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Abstract. We consider filter based stabilization for evolution equations (in general) and for the Navier-Stokes equations
(in particular). The first method we consider is to advance in time one time step by a given method and then to apply
an (uncoupled and modular) filter to get the approximation at the new time level. This filter based stabilization, although
algorithmically appealing, is viewed in the literature as introducing far too much numerical dissipation to achieve a quality
approximate solution. We show that this is indeed the case. We then consider a modification: Evolve one time step, Filter,
Deconvolve then Relax to get the approximation at the new time step. We give a precise analysis of the numerical diffusion
and error in this process and show it has great promise, confirmed in several numerical experiments.

1. Introduction. Simulations in critical settings often struggle with numerical artifacts created by
under resolution of the spacial scales and temporal dynamics in the model, e.g., Brown and Minon [BM95].
Often, as soon as there are sufficient computational resources for full resolution, the demands of the appli-
cation force coupling to other processes, making the target simulation again under resolved. The needs of
under resolved simulations have led to a number of stabilizations in Computational Fluid Dynamics. Herein
we consider a filter based stabilization extending the idea of “evolve one time step then filter”. This idea
was developed by Boyd [Boyd98], Fischer and Mullen [FM01], [MF98], and used by Dunca [D02]. Mathew et
al. [MLF03] made the important connection that “evolve then filter” induces a new implicit time relaxation
term into the discretization that acts to damp oscillations in marginally resolved scales. The connection to
time relaxation links it to work of Schochet and Tadmor [ST92], Roseneau [R89], Adams, Kleiser, Leonard
and Stolz [AL99], [AS01], [AS02], [SA99], [SAK01a], [SAK01b], [SAK02], Dunca [D02], [D04], [DE04] and
[LN07], [LMNR06], [ELN07], [L07b], [CL08].

To present this connection, consider the explicit method for a nonlinear evolution equation

∂u

∂t
+ F (u) = 0 .

Let overbar denote a local spacial filter with a filter radius (ultimately related to the spacial mesh width)
δ. Thus, u denotes the “well resolved” part of u and u′ = u − u denotes the marginally resolved part of u.
Add to the explicit method one uncoupled filter step. The method we extend, and then analyze, adds one
uncoupled filter step to stabilize an explicit method: given un compute un+1 by

Step1: Compute wn+1 via:
wn+1 − un

4t
+ F (un) = 0, (1.1)

Step 2: Filter wn+1 to obtain un+1: un+1 = wn+1. (1.2)

Both steps can be done by black box modules. The consistency error of (1.1), (1.2) (the error made
after one time step, starting with exact values) is O(4t2 + δ2) provided the filter is second order (i.e.,
u = u + O(δ2)). This suggests a global error of O(4t + δ2

4t ). Following Mathew et al. [MLF03], eliminating
Step 2 gives

un+1 − un

4t
+ F (un) +

1
4t

(wn+1 − wn+1) = 0 , (1.3)

which is a time relaxation discretization of the original problem with time relaxation coefficient 1/4t.
Suppose in addition that the filter is a differential filter, Germano [Ger86], i.e., that w(x, t) is the solution

of

−δ24w + w = w.
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It then follows from w − w = −δ24w, and un+1 = wn+1, that (1.1),(1.2) becomes

un+1 − un

4t
+ F (un) − δ2

4t
4un+1 = 0 ,

which is an Implicit-Explicit time discretization of the artificial viscosity method [ARW95]. The artificial
viscosity coefficient is δ2/4t which can result in low accuracy and large amounts of numerical diffusion
depending on the relative scalings of 4t and δ.

When used with implicit methods, the effects of filter based stabilization are less clear. The goals of this
report are (i) to understand their effect when used with implicit time stepping methods, (ii) to increase the
accuracy of filter based stabilization, and (iii) to decrease the large amounts of numerical diffusion implicitly
induced by the filter step. We characterize the numerical diffusion induced by the various combinations of
filter, deconvolution, relaxation stabilization beginning in Theorem 1.2. In Sections 3 through 5 we apply
the stabilization to the Navier-Stokes equations and show how the induced numerical diffusion is reduced
by relaxation. We give a complete stability and error analysis for these stabilizations for the Navier-Stokes
equations.

1.1. Filter based stabilization of implicit methods. The fundamental problem of filter based
stabilization is that, if not carefully done, it reduces accuracy by introducing large amounts of numerical
diffusion. We consider next the more complex case of implicit methods with filtering (to stabilize), decon-
volution (to increase accuracy) and relaxation (to reduce numerical diffusion). Let V ↪→ L ↪→ V ′ be Hilbert
spaces with duality pairing an extension of the L-inner product, denoted by < ·, · >L, and ‖·‖L its associated
norm. Let F : V → V ′ satisfy

< F (v), v >L= 0 , for all v ∈ V.

Consider the exactly conservative evolution equation: Find u : [0, T ] → V satisfying u(0) = u0 ∈ V and

du

dt
+ F (u) = 0 for t > 0.

Since this equation is exactly conservative under the above condition on F , any dissipation of energy is a
numerical artifact. Let the filter G : V ′ → V , and deconvolution operator D : V → V , be bounded, self
adjoint and positive linear operators, i.e. SPD, which satisfy the minimal compatibility conditions that as
operators : L → L

DG and (I − DG) are L self adjoint and positive. (1.4)

The van Cittert deconvolution operators defined in Section 2.3 and many others satisfy (1.4).
Algorithm 1.1. Pick χ ∈ [0, 1] and 4t > 0.

Step 1: Given un find wn+1 satisfying

wn+1 − un

4t
+ F (

wn+1 + un

2
) = 0. (1.5)

Step 2: (a) Filter: Compute wn+1 = G(wn+1)
(b) Deconvolve: Compute D(wn+1)
(c) Relax:

un+1 := (1 − χ)wn+1 + χD(wn+1)

Relaxation was introduced into filter based stabilization by Fischer and Mullen [FM01], [MF98] to reduce
the induced numerical diffusion. We introduce deconvolution in Step 2 to increase accuracy, see Theorem
5.4 in Section 5, and compare Table 6.1 (van Cittert deconvolution, see Definition 2.2) with Table 6.2 (no
deconvolution); see also Table 6.4. We quantify the numerical diffusion introduced by Step 2 next.

Theorem 1.2. Let u = (1 − χ)w + χD(w). Then

||w||2L − ||u||2L = χ(2 − χ) 〈(I − DG)w, w〉L + χ2 〈(I − DG)w,DGw〉L (1.6)
2



An approximate solution given by Algorithm 1.1 satisfies, for any l > 0,

||ul||2L + 4t
l∑

n=0

{
χ(2 − χ)

4t
〈(I − DG)wn, wn〉L +

χ2

4t
〈(I − DG)wn, DGwn〉L

}
= ||u0||2L.

The numerical dissipation introduced by Step 2 at each time step is

χ(2 − χ)
4t

〈(I − DG)wn, wn〉L +
χ2

4t
〈(I − DG)wn, DGwn〉L ≥ 0. (1.7)

Proof. Take the L inner product of Step 1 with (wn+1 + un), use < F (v), v >L = 0, and rearrange the
result. This gives

1
4t

(
||un+1||2L − ||un||2L

)
+

1
4t

[
||wn+1||2L − ||un+1||2L

]
= 0.

Step 2c can be rearranged to read

u + χ(I − DG)w = w .

Take the L inner product with w. This gives

〈u,w〉L + χ 〈(I − DG)w, w〉L = ||w||2L .

The second term is nonnegative χ 〈(I − DG)w,w〉L ≥ 0. Apply the polarization identity to the first term.
This gives, after simplification

||u||2L − ||u − w||2L + 2χ 〈(I − DG)w,w〉L = ||w||2L.

Step 2c can also be rearranged to read

u − w = −χ(I − DG)w , so ||u − w||2L = χ2 〈(I − DG)w, (I − DG)w〉L .

Thus,

||w||2L = ||u||2L + χ(2 − χ) 〈(I − DG)w,w〉L + χ2 〈(I − DG)w, DGw〉L ,

which is the first claim. Inserting this with u = un+1, w = wn+1 gives

1
4t

(
||un+1||2L − ||un||2L

)
+

1
4t

[
χ(2 − χ)

〈
(I − DG)wn+1, wn+1

〉
L

+ χ2
〈
(I − DG)wn+1, DGwn+1

〉
L

]
= 0.

Summing gives the energy estimate. That the term in brackets is nonnegative and thus dissipated energy
follows since (I − DG) is SPD for the first term. The second term is nonnegative since DG and I − DG
commute and are both SPD.

The form of the induced numerical diffusion suggests the natural scaling (used in our tests in Section 5)
of the relaxation parameter

χ ' O(4t).

With this scaling the second term in the expression for the numerical dissipation is a higher order term; the
numerical dissipation is dominated by the first term. On the other hand, fluid flow problems are complex
and the above suggestive scaling is not likely to be optimal in general. The determination of parameter
choice better than the above (and which can possibly be applied locally) is an open problem. For a properly
chosen deconvolution operator, (I − DG)w can be very small for smooth w, so deconvolution reduces the
numerical diffusion added by filtering to the large scales.
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Fig. 1.1. (I − DG) for N = 0: thin line, N = 1: thick line, and DG(I-DG): broken line.

Remark 1.3 (Interpreting the numerical dissipation term in Theorem 1.2). For the periodic problem
L2(0, 2π), G a differential filter ( G = (−δ24 + 1)−1 under periodic boundary conditions), D a van Cit-
tert deconvolution operator, Definition 2.2, the action of the numerical dissipation in Theorem 1.2 can be
calculated wavenumber by wavenumber. Let w(x) =

∑
k ŵ(k)e−ikx. The first two van Cittert deconvolution

operators are D0 = I, and D1 = 2I − G. For the first term in the numerical dissipation (1.7) we then have

((I − DG)w,w) =
∑

k

̂(I − DG)(k)|ŵ(k)|2.

We calculate

̂(I − D0G)(k) =
(δk)2

(δk)2 + 1
,

̂(I − D1G)(k) =
(

(δk)2

(δk)2 + 1

)2

.

We plot these in Figure 1.1 (along with the analogous graph for the second term in the numerical diffusion
expression (1.7) for N = 0, ̂D0G (I − D0G)(k) = (δk)2/

(
(δk)2 + 1

)2). Note that the numerical diffusion
increases as the wavenumber (length scale) increases (deceases). Increasing the order of deconvolution (here
only from N = 0 (thin line) to N = 1 (thick line)) enhances this effect. Note also that the dotted line
(representing the second term) is considerably smaller than the other terms, before even considering its
smaller coefficient.

2. Preliminaries. We consider the above algorithms for the Navier-Stokes equations (NSE) in a poly-
hedral domain Ω :

ut + u · ∇u − ν4u + ∇p = f , in Ω ⊂ Rd, (d = 2, 3), t > 0, (2.1)
∇ · u = 0 , in Ω, t > 0,

u(x, 0) = u0(x), in Ω. (2.2)

Two boundary conditions are considered: either no slip

u = 0 on ∂Ω for t > 0,
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or under periodic with zero-mean boundary conditions. In this later case Ω = (0, L)d and

u(x + Lej , t) = u(x, t) j = 1, · · ·, d and, (2.3)∫
Ω

φdx = 0 for φ = u, u0, f, and p.

There are differences between filtering under no slip or periodic boundary conditions. Under periodic
conditions, incompressibility is preserved by the simple differential filter:

−δ24w + w = w. (2.4)

Under no slip boundary conditions incompressibility is not preserved by the above simple differential filter.
It must be replaced by the Stokes differential filter. Given w(x, t), w(x, t) is the solution of

−δ24w + w + ∇λ = w , and ∇ · w = 0 in Ω , (2.5)
w = 0 on ∂Ω.

2.1. Notation. Until this point we have suppressed the (secondary) spacial discretization. To go
further it must be specified with accompanying technical points. The L2(Ω) norm and inner product will be
denoted by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the Sobolev W k

p (Ω) norms are denoted by ‖ · ‖Lp

and ‖ · ‖W k
p
, respectively. For the semi-norm in W k

p (Ω) we use | · |W k
p
. Hk is used to represent the Sobolev

space W k
2 (Ω), and ‖·‖k denotes the norm in Hk. The space H−k denotes the dual space of Hk

0 . For functions
v(x, t) defined on the entire time interval (0, T ), we define (1 ≤ m < ∞)

‖v‖∞,k := EssSup[0,T ]‖v(t, ·)‖k , and ‖v‖m,k :=

(∫ T

0

‖v(t, ·)‖m
k dt

)1/m

.

We base our analysis on the finite element method (FEM) for the spacial discretization (and believe that
the results extend to many other variational methods). To begin, if we are in the case of periodic with zero
mean boundary conditions, let the velocity space X be the periodic H1 vector functions with zero mean
and the pressure space Q the L2 functions with zero mean:

X := (H1
#(Ω) ∩ L2

0(Ω))d, Q := L2
0(Ω).

In the case of no slip boundary conditions the analogous choice is

X := (H1
0 (Ω))d, Q := L2

0(Ω).

We use as the norm on X the H1 semi-norm which, because of the boundary condition, is a norm, i.e.
for v ∈ X, ‖v‖X := ‖∇v‖L2 . We denote the dual space of X by X?, with the norm ‖ · ‖?. The space of
divergence free functions is given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q} .

We shall denote conforming velocity, pressure finite element spaces based on an edge to edge triangula-
tions of Ω (with maximum triangle diameter h) by

Xh ⊂ X, Qh ⊂ Q.

We shall assume that Xh, Qh satisfy the usual inf-sup condition necessary for the stability of the pressure,
e.g. [G89]. The discretely divergence free subspace of Xh is

Vh = {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh} .

Taylor-Hood elements (see e.g. [BS94, G89]) are one common example of such a choice for (Xh, Qh), and
are also the elements we use in our numerical experiments. Define the usual explicitly skew symmetrized
trilinear form

b∗(u, v, w) :=
1
2
(u · ∇v, w) − 1

2
(u · ∇w, v).
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2.2. Discrete differential filters. In the periodic case, for φ ∈ L2(Ω) and δ > 0 fixed, denote the
result of filtering operation on φ by φ, where φ is the unique solution (in X) of

−δ2∆φ + φ = φ. (2.6)

We let G : L2(Ω) → X denote the filtering operation, i.e. φ := G(φ). Following Manica and Kaya-
Merdan [MKM06] the discrete differential filter is given as follows. For φ ∈ L2(Ω), for a given filtering radius
δ > 0, Gh : L2(Ω) → Xh, φh := Gh(φ) where φh ∈ Xh is the unique solution of

δ2(∇φh,∇vh) + (φh, vh) = (φ, vh) ∀vh ∈ Xh. (2.7)

In the case of internal flows under no slip boundary conditions we must use the discrete Stokes differential
filter to preserve discrete incompressibility. For φ ∈ X∗, δ > 0 given, Gh : X∗ → Xh, φh = Gh(φ) where
(φh, ρ) ∈ Xh × Qh is the unique solution of

δ2(∇φh,∇vh) + (φh, vh) − (ρ,∇ · vh) = (φ, vh) ∀vh ∈ Xh , (2.8)

(∇ · φh, q) = 0 ∀q ∈ Qh. (2.9)

The Stokes filter results in an exactly divergence free filtered velocity; the discrete Stokes filtered velocity is
discretely divergence free.

We begin by recalling from [BIL04, MKM06] some basic facts about discrete differential filters.
Lemma 2.1. For φ ∈ X, we have the following bounds for the discrete filter

‖φh‖ ≤ ‖φ‖ , ‖∇φh‖ ≤ ‖∇φ‖ and ‖∇ × φh‖ ≤ ‖∇φ‖ .

For φ ∈ X and ∆φ ∈ L2(Ω)

δ2||∇(φ − φh)||2 + ||φ − φh||2 ≤ C inf
vh∈Xh

(
δ2||∇(φ − vh)||2 + ||φ − vh||2

)
+ Cδ4||∆φ||2.

We shall assume that the solution to the NSE that is approximated is a strong solution and in particular
satisfies

u ∈ L2(0, T ;X) ∩ L∞(0, T ; L2(Ω)) ∩ L4(0, T ; X), (2.10)

p ∈ L2(0, T ;Q), ut ∈ L2(0, T ; X∗) , (2.11)

and

(ut, v) + (u · ∇u, v) − (p,∇ · v) + ν(∇u,∇v) = (f, v) ∀v ∈ X, (2.12)
(∇ · u, q) = 0 ∀q ∈ Q. (2.13)

For notational clarity let v(tn+1/2) = v((tn+1 + tn)/2) for the continuous variable and vn+1/2 = (vn+1 +
vn)/2 for both, continuous and discrete variables.

2.3. Deconvolution. There are many known procedures for deconvolution, e.g., [BB98]. The minimal
conditions we assume throughout are that the (discrete) filter and (discrete) deconvolution used satisfy the
consistency conditions of Stanculescu [S07].

Assumption A1: Dh, and Gh are symmetric, positive definite (SPD) operators and preserve discrete
incompressibility,

Assumption A2: ||DhGh||L(L2→L2) ≤ 1 and ||I − DhGh||L(L2→L2) ≤ 1,
Assumption A3: (I − DhGh) and DhGh are SPD.

These have been proven to hold for van Cittert deconvolution (next) in Stanculescu [S07]. Our error analysis,
while particular to a differential filter and the van Cittert deconvolution operators, can readily be extended
to more general ones satisfying the above. The N th van Cittert deconvolution operator is computed by
repeated filtering. It can be compactly given as follows. (We will suppress the dependence of D and Dh on
the parameter N .)

Definition 2.2. The N th order van Cittert continuous and discrete deconvolution operators as D and
Dh are, respectively,

Dφ :=
N∑

n=0

(I − G)nφ , and Dhφ :=
N∑

n=0

(I − Gh)nφ . (2.14)
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3. Evolve then Filter for the Navier-Stokes equations. As a first step, we consider discretization
by the FEM in space, Crank-Nicolson (CN) method in time with an added filtering step and no deconvolution
or relaxation (i.e., Step 1 and Step 2a of Algorithm 1.1). If no slip boundary conditions are imposed, let
the filter be the discrete Stokes filter (2.8),(2.9), and if periodic boundary conditions, the simple discrete
differential filter (2.7), denoted by G and Gh.

Algorithm 3.1. [Evolve then Filter for NSE]
Step 1: Given un

h find wn+1
h ∈ Xh, pn+1

h ∈ Qh satisfying

(
wn+1

h − un
h

4t
, vh) + b∗(

wn+1
h + un

h

2
,
wn+1

h + un
h

2
, vh) + ν(∇

wn+1
h + un

h

2
,∇vh) − (pn+1

h ,∇ · vh)

= (fn+1/2, vh), for all vh ∈ Xh, (3.1)

(∇ · wn+1
h , qh) = 0, for all qh ∈ Qh.

Step 2: Filter wn+1
h to give un+1

h satisfying

δ2(∇un+1
h ,∇vh) + (un+1

h , vh) = (wn+1
h , vh) ∀vh ∈ Xh ,

imposing, in the non-periodic case, (∇ · un+1
h , qh) = 0, ∀qh ∈ Qh .

The temporal consistency error and associated forecasted global error in the basic algorithm (3.1) is:

Temporal Consistency Error = O(4t3 + δ2), Global Error = O(4t2 +
δ2

4t
+ Spacial Error),

We turn to stability.
Lemma 3.2. Let un

h = whh. We have

2δ2||∇un
h||2 + ||un

h||2 + ||un
h − wn

h ||2 = ||wn
h ||2 .

Proof. Consider the discrete Stokes filter (the proof is the same in the periodic case). Recall that

δ2(∇un
h,∇vh) + (un

h, vh) = (wn
h , vh) ∀vh ∈ Vh.

Set vh = un
h. This gives

δ2||∇un
h||2 + ||un

h||2 = (wn
h , un

h).

The polarization identity (wn
h , un

h) = 1
2 ||w

n
h ||2 + 1

2 ||u
n
h||2− 1

2 ||u
n
h−wn

h ||2 gives, after rearrangement, the result:

||wn
h ||2 = 2δ2||∇un

h||2 + ||un
h||2 + ||un

h − wn
h ||2.

Next we prove a strong energy equality and associated strong, unconditional stability property.
Proposition 3.3. The approximate velocity un+1

h given by the Algorithm 3.1 satisfies the energy equality

1
2
||ul+1

h ||2 + 4t
l∑

n=0

(
δ2

4t
||∇un+1

h ||2 +
1

24t
||un+1

h − wn+1
h ||2 + ν||∇(

wn+1
h + un

h

2
)||2
)

=
1
2
||u0||2 + 4t

l∑
n=0

(fn+1/2,
wn+1

h + un
h

2
) ,

and the stability bound

1
2
||ul+1

h ||2 + 4t
l∑

n=0

(
δ2

4t
||∇un+1

h ||2 +
1

24t
||un+1

h − wn+1
h ||2 +

ν

2
||∇(

wn+1
h + un

h

2
)||2
)

≤ 1
2
||u0||2 +

1
2ν

4t
l∑

n=0

||fn+1/2||2∗ .
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Proof. In Step 1 set vh = (wn+1
h + un

h)/2. This gives

1
24t

(||wn+1
h ||2 − ||un

h||2) + ν||∇(
wn+1

h + un
h

2
)||2 = (fn+1/2,

wn+1
h + un

h

2
). (3.2)

We use the stability equality of Lemma 3.2

||wn+1
h ||2 = 2δ2||∇un+1

h ||2 + ||un+1
h ||2 + ||un+1

h − wn+1
h ||2

in the first term in the LHS of (3.2). Rearranging gives

1
24t

(||un+1
h ||2 − ||un

h||2) +
(

δ2

4t
||∇un+1

h ||2 +
1

24t
||un+1

h − wn+1
h ||2 + ν||∇(

wn+1
h + un

h

2
)||2
)

= (fn+1/2,
wn+1

h + un
h

2
).

Summing this establishes the energy equality. Using the Cauchy-Schwarz-Young inequality on the RHS,
subsuming one term into the LHS gives

1
24t

(||un+1
h ||2 − ||un

h||2) +
(

δ2

4t
||∇un+1

h ||2 +
1

24t
||un+1

h − wn+1
h ||2 +

ν

2
||∇(

wn+1
h + un

h

2
)||2
)

≤ 1
2ν

||fn+1/2||2∗

Summing over the index n, the global stability estimate follows.

The method is thus stable. The viscous and numerical dissipation in the method are respectively

Viscous dissipation := ν||∇(
wn+1

h + un
h

2
)||2

Numerical dissipation :=
δ2

4t
||∇un

h||2 +
1

24t
||un+1

h − wn+1
h ||2.

The first term in the numerical dissipation is the same as induced by the explicit method plus simple filtering.
The second term resembles the numerical dissipation in the backward Euler method.

4. Evolve, Filter, Deconvolve and Relax. Consider discretization of the Navier-Stokes equations
by the FEM in space, CN method in time with an added filtering step including deconvolution and time
relaxation. To give concrete estimates specific choices of deconvolution operators and filters must be made.
In this section we choose the (discrete) van Cittert deconvolution operator and (discrete) Stokes filter.

Algorithm 4.1. [Evolve, Filter, Deconvolve then Relax for NSE] Let the filter be the discrete Stokes
filter (2.8),(2.9). Choose χ with 0 ≤ χ ≤ 1.
Step 1: Given un

h find wn+1
h ∈ Xh, pn+1

h ∈ Qh satisfying

(
wn+1

h − un
h

4t
, vh) + b∗(

wn+1
h + un

h

2
,
wn+1

h + un
h

2
, vh) + ν(∇

wn+1
h + un

h

2
,∇vh) − (pn+1

h ,∇ · vh) (4.1)

= (fn+1/2, vh), for all vh ∈ Xh, (4.2)

(∇ · wn+1
h , qh) = 0, for all qh ∈ Qh.

Step 2: Compute Dh

(
wn+1

h h

)
, then relax:

un+1
h = (1 − χ)wn+1

h + χDh

(
wn+1

h h

)
We next analyze the methods enhanced stability.
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Lemma 4.2. Let uh = (1 − χ)wh + χDh (whh). Then

||wh||2 − ||uh||2 = χ(2 − χ)((I − DhGh)wh, wh) + χ2((I − DhGh)wh, DhGhwh), (4.3)

||wh||2 − ||uh||2 = −||uh − wh||2 + 2χ((I − DhGh)wh, wh) . (4.4)

If Assumptions A1, A2 and A3 hold then

||uh|| ≤ ||wh|| . (4.5)

Proof. The first equality is proven in Theorem 1.2. For the second, take the inner product of uh =
(1 − χ)wh + χDhGhwh with wh. This gives

(uh, wh) = (1 − χ)(wh, wh) + χ(DhGhwh, wh) = ||wh||2 − χ((I − DhGh)wh, wh).

Applying the polarization identity to the LHS we obtain
1
2
||wh||2 +

1
2
||uh||2 −

1
2
||uh − wh||2 = (uh, wh) = ||wh||2 − χ((I − DhGh)wh, wh) ,

from which (4.4) follows. For (4.5), note that since ||DhGh|| ≤ 1 and 0 ≤ χ ≤ 1,

||uh|| ≤ (1 − χ)||wh|| + χ||DhGhwh|| ≤ ((1 − χ) + χ||DhGh||) ||wh|| ≤ ||wh||.

Next we prove an energy equality, unconditional stability and give the precise formula for the numerical
dissipation in the algorithm.

Proposition 4.3. [Stability with Deconvolution and Relaxation]Suppose Assumptions A1, A2 and A3
above hold. Algorithm 4.1 satisfies the energy equality

1
2
||ul+1

h ||2 + ν4t
l∑

n=0

||∇(
wn+1

h + un
h

2
)||2+

+4t
l∑

n=0

[
χ(2 − χ)

24t
((I − DhGh)wn+1

h , wn+1
h ) +

χ2

24t
((I − DhGh)wn+1

h , DhGhwn+1
h )

]

=
1
2
||u0||2 + 4t

l∑
n=0

(fn+1/2,
wn+1

h + un
h

2
) ,

and the stability bound

||ul+1
h ||2 + ν4t

l∑
n=0

||∇(
wn+1

h + un
h

2
)||2+

+4t
l∑

n=0

[
χ(2 − χ)

4t
((I − DhGh)wn+1

h , wn+1
h ) +

χ2

4t
((I − DhGh)wn+1

h , DhGhwn+1
h )

]

≤ ||u0||2 +
4t

ν

l∑
n=0

||fn+1/2||2∗ .

Proof. In Step 1 in Algorithm 4.1 set vh = (wn+1
h + un

h)/2. This gives

1
24t

(||un+1
h ||2 − ||un

h||2) + ν||∇(
wn+1

h + un
h

2
)||2 +

1
24t

[
||wn+1

h ||2 − ||un+1
h ||2

]
= (fn+1/2,

wn+1
h + un

h

2
). (4.6)

We use Lemma 4.2 in the bracketed term in the LHS of (4.6). Rearranging gives

1
24t

(||un+1
h ||2 − ||un

h||2) + ν||∇(
wn+1

h + un
h

2
)||2+[

χ(2 − χ)
24t

((I − DhGh)wn+1
h , wn+1

h ) +
χ2

24t
((I − DhGh)wn+1

h , DhGhwn+1
h )

]
= (fn+1/2,

wn+1
h + un

h

2
).
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Summing this proves the energy equality. Using the Cauchy-Schwarz-Young inequality on the RHS, sub-
suming one term into the LHS and summing over the index n, proves the global stability estimate.

The numerical dissipation in Algorithm 4.1 is exactly described by the bracketed term in the energy
equality:

Numerical dissipation :=
[
χ(2 − χ)

24t
((I − DhGh)wn+1

h , wn+1
h ) +

χ2

24t
((I − DhGh)wn+1

h , DhGhwn+1
h )

]
.

5. Error Analysis of the Time Relaxation Approximation. In this section we present a detailed
error analysis for the approximation scheme, Algorithm 4.1 incorporating both (differential) filtering and
(van Cittert) deconvolution. We focus our attention on the simplest differential filter, G defined via (2.6)
and its discrete counterpart Gh defined by (2.7). Lemma 2.1 presents the error estimate for the error between
φ and DhGh(φ) := D0φ̄h for the 0th order deconvolution operator. For van Cittert deconvolution operators
(Definition 2.2) we have the following result.

Lemma 5.1. [LMNR06] For smooth φ the discrete N th order approximate deconvolution operator satis-
fies for 0 ≤ s ≤ N

‖φ − DhGhφ‖ ≤ C1 δ2s+2 ‖φ‖H2s+2 + C2

(
δhk + hk+1

)(N+1∑
n=1

|Gn(φ)|k+1

)
. (5.1)

The dependence of the |Gn(φ)|k+1 terms in (5.1) upon the filter radius δ, for a general smooth function
φ, is not fully understood. In the case of φ periodic the |Gn(φ)|k+1 are independent of δ. Also, for φ
satisfying homogeneous Dirichlet boundary conditions, with the additional property that ∆jφ = 0 on ∂Ω
for 0 ≤ j ≤

[
k+1
2

]
− 1, the |Gn(φ)|k+1 are independent of δ, see [LMNR06], [L07].

As mentioned above, Taylor-Hood approximating elements are a common choice for (Xh, Qh) and cor-
respond to k = 2 in (5.1). For these approximating elements we have from Lemma 5.1 the following corollary.

Corollary 5.2. Suppose φ ∈ H1
0 (Ω) ∩ H4(Ω). Suppose the order of deconvolution is N = 1 and

(Xh, Qh) are chosen to be the Taylor-Hood elements. We have

‖φ − DhGhφh‖ ≤ C1 δ3‖φ‖3 + C2

(
δh2 + h3

)
‖φ‖3 . (5.2)

Proof. This follows from the previous lemma by taking s = 1/2, k = 2, N = 1 and thus
[

k+1
2

]
− 1 = 0.

We have then ‖φ‖3 ≤ C‖φ‖3 with constant independent of δ and h.

Extending Corollary 5.2, we will make the following assumption.
Assumption DG1: The |Gn(φ)|k+1 terms in (5.1) are independent of δ and

‖φ − DhGhφ‖ ≤ C1 δ2N+2 ‖φ‖H2N+2 + C2

(
δhk + hk+1

)
‖φ‖k+1 . (5.3)

With tn = n∆t, n = 0, 1, 2, . . . , NT , T := NT ∆t, and dtf
n := (f(tn) − f(tn−1)/∆t, we introduce the

following discrete norms:

‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k , ‖|v1/2|‖∞,k := max
1≤n≤NT

‖vn−1/2‖k ,

‖|v|‖m,k :=

(
NT∑
n=0

‖vn‖m
k ∆t

)1/m

, ‖|v1/2|‖m,k :=

(
NT∑
n=1

‖vn−1/2‖m
k ∆t

)1/m

.

We denote time level averages by

w̆n :=
wn + un−1

2
and w̃n :=

wn + wn−1

2
. (5.4)
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To begin the analysis we rewrite Algorithm 4.1 in the following form.

Algorithm 4.1 restated. Assume that the filtering, deconvolution, and relaxation parameters δ, N ,
and χ are given. Then, for n = 1, 2, . . . , NT , find wn

h , DhGh(wn
h), un

h ∈ Xh, pn
h ∈ Qh, such that

(wn
h , vh) + ∆t b∗(w̆n

h , w̆n
h , vh) − ∆t (pn

h,∇ · vh) + ∆t ν(∇w̆n
h ,∇vh)

= (un−1
h , vh) + ∆t (fn−1/2, vh) , ∀vh ∈ Xh , (5.5)

(∇ · wn
h , qh) = 0 , ∀qh ∈ Qh , (5.6)

un
h = (1 − χ)wn

h + χDhGh(wn
h) . (5.7)

As the spaces Xh and Qh satisfy the usual inf-sup condition, we can equivalent consider the problem:
For n = 1, 2, . . . , NT find wn

h , wn
hh

, un
h ∈ Vh such that

(wn
h , vh) + ∆t b∗(w̆n

h , w̆n
h , vh) + ∆t ν(∇w̆n

h ,∇vh) = (un−1
h , vh) + ∆t (fn−1/2, vh), ∀vh ∈ Vh , (5.8)

δ2(∇ · wn
hh

,∇ · vh) + (wn
hh

, vh) = (wn
h , vh) , ∀vh ∈ Vh , (5.9)

un
h = (1 − χ)wn

h + χ Dhwn
hh

. (5.10)

We first establish computability of the approximation at each time step.

Lemma 5.3. For the approximation scheme (5.8)-(5.10) we have that wn
h , wn

hh
, un

h, exist at each time
step.

Proof. The existence of a solution wn
h to (5.8) follows from the Leray-Schauder Principle [Z95]. Specifi-

cally, with A : Vh → Vh, defined by y = A(w)

(y, v) := −∆t b∗((w + un−1
h )/2, (w + un−1

h )/2, v) − ∆t ν(∇(w + un−1
h )/2,∇v)

+ (un−1
h , v) + ∆t(fn−1/2, v) ,

the operator A is compact and any solution of w = sA(w) , for 0 ≤ s < 1 , satisfied the bound ‖w‖ ≤ γ,
where γ is independent of s. Existence and uniqueness of wn

hh
follows directly from the Riesz representation

theorem. Existence and uniqueness of un
h follows for wn

h and wn
hh

from the definition of Dh.

To establish the optimal asymptotic error estimates for the approximation we need to assume that the
true solution is more regular than that given by (2.10),(2.11). Specifically, assuming 2N + 2 ≥ k + 1,

u ∈ L∞(0, T ; W k+1
4 (Ω)) ∩ L∞(0, T ; H2N+2(Ω))∩ (5.11)

H1(0, T ;Hk+1(Ω)) ∩ H3(0, T ; L2(Ω)) ∩ W 2
4 (0, T ; H1(Ω)),

p ∈ L∞(0, T ; Hs+1(Ω)) , and f ∈ H2(0, T ; L2(Ω)) . (5.12)

For the errors en := u(tn) − un
h, and εn := u(tn) − wn

h , we have the following.

Theorem 5.4. For u, p, and f as described by (5.11),(5.12), satisfying (2.12),(2.13), and un
h, wn

h given
by (5.5)-(5.7) we have that for ∆t sufficiently small

‖|u − uh|‖∞,0 + ‖|u − wh|‖∞,0 ≤ F (∆t, h, δ, χ) + Chk+1‖|u|‖∞,k+1 , (5.13)(
ν∆t

l∑
n=1

‖∇(un−1/2 − (wn
h + un−1

h )/2)‖2

)1/2

≤ F (∆t, h, δ, χ) + Cν1/2(∆t)2‖∇utt‖2,0

+ Cν1/2hk‖|u|‖2,k+1 , for 1 ≤ l ≤ NT . (5.14)

11



where

F (∆t, h, δ, χ) := Cν−1/2
(
hk+1/2‖|u|‖2

4,k+1 + hk+1/2‖|∇u|‖2
4,0 + hs+1‖|p1/2|‖2,s+1

)
+C ν1/2 hk‖|u|‖2,k+1 + C hk+1 ‖ut‖2,k+1 + C ν−1 hk‖|u|‖∞,k+1

+C χ
(
ν−3/2 ‖|∇u|‖2

∞,0 + (∆t)−1/2
)

(∆t)−1/2 hk+1 ‖|u|‖2,k+1

+C χ
(
ν−3/2 ‖|∇u|‖2

∞,0 + (∆t)−1/2
)

(∆t)−1/2 (δ2N+2 + δ hk + hk+1) (‖|u|‖2,2N+2 + ‖|u|‖2,k+1)

+ C (∆t)2
(
‖uttt‖2,0 + ‖ftt‖2,0 + ν1/2 |∇utt‖2,0

+ ν−1/2‖∇utt‖2
4,0 + ν−1/2‖|∇u|‖2

4,0 + ν−1/2‖|∇u1/2|‖2
4,0

)
.

Proof. At time t = (n − 1/2)∆t, u given by (2.12)-(2.13) satisfies

(un − un−1, vh) +
∆t

2
ν(∇ũn , ∇vh) + ∆t b∗(ũn , ũn , vh) − ∆t (pn−1/2,∇ · vh)

= ∆t (f̃n, vh) + ∆t Intp(un; vh) , (5.15)

for all vh ∈ Vh, where Intp(un; vh), representing the interpolating error, denotes

Intp(un; vh) =
(
(un − un−1)/∆t − u

n−1/2
t , vh

)
+ ν(∇ũn −∇un−1/2 , ∇vh)

+ b∗(ũn , ũn , vh) − b∗(un−1/2, un−1/2, vh)

+ (fn−1/2 − f̃n, vh) . (5.16)

Subtracting (5.8) from (5.15), we have for εn = un − wn
h , en = un − un

h,

(εn − en−1, vh) + ∆t ν(∇(εn + en−1)/2 ,∇vh) = −∆t b∗(ũn , ũn , vh) + ∆t b∗(w̆n
h , w̆n

h , vh)

+ ∆t(pn−1/2,∇ · vh) + ∆t Intp(un; vh) , (5.17)

for all vh ∈ Vh. Let Un ∈ Vh, εn = un − wn
h = (un − Un) + (Un − wn

h) := Λn + Fn, and en =
un − un

h = (un − Un) + (Un − un
h) := Λn + En.

Similar to the notation defined in (5.4), we use F̆n := (Fn + En−1)/2. With the choice vh = F̆n, and
using (∇ · F̆n, qh) = 0, ∀qh ∈ Qh, equation (5.17) becomes

1
2
(
‖Fn‖2 − ‖En−1‖2

)
+ ∆t ν‖∇F̆n‖2 = −(Λn − Λn−1, F̆n) − ∆t ν(∇Λ̃n,∇F̆n)

− ∆t b∗(ũn , ũn , F̆n) + ∆t b∗(w̆n
h , w̆n

h , F̆n)

+ ∆t(pn−1/2 − qh,∇ · F̆n) + ∆t Intp(un; F̆n) . (5.18)

Next we estimate the terms on the RHS of (5.18).

(Λn − Λn−1, F̆n) ≤ 1
2
∆t‖Λn − Λn−1

∆t
‖2 +

1
2
∆t‖F̆n‖2

=
1
2
∆t

∫
Ω

(
1

∆t

∫ tn

tn−1
Λt dt

)2

dΩ +
1
2
∆t‖F̆n‖2

≤ 1
2
∆t

∫
Ω

(
1

∆t

∫ tn

tn−1
|Λt|2 dt

)
dΩ +

1
2
∆t‖F̆n‖2

=
1
2

∫ tn

tn−1
‖Λt‖2 dt +

1
2
∆t
(
‖Fn‖2 + ‖En−1‖2

)
. (5.19)
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ν(∇Λ̃n,∇F̆n) ≤ ν

10
‖∇F̆n‖2 + Cν ‖∇Λ̃n‖2 . (5.20)

We rewrite b∗(ũn , ũn , F̃n) − b∗(w̆n
h , w̆n

h , F̃n) as

b∗(ũn , ũn , F̆n) − b∗(w̆n
h , w̆n

h , F̆n) = b∗(ũn , ũn , F̆n) − b∗(w̆n
h , ũn, F̆n)

+ b∗(w̆n
h , ũn, F̆n) − b∗(w̆n

h , w̆n
h , F̆n)

= b∗((εn + en−1)/2 , ũn , F̆n) + b∗(w̆n
h , (εn + en−1)/2, F̆n)

= b∗(Λ̃n + F̆n , ũn , F̆n) + b∗(w̆n
h , Λ̃n + F̆n , F̆n)

= b∗(Λ̃n, ũn , F̆n) + b∗(F̆n , ũn , F̆n)

+ b∗(w̆n
h , Λ̃n , F̆n) + b∗(w̆n

h , F̆n , F̆n) . (5.21)

Using b∗(u, v, w) ≤ C(Ω)
√
‖u‖ ‖∇u‖ ‖∇v‖ ‖∇w‖, for u, v, w ∈ X, and Young’s inequality, we bound

the terms on the RHS of (5.21) as follows.

b∗(Λ̃n , ũn , F̆n) ≤ C

√
‖Λ̃n‖ ‖∇Λ̃n‖ ‖∇ũn‖ ‖∇F̆n‖

≤ ν

10
‖∇F̆n‖2 + C ν−1 ‖Λ̃n‖ ‖∇Λ̃n‖ ‖∇ũn‖2 (5.22)

b∗(F̆n , ũn , F̆n) ≤ C ‖F̆n‖1/2 ‖∇F̆n‖3/2 ‖∇ũn‖

≤ ν

10
‖∇F̆n‖2 + C ν−3 ‖∇ũn‖4 ‖F̆n‖2

≤ ν

10
‖∇F̆n‖2 + C ν−3 ‖∇ũn‖4

(
‖Fn‖2 + ‖En−1‖2

)
(5.23)

b∗(w̆n
h , Λ̃n , F̆n) ≤ C ‖∇w̆n

h‖ ‖∇Λ̃n‖ ‖∇F̆n‖

≤ ν

10
‖∇F̆n‖2 + C ν−1 ‖∇w̆n

h‖2 ‖∇Λ̃n‖2 (5.24)

b∗(w̆n
h , F̆n, F̆n) = 0 (5.25)

(pn−1/2 − qh,∇ · F̆n) ≤ ‖pn−1/2 − qh‖ ‖∇ · F̆n‖

≤ ν

10
‖∇F̆n‖2 + C ν−1 ‖pn−1/2 − qh‖2 . (5.26)

With the bounds (5.19)–(5.26), (5.18)becomes

1
2
(
‖Fn‖2 − ‖En−1‖2

)
+ ∆t

ν

2
‖∇F̆n‖2

≤ C∆t (1 + ν−3‖∇ũn‖4)
(
‖Fn‖2 + ‖En−1‖2

)
+ Cν∆t‖∇Λ̃n‖2

+ Cν−1∆t ‖∇w̆n
h‖2 ‖∇Λ̃n‖2 + Cν−1∆t ‖∇ũn‖2‖Λ̃n‖ ‖∇Λ̃n‖

+ C

∫ tn

tn−1
‖Λt‖2 dt + C ν−1∆t ‖pn−1/2 − qh‖2 + ∆t |Intp(un; F̆n)| . (5.27)

As un
h and wn

h are connected through the filter-deconvolve-relax equation, we next use that equation to
obtain a relationship between ‖Fn‖ and ‖En‖. The true solution u(·, tn) = un satisfies

un = (1 − χ)un + χDhGhun + χ(I − DhGh)un . (5.28)
13



Subtracting (5.7) from (5.28) yields

en = (1 − χ)εn + χDhGhεn + χ(I − DhGh)un (5.29)
i.e., En = (1 − χ)Fn + χDhGhFn − χ(I − DhGh)Λn + χ(I − DhGh)un

⇒ ‖En‖ ≤ (1 − χ)‖Fn‖ + χ‖DhGh‖ ‖Fn‖ + χ‖(I − DhGh)Λn‖ + χ‖(I − DhGh)un‖
‖En‖ ≤ ‖Fn‖ + χ‖(I − DhGh)Λn‖ + χ‖(I − DhGh)un‖ (5.30)

Squaring both sides of (5.30) and simplifying we obtain

‖En‖2 ≤ ‖Fn‖2 + ∆t ‖Fn‖2 + 2 χ2
(
1 + (∆t)−1

)
‖(I−DhGh)Λn‖2 + 2 χ2

(
1 + (∆t)−1

)
‖(I−DhGh)un‖2 .

(5.31)

Substituting (5.31) into (5.27) and summing from n = 1 to l, (assuming that ‖F 0‖ = 0, i.e. u0 ∈ Xh)
we obtain

‖F l‖2 + ν ∆t
l∑

n=1

‖∇F̆n‖2

≤ C ∆t
l∑

n=0

(1 + ν−3 ‖∇ũn‖4) ‖Fn‖2

+ C ν ∆t
l∑

n=1

‖∇Λ̃n‖2 + C ν−1 ∆t
l∑

n=1

‖∇ũn‖2 ‖Λ̃n‖ ‖∇Λ̃n‖

+ C ν−1 ∆t

l∑
n=1

‖∇w̆n
h‖2 ‖∇Λ̃n‖2 + C

l∑
n=1

∫ tn

tn−1
‖Λt‖2 dt

+ C ∆t

l−1∑
n=0

(
1 + ν−3 ‖∇ũn‖4 + (∆t)−1

) (
1 + (∆t)−1

)
χ2‖(I − DhGh)Λn‖2

+ C ∆t
l−1∑
n=0

(
1 + ν−3 ‖∇ũn‖4 + (∆t)−1

) (
1 + (∆t)−1

)
χ2‖(I − DhGh)un‖2

+ ∆t
l∑

n=1

C ν−1‖pn−1/2 − qh‖2

+ 2∆t
l∑

n=1

|Intp(un; F̆n)| . (5.32)

The terms on the RHS of (5.32) can be further simplified as follows.

C ν ∆t
l∑

n=1

‖∇Λ̃n‖2 ≤ C ν ∆t
l∑

n=0

‖∇Λn‖2 ≤ C ν ∆t
l∑

n=0

h2k|un|2k+1 ≤ C ν h2k‖|u|‖2
2,k+1 . (5.33)

14



For the next term

C ν−1 ∆t
l∑

n=1

‖∇ũn‖2 ‖Λ̃n‖ ‖∇Λ̃n‖

≤ C ν−1 ∆t
l∑

n=1

(
‖Λn‖ ‖∇Λn‖ + ‖Λn−1‖ ‖∇Λn−1‖ + ‖Λn−1‖ ‖∇Λn‖ + ‖Λn‖ ‖∇Λn−1‖

)
‖∇ũn‖2

≤ C ν−1 h2k+1

(
∆t

l∑
n=1

|un|2k+1 ‖∇ũn‖2 + ∆t

l∑
n=1

|un|k+1|un−1|k+1 ‖∇ũn‖2

+ ∆t
l∑

n=1

|un−1|2k+1 ‖∇ũn‖2

)

≤ C ν−1 h2k+1

(
∆t

l∑
n=0

|un|4k+1 + ∆t
l∑

n=0

‖∇un‖4

)
≤ C ν−1 h2k+1

(
‖|u|‖4

4,k+1 + ‖|∇u|‖4
4,0

)
. (5.34)

Using the boundedness of ν ∆t
∑l

n=1 ‖∇w̆n
h‖ (Proposition 4.3)

C ν−1 ∆t

l∑
n=1

‖∇w̆n
h‖2‖∇Λ̃n‖2 ≤ C ν−1 ∆t

l∑
n=1

‖∇w̆n
h‖2 1

2
h2k(‖un‖2

k+1 + ‖un−1‖2
k+1)

≤ Cν−2 h2k ‖|u|‖2
∞,k+1 . (5.35)

Next

C
l∑

n=1

∫ tn

tn−1
‖Λt‖2 dt ≤ C

l∑
n=1

∫ tn

tn−1
h2k+2‖ut‖2 dt ≤ C h2k+2 ‖ut‖2

2,k+1 . (5.36)

∆t
l∑

n=1

C ν−1‖pn−1/2 − qh‖2 ≤ C ν−1 ∆t
l∑

n=1

h2s+2 ‖pn−1/2‖2
s+1 ≤ C ν−1 h2s+2 ‖|p1/2|‖2

2,s+1 . (5.37)

From Lemma 5.1 and Assumption A2, and assuming ∆t < 1

C ∆t

l−1∑
n=0

(1 + ν−3 ‖∇ũn‖4 + (∆t)−1)
(
1 + (∆t)−1

)
χ2‖(I − DhGh)Λn‖2

≤ C ∆t

l−1∑
n=0

(
ν−3 ‖∇ũn‖4 + (∆t)−1

)
(∆t)−1 χ2‖I − DhGh‖2 ‖Λn‖2

≤ C ∆t
l−1∑
n=0

(
ν−3 ‖∇ũn‖4 + (∆t)−1

)
(∆t)−1 χ2 h2k+2 ‖un‖2

k+1

≤ C χ2
(
ν−3‖|∇u|‖4

∞,0 + (∆t)−1
)

(∆t)−1 h2k+2 ‖|u|‖2
2,k+1 . (5.38)

C ∆t
l−1∑
n=0

(
1 + ν−3 ‖∇ũn‖4 + (∆t)−1

) (
1 + (∆t)−1

)
χ2‖(I − DhGh)un‖2

≤ C ∆t
l−1∑
n=0

(
ν−3 ‖∇ũn‖4 + (∆t)−1

)
(∆t)−1 (δ4N+4 + δ2 h2k + h2k+2)χ2 (‖un‖2

2N+2 + ‖un‖2
k+1)

≤ C χ2
(
ν−3 ‖|∇u|‖4

∞,0 + (∆t)−1
)

(∆t)−1 (δ4N+4 + δ2 h2k + h2k+2) (‖|u|‖2
2,2N+2 + ‖|u|‖2

2,k+1) . (5.39)
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As given in [ELN07] the interpolation error term 2∆t
∑l

n=1 |Intp(un; F̆n)| in (5.32) can be bounded as

2∆t
l∑

n=1

|Intp(un; F̆n)| ≤ ∆t C
l∑

n=1

(
‖Fn‖2 + ‖En−1‖2

)
+ (ε1 + ε2 + ε3)∆t ν

l∑
n=1

‖∇F̆n‖2

+ C (∆t)4
(
‖uttt‖2

2,0 + ‖ftt‖2
2,0 + ν‖∇utt‖2

2,0

+ ν−1‖∇utt‖4
4,0 + ν−1‖|∇u|‖4

4,0 + ν−1‖|∇u1/2|‖4
4,0

)
. (5.40)

Combining (5.33)–(5.40), equation (5.32) simplifies to

‖F l‖2 + ∆t

l∑
n=1

ν‖∇F̆n‖2

≤ C ∆t
l∑

n=0

(
1 + ν−3‖∇ũn‖4

)
‖Fn‖2

+ Cν−1
(
h2k+1‖|u|‖4

4,k+1 + h2k+1‖|∇u|‖4
4,0 + h2s+2‖|p1/2|‖2

2,s+1

)
+ C ν h2k‖|u|‖2

2,k+1

+ C h2k+2 ‖ut‖2
2,k+1 + C ν−2 h2k‖|u|‖2

∞,k+1

+ C χ2
(
ν−3 ‖|∇u|‖4

∞,0 + (∆t)−1
)

(∆t)−1 h2k+2 ‖|u|‖2
2,k+1

+ C χ2
(
ν−3 ‖|∇u|‖4

∞,0 + (∆t)−1
)

(∆t)−1 (δ4N+4 + δ2 h2k + h2k+2) (‖|u|‖2
2,2N+2 + ‖|u|‖2

2,k+1)

+ C (∆t)4
(
‖uttt‖2

2,0 + ‖ftt‖2
2,0 + ν‖∇utt‖2

2,0

+ ν−1‖∇utt‖4
4,0 + ν−1‖|∇u|‖4

4,0 + ν−1‖|∇u1/2|‖4
4,0

)
. (5.41)

Hence, with ∆t sufficiently small, i.e. ∆t < C(1 + ν−3‖|∇u|‖4
∞,0)

−1, from the discrete Gronwall’s
Lemma [HeRa], we have

‖F l‖2 + ∆t

l∑
n=1

ν‖∇F̆n‖2

≤ Cν−1
(
h2k+1‖|u|‖4

4,k+1 + h2k+1‖|∇u|‖4
4,0 + h2s+2‖|p1/2|‖2

2,s+1

)
+ C ν h2k‖|u|‖2

2,k+1

+ C h2k+2 ‖ut‖2
2,k+1 + C ν−2 h2k‖|u|‖2

∞,k+1

+ C χ2
(
ν−3 ‖|∇u|‖4

∞,0 + (∆t)−1
)

(∆t)−1 h2k+2 ‖|u|‖2
2,k+1

+ C χ2
(
ν−3 ‖|∇u|‖4

∞,0 + (∆t)−1
)

(∆t)−1 (δ4N+4 + δ2 h2k + h2k+2) (‖|u|‖2
2,2N+2 + ‖|u|‖2

2,k+1)

+ C (∆t)4
(
‖uttt‖2

2,0 + ‖ftt‖2
2,0 + ν‖∇utt‖2

2,0

+ ν−1‖∇utt‖4
4,0 + ν−1‖|∇u|‖4

4,0 + ν−1‖|∇u1/2|‖4
4,0

)
. (5.42)

The estimate given in (5.13) for ‖|u−wh|‖∞,0 then follows from the triangle inequality and (5.42). The
estimate for ‖|u − uh|‖∞,0 follows from the estimate (5.30), the triangle inequality, and the estimate for
‖|u − wh|‖∞,0. To obtain (5.14), we use (5.42) and

‖∇
(
un−1/2 − (wn

h + un−1
h )/2

)
‖2 ≤ ‖∇(un−1/2 − ũn)‖2 + ‖∇Λ̃n‖2 + ‖∇F̆n‖2

≤ (∆t)3

48

∫ tn

tn−1

‖∇utt‖2 dt + Ch2k|un|2k+1 + Ch2k|un−1|2k+1

+ ‖∇F̆n‖2 .

For Taylor-Hood approximating elements, i.e. k = 2, s = 1, we have the following asymptotic estimate.
Corollary 5.5. Under the assumptions of Theorem 5.4, with δ = Ch, ∆t = Ch, N = 1, and

(Xh, Qh) given by the Taylor-Hood approximation elements, we have

‖|u − wh|‖∞,0 + ‖|u − uh|‖∞,0 +

(
ν∆t

l∑
n=1

‖∇(un−1/2 − (wn
h + un−1

h )/2)‖2

)1/2

≤ C
(
(∆t)2 + h2

)
.

(5.43)
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The filter-deconvolve-relax step is more than a simple perturbation of the usual FEM at each time step.
Computationally its positive influence on the stability of the approximation algorithm is very apparent.
Mathematically to see this increased stability we need to consider a different norm than the L2 (in space)
norm. Define the (mesh dependent) weighted norm and inner product

(v, w)IDG := ((I − DhGh)v, w) , and ‖v‖IDG :=
√

(v, v)IDG . (5.44)

From Figure 1.1 we see that this norm has the property of measuring high frequency components of a func-
tion. Estimate (5.45) shows that the high frequency components of wn

h , where spurious oscillations would
concentrate, are reduced in un

h, i.e. ‖un
h‖IDG < ‖wn

h‖IDG. Estimates (5.46), (5.47), establishes a relation-
ship between the L2 errors of un

h and wn
h , and the high frequency components of the error in un

h and wn
h , i.e.

‖un − un
h‖IDG and ‖un − wn

h‖IDG, respectively. We remark that the terms in the brackets on the RHS of
(5.46) and (5.47) represent consistency error terms for the filter-deconvolve operation.

Theorem 5.6. Under the assumptions of Theorem 5.4, for n = 1, 2, . . . , NT , 0 ≤ δ ≤ 1,

‖un
h‖2

IDG = ‖wn
h‖2

IDG − χ (2−χ) ‖(I−DhGh)wn
h‖2 − χ2 ((I − DhGh)wn

h , (I − DhGh)DhGh wn
h) , (5.45)

||un − un
h||2 ≤ ||un − wn

h ||2 − 3
2
χ(1 − χ)‖un − wn

h‖2
IDG

+
[
χ2||(I − DhGh)un||2 +

1
2
χ(1 + 2χ)‖un‖2

IDG + χ2((I − DhGh)un, DhGhun)
]

. (5.46)

‖un − un
h‖2

IDG ≤ ‖un − wn
h‖2

IDG − χ2((I − DhGh)(un − wn
h), (I − DhGh)DhGh(un − wn

h))

− 3
2
χ(1 − χ)‖(I − DhGh)(un − wn

h)‖2

+
[
2χ(1 + χ)‖(I − DhGh)un‖2 + χ2‖(I − DhGh)un‖2

IDG

]
. (5.47)

Proof. We note that from Assumption A3, ((I − DhGh)v , DhGh v) ≥ 0, and
((I − DhGh)v , (I − DhGh)DhGh v) ≥ 0. To simplify notation, in the proof we use e := en = u(tn) − un

h

and ε := εn = u(tn)−wn
h , and IDG to denote I −DhGh. From (5.7), taking the inner-product of both sides

with respect to (I − DhGh)un
h = IDGun

h,

(un
h , IDGun

h) = (wn
h − χ IDGwn

h , IDG(wn
h − χ IDGwn

h))

= (wn
h , IDGwn

h) + χ2
(
IDGwn

h , (IDG)2wn
h

)
− χ

(
wn

h , (IDG)2wn
h

)
− χ (IDGwn

h , IDGwn
h)

= (wn
h , IDGwn

h) + χ2 (IDGwn
h , IDGwn

h) − χ2 (IDGwn
h , (IDG)DhGhwn

h)
− 2χ (IDGwn

h , IDGwn
h)

= (wn
h , IDGwn

h) − χ(2 − χ) (IDGwn
h , IDGwn

h) − χ2 (IDGwn
h , (IDG)DhGhwn

h) ,

which establishes (5.45).

To establish (5.47) we begin with (5.29). Taking the inner-product of both sides with respect to IDGε,

(e, IDGε) = (ε, IDGε) − χ(IDGε, IDGε) + χ(IDGun, IDGε) ,

i.e.

1
2
‖e‖2

IDG +
1
2
‖ε‖2

IDG − 1
2
‖e − ε‖2

IDG = ‖ε‖2
IDG − χ(IDGε, IDGε) + χ(IDGun, IDGε) .

Thus,

‖ε‖2
IDG = ‖e‖2

IDG − ‖e − ε‖2
IDG + 2χ(IDGε, IDGε) − 2χ(IDGun, IDGε) . (5.48)
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In addition, rearranging (5.29) we have

e − ε = −χIDGε + χIDGun

and thus,

‖e − ε‖2
IDG = ((e − ε), IDG(e − ε)) (5.49)

= ((−χIDGε + χIDGun) , IDG(−χIDGε + χIDGun))

= χ2‖IDGε‖2
IDG + χ2‖IDGun‖2

IDG − 2χ2(IDGε , (IDG)2un) . (5.50)

Substituting (5.50) into (5.48) and rearranging

‖ε‖2
IDG = ‖e‖2

IDG − χ2‖IDGε‖2
IDG − χ2‖IDGun‖2

IDG + 2χ2(IDGε , (IDG)2un)
+ 2χ(IDGε, IDGε) − 2χ(IDGun, IDGε) . (5.51)

Note that

2χ(IDGε, IDGε) − χ2‖IDGε‖2
IDG = 2χ(IDGε, IDGε) − χ2(IDGε, (IDG)(IDG)ε)

= (2χ − χ2)(IDGε, IDGε) + χ2(IDGε, DhGh(IDG)ε) , (5.52)

2χ2(IDGε , (IDG)2un) ≤ 1
2
χ2(IDGε , IDGε) + 2χ2((IDG)2un , (IDG)2un) , (5.53)

2χ(IDGun, IDGε) ≤ 1
2
χ(IDGε, IDGε) + 2χ(IDGun, IDGun) . (5.54)

Thus, using (5.52)-(5.54) in (5.51), we obtain

‖ε‖2
IDG ≥ ‖e‖2

IDG +
3
2
χ(1 − χ)‖IDGε‖2 + χ2(IDGε, DhGh(IDG)ε)

− 2χ(1 + χ)‖IDGun‖2 − χ2‖IDGun‖2
IDG .

For the final result we begin again with e− ε = −χIDGε + χIDGun. Take the inner product with ε,
use the polarization identity on the (e, ε) term, multiply by 2 and simplify. This gives

||e||2 + 2χ(IDGε, ε) = ||ε||2 + ||e − ε||2 + 2χ(IDGu, ε). (5.55)

Taking norms we also have ||e− ε||2 = ||χIDGε−χIDGun||2 = χ2(IDGε − IDGun, IDGε − IDGun).
Inserting this into the RHS of (5.55), expanding and collecting terms yields

||e||2+
χ
{
(2 − χ) (IDGε, ε) + χ(IDGε, DGε) − χ||IDGu||2 − 2(IDGu, ε) + 2χ(IDGε, IDGu)

}
= ||ε||2.

For the last two terms inside the braces we have, using operator weighted Cauchy-Schwarz inequalities,

2(IDGu, ε) ≤ 2(IDGu, u) +
1
2
(IDGε, ε),

2χ(IDGε, IDGu) = 2χ(IDGε, u) − 2χ(IDGε, DGu)

≤ 2χ(IDGu, u) +
1
2
χ(IDGε, ε) + χ(IDGε, DGε) + χ(IDGu,DGu).

Inserting these two into the braces and collecting terms, we have, as claimed:

||e||2 ≤ ||ε||2 − 3
2
χ(1 − χ)(IDGε, ε)

+
[
χ2||IDGu||2 + 2χ(1 + χ)](IDGu, u) + χ2(IDGu, DGu)

]
.
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6. Numerical Experiments. In this section, we present numerical experiments to test the algorithms
presented herein. Using the Green-Taylor vortex problem, we confirm the predicted convergence rates of
the previous section, and also use it to compare the accuracy of the algorithms. Further testing is then
performed using the flow around a cylinder benchmark problem. We use the software FreeFEM++ [HePi]
to run the numerical tests which provided a multi-frontal Gauss LU factorization for the linear solver. The
scheme presented in Algorithm 4.1 is discretized in space using the finite element method with Taylor-
Hood elements (continuous piecewise quadratic polynomials for the velocity and continuous linears for the
pressure). The nonlinear system was solved by a fixed point iteration. For the Stokes filter, used in all the
computations, we applied the same boundary conditions as given for the problem being solved.

m ‖|u − uh|‖∞,0 rate ‖|∇u −∇uh|‖2,0 rate
16 2.55117 · 10−2 3.36582
24 2.05028 · 10−2 0.54 2.27963 0.46
32 1.35885 · 10−2 1.43 1.6152 1.18
40 8.1897 · 10−3 2.27 1.18214 1.73
48 5.01347 · 10−3 2.69 8.85739 · 10−1 2.01
56 3.20674 · 10−3 2.90 6.76137 · 10−1 2.20
64 2.14058 · 10−3 3.03 5.24409 · 10−1 2.33
72 1.48243 · 10−3 3.12 4.12513 · 10−1 2.44

Table 6.1
Errors and convergence rates for order of deconvolution N = 1.

m ‖|u − uh|‖∞,0 rate ‖|∇u −∇uh|‖2,0 rate
16 2.72906 · 10−2 3.09567 · 10−1

24 2.64931 · 10−2 0.07 3.01949 · 10−1 0.06
32 2.5414 · 10−2 0.14 2.91435 · 10−1 0.12
40 2.40916 · 10−2 0.24 2.78326 · 10−1 0.21
48 2.2577 · 10−2 0.36 2.63147 · 10−1 0.31
56 2.09387 · 10−2 0.49 2.46598 · 10−1 0.42
64 1.9251 · 10−2 0.63 2.29443 · 10−1 0.54

Table 6.2
Errors and convergence rates for order of deconvolution N = 0.

m ‖|u − uh|‖∞,0 rate ‖|∇u −∇uh|‖2,0 rate
16 2.54983 · 10−2 2.93004 · 10−1

24 2.0471 · 10−2 0.54 2.42837 · 10−1 0.46
32 1.35493 · 10−2 1.43 1.72972 · 10−1 1.18
40 2.40916 · 10−3 2.27 1.17613 · 10−1 1.73
48 4.99331 · 10−3 2.69 8.1466 · 10−2 2.01
56 3.19319 · 10−3 2.90 5.80612 · 10−2 2.18
64 2.13123 · 10−3 3.03 4.25236 · 10−2 2.33

Table 6.3
Errors and convergence rates for order of deconvolution N = 1 with relaxation χ = ∆t.

6.1. Convergence Rate Verification. Our first test is designed to test (and does confirm) the pre-
dicted rates of convergence. The problem of simulating decay of the Green-Taylor vortex, [GT37], [T23], is
an interesting test problem in which the true solution is known. It was used as a numerical test in Chorin
[Cho68], Tafti [Tafti] and John and Layton [JL02]. For a very insightful and detailed analysis of the problem
for LES models see Barbato, Berselli and Grisanti [BBG07] and Berselli [B05]. The prescribed solution in
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Fig. 6.1. Domain.

Ω = (0, 1) × (0, 1) is given by

u1(x, y, t) = − cos(ωπx) sin(ωπy)e−2ω2π2t/τ ,

u2(x, y, t) = sin(ωπx) cos(ωπy)e−2ω2π2t/τ ,

p(x, y, t) = −1
4
(cos(2ωπx) + cos(2ωπy))e−2ω2π2t/τ .

When the relaxation time τ = Re, this is a solution of the NSE with f = 0, consisting of an ω × ω array of
oppositely signed vortices that decay as t → ∞.

In our test, with Dirichlet boundary conditions for the velocity, we choose ω = 1, 4t = 0.005, T = 1,
Reynolds number Re = 100 and δ = h = 1/m, where m is the number of subdivisions of the interval (0, 1).
The results for the approximation method described in Algorithm 4.1 are presented in Table 6.1, using order
of deconvolution N = 1 without relaxation (i.e. χ = 0) and in Table 6.3 for N = 1 with relaxation for
χ = ∆t. Results using the simple averaging filter, i.e. deconvolution with order N = 0 , are presented
in Table 6.2. The convergence rate is calculated from the error at two successive values of h in the usual
manner by postulating e(h) = Chβ and solving for β via β = ln(e(h1)/e(h2))/ ln(h1/h2).

From the tables we see the convergence rate approaches the second order predicted for ‖|∇u−∇uh|‖2,0

and we also see what appears to be an L2 lift for ‖|u−uh|‖∞,0 for order of deconvolution N = 1. The method
with order of deconvolution N = 0 , has much larger errors and slower rates of convergence, as expected.
From this test it is clear that deconvolution makes an important contribution to improving the accuracy of
the approximation.

6.2. Flow around a cylinder. Our next numerical illustration is for two dimensional under-resolved
flow around a cylinder. We compute values for the maximal drag cd,max and lift cl,max coefficient at the
cylinder, and for the pressure difference ∆p(t) between the front and back of the cylinder at the final time
T = 8. This is a well known benchmark problem taken from Shäfer and Turek [ST96] and John [J04]. It
is not turbulent but does have interesting features. The flow patterns are driven by the interaction of a
fluid with a wall which is an important scenario for industrial flows. This simple flow can be difficult to
simulate successfully by a model with sufficient regularization to handle higher Reynolds number problems.
The domain is presented in Figure 6.1.

The time dependent inflow profile is

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41 − y) ,

u2(0, y, t) = u2(2.2, y, t) = 0.

No slip boundary conditions are prescribed along the top and bottom walls, “do-nothing” at the outflow and
the initial condition is u(x, y, 0) = 0. The viscosity is ν = 10−3 and the external force f = 0. The Reynolds
number of the flow, based on the diameter of the cylinder and on the mean velocity inflow is 0 ≤ Re ≤ 100.
A mesh with 62757 number of degrees of freedom is used for all simulation for a clear comparison of the
different algorithms presented in this report. The filter radius is chosen as the length of the cylinder divided
by the number of mesh points around the cylinder.
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Fig. 6.2. The velocity at t = 2, 4, 5, 6, 7, and 8 of Algorithm 4.1, with N = 1 and χ = ∆t = 0.01.
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Fig. 6.3. The development of cd(t), cl(t) and ∆p(t) of Algorithm 4.1 with N = 1 and χ = ∆t = 0.01.

For this setting, it is expected that as the flow increases from time t = 2 to t = 4 two vortices start to
develop behind the cylinder. Between t = 4 and t = 5, the vortices separate from the cylinder, so that a
vortex street develops, and they continue to be visible through the final time t = 8. This can be seen in
Figure 6.2.

The evolutions of cd,max, cl,max and ∆p in time are presented in Figure 6.3.
For the computation of drag and lift coefficients we used the one dimensional method described by John

in [J04]. Results on the computations of maximal drag and lift coefficients and pressure drop, for N = 1,
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are presented in Table 6.4. The following reference intervals are given in [ST96]:

cref
d,max ∈ [2.93, 2.97], cref

l,max ∈ [0.47, 0.49], ∆pref ∈ [−0.115, −0.105]

relax. coeff. ∆t t(cd,max) cd,max t(cl,max) cl,max ∆p(8s)

0.04 3.96 2.87862 6.12 0.36572 -0.103274
χ = 0 0.02 3.94 2.85123 5.98 0.420198 -0.103153

0.01 3.94 2.80214 5.96 0.409368 -0.106276
0.04 3.96 2.94233 6.12 0.392735 -0.102161

χ = ∆t 0.02 3.94 2.94317 5.98 0.458007 -0.106762
0.01 3.94 2.94352 5.93 0.479286 -0.110899

Table 6.4
Results for drag/lift coefficients and pressure difference for deconvolution order N = 1.

The computations in Table 6.4 show that evolve-filter-deconvolve-relax, Algorithm 4.1, computes the
drag and lift coefficients, and the pressure difference, within the benchmark intervals, and illustrates the
positive role of using relaxation in the approximation algorithm. Computations were also performed for
higher Reynolds number corresponding to ν = 10−4. For this case the direct approximation approach
(no regularization) failed (i.e. the fixed point iteration for the discretization of the nonlinear term of the
Navier-Stokes equations stopped to converge around T = 6), whereas computations using Algorithm 4.1 were
successful for N = 1, see Figure 6.4. There are no benchmark intervals for lift and drag coefficients for this
case. Some quality of the approximation can be assessed by the appropriate appearance and evolution of
the vortex street in the simulation. The direct approximation without regularization is much more sensitive
to the instabilities that appear in the flow at higher Re than Algorithm 4.1, which produced a clear vortex
street given in Figure 6.4 for N = 1.

7. Conclusions. In 2002 R. Peyret wrote in the fundamental book on spectral methods for the NSE
[P02] that

“... filters must be used with care and their effect evaluated with precision when tuning
the parameters...The application of a filter in the course of time integration (especially if it
is often applied) may be dangerous.”

We have found that simple filtering at each step is indeed dangerous as it introduces large amounts
of numerical diffusion. On the other hand, our precise analysis has also shown that with care, filtering
plus deconvolution plus relaxation stabilizes marginally resolved scales and does not over diffuse. This
combination can be an invaluable tool, with many algorithmic advantages, for enhancing stability without
degrading accuracy through an extra uncoupled and modular step.

We have only considered the simplest filter and deconvolution operators that fit our mathematical tools.
There are very many other possible filters and deconvolution operators that can be tested and await analysis.
From one point of view, the process Filter → Deconvolve simply generates another filter which is closer to
spectral cutoff and which can be applied by a sequence of simpler filter steps. Thus, both investigation of
other filters and study of choices of relaxation parameters are important next steps.
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