃h,i − λ̃h,j‖
2
Γi,j

)1/2

+

(

1

α

∑

i,j

‖ũh,i · νi + ũh,j · νj‖
2
Γi,j

)1/2

≤ C

n
∑

i=1

(‖p‖r+3/2,Ωi
+ ‖u‖r+3/2,Ωi

)hr+1, r = min(k, l), (2.40)

{

n
∑

i=1

‖∇ · (u− ũh,i)‖
2
Ωi

}1/2

≤ C

n
∑

i=1

‖∇ · u‖l+1,Ωi
hl+1. (2.41)
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3 Interior estimates for the mortar mixed finite element method

In this section we establish interior superconvergence for the velocity in the
mortar mixed finite element method. The results in the section are valid in
the following cases.

(A1) The mixed finite element spaces are either RT or BDFM. The grids are
either h2-uniform quadrilateral in R

2 or rectangular in R
3. In the latter case

K is assumed to be a diagonal tensor.

The interior error analysis is based on multiplying the test functions by ap-
propriate smooth cutoff functions. We will make use of the following lemma.

Lemma 3.1 If φ ∈ H1(Ω) and v ∈ Vh, then there exists a constant C inde-
pendent of h such that

‖(I − Π)(φv)‖ ≤ C‖v‖‖φ‖1 h.

Proof: For any v ∈ Vh, consider the functional

lv(φ) = φv − Π(φv).

Since lv(φ) = 0 for all constant functions φ, the statement of the lemma follows
from an application of the Bramble-Hilbert lemma [13]. 2

Let Ω
′

i be compactly contained in Ωi, i = 1, · · · , n and let Ω
′

= ∪n
i=1Ω

′

i.

We prove the following interior velocity error estimates for the mortar mixed
finite element method.

Theorem 3.1 Assume (A1) and that (1.5) holds. Then, for any ε > 0, there
exists a constant Cε dependent on the distance between Ω′ and Γ, but indepen-
dent of h such that

‖Πu− uh‖Ω′ ≤ Cε

n
∑

i=1

(‖p‖k+2,Ωi
+ ‖u‖k+2,Ωi

+ ‖∇ · u‖k+1,Ωi
)hk+2−ε.

Proof: Key ingredients in the proof of the theorem are the optimal velocity
convergence (2.31), the projection error orthogonality (2.33), and the super-
convergence for pressure (2.30).

The error equations for the mortar mixed finite element method are obtained
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by subtracting (2.23)–(2.24) from (2.21)–(2.22):

(K−1(u − uh),v) =
n
∑

i=1

((p − ph,∇ · v)Ωi
− 〈p,v · νi〉Γi

), v ∈ V0
h (3.1)

n
∑

i=1

(∇ · (u − uh), w)Ωi
= 0, w ∈ Wh. (3.2)

Note that (3.2), (2.9), and either (2.11) or (2.12) imply that

∇ · (Πu − uh) = 0 (3.3)

For i = 1, · · · , n, consider subdomain sequences Ωj
i , j = 1, 2, · · · such that

Ω
′

i ⊂⊂ Ωj+1
i ⊂⊂ Ωj

i ⊂⊂ Ωi.

Let Ωj = ∪n
i=1Ω

j
i . Let φj+1 ∈ C∞

0 (Ωj) be a cutoff function, φj+1 ≥ 0, φj+1 ≡ 1
on Ωj+1, and φj+1 ≤ 1 on Ωj . The constants that appear below may depend
on ‖φj+1‖1,∞,Ωj . Note that, since φj ≡ 1 on Ωj ,

‖v‖Ωj = ‖φ
1/2
j v‖Ωj ≤ ‖φ

1/2
j v‖Ωj−1,

which will be used repeatedly in our argument.

We have, using (3.1) with v = Πφj+1(Πu − uh),

c‖φ1/2
j+1(Πu− uh)‖

2
Ωj ≤ (K−1(Πu − uh), φj+1(Πu− uh))Ωj

= (K−1(Πu − uh), (I − Π)(φj+1(Πu − uh)))Ωj

+ (K−1(Πu − uh), Πφj+1(Πu− uh))Ωj

= (K−1(Πu − uh), (I − Π)(φj+1(Πu − uh)))Ωj

+ (K−1(Πu − u), Πφj+1(Πu− uh))Ωj

+
n
∑

i=1

(p − ph,∇ · (Πφj+1(Πu− uh)))Ωj
i

≤ C‖Πu− uh‖Ωj‖(I − Π)(φj+1(Πu− uh))‖Ωj

+ Chk+2‖u‖k+2,Ωj‖Πφj+1(Πu − uh)‖Ωj

+ Chk+2‖u‖k+1,Ωj‖∇ · Πφj+1(Πu − uh)‖Ωj

+ (p − ph,∇ · Πφj+1(Πu− uh))Ωj ,

(3.4)

where we have used either (2.32) (for rectangular grids in R
3) or (2.33) (for h2-

uniform quadrilateral grids) in the last inequality. Using (2.31) and Lemma 3.1,

12



the first term on the right can be estimated as

‖Πu− uh‖Ωj‖(I − Π)(φj+1(Πu − uh))‖Ωj

≤ C
n
∑

i=1

(‖p‖k+2,Ωi
+ ‖u‖k+1,Ωi

)hk+1‖Πu − uh‖Ωj‖φj+1‖1,Ωj h

≤ C

n
∑

i=1

(‖p‖k+2,Ωi
+ ‖u‖k+1,Ωi

)hk+2‖φ
1/2
j (Πu− uh)‖Ωj−1 .

(3.5)

For the second term on the right in (3.4) we have

‖Πφj+1(Πu− uh)‖Ωj ≤ ‖(I − Π)φj+1(Πu − uh)‖Ωj + ‖φj+1(Πu − uh)‖Ωj

≤ Ch‖Πu − uh‖Ωj‖φj+1‖1,Ωj + ‖φj+1‖∞,Ωj‖Πu− uh‖Ωj

≤ C‖φ
1/2
j (Πu− uh)‖Ωj−1 ,

(3.6)

using Lemma 3.1 for the second inequality. For the third term on the right in
(3.4), using (2.16) and (3.3), we have

‖∇ · Πφj+1(Πu − uh)‖Ωj ≤ C‖∇ · φj+1(Πu− uh)‖Ωj

= C‖∇φj+1 · (Πu − uh)‖Ωj

≤ C‖φj+1‖1,∞,Ωj‖Πu − uh‖Ωj

≤ C‖φ
1/2
j (Πu − uh)‖Ωj−1 .

(3.7)

Similarly, using (2.13), (2.9), and (3.3), the last term on the right in (3.4) can
be bounded as

(p − ph,∇ · Π(φj+1(Πu − uh)))Ωj

= (Qhp − ph,∇ · Π(φj+1(Πu − uh)))Ωj

= (Qhp − ph,∇φj+1 · (Πu − uh))Ωj

≤ C‖Qhp − ph‖Ωj‖φ
1/2
j (Πu − uh)‖Ωj−1

≤ C
n
∑

i=1

(‖p‖k+2,Ωi
+ ‖u‖k+1,Ωi

+ ‖∇ · u‖k+1,Ωi
)hk+2‖φ1/2

j (Πu− uh)‖Ωj−1 ,

(3.8)

using (2.30) in the last inequality.
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Combining (3.4)–(3.8), we get

‖φ
1/2
j+1(Πu − uh)‖Ωj

≤ Ch
k+2

2 ‖φ
1/2
j (Πu − uh)‖

1/2

Ωj−1

(

n
∑

i=1

(‖p‖k+2,Ωi
+ ‖u‖k+2,Ωi

+ ‖∇ · u‖k+1,Ωi
)

)1/2

≡ Ch
k+2

2 ‖φ
1/2
j (Πu − uh)‖

1/2

Ωj−1A
1/2.

(3.9)

Replacing j + 1 with j in (3.9), we obtain

‖φ
1/2
j (Πu − uh)‖

1/2

Ωj−1 ≤ Ch
k+2

4 ‖φ
1/2
j−1(Πu − uh)‖

1/4

Ωj−2A
1/4. (3.10)

Multiplying (3.9) and (3.10) recurrently leads to

‖φ
1/2
j+1(Πu− uh)‖Ωj ≤ Ch(k+2)( 1

2
+ 1

4
+··· )A

1

2
+ 1

4
+··· ≤ Chk+2−εA,

where we take enough terms so that 1
2

+ 1
4

+ · · · ≥ 1 − ε
k+2

. 2

4 Interior estimates for the non-mortar mixed finite element method

Similarly to the case of mortar mixed finite element method, subtracting equa-
tions (2.36)–(2.37) from (2.21)–(2.22) and using properties of the projections,
we get the error equations for the non-mortar mixed finite element method

(K−1(u− ũh),v)Ωi
= (Qhp − p̃h,∇ · v)Ωi

(4.1)

− 〈pi − λ̃h,i,v · νi〉Γi
, v ∈ Vh,i,

(∇ · (u − ũh), w)Ωi
= 0, w ∈ Wh,i. (4.2)

Here for clarity of notation we have denoted the trace of p on Γi by pi, although,
by the assumption p ∈ H1(Ω), p has a single valued trace on Γ.

One of the key ingredients in the proof of Theorem 3.1, namely superconver-
gence for pressure, is missing in the analysis of [3]. Using a duality argument,
we prove the following pressure superconvergence theorem.

Theorem 4.1 Assume (1.5) and that any of the usual mixed spaces on affine
elements or RT or BDFM on h2-parallelograms are used. For the pressure p̃h

of the non-mortar mixed method (2.36)–(2.38), there exists a positive constant
C, independent of h, such that

‖Qhp − p̃h‖ ≤ C
n
∑

i=1

(‖p‖r+3/2,Ωi
+ ‖u‖r+3/2,Ωi

+ ‖∇ · u‖r+1,Ωi
)hr+3/2,

r = min(k, l)
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Proof: Let ξ ∈ H2(Ω) be the solution of the auxiliary problem

−∇ · K∇ξ = Qhp − p̃h in Ω,

ξ = 0 on ∂Ω,

and note that by (1.5)

‖ξ‖2 ≤ C‖Qhp − p̃h‖. (4.3)

Let ζζζ = −K∇ξ. Taking v = Πiζζζ ∈ Vh,i in (4.1) and using (2.9), we have

‖Qhp − p̃h‖
2
Ωi

= (Qhp − p̃h,∇ · Πiζζζ)Ωi

= (K−1(u− ũh), Πiζζζ − ζζζ)Ωi
− (u− ũh,∇ξ)Ωi

+ 〈pi − λ̃h,i, Πiζζζ · νi〉Γi
.

Sum over i and use (2.14) to get

‖Qhp−p̃h‖
2 =

n
∑

i=1

(K−1(u− ũh), Πiζζζ − ζζζ)Ωi
−

n
∑

i=1

(u− ũh,∇ξ)Ωi

+

n
∑

i=1

〈pi − λ̃h,i, Πiζζζ · νi〉Γi

=

n
∑

i=1

(K−1(u− ũh), Πiζζζ − ζζζ)Ωi
+

n
∑

i=1

(∇ · (u − ũh), ξ − Qhξ)Ωi

−
n
∑

i=1

〈(u− ũh,i) · νi, ξ〉Γi
+

n
∑

i=1

〈pi − λ̃h,i, ζζζi · νi〉Γi
,

(4.4)

where we integrated by parts the second term and used (4.2) and (2.10). The
first two terms on the right in (4.4) are easy to handle. Using the approxima-
tion properties (2.17) and (2.15) and (4.3), we get

n
∑

i=1

(K−1(u − ũh), Πiζζζ − ζζζ)Ωi
+

n
∑

i=1

(∇ · (u− ũh), ξ − Qhξ)Ωi

≤ C

(

‖u− ũh‖ +

n
∑

i=1

‖∇ · (u− ũh)‖Ωi

)

h‖Qhp − p̃h‖.

(4.5)
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Using the continuity of ξ and u, we rearrange the third term in (4.4) to obtain

−
n
∑

i=1

〈(u− ũh,i) · ν i, ξ〉Γi

= −
1

2

∑

i,j

〈(u− ũh,i) · νi + (u− ũh,j) · νj , ξ〉Γi,j

=
1

2

∑

i,j

〈ũh,i · νi + ũh,j · νj, ξi〉Γi,j

+
1

2

∑

i,j

〈ũh,i · νi + ũh,j · νj, ξ − ξi〉Γi,j
.

(4.6)

Bounding the second term on the right in (4.6) is straightforward: bounds
(2.18), (2.20), and (4.3) give

∑

i,j

〈ũh,i · νi + ũh,j · νj, ξ − ξi〉Γi,j

≤

(

∑

i,j

‖ũh,i · ν i + ũh,j · νj‖
2
Γi,j

)1/2(
∑

i,j

‖ξ − ξi‖
2
Γi,j

)1/2

≤ C

(

∑

i,j

‖ũh,i · νi + ũh,j · νj‖
2
Γi,j

)1/2

h

(

∑

i

‖ξ‖2
3/2,Ωi

)1/2

≤ C

(

∑

i,j

‖ũh,i · νi + ũh,j · νj‖
2
Γi,j

)1/2

h‖Qhp − p̃h‖.

(4.7)

To handle the first term on the right in (4.6), we take µi = 1
2
ξi in (2.39), sum

over i and rearrange to get

1

2

∑

i,j

〈ũh,i · νi + ũh,j · νj, ξi〉Γi,j
=

1

2

∑

i,j

〈α(λ̃h,i − λ̃h,j), ξi〉Γi,j

=
1

2

∑

i<j

〈α(λ̃h,i − λ̃h,j), ξi − ξj〉Γi,j

=
1

2

∑

i<j

〈α(λ̃h,i − λ̃h,j), (ξi − ξ) + (ξ − ξj)〉Γi,j

≤
1

2

∑

i<j

α‖λ̃h,i − λ̃h,j‖Γi,j
(‖ξi − ξi‖Γi,j

+ ‖ξj − ξj‖Γi,j
)

≤ C
∑

i<j

α‖λ̃h,i − λ̃h,j‖Γi,j
h(‖ξ‖3/2,Ωi

+ ‖ξ‖3/2,Ωj
)

≤ C
∑

i<j

α‖λ̃h,i − λ̃h,j‖Γi,j
h‖Qhp − p̃h‖,

(4.8)

where we used (2.18), (2.20), and (4.3) in the last inequality. It remains to
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bound the last term in (4.4). Using the continuity of ζζζ ·ν and p, and rearranging
terms, we obtain

n
∑

i=1

〈pi − λ̃h,i, ζζζ i · νi〉Γi
=

1

2

∑

i,j

〈pi − λ̃h,i − pj + λ̃h,j, ζζζ i · ν i〉Γi,j

=
1

2

∑

i,j

〈pi − pj − λ̃h,i + λ̃h,j, (ζζζi − Πiζζζ i) · νi〉Γi,j

−
1

2

∑

i,j

〈λ̃h,i − λ̃h,j, Πiζζζ i · νi〉Γi,j
+

1

2

∑

i,j

〈pi − pj, Πiζζζ i · νi〉Γi,j
.

(4.9)

The first term in (4.9) can be bounded using (2.19), (2.18), (2.20), and (4.3),

〈pi − pj − λ̃h,i + λ̃h,j, (ζζζ i − Πiζζζ i) · ν i〉Γi,j

≤
(

‖pi − pi‖Γi,j
+ ‖pj − pj‖Γi,j

+ ‖λ̃h,i − λ̃h,j‖Γi,j

)

‖(ζζζ i − Πiζζζ i) · νi‖Γi,j

≤ C
(

hk+1‖pi‖k+3/2,Ωi
+ hk+1‖pj‖k+3/2,Ωj

+ ‖λ̃h,i − λ̃h,j‖Γi,j

)

h1/2‖ζζζ‖1,Ωi

≤ C
(

hk+1‖pi‖k+3/2,Ωi
+ hk+1‖pj‖k+3/2,Ωj

+‖λ̃h,i − λ̃h,j‖Γi,j

)

h1/2‖Qhp − p̃h‖.

(4.10)

To handle the second term in (4.9), take µi = 1
2α

Πiζζζ i · νi in (2.39), sum over
i, combine the two terms on Γi,j and use the continuity of ζζζ · ν to obtain

−
1

2

∑

i,j

〈λ̃h,i − λ̃h,j, Πiζζζ i · ν i〉Γi,j

= −
1

2α

∑

i,j

〈ũh,i · ν i + ũh,j · νj , Πiζζζ i · νi〉Γi,j

= −
1

2α

∑

i<j

〈ũh,i · ν i + ũh,j · νj , Πiζζζ i · νi + Πjζζζj · νj〉Γi,j

=
1

2α

∑

i<j

〈(ũh,i · νi + ũh,j · νj), (ζζζ i − Πiζζζ i) · ν i + (ζζζj − Πjζζζj) · νj〉Γi,j

≤
1

2α

∑

i<j

‖ũh,i · νi + ũh,j · νj‖Γi,j

(

‖(ζζζ i − Πiζζζ i) · νi‖Γi,j

+‖(ζζζj − Πjζζζj) · νj‖Γi,j

)

≤ C
∑

i<j

1

2α
‖ũh,i · νi + ũh,j · νj‖Γi,j

h1/2‖Qhp − p̃h‖,

(4.11)

where we used (2.19), (2.20), and (4.3) in the last inequality. Finally, for the
last term in (4.9), applying (2.14) and using the continuity of p and ζζζ · ν, we
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get

1

2

∑

i,j

〈pi − pj , Πiζζζ i · νi〉Γi,j
=

1

2

∑

i,j

〈pi − pj, Πiζζζ i · νi〉Γi,j

=
1

2

∑

i,j

〈pj − pj , Πiζζζ i · νi + Πjζζζj · νj〉Γi,j

=
1

2

∑

i,j

〈pj − pj , (Πiζζζ i − ζζζ i) · νi + (Πjζζζj − ζζζj) · νj〉Γi,j

≤
1

2

∑

i,j

‖pj − pj‖Γi,j

(

‖(ζζζ i − Πiζζζ i) · ν i‖Γi,j
+ ‖(ζζζj − Πjζζζj) · νj‖Γi,j

)

≤ C
∑

i,j

hk+1‖p‖k+3/2,Ωj
h1/2‖Qhp − p̃h‖,

(4.12)

using (2.18), (2.19), (2.20), and (4.3) in the last inequality. A combination of
(4.4)–(4.12) and the use of (2.40) and (2.41) completes the proof. 2

We are now ready to establish an interior velocity error estimate for the non-
mortar mixed finite element method.

Theorem 4.2 Assume (A1) and that (1.5) holds. Then, for any ε > 0, there
exist a constant Cε dependent on the distance between Ω′ and Γ, but indepen-
dent of h such that

‖Πu− ũh‖Ω′ ≤ Cε

n
∑

i=1

(‖p‖k+3/2,Ωi
+ ‖u‖k+3/2,Ωi

+ ‖∇ · u‖k+1,Ωi
)hk+3/2−ε.

The proof is similar to the proof of Theorem 3.1 and it is omitted.

5 Numerical results

We present several numerical tests using the lowest order RT spaces (k = 0)
on rectangles and quadrilaterals to confirm the theoretical results of Section 3
and Section 4. The first four examples are on the unit square and the fifth one
is on the unit cube. The last two examples test quadrilateral grids on irregular
domains obtained by a mapping of the unit square.

The domain is divided into four (eight for Example 5.5) subdomains with in-
terfaces along the x = 1/2 and y = 1/2 (and z = 1/2 for Example 5.5) lines.
Recall that optimal convergence for the solution to (2.23)–(2.25) holds under
the assumption that Mh contains at least piecewise polynomials of degree k+1
[1], which in this case means piecewise linear functions. We test three types of
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methods on non-matching interfaces: 1 (continuous piecewise linear mortars),
2 (discontinuous piecewise linear mortars), and 3 (Robin type interface con-
ditions - non-mortar mixed finite element method). In the fourth example we
also test matching grids (denoted by mortar 0). In the numerical experiments
we report the rates of convergence of the numerical solution (pressure and
velocity) to the true solution. We compute the velocity error in the discrete
L2-norm

|||v|||2 =
∑

E∈Th

∑

e∈∂E

|E|(v · νe)
2(me),

where me is the midpoint of edge (face) e. It is easy to see that

c1‖v‖ ≤ |||v||| ≤ c2‖v‖ ∀v ∈ Vh

and
|||u− Πu||| ≤ Ch2.

Therefore

|||u− uh||| ≤ |||u− Πu||| + |||Πu− uh||| ≤ C(h2 + ‖Πu− uh‖)

and the superconvergence results from Theorem 3.1 and Theorem 4.2 hold
for |||u − uh||| as well. We also report the velocity error in the discrete L∞-
norm |||v|||∞ = maxe v · νe(me). The flux error is computed in the discrete
L2(Γ)-norm

|||v · ν|||2Γ =
∑

e∈Γ

|e|(v · νe)
2(me).

The pressure error is computed in the discrete L2-norm

|||w|||2 =
∑

E∈Th

|E|w2(mE),

where mE is the center of mass of element E. Since |||p − Qhp||| ≤ Ch2,
|||p − ph||| is also superconvergent.

The convergence rates are established by running each test case on five (four
for Examples 5.4 and 5.5) levels of grid refinement and computing a least
squares fit to the error. The initial mesh on each block is uniform (shown on
Figure 2) and the initial mortar grids on all interfaces are given in Table 1.
The interior subdomains Ω

′

i are chosen on the initial mesh to have a one-
element border and are kept fixed during the mesh refinement. The boundary
conditions are Dirichlet on the left and right edge and Neumann on the rest of
the boundary. In all tests except the fourth one we solve problems with known
analytical solutions.
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Fig. 2. Initial grid

Table 1
Initial number of elements in mortar grids

mortar 1 2 3

elements 3 3 1

Example 5.1

We choose permeability

K =

{

I , 0 ≤ x < 1/2

10 ∗ I , 1/2 < x ≤ 1

and the pressure

p(x, y) =

{

x2y3 + cos(xy) , 0 ≤ x < 1/2
(

2x+9
20

)

2y3 + cos(2x+9
20

y) , 1/2 < x ≤ 1

is chosen to be continuous and to have continuous normal flux at x = 1/2.
Note that the solution is smooth in each subdomain. Plots of the computed
solution and the numerical error for Example 5.1 using mortar 1 are shown in
Figure 3. The plots for all examples are on the third level of grid refinement,
except for Example 5.5, where the plots are on the second level of refinement.
As shown in Table 2, the interior velocity error is superconvergent of order
O(h2) and most of the error occurs near the interfaces, as it can be seen from
the flux error. The pressure error is also O(h2)-superconvergent. The results
for the mortar method are as predicted by the theory and the results for
the non-mortar method are approximately O(h1/2) better than the theoretical
results.
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pres

1.139
1.131
1.123
1.115
1.107
1.099
1.091
1.083
1.075
1.067
1.059
1.051
1.043
1.035
1.027
1.019
1.011
1.003

5 errp

1.00E-04
9.51E-05
9.01E-05
8.52E-05
8.02E-05
7.53E-05
7.03E-05
6.54E-05
6.04E-05
5.55E-05
5.05E-05
4.56E-05
4.06E-05
3.57E-05
3.07E-05
2.58E-05
2.08E-05
1.59E-05
1.09E-05
6.00E-06

0.01

A. Computed pressure and velocity B. Pressure and velocity error

Fig. 3. Solution and error (magnified) with mortar 1 for Example 5.1

Table 2
Convergence rates for Example 5.1

mortar |||(u − uh) · ν|||Γ |||p − ph||| |||u − uh||| |||u − uh|||∞

Ω Int. Ω Int.

1 1.00 1.98 1.79 2.01 0.87 1.98

2 1.14 1.99 1.97 1.99 1.41 1.97

3 0.25 1.92 1.68 2.00 0.76 1.96

Example 5.2

In this example we test a problem with a discontinuous full tensor

K =



















2 1

1 2



 , 0 ≤ x < 1/2

I , 1/2 < x ≤ 1

and pressure

p(x, y) =

{

xy , 0 ≤ x ≤ 1/2

xy + (x − 1/2)(y + 1/2) , 1/2 ≤ x ≤ 1.

The convergence rates for Example 5.2 are given in Table 3 and confirm
the theory. The computed pressure and velocity using the mortar and the
non-mortar methods are shown in Figure 4. Although the two solutions look
the same, the velocity error along the interfaces is larger for the non-mortar
method, as it can be seen in Figure 5 where magnified numerical error is
shown.
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Table 3
Convergence rates for Example 5.2

mortar |||(u − uh) · ν|||Γ |||p − ph||| |||u − uh||| |||u − uh|||∞

Ω Int. Ω Int.

1 1.30 2.00 1.46 1.99 0.96 1.89

2 1.21 2.00 1.46 1.98 0.97 1.88

3 0.05 1.94 0.75 2.03 0.25 1.99

pres

1.700
1.611
1.521
1.432
1.342
1.253
1.163
1.074
0.984
0.895
0.805
0.716
0.626
0.537
0.447
0.358
0.268
0.179
0.090
0.000

5
pres

1.700
1.611
1.521
1.432
1.342
1.253
1.163
1.074
0.984
0.895
0.805
0.716
0.626
0.537
0.447
0.358
0.268
0.179
0.090
0.000

5

A. mortar 2 B. mortar 3

Fig. 4. Computed pressure and velocity for Example 5.2

errp

4.00E-04
3.79E-04
3.58E-04
3.37E-04
3.16E-04
2.95E-04
2.74E-04
2.53E-04
2.32E-04
2.11E-04
1.89E-04
1.68E-04
1.47E-04
1.26E-04
1.05E-04
8.42E-05
6.32E-05
4.21E-05
2.11E-05
1.00E-08

0.01
errp

4.00E-04
3.79E-04
3.58E-04
3.37E-04
3.16E-04
2.95E-04
2.74E-04
2.53E-04
2.32E-04
2.11E-04
1.89E-04
1.68E-04
1.47E-04
1.26E-04
1.05E-04
8.42E-05
6.32E-05
4.21E-05
2.11E-05
1.00E-08

0.01

A. mortar 2 B. mortar 3

Fig. 5. Computed pressure and velocity error (magnified) for Example 5.2

Example 5.3

In the third example we test nonuniform grids. We solve a problem with a
known analytical solution

p(x, y) = x3y4 + x2 + sin(xy) cos(y)
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and a diagonal tensor coefficient

K =





(x + 1)2 + y2 0

0 (x + 1)2



 .

The initial grid is constructed from the grid on Figure 2 via the mapping

x =

{

ξ + 0.05 sin(4πξ) cos(1.5πξ), 0 ≤ η ≤ 1/2

ξ + 0.05 sin(4πξ) cos(0.3πξ), 1/2 ≤ η ≤ 1

y =

{

η − 0.03 sin(12πη), 0 ≤ ξ ≤ 1/2

η − 0.05 sin(6πη) cos(1.5πη), 1/2 ≤ ξ ≤ 1

where ξ, η ∈ [0, 1], and is refined uniformly for subsequent levels. For mortar 2
we have started with a coarser mortar grid (two elements per mortar interface)
in order to satisfy the stability condition (2.28). The convergence rates are
given in Table 4. As in the first two examples with uniform grids, the obtained
convergence rates are in the accordance with the theory. Plots of the computed
solution and the numerical error for Example 5.3 using mortar 2 are shown in
Figure 6.

pres

2.300
2.179
2.058
1.937
1.816
1.695
1.574
1.453
1.332
1.211
1.090
0.969
0.848
0.727
0.605
0.484
0.363
0.242
0.121
0.000

10
errp

2.00E-03
1.91E-03
1.82E-03
1.73E-03
1.64E-03
1.55E-03
1.46E-03
1.37E-03
1.28E-03
1.19E-03
1.11E-03
1.02E-03
9.26E-04
8.37E-04
7.47E-04
6.58E-04
5.68E-04
4.79E-04
3.89E-04
3.00E-04

0.05

A. Computed pressure and velocity B. Pressure and velocity error

Fig. 6. Solution and error (magnified) with mortar 2 for Example 5.3

Table 4
Convergence rates for Example 5.3

mortar |||(u − uh) · ν|||Γ |||p − ph||| |||u − uh||| |||u − uh|||∞

Ω Int. Ω Int.

1 1.41 1.99 1.79 2.00 1.13 1.90

2 1.15 1.99 1.69 2.01 1.14 2.02

3 0.69 1.82 1.22 1.98 0.25 1.81
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It is evident from the first three examples that the error in the case of non-
matching grids and piecewise smooth solutions occurs mainly along the inter-
faces and superconvergence is preserved in the interior.

Example 5.4

In this example we test a problem with a singularity due to a cross-point dis-
continuity in the permeability. In this test analytical solution is not available.
Instead, a fine grid solution is used to calculate the errors on all coarser grids.
We test both matching and non-matching grids. The finest grid in the case
of matching grids is 128×128. The finest non-matching and mortar grids are
shown in Table 6. The permeability tensor is K = a(x, y)I, where

a(x, y) =

{

100 , if x < 1/2, y < 1/2 or x > 1/2, y > 1/2

1 , otherwise.

L∞-errors are not reported since the true velocity is not in L∞(Ω). As the
results show (Figure 7, Table 5), the error due to the strong singularity at the
cross-point (1/2, 1/2) dominates the interface error and pollutes the solution
in a large part of the domain. As a result, there is no superconvergence even in
the interior. The rate of convergence for the interior velocity error is of order
O(h3/4). In this case local grid refinement near this cross-point is needed to
control the error [32].

Table 5
Convergence rates for Example 5.4

mortar |||(u − uh) · ν|||Γ |||p − ph||| |||u − uh|||

Ω Int.

0 0.18 0.67 0.60 0.74

1 0.18 0.68 0.61 0.74

2 0.14 0.68 0.60 0.74

3 0.16 0.68 0.62 0.75

Table 6
Finest grids for Example 5.4

64 × 64 80 × 80

80 × 80 64 × 64

A. Finest non-matching grids

mortar 1 2 3

elements 48 48 16

B. Mortar grids
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pres

1.000
0.947
0.895
0.842
0.790
0.737
0.685
0.632
0.579
0.527
0.474
0.422
0.369
0.316
0.264
0.211
0.159
0.106
0.054
0.001

10
errp

3.57E-02
3.38E-02
3.19E-02
3.01E-02
2.82E-02
2.63E-02
2.44E-02
2.26E-02
2.07E-02
1.88E-02
1.69E-02
1.50E-02
1.32E-02
1.13E-02
9.40E-03
7.52E-03
5.65E-03
3.77E-03
1.89E-03
1.00E-05

10

A. Computed pressure and velocity B. Pressure and velocity error

Fig. 7. Solution and error (magnified) with mortar 1 for Example 5.4

Example 5.5

Next, we test a three dimensional problem with a full permeability tensor

K =











x2 + (y + 2)2 0 cos(xy)

0 z2 + 2 sin(yz)

cos(xy) sin(yz) (y + 3)2











and pressure

p(x, y, z) = x4y3 + x2 + yz2 + cos(xy) sin(z).

Plots of the computed solution and the numerical error for Example 5.5 using
mortar 2 are shown in Figure 8. The convergence rates are given in Table 7,
again confirming the theoretical results.

X

Z

Y
pres

3.288
3.116
2.943
2.771
2.598
2.426
2.254
2.081
1.909
1.736
1.564
1.392
1.219
1.047
0.874
0.702
0.530
0.357
0.185
0.013

100 X

Z

Y
errp

6.30E-03
5.99E-03
5.67E-03
5.36E-03
5.05E-03
4.73E-03
4.42E-03
4.10E-03
3.79E-03
3.48E-03
3.16E-03
2.85E-03
2.54E-03
2.22E-03
1.91E-03
1.59E-03
1.28E-03
9.67E-04
6.54E-04
3.40E-04

0.2

A. Computed pressure and velocity B. Pressure and velocity error

Fig. 8. Solution and error (magnified) with mortar 2 for Example 5.5
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Table 7
Convergence rates for Example 5.5

mortar |||(u − uh) · ν|||Γ |||p − ph||| |||u − uh||| |||u − uh|||∞

Ω Int. Ω Int.

1 1.09 2.00 1.63 2.02 0.62 1.97

2 1.32 2.00 1.75 1.95 0.86 1.71

3 0.28 1.98 0.81 2.05 1.58 1.74

Example 5.6

In the last two examples we test quadrilateral grids on irregular domains.
We choose permeability and pressure as in Example 5.2. In this example the
computational grids are constructed from the grid on Figure 2 and its uniform
refinements via the mapping

x = ξ + .06 cos(πξ) ∗ cos(πη), y = η − .1 cos(πξ) ∗ cos(πη),

where ξ, η ∈ [0, 1]. Note that the resulting quadrilateral grids are h2-uniform.
The convergence rates are given in Table 8. In calculating the rates, only the
two finest levels were used due to inexact computation of the errors, which
affects the results on coarse grids. Just as for the case of affine elements, the
interior velocity is superconvergent of order O(h2) and most of the error occurs
near the interfaces. The computed solution and error in pressure and velocity
for Example 5.6 using mortar 2 are shown in Figure 9A and Figure 10A.

Table 8
Convergence rates for Example 5.6

mortar |||(u − uh) · ν|||Γ |||p − ph||| |||u − uh||| |||u − uh|||∞

Ω Int. Ω Int.

1 1.38 1.99 1.53 1.98 1.02 1.96

2 1.30 1.99 1.53 1.98 1.02 1.96

3 0.05 1.94 0.69 1.98 0.15 1.95

Example 5.7

In this example the mapping used to generate the domain and the grids is

x = ξ + .03 cos(3πξ) ∗ cos(3πη), y = η − .04 cos(3πξ) ∗ cos(3πη).

The results for Example 5.7 are in Table 9, Figure 9B, and Figure 10B.
Comparing the numerical errors for Example 5.6 and Example 5.7, we ob-
serve that although rougher mapping introduces larger error due to element
distortion, interior velocity superconvergence is still obtained.
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pres

1.700
1.608
1.517
1.425
1.334
1.242
1.151
1.059
0.967
0.876
0.784
0.693
0.601
0.509
0.418
0.326
0.235
0.143
0.052

-0.040

5 pres

1.700
1.608
1.517
1.425
1.334
1.242
1.151
1.059
0.967
0.876
0.784
0.693
0.601
0.509
0.418
0.326
0.235
0.143
0.052

-0.040

5

A. Example 5.6 B. Example 5.7

Fig. 9. Computed pressure and velocity with mortar 2

errp

5.00E-04
4.74E-04
4.47E-04
4.21E-04
3.95E-04
3.69E-04
3.42E-04
3.16E-04
2.90E-04
2.63E-04
2.37E-04
2.11E-04
1.84E-04
1.58E-04
1.32E-04
1.06E-04
7.92E-05
5.29E-05
2.66E-05
3.00E-07

0.01
errp

5.00E-04
4.74E-04
4.47E-04
4.21E-04
3.95E-04
3.69E-04
3.42E-04
3.16E-04
2.90E-04
2.63E-04
2.37E-04
2.11E-04
1.84E-04
1.58E-04
1.32E-04
1.06E-04
7.92E-05
5.29E-05
2.66E-05
3.00E-07

0.01

A. Example 5.6 B. Example 5.7

Fig. 10. Computed pressure and velocity error (magnified) with mortar 2

Table 9
Convergence rates for Example 5.7

mortar |||(u − uh) · ν|||Γ |||p − ph||| |||u − uh||| |||u − uh|||∞

Ω Int. Ω Int.

1 1.59 2.01 1.70 1.97 0.84 1.95

2 1.58 2.01 1.70 1.97 0.84 1.95

3 0.10 1.99 1.36 1.94 0.78 1.95

Summarizing the test results in Section 5, we conclude that in smooth cases
the numerical error due to the non-matching grids in both the mortar and
the non-mortar methods is restricted to a small region around the interfaces
and superconvergence is preserved in the interior. For singular solutions su-
perconvergence is not observed, although the interior velocity error is better
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than the velocity error calculated over the whole domain. The results in this
case indicate the need for a posteriori error estimates and adaptive mesh re-
finement near the points of singularity to increase the overall accuracy of the
solution.
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