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Abstract

We study a new regularization of the Navier-Stokes equations, the

NS-ω model. This model has similarities to the NS-α model but its struc-

ture is more amenable to be used as a basis for numerical simulations of

turbulent flows. In this report we present the model and prove existence

and uniqueness of strong solutions as well as convergence (modulo a subse-

quence) to a weak solution of the Navier-Stokes equations as the averaging

radius decreases to zero. We then apply turbulence phenomenology to the

model to obtain insight into its predictions.

∗AMS Subject Classifications: 65M12, 65M60, 76D05, 76F65.
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1 Introduction

This report develops the theory for a regularization of the Navier-Stokes equa-

tions (NSE), the NS-ω model, and establishes a Leray-type theory. The same

techniques give a theory of a related regularization, the NS-α&ω model (1.2)

below. We also apply turbulence phenomenology to obtain some insight into

the three model’s differences. The two related models emerge naturally from

1. the interpretation of the well-known NS-α model as a rotational Leray

regularization and

2. practical consideration about the cost of a numerical simulation of the

three (NS-α, NS-ω, NS-α&ω).

The first regularization averages the vorticity term instead of the velocity

(hence calling it the NS-ω model seems natural). It is given by

ut + ω × u− ν∆u +∇P+χ(u− u) = f , ∇ · u = 0, where ω := ∇× u.

(1.1)

Here α denotes the (user-selected) filter lengthscale and overbar denotes a fil-

tered quantity, Φ = gα?Φ. For simplicity, we select a differential filter (Germano

[17]), so Φ := (−α2∆ + 1)−1Φ. The time relaxation term χ(u− u), an idea of

Stolz, Adams and Kleiser, e.g., [38] is added to truncate scales, [29]. For exam-

ple, picking χ ' α−2/3 yields the microscale of (1.1) to be ηω ' α, see [29] and

Section 4 (4.27).

Clearly, one can also study combinations of NS-α andNS-ω such as NS-α&ω,

given by

ut + ω × u− ν∆u +∇P+χ(u− u) = f , and ∇ · u = 0 , where (1.2)

ω = ∇× u.
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If ν = χ = f = 0 and under appropriate boundary conditions the NS-α, NS-ω,

NS-α&ω conserve a model energy and helicity given, respectively, by

for NS-α, Eα(u) =
1

2|Ω|

∫
Ω

u · u dx, Hα(u) =
1
|Ω|

∫
Ω

u · ∇ × u dx,

for NS-ω, Eω(u) =
1

2|Ω|

∫
Ω

u · u dx, Hω(u) =
1
|Ω|

∫
Ω

u · ∇ × u dx, and

for NS-α&ω, Eα&ω(u) =
1

2|Ω|

∫
Ω

u · u dx, Hα&ω(u) =
1
|Ω|

∫
Ω

u · ∇ × u dx.

The differences among the forms of E and H suggest similarities and differences

in the three models’ phenomenologies, Section 4. There is also a difference in

the treatment of the incompressibility condition in the non-periodic case, for

the NS-ω, ∇·u = 0 while for NS-α and NS-α&ω, ∇·u = 0 is imposed. See [40]

for related issues.

Concerning the precise formulation of the nonlinear term in (1.1): there

is no difference between ∇× u and ∇ × u in the periodic case. However, in

the non-periodic case, computing ∇ × u requires boundary conditions for the

velocity (which are known) whereas ∇× u requires boundary conditions for the

vorticity, which are typically unknown.

One main motivation for (1.1) is that regularizations are often used for nu-

merical simulation of turbulent flow. Thus, two critical features of any regu-

larization model are (i) its solutions must faithfully represent the qualitative

properties of solutions of the NSE, and (ii) it must be amenable to efficient

numerical simulation with robust methods. As an example of the motivation

for the NS-ω model, consider two robust, fully discrete, unconditionally stable

algorithms, the CN (Crank-Nicolson) and CNLE (Crank-Nicolson with linear

extrapolation) methods. (The numerical analysis of these two is developed in

[27] for the NS-ω model and [7], [12] and [33] for the NS-α model.) Suppress-

ing the spatial discretization, the unconditionally stable realization of the CN
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method for the NS-α model reads



un+1 − un

∆t
+
(
∇× un+1/2

)
× Φn+1/2 − ν4un+1/2 +∇Pn+1/2 = fn+1/2,

−α2∆Φn+1/2 + Φn+1/2 = un+1/2,

∇ · Φn+1 = 0.

(1.3)

From (1.3), each time step requires the solution of a large ( (u,Φ, p): 2Nvelocity+

Npressure unknowns) coupled nonlinear system at every time step. We know

of no other method for NS-α which is substantially more economical, O(∆t2)

accurate and unconditionally stable. The NS-ω model can be solved much

more economically by unconditionally stable, second order accurate and linearly

implicit CNLE method (adapted from [2] in [27]), given by

1
∆t

(un+1−un)+(
3
2
ωn−

1
2
ωn−1)×

un+1 + un

2
+∇Pn+1/2 (1.4)

− ν4un+1 + un

2
+ χ(un+1 − un) = fn+1/2,

where ωn = ∇× un (1.5)

and ∇ · un+1 = 0. (1.6)

Since 3
2ωn− 1

2ωn−1 = ω(tn+1/2)+O(∆t2), (1.4)-(1.6) is a O(∆t2) perturbation

of the Crank-Nicolson method. The method filters explicitly known velocities un

and un−1, which reduces storage and computational cost substantially. CNLE

method (1.4)-(1.6) is second order accurate, unconditionally and nonlinearly

stable and requires only the solution of one smaller ((u, p): Nvelocity +Npressure

unknowns) linear system at every time step.

The ideas we study are outgrowths of the seminal work of J. Leray [30, 31],

of Geurts and Holm [18, 19] on the Leray regularization as a basis for numer-

ical simulations, the extensive recent work on the theory of NS-α model, the
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early work of G. Baker [2] on CNLE= Crank-Nicolson with Linear Extrapola-

tion methods and our previous work on the numerical analysis of approximate

deconvolution models of turbulence, e.g., [23].

In Section 2 we give the notation and definitions necessary for the analysis.

Section 3 develops the theory for the model. Model phenomenology is presented

in Section 4, followed by conclusions.

1.1 Related models

In 1934, J. Leray [30, 31] introduced the following NSE regularization (now

known as the Leray model) as a theoretical tool:

ut + u · ∇u− ν∆u +∇p = f and ∇ · u = 0 , in Ω× (0, T ). (1.7)

He chose u = gα ?u, where gα is a Gaussian filter associated with a length scale

α. He proved existence and uniqueness of strong solutions to (1.7) and that a

subsequence uαj
converges to a weak solution of the NSE as αj → 0. If that

weak solution is a smooth, strong solution it is not difficult to prove additionally

that ‖uNSE − uLerayModel‖ = O( α2) using only ‖u− u‖ = O(α2).

This model has been explored in numerical experiments. Like all models it

has advantages [18] and disadvantages [20]. The higher order Leray deconvolu-

tion family of models, which includes (1.7) as N = 0, also seems very promising

[26, 24]. The Camassa-Holm / Navier-Stokes-alpha has attracted much interest

since it conserves both important integral invariants of the Euler equations (a

modified energy and helicity [36]) and a complete and elegant theory of NS-α

has been developed, e.g. [9]. The NS-α model is given by

ut + ω × u− ν∆u +∇P = f , ∇ · u = 0, and ω = ∇× u. (1.8)

5



Recently, Ilyin, Lunasin and Titi [21] have studied a complement to the Leray

regularization (in which u ·∇u is replaced by u ·∇u in (1.7)). This complemen-

tary treatment of (another form of) the NSE nonlinearity is analogous to the

treatment in NS-ω model (1.1).

2 Notation and Preliminaries

The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·). Likewise,

the Lp(Ω) norms and the Sobolev W k
p (Ω) norms are denoted by ‖·‖Lp and ‖·‖W k

p
,

respectively. For the semi-norm in W k
p (Ω) we use | · |W k

p
. Hk is used to represent

the Sobolev space W k
2 (Ω), and ‖ · ‖k denotes the norm in Hk. For functions

v(x, t) defined on the entire time interval (0, T ), we define (1 ≤ m < ∞)

‖v‖∞,k := ess sup
0<t<T

‖v(·, t)‖k , and ‖v‖m,k :=

(∫ T

0

‖v(·, t)‖m
k dt

)1/m

.

We consider the periodic case. In the periodic case, Ω = (0, L)d, d = 2, 3 and

pressure and velocity spaces are, respectively,

Q = L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω

q dx = 0},

X = H1
#(Ω) := {v ∈ H1(Ω) ∩ L2

0(Ω) : v is L-periodic },

while for k > 1

Hk
#(Ω) := {v ∈ H1

#(Ω) :
∂|α|v
∂xα

is L-periodic for 0 ≤ |α| ≤ k − 1}.
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We denote the dual space of X by X?, with the norm ‖ · ‖?. The spaces of

divergence free functions are denoted

H = Hdiv := {v ∈ L2
0(Ω) : ∇ · v = 0} and

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q}.

Differential filters were introduced into turbulence modeling by Germano [17,

16] and used in the analysis of approximate deconvolution models, the rational

model [15] and in NS-α [41, 10, 21, 18, 19]. They can arise, for example, as

approximations to Gaussian filters of high qualitative and quantitative accuracy

[15].

Definition 2.1 (Continuous differential filter). For φ ∈ L2(Ω) and α > 0 fixed,

denote the filtering operation on φ by φ, where φ is the unique solution (in X)

of

− α2∆φ + φ = φ. (2.1)

We denote by A := (−α2∆ + I), so A−1v = v.

Remark 2.2. For non-rotational formulations of the nonlinearity, an alter-

native is to define the differential filter by a discrete Stokes problem so as to

preserve incompressibility approximately. In this case, given φ ∈ V , φ ∈ V

would be defined by

α2(∇φ,∇χ) + (φ,χ) = (φ,χ) for all χ ∈ V . (2.2)

After discretization, this results in a computationally more expensive filtering

operation. Herein we consider (2.1).
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3 Analysis

We define the operator A ∈ L(V, V ′) by setting

〈Au,v〉 = ν(∇u,∇v), (3.1)

for all u,v ∈ V . The operator A is an unbounded operator on L2(Ω), with the

domain D(A) = {u ∈ V : ∆u ∈ L2(Ω)} and we denote again by A its restriction

to L2(Ω). We define also a continuous bilinear operator Bω : X → X ′ with

〈Bωu,v〉 = (ω × u,v),

for all u,v ∈ X. The following property holds

〈Bωu,u〉 = 〈Bωu,ω〉 = 0, (3.2)

for all u,ω ∈ V . In terms of X,A, Bω we can rewrite (1.1) as

du
dt

(t) +Au(t) + Bωu(t) + χ(u− u) = f(t), t ∈ (0, T ),

u(0) = u0,

(3.3)

where f = Πf , and Π : L2(Ω) → H is the Leray-Hodge projection [11], [37].

3.1 Stability and existence for the model

The first result states that the strong solution of the model (3.3) exists globally

in time, for large data and general ν > 0 and that it satisfies an energy equality,

while initial data and the source terms are smooth enough.

Theorem 3.1. Consider the NS-ω model (1.1). Let α > 0 be fixed. For any

u0 ∈ V and f ∈ L2(0, T ;H), there exists a unique strong solution u to (3.3),
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u ∈ L∞(0, T ;H1
#(Ω))∩L2(0, T ;H2

#(Ω)) and ut ∈ L2((0, T )×Ω). Moreover, the

following energy equality holds for t ∈ [0, T ]:

Eω(t) +
∫ t

0

εω(τ)dτ = Eω(0) +
∫ t

0

Pω(τ)dτ, (3.4)

where

Eω(t)=
1

2|Ω|
‖u(·, t)‖2,

εω(t)=
ν

|Ω|
‖∇u(·, t)‖2+

χ

|Ω|
(u−u,u),

Pω(t)=
1
|Ω|

(f(t),u(t)).

(3.5)

Before proving Theorem 3.1 we collect a few preliminaries. We shall use the

semigroup approach proposed in [5] for the Navier-Stokes equations, based on

the machinery of nonlinear differential equations of accretive type in Banach

spaces.

Let us define the modified nonlinearity, BN
ω : X → X∗, by setting

BN
ω (u) =

 Bω(u), if ‖∇u‖ ≤ N,(
N

‖∇u‖

)2

Bω(u), if ‖∇u‖ > N.
(3.6)

By (2.1), we have for the case of ‖∇u1‖, ‖∇u2‖ ≤ N

∣∣〈BN
ω (u1)−BN

ω (u2),u1 − u2〉
∣∣ = (ω1 − ω2 × u1,u1 − u2) + (ω2 × (u1 − u2),u1 − u2)

≤C0(Ω)‖u1−u2‖ 1
2

(‖∇u1‖+‖∇u2‖) ‖∇(u1−u2)‖ ≤
ν

2
‖∇(u1−u2)‖2+CN‖u1−u2‖2.
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In the case of ‖∇u1‖, ‖∇u2‖ > N , we have by (3.2)

∣∣〈BN
ω (u1)−BN

ω (u2),u1 − u2〉
∣∣

=
N2

‖∇u1‖2
(ω1 − ω2 × u1,u1 − u2)

+
(

N2

‖∇u1‖2
− N2

‖∇u2‖2

)
(ω2 × (u1 − u2),u1 − u2)

≤ C0(Ω)N‖∇(u1−u2)‖
3
2 ‖u1−u2‖

1
2 + C0(Ω)N‖∇(u1−u2)‖2

≤ ν

2
‖∇(u1−u2)‖2 + CN‖u1−u2‖2.

For the case of ‖∇u2‖ ≤ N < ‖∇u1‖ (similar estimates are obtained when

‖∇u1‖ ≤ N < ‖∇u2‖) we have

∣∣〈BN
ω (u1)−BN

ω (u2),u1−u2〉
∣∣

=
N2

‖∇u1‖2
(ω1−ω2 × u1,u1−u2)−

(
1− N2

‖∇u1‖2

)
(ω2 × u2,u1−u2)

≤C0(Ω)N
(
‖∇(u1−u2)‖

3
2 ‖u1−u2‖

1
2 +‖∇(u1−u2)‖‖u1−u2‖ 1

2

)
≤ ν

2
‖∇(u1−u2)‖2+CN‖u1−u2‖2.

Combining all the cases above we conclude that

∣∣〈BN
ω (u1)−BN

ω (u2),u1 − u2〉
∣∣ ≤ ν

2
‖∇(u1 − u2)‖2 + CN‖u1 − u2‖2. (3.7)

The operator BN
ω is continuous from X to X∗. Indeed, as above we have

∣∣〈BN
ω (u1)−BN

ω (u2),u3〉
∣∣ (3.8)

≤ |(ω1 − ω2 × u1,u3)|+ |(ω2 × (u1 − u2),u3)| ≤ CN‖∇(u1 − u2)‖‖∇u3‖.
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Now consider the operator ΓN : D(ΓN ) → H defined by

ΓN = A+ BN
ω , D(ΓN ) = D(A),

since

∥∥BN
ω (u)

∥∥
0
≤ C0(Ω)‖∇u‖3/2 ‖Au‖1/2 ≤ CN ‖Au‖1/2

, ∀u ∈ D(A). (3.9)

Lemma 3.2. There exists αN > 0 such that ΓN +αNI is m-accretive (maximal

monotone) in H ×H.

Proof. By (3.7) we have that

((ΓN + λ)(u1)− (ΓN + λ)(u2),u1 − u2) ≥
ν

2
‖∇(u1 − u2)‖2, for all ui ∈ D(ΓN ),

(3.10)

for λ ≥ CN . Next we consider the operator

FN (u) = Au + BN
ω (u) + αNu, for all u ∈ D(FN ),

with

D(FN ) = {u ∈ V : Au + BN
ω (u) ∈ H}.

By (3.8) and (3.10) we see that FN is monotone, coercive and continuous from V

to V ′. We infer that FN is maximal monotone from V to V ′ and the restriction

to H is maximal monotone on H with the domain D(FN ) ⊇ D(A) (see e.g.

[6, 3]). Moreover, we have D(FN ) = D(A). For this we use the perturbation

theorem for nonlinear m-accretive operators and split FN into a continuous and
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a ω-m-accretive operator on H

F 1
N = (1− ε

2
)A, D(F 1

N ) = D(A),

F 2
N =

ε

2
A+ BN

ω + αNI, D(F 2
N ) = {u ∈ V : F 2

Nu ∈ H}.

As seen above, by (3.9) we have

∥∥F 2
Nu
∥∥ ≤ ε

2
‖Au‖+ ‖BN

ω (u)‖+ αN‖u‖

≤ ε‖Au‖+ αN‖u‖+
C2

N

2ε
, for all u ∈ D(F 1

N ) = D(A),

where 0 < ε < 1. Since F 1
N + F 2

N = ΓN + αNI we infer that ΓN + αNI with

domain D(A) is m-accretive in H, as claimed.

Proof of Theorem 3.1. Since the χ term is lower order nonnegative and lin-

ear, it suffices to give the proof for χ = 0. As a consequence of Lemma 3.2 (see,

e.g., [3, 4]) we have that for u0 ∈ D(A) and f ∈ W 1,1([0, T ],H) the equation

du
dt

(t) +Au(t) + BN
ω (u(t)) = f , t ∈ (0, T ),

u(0) = u0,

(3.11)

has a unique strong solution uN ∈ W 1,∞([0, T ];H) ∩ L∞(0, T ;D(A)).

If we multiply (3.11) by uN , use (3.2) and integrate in time we obtain

‖uN (t)‖2 + ν

∫ t

0

‖∇uN (s)‖2 ≤ ‖u0‖2 +
1
ν

∫ t

0

‖f(s)‖2V ′ds. (3.12)
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Multiplying (3.11) by −∆uN , by use of (2.1) we have

d

2dt
‖∇uN (t)‖2 + ν‖∆uN (t)‖2 = 〈f(t),∆uN (t)〉+ 〈ωN × uN ,∆uN 〉

≤ ‖f(t)‖‖∆uN (t)‖+ ‖ωN‖1/2‖∇uN‖‖∆uN‖

≤ 1
ν
‖f‖2 +

ν

4
‖∆uN‖2 + ‖ωN‖1/2‖∇ωN‖1/2‖∇uN‖‖∆uN‖

≤ 1
ν
‖f‖2 +

ν

4
‖∆uN‖2 + ‖∇uN‖1/2‖∇uN‖1/2

1 ‖∇uN‖‖∆uN‖

≤ 1
ν
‖f‖2 +

ν

4
‖∆uN‖2 + C(Ω)‖∇uN‖1/2‖∆uN‖1/2‖∇uN‖‖∆uN‖

≤ 1
ν
‖f‖2 +

ν

4
‖∆uN‖2 + C(Ω)‖∇uN‖1/2 1

21/4α1/2
‖∇uN‖1/2‖∇uN‖‖∆uN‖

≤ 1
ν
‖f‖2 +

ν

2
‖∆uN‖2 +

C(Ω)2

21/2αν
‖∇uN‖4,

equivalently,

d

dt
‖∇uN (t)‖2 + ν‖∆uN (t)‖2 ≤ 2

ν
‖f‖2 +

21/2C(Ω)2

αν
‖∇uN‖4.

By the Gronwall inequality and (3.12), this implies

‖∇uN (t)‖ ≤ Cα for all t ∈ (0, T ), (3.13)

where Cα is independent of N . In particular, for N sufficiently large it follows

from (3.6) that BN
ω ≡ Bω and uN ≡ u is a solution to (1.1) and/or (1.2).

By a density argument (see, e.g., [4, 32]) it can be shown that if u0 ∈ H

and f ∈ L2(0, T, V ′) then there exists a unique weak solution, an absolute

continuous function u : [0, T ] → V ′ that satisfies u ∈ C([0, T ];H)∩L2(0, T ;V )∩

W 1,2([0, T ], V ′) and (3.11) a.e. in (0, T ), where d/dt is considered in the strong

topology of V ′.

Remark 3.3. The pressure is recovered from the weak solution via the classical
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DeRham theorem (see [31]).

3.2 Regularity

Theorem 3.4. Consider the NS-ω model (1.1). Let χ ≥ 0,m ∈ N, u0 ∈

V ∩ Hm+1
# (Ω) and f ∈ L2(0, T ;Hm

# (Ω)). Then there exists a unique solution

u, P to the equation (1.1) such that

u ∈ L∞(0, T ;Hm+1
# (Ω)) ∩ L2(0, T ;Hm+2

# (Ω)),

P ∈ L2(0, T ;Hm+2
# (Ω)).

Proof. We give the proof for χ = 0 since the χ term is a lower order term. The

result is already proved when m = 0 in Theorem 3.1. For any m ∈ N∗, we

assume that

u ∈ L∞(0, T ;Hk
#(Ω)) ∩ L2(0, T ;Hk+1

# (Ω)), ∀k = 0, 1, . . . ,m (3.14)

so it remains to prove

Dm+1u ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

where Dm denotes any partial derivative of total order m. We take the (m+1)th

derivative of (1.8) and have

(Dm+1u)t − ν∆(Dm+1u) + Dm+1 (ω × u) + Dm+1∇P = Dm+1f , in (0, T )× Ω,

∇ · (Dm+1u) = 0, in (0, T )× Ω,

Dm+1u(0, ·) = Dm+1u0, in Ω,
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with periodic boundary conditions and zero mean, and the initial conditions

with zero divergence and mean. Taking Dm+1u as test functions we obtain

1
2

d

dt
‖Dm+1u‖2 + ν‖∇Dm+1u‖2 (3.15)

=
∫

Ω

Dm+1fDm+1udx−
∫

Ω

Dm+1(ω × u)Dm+1udx.

Rewriting, we obtain

∫
Ω

Dm+1(ω × u)Dm+1udx =
∑

|α|≤m+1

m + 1

α

∫
Ω

Dαω ×Dm+1−αuDm+1u dx

=
∫

Ω

(
Dm+1ω × uDm+1u + (m + 1)Dmω ×DuDm+1u + . . .

+(m + 1)Dω ×DmuDm+1u + ω ×Dm+1uDm+1u
)

dx.

Now we use (3.2), (2.1) and the induction assumption (3.14) to get

∫
Ω

Dm+1(ω × u)Dm+1udx ≤ C ‖u‖m‖u‖1/2
m+1‖u‖

3/2
m+2.

Integrating (3.15) on (0, T ), using the Cauchy-Schwarz and Hölder inequalities,

and the assumption (3.14) we obtain the desired result for u. We conclude

the proof mentioning that the regularity of the pressure term P is obtained via

classical methods, see e.g. [39, 1].

Corollary 3.5.

1. If the conditions of Theorem 3.4 hold with m = 1, then u is a unique

strong solution of NS-ω model.

2. If u0, f ∈ C∞
# (Ω), then u, p ∈ C∞

# (Ω).
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4 Phenomenology

In this section we apply turbulence phenomenology to study the joint energy-

helicity cascade for homogeneous, isotropic turbulence generated by NS-α, NS-

ω, and NS-α&ω models. This approach is due to A. Muschinsky, [35] and used

for approximate deconvolution models in [25]. We consider the same problem

for NS-ω, and NS-α&ω models, focusing first on the case when χ = 0.

Energy cascades were proposed by Richardson in 1922 as a qualitative fea-

ture of turbulent flow. Kolmogorov’s famous work (e.g. [14]) shows that energy

cascades have universal, quantitative features that can be uncovered by dimen-

sional analysis (for example). Helicity, discovered by Moreau, [34], is the second

important integral invariant of the Euler equations and exhibits a cascade in

turbulent flows as well. Interestingly, the various approaches to turbulent phe-

nomenology (which all yield the same energy cascade) give different predictions

of helicity cascade details. Kraichnan’s dynamic argument, [22] seems to give

the prediction best in accord with numerical experiments. Thus, we shall ap-

ply the dynamic argument to elucidate energy and helicity prediction of the

NS-ω model. The dynamic argument predicts that for homogeneous, isotropic

turbulence through the inertial range

Ê(k) = CEε2/3k−5/3 and Ĥ(k) = hCHγ2/3k−5/3, (4.1)

where k is the wave number, ε the mean energy dissipation rate, and γ the

mean helicity dissipation rate, see [8] and [13]. The cascades are referred to

as joint because they travel with the same speed through the wave space (i.e.

the exponents of k are equal). In each case we find the energy and helicity

microscale.

To begin, we present the helicity conservation of the NS-ω model.
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Theorem 4.1. Consider the NS-ω model (1.1). Let u0 ∈ V , f ∈ L2(0, T ;H),

χ ≥ 0. The following helicity balance holds

Hω(t) +
∫ t

0

γω(τ)dτ = Hω(0) +
∫ t

0

Pω(τ)dτ, 0 ≤ t ≤ T, (4.2)

where

Hω(t)= 1
2|Ω| (u(·, t),∇× u(·, t)),

γω(t)= ν
|Ω| (∇×u(·, t),∇×∇×u(·, t)) + χ

|Ω| (u(·, t)−u(·, t),∇×u(·, t)), (4.3)

Pω(t)= 1
|Ω| (f(·, t),∇× u(·, t)).

Proof. We obtain (4.3) by letting v = 1
|Ω|∇ × u in (1.1). Integration by parts

and integration in time give

1
2|Ω|

(u · ∇ × u)(T ) +
ν

|Ω|

∫ T

0

(∇× u,∇×∇× u) dτ

+
χ

|Ω|

∫ T

0

(u(t)−u(t)∇×u(t))dτ =
1

2|Ω|
(u · ∇ × u)(0) +

1
|Ω|

∫ T

0

(f ,∇× u) dτ.

To represent the true kinetic energy and the model’s kinetic energy spec-

trally, we expand the velocity field u(x, t) in Fourier series as follows:

u(x, t) =
∑

k

∑
|k|=k

û(k, t)eik·x, where û(k, t) =
1
L3

∫
Ω

u(x, t)e−ik·xdx (4.4)

and k = 2π
L n (n ∈ Z3) is the wave number. Using Parceval’s equality we deduce

the balance equation for the kinetic energy at wave number k

E(u)(t) =
2π

L

∑
k

Ê(k, t), where Ê(k, t) =
L

2π

∑
|k|=k

1
2
|û(k, t)|2. (4.5)
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Proposition 4.2. In Fourier modes, the model’s kinetic energy and energy

dissipation rate are

Eω(u)(t) =
2π

L

∑
k

Êω(k, t), εω(u)(t) = 2ν
2π

L

∑
k

k2Êω(k, t) (4.6)

where

Êω(k, t) = Ê(k, t). (4.7)

Proof. Indeed, from (3.4) we have

Eω(u)(t) =
1

2|Ω|
‖u(x, t)‖2 2π

L

∑
k

Ê(k, t). (4.8)

Using the expansion of u(x, t) in Fourier series we have

∇u(x, t) =
∑

k

∑
|k|=k

kû(k, t)eik·x.

Thus

εω(u)(t) =
1

2|Ω|
‖∇u(x, t)‖2 2π

L

∑
k

k2Ê(k, t). (4.9)

The decomposition of helicity into wave numbers depends upon further split-

ting of Fourier modes into helical modes. Then, the velocity field can be ex-

panded into helical waves ik × h± = ±kh±, where h± are orthonormal eigen-

vectors of the curl operator. Since u is incompressible, we have k · û(k, t) = 0

and we can then write û(k, t) = a+(k, t)h+ +a−(k, t)h−. Thus, for the spectral
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decomposition of helicity, we can expand û(k, t) in a basis of helical modes

u(x, t) =
∑

k

∑
|k|=k

∑
s=±

as(k, t)hs(k)eik·x. (4.10)

We also have

(∇×)nu(x, t) =
∑

k

∑
|k|=k

∑
s=±

snknas(k, t)hs(k)eik·x. (4.11)

Expanding u in helical modes, we get the spectral representation of helicity

H(u)(t) =
2π

L

∑
k

Ĥ(k, t), where Ĥ(k, t) := sk
∑
|k|=k

∑
s=±

|as(k, t)|2. (4.12)

Proposition 4.3. The NS-ω model’s helicity spectrum and helicity dissipation

rate are

Hω(u)(t) =
2π

L

∑
k

Ĥω(k, t), εω(u)(t) = 2ν
2π

L

∑
k

k2Ĥω(k, t) (4.13)

where

Ĥω(k, t) =
1

α2k2 + 1
Ĥ(k, t). (4.14)

Proof. Using (4.10) and (4.11) we have

Hω(u)(t) =
2π

L

∑
k

k

α2k2 + 1

∑
|k|=k

∑
±

s|as(k, t)|2 =
2π

L

∑
k

1
α2k2 + 1

Ĥ(k, t),

γω(u)(t) =
2π

L

∑
k

k3

α2k2 + 1

∑
|k|=k

∑
±

s3|as(k, t)|2 = 2ν
2π

L

∑
k

k2

α2k2 + 1
Ĥ(k, t).

This proves the claimed result for the NS-ω model.

19



Let 〈·〉 denote time averaging

〈φ〉(x) := lim
T→∞

1
T

∫ T

0

φ(x, t)dt, (4.15)

provided the limit exists. If the limit does not exist 〈·〉 is defined replacing lim

by LIM , a suitable Banach or generalized limit.

Definition 4.4. The kinetic energy and helicity distribution functions are de-

fined by

Ê(k) = 〈Ê(k, t)〉, Êω(k) = 〈Êω(k, t)〉 and

Ĥ(k) = 〈Ĥ(k, t)〉, Ĥω(k) = 〈Ĥω(k, t)〉.

Proposition 4.5. In Fourier space, we have

Êα(k)Êα&ω(k) =
1

α2k2 + 1
Ê(k) and Ĥα(k) = Ĥ(k) (4.16)

Êω(k) = Ê(k) and Ĥω(k)Ĥα&ω(k) =
1

α2k2 + 1
Ĥ(k). (4.17)

Proof. The proof follows by time averaging (4.6) and (4.13).

We are now ready to investigate the phenomenology of a possible joint cas-

cade of energy and helicity for NS-ω model adapting the dynamic argument of

Kraichnan, [22], following [25]. This is a phenomenological argument. For the

NS-ω model we find through the model’s inertial range:

Êω(k) ' CEε2/3
ω k−5/3 and Ĥω(k) ' CHγωε−1/3

ω k−5/3.

Definition 4.6. Let Π̂ω and Σ̂ω denote the total energy and helicity transfer

from all wave numbers k. We say that the model exhibits a joint energy and

helicity cascade if, in some inertial range, Π̂ω and Σ̂ω are independent of the
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wave number, i.e. Π̂ω(k) = εω and Σ̂ω(k) = γω.

Following Kraichnan, see [22], we make the following assumptions on Π̂ω and

Σ̂ω.

Assumption 4.7. Π̂ω(k) is proportional to the total energy kÊω(k) and Σ̂ω(k)

is proportional to the total helicity kĤω(k) in wave numbers of order k and to

some effective rate of shear, σ(k), which acts to distort flow structures of scale

1/k.

Let τ(k) be the distortion time of flow structures of scales 1/k due to the

shearing action σ(k) of all wave numbers ≤ k. Then

τ(k) =
1

σ(k)
, where σ2(k) ∼

∫ k

0

p2Êω(p)dp. (4.18)

Assumption 4.8. Since energy and helicity are both dissipated by the same

mechanism (of viscosity), they relax over comparable time scales. Thus, τ(k)

and σ(k) are the same for energy and helicity of the model.

Assumption 2 leads to

Π̂ω(k) ' kÊω(k)/τ(k) and Σ̂ω(k) ' kĤω(k)/τ(k). (4.19)

Kolmogorov’s locality assumption gives that the main contribution in (4.18) is

from p ' k. Thus, we have

σ(k) ∼ k−3/2Ê−1/2
ω (k). (4.20)

To derive the energy spectrum, we first note that Definition 4.6, Assumption

4.8, and (4.20) imply

εω = Π̂ω(k) ' kσ(k)Êω(k)k5/2Ê3/2
ω (k) (4.21)
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and thus

Êω(k) ' ε2/3
ω k−5/3. (4.22)

In the same way we derive the helicity spectrum.

Ĥω(k) ' γωε−1/3
ω k−5/3. (4.23)

Similarly, we find that for NS-α and NS-α&ω we have

Êα(k) ' (1 + α2k2)ε2/3
α k−5/3 and Ĥα(k) ' γαε−1/3

α k−5/3, (4.24)

Êα&ω(k) ' (1 + α2k2)ε2/3
α&ωk−5/3 and

Ĥα&ω(k) ' (1 + α2k2)γα&ωε
−1/3
α&ω k−5/3. (4.25)

Thus, the NS-ω model, like NS-α and (as can be shown) NS-α&ω, gives accu-

rate prediction of energy and helicity (in the limit of resolution of all the model’s

persistent scales). However, (4.22) and (4.23) have two interesting subtleties

that suggest care must be taken when testing this prediction numerically. First,

if χ = 0 all three models likely have persistent scales smaller than O(α) with

the accompanying possibility of energy or helicity accumulation near h ∼ 1/α

in a numerical simulation. Thus, time relaxation with the appropriate choice

(see [28], formula (1.3))

χ =
U

L1/3
2

N+1
3 α−2/3, U = global velocity scale, L = global length scale,(4.26)

is an important tool for scale truncation. Second, there is a difference between

Ĥ and Ĥω. Thus, it is vital to monitor the appropriate model energy and

helicity statistics in any test.
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4.1 Microscales when χ = 0

Let ηEω
and ηHω

be the model’s energy and helicity microscale respectively. To

find ηEω we use (3.4)

εω(t) = ν

∫ kω

0

k2Êω(k)dk = ν

∫ kω

0

k2CEε2/3
ω k−5/3dk.

After integration we get kωCν−3/4ε
1/4
ω . Now, set ηEω

= 1
kEω

. Using the same

type of argument, we find that ηHω
= 1

kHω
, where kHω

= Cν−3/4ε
1/4
ω . It means

that, for the NS-ω model, the end of the inertial range for energy and helicity

is the same.

When χ > 0 we find by adapting the argument in [29] that if χ is given by

(4.26) we have

ηEω = ηHω = α, if χ = O(α−2/3). (4.27)

This further reinforces the importance of enhancing scale truncation by time

relaxation in all three models.

5 Conclusions

The NSE is an exact model for the flow of a viscous, incompressible fluid. Their

solution contains so much information that they become impractical for many

problems within typical time and resource limitations. Thus, numerical simu-

lations if turbulent flows are often based on various regularizations of the NSE

rather than the NSE themselves. Herein, we have developed the mathemati-

cal theory of a such a regularization of the NSE, the NS-ω model. Using the

semigroup approach for nonlinear differential equations of accretive type in Ba-

nach spaces, we proved that NS-ω admits strong solutions for large data and
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general ν > 0. We also applied the phenomenology of homogeneous, isotropic

turbulence to the NS-ω model. By adapting the reasoning of Richardson and

Kolmogorov, we establish the model’s energy cascade and found the micro-scale

of the model (the length-scale of the smallest persistent structure in the model’s

solution). We also showed that the model has a helicity cascade, linked to its

energy cascade. The energy and helicity both cascade at the correct O(k5/3)

rate for inertial range wave numbers up to the cutoff wave number of O(1/α).

This establishes consistency of the models helicity and energy cascades with the

true cascades of the NSE. In parallel, we also discuss the phenomenology of the

NS-ω with the ones of the NS-α and the NS-α&ω.

References

[1] C. Amrouche and V. Girault, Decomposition of vector spaces and applica-

tion to the Stokes problem in arbitrary dimension, Czechoslovak Math. J.

44(119) (1994), no. 1, 109–140.

[2] G. Baker, Galerkin approximations for the Navier-Stokes equations, Tech.

report, Harvard University, 1976.

[3] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach

Spaces, Noordhoff, Leyden, 1976.

[4] , Analysis and Control of Nonlinear Infinite Dimensional Systems,

Academic Press, Boston, 1993.

[5] V. Barbu and S. S. Sritharan, Flow invariance preserving feedback con-

trollers for the Navier-Stokes equation, J. Math. Anal. Appl. 255 (2001),

no. 1, 281–307.

24
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Orsay, 1978.

[40] M. van Reeuwijk, H.J.J. Jonker, and K. Hanjalić, Incompressibility of
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