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Abstract. Stabilization using filters is intended to model and extract the energy lost to resolved scales due to nonlinearity
breaking down resolved scales to unresolved scales. This process is highly nonlinear and yet current models for it use linear
filters to select the eddies that will be damped. In this report we consider for the first time nonlinear filters which select eddies
for damping (simulating breakdown) based on knowledge of how nonlinearity acts in real flow problems. The particular form of
the nonlinear filter allows for easy incorporation of more knowledge into the filter process and its computational complexity is
comparable to calculating a linear filter of similar form. We then analyze nonlinear filter based stabilization for the Navier-Stokes
equations. We give a precise analysis of the numerical diffusion and error in this process.

1. Introduction. This report develops a nonlinear filter based stabilization to:

adapt model plus numerical dissipation to the localized and intermittent breakdown of eddies by the NSE
nonlinearity.

When the resulting smallest persistent and energetically significant scale is significantly larger than
the meshwidth, a high Re simulation is over diffused. When the smallest such scale is smaller than the
meshwidth, typically nonphysical wiggles are observed and the simulation is under diffused. A successfully
tuned model plus numerical method will yield a simulation of a higher Reynolds number flow for which

microscale = filter radius = (pre-specified) spacial mesh-width.

Nonlinear terms break down eddies into smaller ones until they are small enough for molecular viscosity (in
the continuum NSE) or for eddy or numerical dissipation (in the model) to damp them rapidly. This transfer
of energy (indeed the entire energy cascade), while modeled by dissipation terms in simulations, is due to
nonlinearity in the real flow.

Herein we develop nonlinear filter stabilizations which tune the amount and location of eddy viscosity
to the local flow structures and whether the nonlinearity tends to break marginally resolved scales down to
smaller scales or let the local structure persist. Indeed, nonlinearity does not break down scales uniformly.
Intermittence, nonuniformity, locality and even backscatter are typical features in the energy cascade of high
Reynolds number flow problems. We also give a path for further development of models where subsequent
improvement (as our understanding of turbulent flows improves) are easy to incorporate into models (with
rigorous analytic foundations) and flow simulation codes.

To introduce the ideas, consider the Navier-Stokes equations (NSE) under no slip boundary conditions
in a polyhedral domain Ω ⊂ Rd, (d = 2, 3) :

ut + u · ∇u− ν4u+∇p = f(x, t). in Ω× (0, T ], (1.1)

∇ · u = 0 in Ω× (0, T ], u = 0 on ∂Ω× (0, T ], and u(x, 0) = u0(x) in Ω.

Given a method for the NSE (e.g., in a legacy code) we consider a method for adapting it to high Reynolds
number flows that is modular, uncoupled from the basic method for the NSE and is adapted (as described
above) to features of turbulence. To fix ideas and focus on the effects of the added nonlinear filtering step we
base our analysis on the implicit method. Suppressing the spacial discretization, we analyze herein: given
un ' u(tn), compute un+1 by
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Algorithm 1.1.

Step 1:
wn+1 − un

4t
+ wn+1 · ∇wn+1 − ν4wn+1 +∇pn+1 = f n+1 (1.2)

and ∇ · wn+1 = 0, (1.3)

Step 2: Nonlinear filter: wn+1 → wn+1, (1.4)

Step 3: Relax: un+1 := (1− χ)wn+1 + χwn+1. (1.5)

The essential new ingredient herein is the use of nonlinear filters for Step 2. We define velocity averages
u so that the fluctuating part u′ := u− u .

= 0 when the local flow condition is laminar or a structure which
persists ( not broken down rapidly into smaller structures by the nonlinearity). To specify this nonlinear
filter, we select an indicator function a = a(u,∇u, · · ·) ( denoted by a(u)) with the properties:

0 ≤ a(u) ≤ 1 for any fluid velocity u(x, t),

a(u) ' 0 selects regions requiring no local filtering,

a(u) ' 1 selects regions requiring O(δ) local filtering.

The geometric average of indicator functions is again an indicator function making increasing the selectivity
of indicator functions easy. Given a(·), the filter radius (denoted δ and related to the meshwidth) and an
approximate velocity w(x, t) from Step 1 we define its nonlinearly filtered average w(x, t) as the solution,
under appropriate boundary conditions, of

−∇ ·
(
δ2a(w)∇w

)
+∇λ+ w = w, and ∇ · w = 0 in Ω. (1.6)

Note that when filtering a known velocity, nonlinear filtering requires solving a linear problem. Further,
with common FEM discretizations of the filter problem and with averaging radius δ = O(4x) the condition
number of the 1, 1 block in the associated mixed type linear system is O(1).

To motivate Steps 2 and 3, let χ = 1 (meaning no relaxation) and rearrange Steps 1 and 2. This gives

un+1 − un

4t
+ wn+1 · ∇wn+1 − ν4wn+1 +∇pn+1 +

1

4t
(wn+1 − wn+1) = f n+1 (1.7)

which is a time relaxation discretization of the NSE with relaxation coefficient 1/4t. From (1.6), using
u = w and w − w = −δ2∇ · (a(w)∇u) +∇λ gives

un+1 − un

4t
+ wn+1 · ∇wn+1 − ν4wn+1 +∇

(
pn+1 + λn+1

)
− δ2

4t
∇ ·
(
a(wn+1)∇un+1

)
= fn+1.

Thus, the effect of the nonlinear filter in Step 2 is to implement a given nonlinear eddy viscosity model via a
modular Step 2 uncoupled from whatever method is used to advance in time in Step 1. The artificial viscosity
coefficient is δ2/4t which can result in low accuracy and large amounts of numerical diffusion depending on
the relative scalings of 4t and δ. We shall also see that the effect of the relaxation in Step 3 is to reduce the
eddy viscosity coefficient to a given desired level.

Remark 1.2 (Nonlinear Filters). We have selected the simplest time discretization in Step 1 to focus
attention on the effect of the nonlinearity in the filter step. Our results herein extend immediately to the
linearly implicit method (with un+1 · ∇un+1 replaced by un · ∇un+1 ) and can be extended to the Crank-
Nicolson (which is used in the experiments in Section 6) and BDF2 methods for Step 1. At this point the
best treatment of the pressure in Steps 2 and 3 is an open problem. We stress that modularity of Steps 2 and
3 is one important aspect of this formulation: a given turbulence model can be implemented in a fluids code
by treating the fluids code as a black box solver.

1.1. Related work. There has been a substantial amount of previous study of linear filter based
stabilization. Linear filter based stabilization was developed by Boyd [Boyd98] and Fischer and Mullen
[FM01], [MF98] and was used by Dunca [D02]. Mathew et al. [MLF03] made the important connection
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that an uncoupled Step 2 (as above) induces a new implicit time relaxation term into the discretization as
in (1.7), see also Section 5.3.3 in Garnier, Adams and Sagaut [GAS09] and Visbal and Rizzetta [VR02].
The connection to (linear) time relaxation links to work of Schochet and Tadmor [ST92], Roseneau [R89],
Adams, Kleiser, Leonard and Stolz [AL99], [AS01], [AS02], [SA99], [SAK01a], [SAK01b], [SAK02], Dunca
[D02], [D04], [DE04] and [LN07], [LMNR06], [ELN07], [L07b], [CL08]. The relaxation step (Step 3) was
introduced by Fischer and Mullen [FM01], [MF98] to keep numerical diffusion from blowing up as 4t→ 0.
Our analysis in the linear case in [ELN10] has shown its importance, confirmed by experiments.

2. Nonlinear Filters. The idea we present is to adapt simpler models through the filter instead of
using a simple filter and adapting by a sequence of turbulence models of increasing complexity and fitting
parameters. This has the computational advantages of algorithmic modularity and homogeneity as well as
the modeling advantages of giving a clear path for increasing model accuracy. Indeed, given a black-box code
for laminar incompressible flow, incompressible turbulence can be solved by adding an independent filtering
subroutine. Further, once the filtering subroutine is written, further refinement of the turbulence model can
be made through function subroutines defining more indicator functions ai(·), i = 1, · · ·,M whereupon

a(u) :=

(
M∏
i=1

ai(u)

)1/M

(2.1)

Definition 2.1. Let u be a fluid velocity. By an indicator function a = a(u,∇u. · ··) (and abbreviated
as a(u) ) we shall mean a scalar valued function of u,∇u and other flow variables with range [0, 1],

0 ≤ a(u) ≤ 1

selected with the intent that

a(u(x))
.
= 0 for laminar regions or persistent flow structures,

a(u(x))
.
= 1 for flow structures which decay rapidly.

Several examples of indicator functions are given in Section 3.
Definition 2.2 (Nonlinear Filter). Given an indicator function a(·), a fluid velocity u and an averaging

radius δ (possibly varying with x), we define the nonlinearly filtered velocity u and associated fluctuation
u′ := u− u using the selected indicator function as the solution of

−∇ · (δ2a(u)∇u) + u+∇λ = u, in the flow domain Ω, (2.2)

∇ · u = 0 , in Ω, and u = u , on ∂Ω.

Other boundary conditions can be considered. Also the idea can be extended to other local averaging
(non-differential) filters. Various regularizations of the filter are possible and may be necessary for practical
computations. Note that if a(u) ≡ 1 nonlinear filters reduce to the commonly seen linear differential filter,
Germano [Ger86] and that

u
.
= u, i.e. u′

.
= 0, where a(u)

.
= 0.

2.1. Discrete Nonlinear Filters. Filters are computed relative to a given computational mesh. We
shall thus define the discrete nonlinear filter to be the finite element approximation to (2.2). We base our
analysis on the finite element method (FEM) for the spacial discretization. (The results extend to many
other variational methods.)

The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the
Sobolev W k

p (Ω) norms are denoted by ‖ · ‖Lp and ‖ · ‖Wk
p

, respectively. For the semi-norm in W k
p (Ω) we use

| · |Wk
p

. Hk is used to represent the Sobolev space W k
2 (Ω), and ‖ · ‖k denotes the norm in Hk. The space

H−k denotes the dual space of Hk
0 . For functions v(x, t) defined on the entire time interval (0, T ), we define

(1 ≤ m <∞)

‖v‖∞,k := ess sup
[0,T ]

‖v(t, ·)‖k , and ‖v‖m,k :=

(∫ T

0

‖v(t, ·)‖mk dt

)1/m

.
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To begin, under no slip boundary conditions we denote the velocity and pressure spaces by

X := (H1
0 (Ω))d, Q := L2

0(Ω).

We use as the norm on X , ‖v‖X := ‖∇v‖L2 , and denote the dual space of X by X?,with the norm ‖ · ‖?.
The space of divergence free functions is given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q} .

We shall denote conforming velocity, pressure finite element spaces based on an edge to edge triangula-
tions of Ω (with maximum triangle diameter h) by

Xh ⊂ X, Qh ⊂ Q.

We shall assume that Xh, Qh satisfy the usual inf-sup condition necessary for the stability of the pressure,
e.g. [G89]. The discretely divergence free subspace of Xh is

Vh = {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh} .

Taylor-Hood elements (see e.g. [BS94, G89]) are one common example of such a choice for (Xh, Qh), and
are also the elements we use in our numerical experiments.

Since the indicator function can be very small on some sub-regions we include grad-div stabilization
(see, e.g., [LMNOR09] and references therein).

Definition 2.3 (Discrete Nonlinear Filter). Assume that Xh, Qh satisfies the discrete inf-sup condition.
Given an indicator function a(·), a fluid velocity u ∈ V , an averaging radius δ (possibly varying with x), and
γ > 0 an O(1) parameter, we define the nonlinearly filtered velocity uh using the selected indicator function
as the solution of: (uh, λh) ∈ Xh ×Qh is the unique solution of

(δ2a(u)∇uh,∇vh) + γ(∇ · uh,∇ · vh) + (uh, vh)− (λh,∇ · vh) = (u, vh) ∀vh ∈ Xh , (2.3)

(∇ · uh, q) = 0 ∀q ∈ Qh. (2.4)

This is equivalent to: For u ∈ V , δ > 0 given and γ > 0 an O(1) parameter, the averaged velocity
uh ∈ Vh is the unique solution of

(δ2a(u)∇uh,∇vh) + γ(∇ · uh,∇ · vh) + (uh, vh) = (u, vh) ∀vh ∈ Vh . (2.5)

Proposition 2.4. Assume that Xh, Qh satisfies the discrete inf-sup condition. Consider the discrete
nonlinear filter uh given by (2.3). uh exists uniquely and satisfies

γ||∇ · uh||2 +

∫
Ω

δ2a(u)|∇uh|2dx+
1

2
||uh||2 +

1

2
||u− uh||2 =

1

2
||u||2,

γ||∇ · uh||2 +

∫
Ω

δ2a(u)|∇uh|2dx+
1

2
||uh||2 ≤ 1

2
||u||2.

Proof. For the á priori bound, set vh = uh in (2.5). Using the polarization identity on the RHS gives

γ||∇ · uh||2 +

∫
Ω

δ2a(u)|∇uh|2dx+ ||uh||2 = (u, vh) =

=
1

2

[
||u||2 + ||uh||2 − ||u− uh||2

]
,

from which the result follows. For existence, note that for fixed u,

v, w → (δ2a(u)∇v,∇w) + γ(∇ · v,∇ · w) + (v, w)

is a continuous and coercive (possibly non-uniformly in h) bilinear form on the finite dimensional space V h.
Thus uh exists uniquely.

4



We now consider the error in nonlinear filtering of smooth functions.
Theorem 2.5 (Error in Nonlinear Filters). Let Xh, Qh satisfy the inf-sup condition and u ∈ V .

Consider the discrete nonlinear filter uh given by (2.3). We have

γ||∇ · uh||2 +

∫
Ω

δ2a(u)|∇(u− uh)|2dx+ ||u− uh||2

≤ C inf
ũ∈Vh

{
γ||∇ · (u− ũ)||2 +

∫
Ω

δ2a(u)|∇(u− ũ)|2dx+ ||u− ũ||2
}

+ Cδ4
max||∇ · (a(u)∇u)||2.

Proof. We first derive the error equation. Subtracting both sides of (2.3) from u−∇ · (δ2a(u)∇u) and
denoting e = u− uh gives

(δ2a(u)∇e,∇vh)− γ(∇ · uh,∇ · vh) + (e, vh) + (λh,∇ · vh) = −(∇ · (δ2a(u)∇u), vh) ,∀vh ∈ Xh. (2.6)

For vh ∈ Vh the pressure term is zero and this simplifies (2.6) to

(δ2a(u)∇e,∇vh)− γ(∇ · uh,∇ · vh) + (e, vh) = −(∇ · (δ2a(u)∇u), vh) ,∀vh ∈ Vh . (2.7)

Split the error as e = u − uh = η − φh where η = u − ũ, φh = uh − ũ for a fixed but arbitrary ũ ∈ Vh.
Rearranging the error equation and setting vh = φh gives

γ||∇ · φh||2 +

∫
Ω

δ2a(u)|∇φh|2dx+ ||φh||2

= (δ2a(u)∇η,∇φh) + γ(∇ · η,∇ · φh) + (η, φh) + (∇ · (δ2a(u)∇u), φh)

≤ γ||∇ · (u− ũ)||2 +

∫
Ω

δ2

2

[
a(u)|∇η|2 + a(u)|∇φh|2

]
dx+

1

2

[
||η||2 + ||φh||2

]
+

+Cδ4
max||∇ · (a(u)∇u)||2 +

1

4
||φh||2.

The triangle inequality plus the observation that ||∇ · (u− uh)|| = ||∇ · uh|| completes the proof.

3. Three Examples of Indicator Functions and Nonlinear Filters. The most mathematically
convenient indicator function, recovering variants of the Smagorinsky model, is a(u) = |∇u| (suitably nor-
malized [BIR09]) due to its strong monotonicity property. However, it is well known that the Smagorinsky
model is not sufficiently selective, [S01]. Indeed, this choice incorrectly selects laminar shear flow (where |∇u|
is constant but large) as sites of large turbulent fluctuations. Insight into construction of indicator functions
of increased accuracy can be obtained from theories of intermittence and eduction. In some respects, theories
of intermittence are complementary to theories of eduction of coherent and persistent flow structures. Both
therefore have insights that can be used to sharpen the indicator function used in nonlinear filtering. In
this section we show how several can be adapted to give indicator functions. Since the geometric average
of indicator functions is a more selective indicator function, examples are not isolated but give a path for
successive improvements.

3.1. The Q criterion. Let the deformation and spin tensors be denoted, respectively

∇su :=
1

2

(
∇u+∇utr

)
and ∇ssu :=

1

2

(
∇u−∇utr

)
.

The most popular method for eduction of coherent vortices is the Q criterion of Hunt, Wray and Moin
[HWM88] which marks as a persistent and coherent vortex those regions where

Q(u, u) :=
1

2
(∇ssu : ∇ssu−∇su : ∇su) > 0.

Thus Q > 0 occurs in those regions where spin (local rigid body rotation) dominates deformation. It is known
to be a necessary condition (in 3d) and both necessary and sufficient (in 2d) for slower than exponential
local separation of trajectories.
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An indicator function is obtained by rescaling Q(u, u) so that the condition Q(u, u) > 0 implies a(u) ' 0
so that u ' u and u′ ' 0. There are many plausible ways to do this. We shall test the following.

Definition 3.1. The Q-criterion based indicator function is given by

aQ(u) :=
1

2
− 1

π
arctan

(
δ−1 Q(u, u)

Q(u, u) + δ2

)
.

3.2. Vreman’s eddy viscosity. Perhaps the most advanced and elegant eddy viscosity model has
recently been proposed by Vreman [V04]. In a very deep construction, using only the gradient tensor he
constructs an eddy viscosity coefficient formula that vanishes identically for 320 types of flow structures that
are known to be coherent (non turbulent). Define

|∇w|2F =
∑

i,j=1,2,3

(
∂uj
∂xi

)2, βij :=
∑

m=1,2,3

∂ui
∂xm

∂uj
∂xm

, and

B(u) : = β11β22 − β
2
12 + β11β33 − β

2
13 + β22β33 − β

2
23.

In 2d, B(u) simplifies to

B(u) =

[(
∂u1

∂x1

)2

+

(
∂u1

∂x2

)2
][(

∂u2

∂x1

)2

+

(
∂u2

∂x2

)2
]
−
[
∂u1

∂x1

∂u2

∂x1
+
∂u1

∂x2

∂u2

∂x2

]2

.

With C a positive tuning constant, it is given as follows

Vreman’s eddy viscosity coefficient = Cδ2

{ √
B(u)
|∇u|4F

, if |∇w|F 6= 0

0, if |∇w|F = 0.

}

Since 0 ≤ B(u)/|∇u|4F ≤ 1 we take as indicator function the following.
Definition 3.2. The Vreman based indicator function is

aV (u) =

√
B(u)

|∇u|4F
.

3.3. Relative helicity density. The relative helicity density is the helicity density scaled by the
magnitude of velocity and vorticity.

Definition 3.3. Let ω = ∇ × u. The helicity H(t), helicity density HD(x, t) and relative helicity
density RH(x, t) are given respectively as follows

H(t) :=
1

|Ω|

∫
Ω

u · ωdx,HD(x, t) :=
1

|Ω|
u(x, t) · ω(x, t), and RH(x, t) :=

u(x, t) · ω(x, t)

|u(x, t)||ω(x, t)|
.

If the NSE nonlinearity is in rotational form, the helicity, u · ω, and the NSE nonlinearity, u × ω, are
related by

Helicity2 + | NSE nonlinearity|2

|u|2|ω|2
= 1.

Thus (local) high helicity suppresses (local) turbulent dissipation caused by breakdown of eddies into smaller
ones by the NSE nonlinearity. For example, Lilly [Lilly86] notes that storm cells (with low helicity) break
down rapidly due to nonlinear interactions while rotating “supercell” thunderstorms (with high helicity)
maintain their structure over much longer time scales. Different rates of eddy breakdown due to (local) high
or low helicity has even been taken to explain intermittence, Levich and Tsoniber [LT83], [LT83b], [TL83],
Betchov [B61].
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Thus we develop an indicator function by adjusting relative helicity density so the values near one imply
a(u) ' 0 so that u ' u. Among the many possibly ways to do this, we propose the following.

Definition 3.4. The relative helicity based indicator function is given by

aH(u) := 1−
∣∣∣∣ u(x, t) · ω(x, t)

|u(x, t)||ω(x, t)|+ δ2

∣∣∣∣ .
4. Nonlinear Filter Based Stabilization. The fundamental problem of both eddy viscosity models

and filter based stabilization is that, if not carefully done, they reduce accuracy by introducing large amounts
of numerical or model diffusion. To identify this mechanism, we suppress the spacial discretization in
this (short preliminary) section. We consider the Navier-Stokes equations (NSE) in a polyhedral domain
Ω ⊂ Rd, (d = 2 or 3)

ut + u · ∇u− ν4u+∇p = f (x, t) , in Ω, t > 0, (4.1)

∇ · u = 0, in Ω, t > 0, and u = 0 on ∂Ω for t > 0,

u(x, 0) = u0(x), in Ω.

We shall assume that the solution to the NSE that is approximated is a strong solution and in particular
satisfies, recalling that X = (H1

0 (Ω))d,

u ∈ L2(0, T ;X) ∩ L∞(0, T ;L2(Ω)) ∩ L4(0, T ;X), (4.2)

p ∈ L2(0, T ;Q), ut ∈ L2(0, T ;X∗) .

Algorithm 4.1. Pick χ ∈ [0, 1] and 4t > 0.
Step 1: Given un, pn find wn+1 satisfying

wn+1 − un

4t
+ wn+1 · ∇wn+1 − ν4wn+1 +∇pn+1 = f n+1 (4.3)

∇ · wn+1 = 0 and wn+1 = 0 , on ∂Ω.

Step 2: Filter: Compute wn+1 by solving (a discrete version) of

−δ2∇ ·
(
a(wn+1)∇wn+1

)
+ wn+1 +∇λ = wn+1,

∇ · wn+1 = 0, and wn+1 = 0 , on ∂Ω.

Step 3: Relax:

un+1 := (1− χ)wn+1 + χwn+1.

To understand the effect of Steps 2 and 3 on the velocity approximation, the numerical diffusion intro-
duced by Step 2 is quantified.

Lemma 4.2. Suppose 0 ≤ a(w) ≤ 1. Consider Algorithm 4.1, Step 2 and let w,∇w ∈ L2(Ω) with w = 0
on ∂Ω. We have

||w|| < ||w|| unless a(w) ≡ 0 and thus w = w; (4.4)

specifically

||w − w||2 +

∫
Ω

2δ2a(w)|∇w|2dx+ ||w||2 = ||w||2.

Further, unless w = 0,

(w,w) > 0, (4.5)
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and, unless w = w,

(w − w,w) > 0. (4.6)

Finally, in all cases, (w − w,w) ≥ 0.
Proof. Take the inner product of the equation −δ2∇ · (a(w)∇w) + w +∇λ = w with w and the inner

product of ∇ · wn+1 = 0 with λ and add. Applying the polarization identity to the RHS gives∫
Ω

δ2a(w)|∇w|2 + |w|2dx = (w,w) =
1

2
||w||2 +

1

2
||w||2 − 1

2
||w − w||2,

proving the first claim and the second claim. For the third claim consider (w − w,w). By the polarization
identity we have

(w − w,w) = ||w||2 − 1

2

[
||w||2 + ||w||2 − ||w − w||2

]
=

1

2

[
||w||2 − ||w||2 + ||w − w||2

]
> 0

since ||w|| > ||w||. Finally consider (w − ww). Since w−w = −δ2∇ · (a(w)∇w) +∇λ and ∇ ·w = 0 we have

(w − w,w) = (−δ2∇ · (a(w)∇w) , w) =

∫
Ω

δ2a(w)|∇w|2dx ≥ 0,

completing the proof.
For linear filtering Stanculescu [S07] (see also Manica and Kaya-Merdan [MKM06]) derived three minimal

conditions on the filter operator for it to be useful in deconvolution closure models of turbulence. In the case
of nonlinear filtering, these are exactly the three conditions (4.4), (4.5), (4.6) proven above.

Theorem 4.3. Consider Algorithm 4.1. Let f = 0 and suppose the steps un, wn, pn in Algorithm 4.1
are well defined and sufficiently smooth. Let u = (1− χ)w + χw. Then

||wn+1||2 − ||un+1||2 = χ(2− χ)
(
wn+1 − wn+1, wn+1

)
+ χ2

(
wn+1 − wn+1, wn+1

)
. (4.7)

An approximate solution given by Algorithm 1.1 satisfies, for any l > 0,

1

2
||ul||2 + +4t

l−1∑
n=0

{
4t
2
||w

n+1 − un

4t
||2 + ν||∇wn+1||2

}

+4t
l−1∑
n=0

{
χ

4t
2− χ

2

(
wn+1 − wn+1, wn+1

)
+

χ

4t
χ

2

(
wn+1 − wn+1, wn+1

)}
=

1

2
||u0||2.

For 0 ≤ χ ≤ 2 the following term is non-negative:

χ

4t
2− χ

2

(
wn+1 − wn+1, wn+1

)
+

χ

4t
χ

2

(
wn+1 − wn+1, wn+1

)
≥ 0. (4.8)

Proof. Take the L2 inner product of Step 1 with wn+1 and ∇ · wn+1 = 0 with pn+1 and add. Use skew
symmetry of the nonlinear terms and the polarization identity to the term

(
un, wn+1

)
and rearrange the

result. This gives

1

4t
(
||un+1||2 − ||un||2

)
+

1

4t
||un − wn+1||2 + 2ν||∇wn+1||2 +

1

4t
[
||wn+1||2 − ||un+1||2

]
= 0. (4.9)

Suppressing the superscripts n+ 1, Step 3 can be rearranged to read

u+ χ(w − w) = w

8



Take the L2 inner product with w. This gives

(u,w) + χ (w − w,w) = ||w||2

By the last Lemma, the second term is nonnegative, χ (w − w,w) ≥ 0. Apply the polarization identity to
the first term and multiply by 2. This gives

||u||2 − ||u− w||2 + 2χ (w − w,w) = ||w||2.

Step 3 can also be rearranged to read

u− w = −χ(w − w) , so ||u− w||2 = χ2||w − w||2 = χ2 (w − w,w − w) .

Thus,

||w||2 = ||u||2 − χ2 (w − w,w − w) + 2χ (w − w,w)

= ||u||2 + χ(2− χ) (w − w,w) + χ2 (w − w,w) ,

which is the first claim. Inserting this with u = un+1, w = wn+1 into (4.9) gives

1

4t
(
||un+1||2 − ||un||2

)
+

1

4t
||un − wn+1||2 + 2ν||∇wn+1||2+

+
χ

4t

[
2− χ

2

(
wn+1 − wn+1, wn+1

)
+
χ

2

(
wn+1 − wn+1, wn+1

)]
= 0.

Summing gives the energy estimate. The last claim that the indicated is nonnegative follows from the Lemma
4.2.

This theorem identifies the viscous dissipation and numerical dissipation in Step 1 as

Viscous Dissipation = ν||∇wn+1||2,

Numerical Dissipation in Step 1 =
4t
2
||w

n+1 − un

4t
||2.

The model / numerical dissipation introduced by Steps 2 and 3 is

χ

4t

[
2− χ

2

(
wn+1 − wn+1, wn+1

)
+
χ

2

(
wn+1 − wn+1, wn+1

)]
. (4.10)

Remark 4.4. The form of the numerical diffusion induced by Algorithm 4.1 suggests the natural scaling
(used in our tests in the linear case in [ELN10])

χ ' O(4t).

With this scaling the second and third terms in the numerical dissipation are higher order; the numerical
dissipation is dominated by the first term (χ/4t) (w − w,w).

5. Error Analysis of the fully discrete approximation. In the last section we have suppressed
in the stability analysis the spacial discretization. In the error analysis the coupling between the various
errors in Algorithm 5.1 below plays a key role so the spacial discretization is no longer secondary. We base
our analysis on the finite element method (FEM) for the spacial discretization (and believe that the results
extend to many other variational methods).

The notation for conforming velocity-pressure FEM spaces Xh ⊂ X, Qh ⊂ Q is defined above. We
shall always assume that Xh, Qh satisfy the usual inf-sup condition (see e.g., [G89, BS94]) necessary for the
stability of the pressure. Recall that the discretely divergence free subspace of Xh is

Vh = {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh} .
9



Define the usual explicitly skew symmetrized trilinear form

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).

We analyze the FEM in space, implicit method in time with nonlinear filtering and relaxation step.
Algorithm 5.1. [Evolve, Nonlinear Filter then Relax]

Step 1: Evolve: Given unh find wn+1
h ∈ Xh, p

n+1
h ∈ Qh satisfying

(
wn+1
h − unh
4t

, vh) + b∗(wn+1
h , wn+1

h , vh) + ν(∇wn+1
h ,∇vh)− (pn+1

h ,∇ · vh)

= (fn+1, vh), for all vh ∈ Xh, (5.1)

(∇ · wn+1
h , qh) = 0, for all qh ∈ Qh.

Step 2: Filter wn+1
h to give (wh, λh) ∈ Xh ×Qh as the unique solution of

(δ2a(wn+1
h )∇wh,∇vh) + γ(∇ · wh,∇ · vh) + (wh, vh)− (λh,∇ · vh) = (wn+1

h , vh) ∀vh ∈ Xh , (5.2)

(∇ · wh, q) = 0 ∀q ∈ Qh.

Step 3: Relax: un+1
h := (1− χ)wn+1 + χwh.

The temporal consistency error (in one step) is Temporal Consistency Error = O(4t2 + χ||wn+1
h −

wn+1
h

h
||). The forecasted global error in Algorithm (5.1) is thus

Global Error = O(4t+
χδ2

4t
+ Spacial Error).

We turn to stability.
Lemma 5.2. Assume that Xh, Qh satisfies the discrete inf-sup condition. Consider the discrete nonlinear

filter wh given by (2.3). wh exists uniquely and satisfies

γ||∇ · wh||2 +

∫
Ω

δ2a(w)|∇wh|2dx+
1

2
||wh||2 + ||w − wh||2 =

1

2
||w||2, thus ||wh|| ≤ ||w|| .

Let uh = (1− χ)wh + χwh
h. Then

||wh||2 − ||uh||2 = χ(2− χ)(wh − whh, wh) + χ2(wh − whh, whh), and (5.3)

||wh||2 − ||uh||2 = −||uh − wh||2 + 2χ(wh − whh, wh) . (5.4)

If 0 ≤ χ ≤ 1 then

||uh|| ≤ ||wh|| . (5.5)

Proof. The proof of the first two bounds is the same as the continuous space case in Lemma 4.2. The
proof of third equality is also the same as the continuous case in Theorem 4.3. For the fourth estimate, take
the inner product of uh = (1− χ)wh + χwh

h with wh. This gives

(uh, wh) = (1− χ)(wh, wh) + χ(wh
h, wh) = ||wh||2 − χ(w − whh, wh).

Applying the polarization identity to the LHS we obtain

1

2
||wh||2 +

1

2
||uh||2 −

1

2
||uh − wh||2 = (uh, wh) = ||wh||2 − χ(wh − whh, wh).

from which (5.4) follows. For (5.5), note that since ||whh|| ≤ ||wh|| and 0 ≤ χ ≤ 1,

||uh|| ≤ (1− χ)||wh||+ χ||whh|| ≤ ((1− χ) + χ) ||wh|| ≤ ||wh||.
10



Next we prove an energy equality, unconditional stability and give the precise formula for the numerical
dissipation in the algorithm. The energy bound also proves computability of the procedure.

Proposition 5.3. [Stability] Suppose 0 ≤ χ ≤ 1. Algorithm 5.1 satisfies the energy equality:

1

2
||ulh||2 +4t

l−1∑
n=0

{
4t
2
||
wn+1
h − unh
4t

||2 + ν||∇wn+1
h ||2

}
+

4t
l−1∑
n=0

χ

4t

{
2− χ

2

(
wn+1
h − wn+1

h

h
, wn+1

h

)
+
χ

2

(
wn+1
h − wn+1

h

h
, wn+1

h

h
)}

=

=
1

2
||u0

h||2 +4t
l−1∑
n=0

(fn+1, wn+1
h ) , for any l > 0,

and the stability bound:

1

2
||ulh||2 +4t

l−1∑
n=0

[
4t
2
||
wn+1
h − unh
4t

||2 +
ν

2
||∇wn+1

h ||2
]

+4t
l−1∑
n=0

χ

4t

[
2− χ

2

(
wn+1
h − wn+1

h

h
, wn+1

h

)
+
χ

2

(
wn+1
h − wn+1

h

h
, wn+1

h

h
)]

=

≤ 1

2
||u0

h||2 +
4t
2ν

l−1∑
n=0

||fn+1||2∗ , for any l > 0.

Further, under the discrete inf-sup condition wnh , w
n
h

h
, unh, p

n
h, exist at each time step.

Proof. The energy equality follows exactly as in Proposition 5.4. Using the Cauchy-Schwarz-Young
inequality on the right hand side, subsuming one term into the LHS and summing over the index n, proves
the global stability estimate. Existence follows from the á priori bound, the discrete inf-sup condition and
a fixed point argument in a standard way.

The viscous dissipation, the numerical dissipation induced by the backward Euler time discretization in
Step 1 in Algorithm 5.1 and the model / numerical dissipation induced by steps 2 and 3 are

Viscous dissipation = ν||∇wn+1
h ||2,

Numerical dissipation from Step 1 =
4t
2
||
wn+1
h − unh
4t

||2,

Model / Numerical Dissipation from Steps 2 and 3 =

=
χ

4t

[
2− χ

2

(
wn+1
h − wn+1

h

h
, wn+1

h

)
+
χ

2

(
wn+1
h − wn+1

h

h
, wn+1

h

h
)]
≥ 0.

5.1. Error Analysis. Let tn = n∆t, n = 0, 1, 2, . . . , NT , T := NT∆t, recall fn = f(tn) and let

dtf
n := (fn+1 − fn)/∆t. Introduce the following discrete norms:

‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k, ‖|v|‖m,k :=

(
∆t

NT∑
n=0

‖vn‖mk

)1/m

.

ForW (Ω) a function space, we abbreviate Lp(0, T ;W (Ω)) as Lp(W ) and analogously forHk(W ),W 2
4 (W ).

In order to establish the optimal asymptotic error estimates for the approximation we need to assume that
the true solution is more regular than minimally required to be a strong solution (4.2):

u ∈ L∞(W k+1
4 ) ∩ L∞(H2N+2) ∩H1(0, T ;Hk+1(Ω)) ∩H3(L2) ∩W 2

4 (H1), (5.6)

p ∈ L∞(Hs+1) , and f ∈ H2(L2) . (5.7)
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In the convergence analysis in the main theorem we shall need a technical extension of the error estimate
for nonlinear filters that follows next.

Proposition 5.4. Let Xh, Qh satisfy the discrete inf-sup condition and u ∈ V . Let Ũ ∈ Vh be fixed

but arbitrary and let θ := u− Ũ . Consider the discrete nonlinear filter θ
h

of θ. We have

||θ − θh||2 ≤ 4 inf
ṽ∈Vh

{
2γ||∇ · (u− ṽ)||2 + δ2||∇(u− ṽ)||2 + ||u− ṽ||2

}
+ 4

∫
Ω

δ2|∇(u− Ũ)|2dx.

Proof. We first derive the error equation. Note that θ satisfies the identity:

−∇ · (δ2a(θ)∇θ) + θ = θ −∇ · (δ2a(θ)∇θ), in Ω.

Let e = θ − θh . Subtraction gives the error equation

(δ2a(θ)∇e,∇vh)− γ(∇ · θh,∇ · vh) + (e, vh) + (λh,∇ · vh) = −(∇ · (δ2a(θ)∇θ), vh) ,∀vh ∈ Xh .

For vh ∈ Vh the pressure term is zero and this simplifies to read

(δ2a(θ)∇e,∇vh)− γ(∇ · θh,∇ · vh) + (e, vh) = −(∇ · (δ2a(θ)∇θ), vh) ,∀vh ∈ Vh .

Split the error as e = θ − θh = η − φh where η = θ − ṽ, φh = θ
h − ṽ for a fixed but arbitrary ṽ ∈ Vh. We

note that since ṽ ∈ Vh is fixed but arbitrary and Ũ ∈ Vh we can write

η = θ − ṽ = u− Ũ − ṽ = u− (Ũ + ṽ) = u− ˜̃v
by defining ˜̃v = Ũ + ṽ, another fixed but arbitrary member of Vh (over which an infimum will ultimately be
taken).

Rearranging the error equation and setting vh = φh , using |a(·)| ≤ 1 and

(∇ · (δ2a(θ)∇θ), φh) ≤ 1

2

∫
Ω

δ2a(θ)|∇φh|2dx+
1

2

∫
Ω

δ2a(θ)|∇θ|2dx

≤ 1

2

∫
Ω

δ2a(θ)|∇φh|2dx+
1

2

∫
Ω

δ2|∇(u− Ũ)|2dx

gives

γ||∇ · φh||2 +
1

4
||φh||2 ≤ γ||∇ · (u− ˜̃v)||2 +

∫
Ω

δ2

2
|∇(u− ˜̃v)|2dx+

1

2
||u− ṽ||2 +

1

2

∫
Ω

δ2|∇(u− Ũ)|2dx.

The triangle inequality (and dropping the second tilde in ˜̃v in the final infimum) completes the proof.
We now prove convergence with optimal rates for un − unh and un − wnh .
Theorem 5.5. Let 0 ≤ χ ≤ 1. For u, p, and f satisfying (5.6),(5.7), and unh, wnh given by Algorithm

5.1, we have that for ∆t sufficiently small

1

2

[
‖u(tl) − wlh‖2 + ||u(tl) − ulh‖2

]
+ ∆t

l−1∑
n=1

∆t||u(tn+1) − u(tn)

∆t
−
wn+1
h − unh

∆t
||2

+∆t

l−1∑
n=1

ν‖∇
(
u(tn+1) − wn+1

h

)
‖2 ≤ C ν h2k‖|u|‖22,k+1 + Cν−2 h2k ‖|u|‖2∞,k+1

+C ν−1 h2k+1
(
‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
+ C h2k+2 ‖ut‖22,k+1 + C ν−1 h2s+2 ‖|p|‖22,s+1

+C∆t2
[
‖utt‖22,0 + ‖ft‖22,0 + ν‖∇ut‖22,0 + ν−1‖∇ut‖44,0 + ν−1‖|∇u|‖44,0 + ν−1‖|∇u|‖44,0

]
+C

χ2

4t2
h2k+2

[
(γ + δ2) ‖u‖2∞,k+1 + ‖u‖2∞,k+1

]
+ Cδ4χ

2

4t2
4t

l∑
n=0

||∇ · (a(u(tn))∇u(tn))||2

+C
χ2

4t2
[
γh2k‖|u|‖22,k+1 + δ2h2k‖|u|‖22,k+1 + h2k+2‖|u|‖22,k+1

]
.
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The complete and detailed proof is given in the Appendix.
Remark 5.6. The error estimate takes the general form:

‖u(tl)− wlh‖+ ||u(tl) − ulh‖+

(
ν∆t

l∑
n=1

‖∇(u(tn) − wnh)‖2
)1/2

≤

≤ C(u, p, data, ν)

[
hk + ∆t+

χ

4t
(γhk + hk+1 + δhk + δ2)

]
.

The final term δ2 arises from the simple bound |a(u)| ≤ 1 on nonlinear filter coefficient. The coefficient
a(u) could be small in much of the domain and thus this bound pessimistic. On the other hand, at this level
of generality, any error estimate must include the case a(u) ≡ 1. The assumption that 4t is small can be
dropped by using a different discrete Gronwall inequality if the linearly implicit method is used in Step 1: if
b∗(wn+1

h , wn+1
h , vh) is replaced by b∗(wnh , w

n+1
h , vh) in Step 1, see Girault and Raviart [GR79].

For Taylor-Hood elements, i.e. k = 2, s = 1, we have the following.
Corollary 5.7. Under the assumptions of Theorem 5.5, with (Xh, Qh) Taylor-Hood elements, we have

‖|u − wh|‖∞,0 + ‖|u − uh|‖∞,0 +

(
ν∆t

l∑
n=1

‖∇(un − wnh)‖2
)1/2

≤ C(u, p, data, ν)

[
h2 + ∆t+

χ

4t
(γh2 + h3 + δh2 + δ2)

]
.

6. Numerical Experiments. In this section, we present numerical experiments to test the algorithms
presented herein. Using the Green-Taylor vortex problem, we confirm the expected convergence rates of
both the nonlinear filter (in Theorem 2.5) and for the NSE. Next we consider the benchmark problem of flow
around a cylinder. This is a very good test for too much numerical diffusion since over diffused approximations
typically do not exhibit vortex shedding correctly. We used FreeFEM++ [HePi] using Taylor-Hood elements
(Xh = continuous piecewise quadratics and Qh = continuous piecewise linears).

6.1. Test of the Error in Nonlinear Filtering. We begin by testing the predicted error and con-
vergence rates of Theorem 2.5 in linear vs nonlinear filtering in some 2d flows with known exact solution. In
2d helicity is exactly zero. Thus, we consider the other cases of Section 3:

Linear Filtering⇔ a(·) ≡ 1,

Nonlinear Filtering by Q-criterion⇔ a = aQ(·)
Nonlinear Filtering by Vreman’s formula⇔ a = aV (·)

Nonlinear Filtering by Synthesis⇔ a =
√

(aQaV ) (·).

For the test we select the velocity field given by the Green-Taylor vortex, [GT37], [T23], frozen at time t = 1.
The Green Taylor vortex is used as a numerical test in many papers, e.g., Chorin [Cho68], Tafti [Tafti], John
and Layton [JL02], Barbato, Berselli and Grisanti [BBG07] and Berselli [B05]. The exact velocity field is
given by

u1(x, y, t) = − cos(ωπx) sin(ωπy)e−2ω2π2t/τ ,

u2(x, y, t) = sin(ωπx) cos(ωπy)e−2ω2π2t/τ , (6.1)

p(x, y, t) = −1

4
(cos(2ωπx) + cos(2nπy))e−2ω2π2t/τ .

We take

ω = 1, t = 1 (fixed), τ = Re = 100,Ω = (0, 1)2, δ = h = 1/m (6.2)
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where m is the number of subdivisions of the interval (0, 1). Convergence rates are calculated from the
error at two successive values of h in the usual manner by postulating e(h) = Chβ and solving for β via
β = ln(e(h1)/e(h2))/ ln(h1/h2). The boundary conditions could be taken to be periodic (the easier case),
but instead we take the boundary condition on the filtering problem to be inhomogeneous Dirichlet

uh = uexact, on ∂Ω.

The errors and rates of convergence for ||uexact − uh|| are presented for the 4 methods in Table 6.1. All
discrete filters achieve their predicted rates of convergence.

We also give a plot of the level curves of the scalar function a(u) for the three nonlinear filters. Here we
observe that for this simple solution the Q-criterion indicator, seems to be more selective than the Vreman
indicator; only small regions of the (laminar) flow are selected for filtering. The Vreman based indicator’s
selectivity is also good for this special NSE solution but not as sharp.

a(u) = 1 1 Q-based Q-based

h, α ‖uexact − uh‖1 rate ‖uexact − uh‖1 rate
1
4 7.110E-2 - 2.223E-1 -
1
8 3.541E-2 1.01 8.156E-2 1.45
1
16 1.123E-2 1.66 1.385E-2 2.56
1
32 2.309E-3 2.28 1.892E-3 2.87
1
64 4.209E-4 2.46 8.560E-4 1.14
1

128 7.927E-5 2.41 2.131E-4 2.01
1

192 3.022E-5 2.38 9.449E-5 2.01

a(u) = Vreman-based Vreman-based VQ-based VQ-based

h, α ‖uexact − uh‖1 rate ‖uexact − uh‖1 rate
1
4 1.882E-1 - 2.513E-1 -
1
8 7.202E-1 1.39 6.162E-2 2.03
1
16 1.603E-2 2.17 1.463E-2 2.07
1
32 3.535E-3 2.18 3.532E-3 2.05
1
64 8.098E-4 2.13 8.656E-4 2.03
1

128 1.958E-4 2.05 2.143E-4 2.01
1

192 8.486E-5 2.06 9.490E-5 2.01
Table 6.1

Errors and convergence rates for the different filters for numerical experiment 1.

6.2. Convergence Rate Verification for the Full Algorithm. Our second experiment is designed
to test (and does confirm) the expected convergence rates for Algorithm 5.1 (using the CN method for Step
1) for the NSE. The prescribed solution is (6.1) above with time now no longer frozen. When the relaxation
time τ = Re, this is a solution of the NSE with f = 0, consisting of an ω × ω array of oppositely signed
vortices that decay as t→∞. In addition to (6.2) above, we further select

χ = 4t, Tfinal = 0.1, Re = 10, δ = 4x.

Based on Test 1 we select as indicator function

Linear Filtering⇔ a(·) ≡ 1,

Nonlinear Filtering by Vreman-based indicator⇔ aV (u) =

√
B(u)

|∇u|4F
.

From Table 6.2 we observe the expected convergence rates for both the linear and nonlinear filter are indeed
found.

14



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Q based indicator

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Vreman based indicator

 

 

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Vreman x Q based indicator

 

 

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Fig. 6.1. Shown above are contour plots of the indicator function a(u) arising from filtering with the Q-based, Vreman
based, and Q-Vreman composition nonlinear filters, overlaying the velocity vector field.

6.3. Flow around a cylinder. Our next numerical illustration is for two dimensional under-resolved
channel flow around a cylinder. We compute values for the maximal drag cd,max and lift cl,max coefficient
at the cylinder, and for the pressure difference ∆p(t) between the front and back of the cylinder at the final
time T = 8. This is a well known benchmark problem taken from Shäfer and Turek [ST96] and John [J04].
It is not turbulent but does have interesting features. The flow patterns are driven by the interaction of
a fluid with a wall which is an important scenario for industrial flows. This simple flow is actually quite
difficult to simulate successfully by a model with sufficient regularization to handle higher Reynolds number
problems.

The domain for the problem is a 2.2× 0.41 rectangular channel with a cylinder of radius 0.05 centered
at (0.2, 0.2) (taking the bottom left corner of the rectangle as the origin). The cylinder, top and bottom of
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a(u) = 1 1 Vreman-based Vreman-based
∆t h, α ‖uNSE − wh‖2,1 rate ‖uNSE − wh‖2,1 rate

0.005 1
4 6.300E-2 - 6.382E-2 -

0.005
2

1
8 1.558E-2 2.01 1.556E-2 2.04

0.005
4

1
16 3.814E-3 2.03 3.638E-3 2.10

0.005
8

1
32 9.844E-4 1.95 8.803E-4 2.05

0.005
16

1
64 2.480E-4 1.99 2.175E-4 2.02

Table 6.2
Errors and convergence rates for Algorithm 5.1 using the linear filter and the nonlinear filter with Vreman-based indicator,

for numerical experiment 2.

the channel are prescribed no slip boundary conditions, and the time dependent inflow and outflow profile
are

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41− y) ,

u2(0, y, t) = u2(2.2, y, t) = 0.

The viscosity is set as ν = 10−3 and the external force f = 0. The Reynolds number of the flow, based on
the diameter of the cylinder and on the mean velocity inflow is 0 ≤ Re ≤ 100.

For this setting, it is expected that as the flow increases from time t = 2 to t = 4 two vortices start to
develop behind the cylinder. They then separate into the flow, and soon after a vortex street forms which
can be visible through the final time t = 8. This evolution can be seen in Figure 6.2, where the velocity field
and speed contours are plotted at t = 2, 4, 6 and 8 for a fully resolved solution. Lift and drag coefficients
(using the one dimensional method described by V. John [J04]) for fully resolved flows will lie in the reference
intervals ([ST96])

crefd,max ∈ [2.93, 2.97], crefl,max ∈ [0.47, 0.49], ∆pref ∈ [−0.115, −0.105]

A mesh providing 14, 401 total degrees of freedom with (P2, P1) elements, a time step of ∆t = 0.0025, and
filtering radius δ chosen to be the average mesh width, is used for all simulations, for a clear comparison of
the different algorithms. These simulations are all under-resolved; fully resolved computations use upwards
of 100,000 degrees of freedom and even smaller time steps. Thus we do not expect exact agreement with
solutions of Algorithm 5.1 with the true solution or lift and drag reference values. However, we do expect
answers to be close, in order for the algorithm to be a useful ‘model’.

We test Algorithm 5.1, here with a Crank-Nicolson temporal discretization, with the following options
for the filter.

Linear Filtering⇔ a(·) ≡ 1,

Nonlinear Filtering by Q-criterion⇔ a = aQ(·)
Nonlinear Filtering by Vreman’s formula⇔ a = aV (·)

Nonlinear Filtering by Synthesis⇔ a = aV Q =
√

(aQaV ) (·).

Algorithm 5.1 (with CN in Step 1) performs well for each of the three nonlinear filters, but is significantly
less accurate for the linear filter case. Plots of each of the solutions’ velocity fields are given in Figure 6.3,
and comparing to the resolved solutions in Figure 6.2, we see that the three solutions from aQ, aV , aV Q all
match the resolved solution well (for such a coarse mesh approximation). However, the solution from using
a(u) = 1 does not capture the full vortex street; near the end of the channel it is clearly not resolved. We
also see from the lift and drag calculations, given in Table 6.3, that the solutions from the aQ, aV , aV Q
filters give reasonable approximations to lift, drag and pressure drop. The solution from a(u) = 1, on the
other hand, gives a poor approximation of the lift coefficient.

7. Conclusions. Nonlinear filtering, properly done, at each step stabilizes marginally resolved scales
and does not over diffuse. For linear filtering w − w is very small in regions where w is smooth. For a
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Fig. 6.2. Shown above is the development of the vortex street for flow the ν = 0.001 flow around a cylinder benchmark
problem. The velocity field and speed contours are plotted at t = 2, 4, 6, 8. This plot is for a fully resolved solution.

Filter cd,max cl,max ∆p
a(u) = 1 2.898 0.151 -0.113

a(u) = aV (u) 2.895 0.542 -0.115
a(u) = aQ(u) 2.892 0.551 -0.114
a(u) = aV Q(u) 2.892 0.558 -0.114

Table 6.3
Lift, drag and pressure drop for the flow around a cylinder experiment with the four different filters.

properly chosen indicator function for nonlinear filtering, w − w is very small not only in smooth regions,
but also in regions of persistent eddies, coherent flow structures which are not broken down rapidly and as
well as in laminar regions. Thus nonlinear filtering reduces both numerical errors and turbulence modeling
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Fig. 6.3. Shown above is the velocity field and speed contours for the benchmark cylinder problem at t = 6, for the four
different filter choices. Comparing to the resolved solution in Figure 6.2, we see the solution from using a(u) = 1 does not
capture the vortex street, while the other three methods do and match the fully resolved solution well.

errors. It reduces model dissipation selectively so that it more closely mimics the exact physics of the energy
cascade. Nonlinear filtering reduces implementing a complex, nonlinear turbulence model into a flow code
(possibly a legacy code of great length) to providing a function subroutine and solving one well conditioned,
SPD linear system each time step. It also gives a general approach to increasing the accuracy of turbulence
models. The definition of nonlinear filters via differential filters is the clearest mathematically but possibly
not the most efficient. The extension of the idea to filtering by local averaging with locally and nonlinearly
varying averaging radius, taking the work herein as a first step, is an interesting extension of importance to
many practical flow simulations.

18



REFERENCES

[AL99] N.A. Adams and A. Leonard, Deconvolution of subgrid scales for the simulation of shock-turbulence inter-
action, p. 201 in: Direct and Large Eddy Simulation III, (eds.: P. Voke, N.D. Sandham and L. Kleiser),
Kluwer, Dordrecht, 1999.

[AS02] N.A. Adams and S. Stolz, A subgrid-scale deconvolution approach for shock capturing, J.C.P., 178 (2002),
391-426.

[AS01] N. A. Adams and S. Stolz, Deconvolution methods for subgrid-scale approximation in large eddy simulation,
Modern Simulation Strategies for Turbulent Flow, R.T. Edwards, 2001.

[B76] G. Baker, Galerkin Approximations for the Navier-Stokes Equations, technical report, Harvard University,
August, 1976.

[BBG07] D. Barbato, L.C. Berselli, and C.R. Grisanti, Analytical and numerical results for the rational large eddy
simulation model, J. Math. Fluid Mech., 9 (2007), 44-74.

[B05] L.C. Berselli, On the large eddy simulation of the Taylor-Green vortex, J. Math. Fluid Mech., 7 (2005),
S164-S191.

[BIL04] L.C. Berselli, T. Iliescu and W. Layton, Large Eddy Simulation, Springer, Berlin, 2004
[B61] R. Betchov, Semi-isotropic turbulence and helicoidal flows, Phys. Fluids, 4(1961) 925-926.
[BIR09] J. Borggaard, T. Iliescu and J.P. Roop, A Bounded Artificial Viscosity Large Eddy Simulation Model,

SIAM J. Numer. Anal., 47(2009), 622-645.
[Boyd98] J.P. Boyd, Two comments on filtering for Chebyshev and Legendre spectral and spectral element methods :

Preserving the boundary conditions and interpretation of the filter as a diffusion, J. Comp. Phys., 143
(1998), 283–288.

[BS94] S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, 1994.
[Cho68] A.J. Chorin, Numerical solution for the Navier-Stokes equations, Math. Comp., 22 (1968), 745-762.
[CL08] J. Connors and W. Layton, On the accuracy of the finite element method plus time relaxation, Math. Comp.,to

appear, 2008.
[DF02] C. Doering and C. Foias, Energy dissipation in body-forced turbulence, J. Fluid Mech., 467 (2002), 289-306.
[D04] A. Dunca, Space averaged Navier-Stokes equations in the presence of walls, PhD Thesis, University of Pitts-

burgh, 2004.
[D02] A. Dunca, Investigation of a shape optimization algorithm for turbulent flows, report ANL/MCS-P1101-1003,

Argonne National Lab, 2002, http://www-fp.mcs.anl.gov/division/publications/.
[DE04] A. Dunca and Y. Epshteyn, On the Stolz-Adams de-convolution LES model, SIAM J. Math. Anal., 37 (2006),

1890-1902.
[ELN07] V. Ervin, W. Layton and M. Neda , Numerical analysis of a higher order time relaxation model of fluids,

Int. J. Numer. Anal. and Modeling, 4 (2007), 648-670.
[ELN10] V. Ervin, W. Layton and M. Neda, Numerical analysis of filter based stabilization for evolution equa-

tions, technical report, TR-MATH 10-01, 2010, http://www.mathematics.pitt.edu/research/technical-
reports.php.

[FM01] P. Fischer and J. Mullen, Filter-based stabilization of spectral element methods, C. R. Acad. Sci. Paris,
332(1), 265 (2001).

[G89] M.D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows - A Guide to Theory, Practices,
and Algorithms, Academic Press, 1989.

[Geu97] B. J. Geurts, Inverse modeling for large eddy simulation, Phys. Fluids, 9 (1997), 3585.
[Ga00] G. P. Galdi, Lectures in Mathematical Fluid Dynamics, Birkhauser-Verlag, 2000.
[Gal94] G.P. Galdi, An introduction to the Mathematical Theory of the Navier-Stokes equations, Volume I, Springer,

Berlin, 1994.
[GAS09] E. Garnier, N. Adams and P. Sagaut, Large eddy simulation for compressible flows, Springer, Berlin, 2009.
[Ger86] M. Germano, Differential filters of elliptic type, Phys. Fluids, 29 (1986), 1757-1758.
[GR79] V. Girault, P.-A. Raviart , Finite Element Approximation of the Navier-Stokes Equations, Springer, Verlag;

Berlin, 1979.
[GT37] A.E. Green and G.I. Taylor, Mechanism of the production of small eddies from larger ones, Proc. Royal Soc.

A, 158 (1937), 499-521.
[Gue04] R. Guenanff, Non-stationary coupling of Navier-Stokes/Euler for the generation and radiation of aerodynamic

noises, PhD thesis: Dept. of Mathematics, Université Rennes 1, Rennes, France, 2004.
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Appendix. The Proof of Theorem 5.5.
Proof. At time tn+1, the true solution of the NSE u satisfies

(un+1 − un, vh) + ∆tν(∇un+1 , ∇vh) + ∆t b∗(un+1 , un+1 , vh) − ∆t (pn+1,∇ · vh)

= ∆t (fn+1, vh) + ∆t Intp(un+1; vh) , (A.1)

for all vh ∈ Vh, where Intp(un; vh), representing the interpolating error, denotes

Intp(un; vh) =
(
(un+1 − un)/∆t− un+1

t , vh
)
.

We let

εn = un − wnh , e
n = un − unh .

Subtracting Step 1 of the algorithm from (A.1), we have

(εn+1 − en, vh) + ∆t ν(∇εn+1 ,∇vh)

= −∆tb∗(un+1 , un+1 , vh) + ∆t b∗(wn+1
h , wn+1

h , vh) + ∆t(pn+1,∇ · vh) + ∆t Intp(un+1; vh) , (A.2)
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for all vh ∈ Vh. Let Un ∈ Vh be an approximation to un = u(tn). Split the errors as

εn = un − wnh = (un − Un) + (Un − wnh) := ηn + ψnh,

en = un − unh = (un − Un) + (Un − unh) := ηn + φnh.

Choose vh = ψn+1
h , use (∇ · ψn+1

h , qh) = 0, ∀qh ∈ Qh, and note that by the polarization identity

(φnh, ψ
n+1
h ) =

1

2

(
‖ψn+1

h ‖2 + ‖φnh‖2
)
− 1

2
||ψn+1

h − φnh||2.

Equation (A.2) then becomes

1

2

(
‖ψn+1

h ‖2 − ‖φnh‖2
)

+
1

2
||ψn+1

h − φnh||2 + ∆t ν‖∇ψn+1
h ‖2

= −(ηn+1 − ηn, ψn+1
h ) −∆t ν(∇ηn+1,∇ψn+1

h )

−∆t b∗(un+1 , un+1 , ψn+1
h ) + ∆t b∗(wn+1

h , wn+1
h , ψn+1

h )

+ ∆t(pn+1 − qh,∇ · ψn+1
h ) + ∆t Intp(un+1;ψn+1

h ) . (A.3)

Next we estimate the terms on the RHS of (A.3).

(ηn+1 − ηn, ψn+1
h ) ≤ 1

2
∆t‖η

n+1 − ηn

∆t
‖2 +

1

2
∆t‖ψn+1

h ‖2

=
1

2
∆t

∫
Ω

(
1

∆t

∫ tn+1

tn
ηtdt

)2

dΩ +
1

2
∆t‖ψn+1

h ‖2

≤ 1

2

∫ tn+1

tn
‖ηt‖2 dt+

1

2
∆t
(
‖ψn+1

h ‖2 + ‖φnh‖2
)
. (A.4)

ν(∇ηn+1,∇ψn+1
h ) ≤ ν

10
‖∇ψn+1

h ‖2 + Cν ‖∇ηn+1‖2 . (A.5)

We rewrite b∗(un+1 , un+1 , ψn+1
h ) − b∗(wn+1

h , wn+1
h , ψn+1

h ) and use b∗(wn+1
h , ψn+1

h , ψn+1
h ) = 0 to give

b∗(un+1 , un+1 , ψn+1
h ) − b∗(wn+1

h , wn+1
h , ψn+1

h )

= b∗(un+1 , un+1 , ψn+1
h ) − b∗(wn+1

h , un+1, ψn+1
h )

+ b∗(wn+1
h , un+1, ψn+1

h ) − b∗(wn+1
h , wn+1

h , ψn+1
h )

= b∗(εn+1 , un+1 , ψn+1
h ) + b∗(wn+1

h , εn+1, ψn+1
h )

= b∗(ηn+1 + ψn+1
h , un+1 , ψn+1

h ) + b∗(wn+1
h , ηn+1 + ψn+1

h , ψn+1
h )

= b∗(ηn+1, un+1 , ψn+1
h ) + b∗(ψn+1

h , un+1 , ψn+1
h ) + b∗(wn+1

h , ηn+1 , ψn+1
h ) . (A.6)

Using b∗(u, v, w) ≤ C(Ω)
√
‖u‖ ‖∇u‖ ‖∇v‖ ‖∇w‖, for u, v, w ∈ X, and Young’s inequality, we bound the

terms on the RHS of (A.6) as follows.

b∗(ηn+1 , un+1 , ψn+1
h ) ≤ C

√
‖ηn+1‖ ‖∇ηn+1‖ ‖∇un+1‖ ‖∇ψn+1

h ‖

≤ ν

10
‖∇ψn+1

h ‖2 + C ν−1 ‖ηn+1‖ ‖∇ηn+1‖ ‖∇un+1‖2 (A.7)

b∗(ψn+1
h , un+1 , ψn+1

h ) ≤ C ‖ψn+1
h ‖1/2 ‖∇ψn+1

h ‖3/2 ‖∇un+1‖

≤ ν

10
‖∇ψn+1

h ‖2 + C ν−3 ‖∇un+1‖4
(
‖ψn+1

h ‖2 + ‖φn+1
h ‖2

)
(A.8)
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b∗(wn+1
h , ηn+1 , ψn+1

h ) ≤ C ‖∇wn+1
h ‖ ‖∇ηn+1‖ ‖∇ψn+1

h ‖

≤ ν

10
‖∇ψn+1

h ‖2 + C ν−1 ‖∇wn+1
h ‖2 ‖∇ηn+1‖2 (A.9)

(pn+1 − qh,∇ · ψn+1
h ) ≤ ‖pn+1 − qh‖ ‖∇ · ψn+1

h ‖

≤ ν

10
‖∇ψn+1

h ‖2 + C ν−1 ‖pn+1 − qh‖2 . (A.10)

With the bounds (A.4)–(A.10), (A.3) becomes

1

2

(
‖ψn+1

h ‖2 − ‖φnh‖2
)

+
1

2
||ψn+1

h − φnh||2 + ∆t
ν

2
‖∇ψn+1

h ‖2

≤ C∆t (1 + ν−3‖∇un+1‖4)‖
(
‖ψn+1

h ‖2 + ‖φn+1
h ‖2

)
+ Cν∆t‖∇ηn+1‖2

+ C∆t ‖∇wn+1
h ‖2 ‖∇ηn+1‖2 + Cν−1∆t ‖∇un+1‖2‖ηn+1‖ ‖∇ηn+1‖

+ C

∫ tn

tn−1

‖ηt‖2 dt + C ∆t ν−1‖pn+1 − qh‖2 + ∆t |Intp(un;ψn+1
h )|. (A.11)

As unh and wnh are connected through the filter-relax operations in Steps 2 and 3, we next use those
equations to obtain a relationship between ‖ψnh‖ and ‖φnh‖. The true solution u(·, tn) = un satisfies

un = (1− χ)un + χun
h

+ χ
(
un − unh

)
. (A.12)

Subtracting Step 3 of Algorithm 5.1 from (A.12) and rearranging yields

en+1 = (1− χ)εn+1 + χεn+1
h

+ χ
(
un+1 − un+1

h
)

, rewritten as: (A.13)

φn+1
h = (1− χ)ψn+1

h + χψn+1
h

h
− χ

(
ηn+1 − ηn+1

h
)

+ χ
(
un+1 − un+1

h
)
.

Taking norms and using ||ψnh
h
|| ≤ ||ψnh|| thus gives

‖φn+1
h ‖ ≤ (1− χ)‖ψn+1

h ‖ + χ ‖ψn+1
h ‖ + χ‖ηn+1 − ηn+1

h
‖ + χ‖un+1 − un+1

h
‖,

‖φn+1
h ‖ ≤ ‖ψn+1

h ‖ + χ‖ηn+1 − ηn+1
h
‖ + χ‖un+1 − un+1

h
‖. (A.14)

This implies (shifting the index back one step to n)

1

2
‖φnh‖2 =

1

4
‖φnh‖2 +

1

4
‖φnh‖2 (A.15)

≤ 1

4
‖φnh‖2 +

1

4

[
‖ψnh‖ + χ‖ηn − ηnh‖+ χ‖un − unh‖

]2
≤ 1

4

[
‖φnh‖2 + ‖ψnh‖2

]
+

1

2

[
χ‖ηn − ηnh‖ + χ‖un − unh‖

]
‖ψnh‖

+
1

4

[
χ‖ηn − ηnh‖+ χ‖un − unh‖

]2
≤ 1

4

[
‖φnh‖2 + ‖ψnh‖2

]
+

χ

24t

[
‖ηn − ηnh‖ + ‖un − unh‖

]
[4t‖ψnh‖]

+
χ2

2

[
‖ηn − ηnh‖2 + ‖un − unh‖2

]
.

Returning to the index n+ 1, we rearrange and square. This yields, after further manipulations,

‖φn+1
h ‖ −

[
χ‖ηn+1 − ηn+1

h
‖ + χ‖un+1 − un+1

h
‖
]
≤ ‖ψn+1

h ‖ , and thus{
‖φn+1

h ‖ −
[
χ‖ηn+1 − ηn+1

h
‖ + χ‖un+1 − un+1

h
‖
]}2

≤ ‖ψn+1
h ‖2, or

‖φn+1
h ‖2 − 2

[
χ‖ηn+1 − ηn+1

h
‖ + χ‖un+1 − un+1

h
‖
]
‖φn+1

h ‖

+
[
χ‖ηn+1 − ηn+1

h
‖ + χ‖un+1 − un+1

h
‖
]2
≤ ‖ψn+1

h ‖2
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Using this in the first term of the LHS of (A.11) and rearranging gives

1

2
‖ψn+1

h ‖2 ≥ 1

4
‖ψn+1

h ‖2 +
1

4
‖ψn+1

h ‖2 ≥ (A.16)

≥ 1

4
‖ψn+1

h ‖2 +
1

4
{||φn+1

h ‖2 − 2
[
χ‖ηn+1 − ηn+1

h
‖ + χ‖un+1 − un+1

h
‖
]
‖φn+1

h ‖

+
[
χ‖ηn+1 − ηn+1

h
‖ + χ‖un+1 − un+1

h
‖
]2
}.

Thus,

1

2
‖ψn+1

h ‖2 ≥ 1

4

[
‖ψn+1

h ‖2 + ||φn+1
h ‖2

]
− 1

2

[
χ‖ηn+1 − ηn+1

h
‖ + χ‖un+1 − un+1

h
‖
]
‖φn+1

h ‖

+
χ2

4

[
‖ηn+1 − ηn+1

h
‖ + ‖un+1 − un+1

h
‖
]2
.

Now use (A.15) and (A.16) in the first term in (A.11). This gives

1

4

([
‖ψn+1

h ‖2 + ||φn+1
h ‖2

]
−
[
‖φnh‖2 + ‖ψnh‖2

])
+

1

2
||ψn+1

h − φnh||2 + ∆t
ν

2
‖∇ψn+1

h ‖2

+
χ2

4

{[
‖ηn+1 − ηn+1

h
‖ + ‖un+1 − un+1

h
‖
]2
−
[
‖ηn − ηnh‖2 + ‖un − unh‖2

]}
≤ C∆t (1 + ν−3‖∇un+1‖4)‖

(
‖ψn+1

h ‖2 + ‖φn+1
h ‖2

)
+ Cν∆t‖∇ηn+1‖2

+ C∆t ‖∇wn+1
h ‖2 ‖∇ηn+1‖2 + Cν−1∆t ‖∇un+1‖2‖ηn+1‖ ‖∇ηn+1‖

+ C

∫ tn

tn−1

‖ηt‖2 dt + C ∆t ν−1‖pn+1 − qh‖2 + ∆t |Intp(un;ψn+1
h )|

+
χ

24t

[
‖ηn+1 − ηn+1

h
‖ + ‖un+1 − un+1

h
‖
] [
4t‖φn+1

h ‖
]

+
χ

24t

[
‖ηn − ηnh‖ + ‖un − unh‖

]
[4t‖ψnh‖] .

The last two terms on the RHS are bounded by

Next to Last Term: χ
[
‖ηn+1 − ηn+1

h
‖ + ‖un+1 − un+1

h
‖
]
‖φn+1

h ‖

≤ 4t‖φn+1
h ‖2 + C4t χ

2

4t2
[
‖ηn+1 − ηn+1

h
‖2 + ‖un+1 − un+1

h
‖2
]
,

Last Term:
χ

24t

[
‖ηn − ηnh‖ + ‖un − unh‖

]
[4t‖ψnh‖]

≤ 4t‖ψnh‖2 + C4t χ
2

4t2
[
‖ηn − ηnh‖2 + ‖un − unh‖2

]
.

23



Insert these two bounds and sum the result from n = 1 to l − 1, (noting that ‖φ0
h‖ = ‖ψ0

h‖ = 0, since
U0 ∈ Vh). We obtain

1

4

[
‖ψlh‖2 + ||φlh‖2

]
+
χ2

4

[
‖ηl − ηl

h
‖ + ‖ul − ul

h
‖
]2

+

l−1∑
n=1

1

2
||ψn+1

h − φnh||2 + ∆t

l−1∑
n=1

ν

2
‖∇ψn+1

h ‖2

≤ χ2

4

[
‖η0 − η0

h
‖2 + ‖u0 − u0

h
‖2
]

+ ∆t

l−1∑
n=1

C(1 + ν−3‖∇un+1‖4)
(
‖ψn+1

h ‖2 + ‖φn+1
h ‖2

)
+ C∆t

l−1∑
n=1

ν‖∇ηn+1‖2

+ C∆t

l−1∑
n=1

‖∇wn+1
h ‖2 ‖∇ηn+1‖2 + Cν−1∆t

l−1∑
n=1

ν−1‖∇un+1‖2‖ηn+1‖ ‖∇ηn+1‖

+ C

∫ tl−1

t0

‖ηt‖2 dt + C ∆t

l−1∑
n=1

ν−1‖pn+1 − qh‖2 + ∆t

l−1∑
n=1

|Intp(un;ψn+1
h )|

+4t
l−1∑
n=1

‖φn+1
h ‖2 + C4t

l−1∑
n=1

χ2

4t2
[
‖ηn+1 − ηn+1

h
‖2 + ‖un+1 − un+1

h
‖2
]

+4t
l−1∑
n=1

‖ψnh‖2 + C4t
l−1∑
n=1

χ2

4t2
[
‖ηn − ηnh‖2 + ‖un − unh‖2

]
.

Now the last two terms can be collected together to give

4t
l−1∑
n=1

‖φn+1
h ‖2 + C4t

l−1∑
n=1

χ2

4t2
[
‖ηn+1 − ηn+1

h
‖2 + ‖un+1 − un+1

h
‖2
]

+4t
l−1∑
n=1

‖ψnh‖2 + C4t
l−1∑
n=1

χ2

4t2
[
‖ηn − ηnh‖2 + ‖un − unh‖2

]
≤ 4t

l∑
n=1

(
‖φnh‖2 + ‖ψnh‖2

)
+ C4t

l∑
n=1

χ2

4t2
[
‖ηn − ηnh‖2 + ‖un − unh‖2

]
.

Thus, collecting terms on the RHS, we have

1

4

[
‖ψlh‖2 + ||φlh‖2

]
+
χ2

4

[
‖ηl − ηl

h
‖ + ‖ul − ul

h
‖
]2

(A.17)

+

l−1∑
n=1

1

2
||ψn+1

h − φnh||2 + ∆t
l−1∑
n=1

ν

2
‖∇ψn+1

h ‖2

≤ χ2

4

[
‖η0 − η0

h
‖2 + ‖u0 − u0

h
‖2
]

+ ∆t

l∑
n=1

C(1 + ν−3‖∇un‖4)
(
‖ψnh‖2 + ‖φnh‖2

)
+ C∆t

l−1∑
n=1

ν‖∇ηn+1‖2 + C∆t

l−1∑
n=1

‖∇wn+1
h ‖2 ‖∇ηn+1‖2

+ C∆t

l−1∑
n=1

ν−1‖∇un+1‖2‖ηn+1‖ ‖∇ηn+1‖+ C

∫ tl−1

t0

‖ηt‖2 dt + C ∆t

l−1∑
n=1

ν−1‖pn+1 − qh‖2

+ ∆t

l−1∑
n=1

|Intp(un;ψn+1
h )|+ C4t

l∑
n=1

χ2

4t2
[
‖ηn − ηnh‖2 + ‖un − unh‖2

]
.

The terms on the RHS of (A.17) are further bounded as follows:

C ν∆t

l−1∑
n=1

‖∇ηn+1‖2 ≤ C ν∆t

l∑
n=0

‖∇ηn‖2 ≤ C ν∆t

l∑
n=0

h2k|un|2k+1 ≤ C ν h2k‖|u|‖22,k+1 . (A.18)
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For the next term

C ν−1 ∆t

l−1∑
n=1

‖∇un+1‖2 ‖ηn+1‖ ‖∇ηn+1‖ ≤ C

ν
h2k+1∆t

l−1∑
n=1

|un+1|2k+1 ‖∇un+1‖2 (A.19)

≤ C

ν
h2k+1

(
∆t

l∑
n=0

|un|4k+1 + ∆t

l∑
n=0

‖∇un‖4
)
≤ C

ν
h2k+1

(
‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
.

Using the stability bound of ν∆t
∑l
n=1 ‖wnh‖2 by problem data (see Proposition 5.3), we have that

C∆t

l∑
n=1

‖wn+1
h ‖2‖∇ηn+1‖2 ≤ Cν−2 h2k ‖|u|‖2∞,k+1 . (A.20)

Next

C

∫ tl

0

‖ηt‖2dt ≤ C
∫ tl

0

h2k+2‖ut‖2 dt ≤ C h2k+2 ‖ut‖22,k+1, (A.21)

∆t

l−1∑
n=1

C ν−1‖pn+1 − qh‖2 ≤ C ν−1 ∆t

l−1∑
n=1

h2s+2 ‖pn+1‖2s+1 ≤ C ν−1 h2s+2 ‖|p|‖22,s+1 . (A.22)

The consistency error term arising from the backward Euler time discretization in Step 1 is bounded in
a standard way. Indeed, adapting the argument in [ELN07], the following consistency error term satisfies

2∆t

l−1∑
n=1

|Intp(un;ψn+1
h )| ≤ ∆t C

l∑
n=0

(
‖ψnh‖2 + ‖φnh‖2

)
+ ε∆t ν

l−1∑
n=1

‖∇ψn+1
h ‖2

+ C∆t2
(
‖utt‖22,0 + ‖ft‖22,0 + ν‖∇ut‖22,0

+ ν−1‖∇ut‖44,0 + ν−1‖|∇u|‖44,0 + ν−1‖|∇u|‖44,0
)
. (A.23)

Combining (A.18)–(A.23) and collecting terms, equation (A.17) simplifies to

1

4

[
‖ψlh‖2 + ||φlh‖2

]
+
χ2

4

[
‖ηl − ηl

h
‖ + ‖ul − ul

h
‖
]2

(A.24)

+

l−1∑
n=1

1

2
||ψn+1

h − φnh||2 + ∆t

l−1∑
n=1

ν

2
‖∇ψn+1

h ‖2

≤ χ2

4

[
‖η0 − η0

h
‖2 + ‖u0 − u0

h
‖2
]

+ ∆t

l∑
n=1

C(1 + ν−3‖∇un‖4)
(
‖ψnh‖2 + ‖φnh‖2

)
+ C ν h2k‖|u|‖22,k+1

+ Cν−2 h2k ‖|u|‖2∞,k+1 + C ν−1 h2k+1
(
‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
+ Ch2k+2 ‖ut‖22,k+1 + C ν−1 h2s+2 ‖|p|‖22,s+1

+ C∆t2‖utt‖22,0 + ‖ft‖22,0 + ν‖∇ut‖22,0 + ν−1‖∇ut‖44,0 + ν−1‖|∇u|‖44,0 + ν−1‖|∇u|‖44,0

+ C4t
l∑

n=1

χ2

4t2
[
‖ηn − ηnh‖2 + ‖un − unh‖2

]
.
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Hence, with ∆t sufficiently small, i.e. ∆t < C(1 + ν−3‖|∇u|‖4∞,0)−1, from the discrete Gronwall’s Lemma
[HeRa], we have

1

4

[
‖ψlh‖2 + ||φlh‖2

]
+
χ2

4

[
‖ηl − ηl

h
‖ + ‖ul − ul

h
‖
]2

(A.25)

+

l−1∑
n=1

1

2
||ψn+1

h − φnh||2 + ∆t

l−1∑
n=1

ν

2
‖∇ψn+1

h ‖2

≤ χ2

4

[
‖η0 − η0

h
‖2 + ‖u0 − u0

h
‖2
]

+ Cνh2k‖|u|‖22,k+1 + Cν−2 h2k ‖|u|‖2∞,k+1

+ C ν−1 h2k+1
(
‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
+ Ch2k+2 ‖ut‖22,k+1 + C ν−1 h2s+2 ‖|p|‖22,s+1

+ C∆t2
[
‖utt‖22,0 + ‖ft‖22,0 + ν‖∇ut‖22,0 + ν−1‖∇ut‖44,0 + ν−1‖|∇u|‖44,0 + ν−1‖|∇u|‖44,0

]
+ C4t

l∑
n=1

χ2

4t2
[
‖ηn − ηnh‖2 + ‖un − unh‖2

]
.

Consider the last term on the above RHS. From Theorem 2.5 and Proposition 5.4 we have (provided 4t < 2
so χ2/4 < χ2/4t2)

χ2

4
‖u0 − u0

h
‖2 +4t

l∑
n=1

(
χ

4t

)2

||un − unh||2

≤ C4t
l∑

n=0

χ2

4t2
inf

ũn∈Vh

{
γ||∇ · (un − ũn)||2 +

∫
Ω

δ2a(un)|∇(un − ũ)|2dx+ ||un − ũn||2
}

+ Cδ4

(
χ

4t

)2

4t
l∑

n=0

||∇ · (a(un)∇un)||2

≤ C χ2

4t2
[
(γ + δ2)h2k+2 ‖u‖2∞,k+1 + h2k+2 ‖u‖2∞,k+1

]
+ Cδ4

(
χ

4t

)2

4t
l∑

n=0

||∇ · (a(un)∇un)||2.

Thus we have (again provided 4t < 2 so χ2/4 < χ2/4t2)

1

4

[
‖ψlh‖2 + ||φlh‖2

]
+
χ2

4

[
‖ηl − ηl

h
‖ + ‖ul − ul

h
‖
]2

(A.26)

+

l−1∑
n=1

1

2
||ψn+1

h − φnh||2 + ∆t

l−1∑
n=1

ν

2
‖∇ψn+1

h ‖2

≤ C ν h2k‖|u|‖22,k+1 + Cν−2 h2k ‖|u|‖2∞,k+1 + C ν−1 h2k+1
(
‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
+ Ch2k+2 ‖ut‖22,k+1 + Cν−1 h2s+2 ‖|p|‖22,s+1

+ C∆t2
{
‖utt‖22,0 + ‖ft‖22,0 + ν‖∇ut‖22,0 + ν−1‖∇ut‖44,0 + ν−1‖|∇u|‖44,0 + ν−1‖|∇u|‖44,0

}
+ C

(
χ

4t

)2
{

(γ + δ2)h2k+2 ‖u‖2∞,k+1 + h2k+2 ‖u‖2∞,k+1 +4t
l∑

n=0

δ4||∇ · (a(un)∇un)||2
}

+ C

(
χ

4t

)2

4t
l∑

n=0

‖ηn − ηnh‖2.

We now turn to the remaining term involving ‖ηn− ηnh‖2. Recall that ηn = un−Un. From Proposition 5.4
we have

||ηn − ηnh||2 ≤

≤ 4 inf
ṽn∈Vh

{
2γ||∇ · (un − ṽn)||2 + δ2||∇(un − ṽn)||2 + ||un − ṽn||2

}
+ 4

∫
Ω

δ2|∇(un − Un)|2dx.
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Thus, by the choice of Un and ṽn, we have(
χ

4t

)2

4t
l∑

n=0

‖ηn − ηnh‖2 ≤ 4

(
χ

4t

)2

4t
l∑

n=0

∫
Ω

δ2|∇(un − Un)|2dx

+ C

(
χ

4t

)2

4t
l∑

n=0

inf
ṽn∈Vh

{
2γ||∇ · (un − ṽn)||2 + δ2||∇(un − ṽn)||2 + ||un − ṽn||2

}
≤ C

(
χ

4t

)2 [
γh2k‖|u|‖22,k+1 + δ2h2k‖|u|‖22,k+1 + h2k+2‖|u|‖22,k+1

]
+ C

(
χ

4t

)2

δ2h2k‖|u|‖22,k+1.

This gives

1

4

[
‖ψlh‖2 + ||φlh‖2

]
+
χ2

4

[
‖ηl − ηl

h
‖ + ‖ul − ul

h
‖
]2

(A.27)

+

l−1∑
n=1

1

2
||ψn+1

h − φnh||2 + ∆t

l−1∑
n=1

ν

2
‖∇ψn+1

h ‖2

≤ Cνh2k‖|u|‖22,k+1 + Cν−2 h2k ‖|u|‖2∞,k+1 + C ν−1 h2k+1
(
‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
+ Ch2k+2 ‖ut‖22,k+1 + Cν−1 h2s+2 ‖|p|‖22,s+1

+ C∆t2
[
‖utt‖22,0 + ‖ft‖22,0 + ν‖∇ut‖22,0 + ν−1‖∇ut‖44,0 + ν−1‖|∇u|‖44,0 + ν−1‖|∇u|‖44,0

]
+ C

(
χ

4t

)2 [
(γ + δ2)h2k+2 ‖u‖2∞,k+1 + h2k+2 ‖u‖2∞,k+1

]
+ Cδ4

(
χ

4t

)2

4t
l∑

n=0

||∇ · (a(un)∇un)||2

+ C

(
χ

4t

)2 [
γh2k‖|u|‖22,k+1 + δ2h2k‖|u|‖22,k+1 + h2k+2‖|u|‖22,k+1

]
.

The claimed error estimate given then follows from the triangle inequality.
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