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METRIZABILITY OF TOPOLOGICAL SEMIGROUPS ON
LINEARLY ORDERED TOPOLOGICAL SPACES

ZIQIN FENG AND ROBERT HEATH

Abstract. The authors use techniques and results from the theory of
generalized metric spaces to give a new, short proof that every con-
nected, linearly ordered topological space that is a cancellative topolog-
ical semigroup is metrizable, and hence embeddable in R. They also
prove that every separable, linearly ordered topological space that is a
cancellative topological semigroup is metrizable, so embeddable in R.

1. Background and Introduction

A linearly ordered topological space (LOTS) L is a linearly ordered set L
with the open interval topology. A cancellative topological semigroup on L is
a semigroup with a continuous semigroup operation such that ab = ac, ba =
ca and b = c are equivalent for any a, b, c ∈ L. A question that can be traced
to Abel and Lie, and was listed as the second half of Hilbert’s fifth problem,
essentially asks whether a cancellative topological semigroup on a connected,
linearly ordered topological space can be embedded in the real line. The
history of the problem, and the various solutions and partial solutions and
related questions, are most thoroughly documented by Hofmann and Lawson
[7]. A very abbreviated excerpt from their exposition might be the following.

There were early contributions by Hölder (1901) and then solutions to
restricted version of the question by Aczel (1948) and Tamari (1949); in [5] in
1958, Clifford pointed out that the arguments and results are further refined
and expanded by theorems of Hofmann, Aczel, Criagan and Pales, among
others (see [7]). Also a proof, using generalized metric techniques is given by
Barnhart in [3]. That proof, however, is restricted to the abelian case. Here
we give a fairly short proof using only generalized metric techniques. We also
show that the theorem still holds if ‘connected’ is replaced by ‘separable’.
One might assume that would be a corollary of the theorem in [7] that ‘a
totally ordered set can be embedded in R if and only if it contains a countable
subset C such that, for any x < y there is a c ∈ C with x ≤ c ≤ y’ [with
no mention of a semigroup]. The assumption that that hypothesis follows
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from separability is seen to been false. The space obtained from [0, 1] by
replacing each point by a pair of adjacent points (the ‘Double Arrow’ space)
is a compact, separable, linearly ordered topological space that can’t be
embedded in R, and of course does not have the aforementioned property.

2. Metrizability

Theorem 1. Every connected linearly ordered topological space L which is
a cancellative topological semigroup is metrizable, and hence embeddable in
R.

The theorem follows from the following propositions. Below L satisfies
the conditions of the theorem. Note that, every closed and bounded subset
of L is compact.

Proposition 2. For any a ∈ L, the maps fa given by fa(x) = ax and ga

given by ga(x) = xa are autohomeomorphisms of L.

Proof. Fix a ∈ L. Since L is topological semigroup, fa and ga are continuous
by the properties of topological semigroups. Also by the cancellativity of L,
fa and ga are both one-to-one. Take b, c ∈ L with b < c. Then [b, c] is com-
pact and connected, so fa maps [b, c] into the closed interval with endpoints
fa(b) and fa(c). Therefore, fa maps open intervals to open intervals, and so
f−1

a is continuous. Similarly, g−1
a is continuous. ¤

From Proposition 2, we know directly that fa and ga are both either
order-preserving or order-reversing.

Proposition 3. The space L is first countable.

Proof. Pick a ∈ L and an increasing sequence {aα : α < γ} which converges
to a from the left. Pick a countable subsequence {an : n ∈ ω} of {aα :
α < γ}. Then since L is connected and {an} has an upper bound, b =
sup .{an : n ∈ ω} exists. If b = a, then we have nothing to do from the left.
If not, consider fa. Since fa is a homeomorphism, fa(an) converges to ab.
Also gb is a homeomorphism which maps a to ab. Therefore the preimage
of {anb : n ∈ ω} is a sequence which converges to a from the left.

By similar reasoning, we can get a countable sequence {bn : n ∈ ω}
converges to a from the right. Then we get that {(an, bn) : n ∈ ω} is a
countable local base at a. ¤
Proposition 4. The sequence {an : n ∈ ω} is either constant or strictly
monotone and unbounded for any a ∈ L.

Proof. Three cases arise:
Case 1. Assume a = a2. Then the sequence is obviously constant.
Case 2. Assume a < a2. Since fa is order-preserving, we know we need

only to show a2 < a3. Suppose, for contradiction, a3 < a2.
If p, q ∈ [a, a2] and p < q, then we have the following two conditions:
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i) if ap < p, then aq < ap < p < q. Therefore, aq < q.
ii) if aq > q, then ap > aq > q > p. Therefore, ap > p.
Thus we can take I = inf{p : p ∈ [a, a2], ap < p} and S = sup{p : p ∈

[a, a2], ap > p}. It is obvious that I, S ∈ [a3, a2] and I ≤ S.
Consider the relationship between I and S. If I = S, then aI = I, and

this contradicts a < a2. If I < S, then for any m with I ≤ m ≤ S, we have
am = m, and again we get a contradiction.

Case 3. Assume a2 < a. Using a similar argument as in Case 2, we can
show a3 < a2, as required.

Thus {an : n ∈ ω} is strictly monotone in Case 2 and Case 3. Unbound-
edness is easy to prove by contradiction. ¤

Note that from the above: if a < a2, then {x ∈ L : a ≤ x} is a union of
almost disjoint homeomorphic closed intervals. Also note that we now know
fa and ga are both order-preserving.

Proposition 5. Take a ∈ L and assume without loss of generality a < a2

and a 6= min L. Then La = [a,∞) is metrizable.

Proof. By Proposition 2, there exists sequences x1 < x2 < · · · and y1 >
y2 > · · · that both converge to a. Define gn(a) = (xn, yn). For each p ∈
[a3, a4], take q ∈ [a2, a3] with p = aq and let gn(p) = (xnq, ynq). Now we
show that the neighborhood system {gn(p), n ∈ ω, p ∈ (a3, a4)} satisfies the
requirements of semi-metrizability.

Suppose y ∈ [a3, a4] and for each n, y ∈ gn(pn) = gn(aqn) = (xnqn, ynqn).
Without loss of generality, assume qn −→ z, then xnqn −→ az and ynqn −→
az. Thus since y ∈ (xnqn, ynqn) for each n, we have that y = az. Therefore
pn −→ y. It follows that [a3, a4] is semi-metrizable and hence it is metrizable
by the equivalence of the semi-metrizability and metrizability in LOTS [4].
Hence La = {x ∈ L : a ≤ x} is metrizable. And since La is connected and
locally compact, it is separable. Hence La is embeddable in R. ¤

Proof of Theorem 1. Here, without loss of generality we can assume there is
an a ∈ L with a < a2. Next we will prove the theorem in three cases.

Case 1. minL = m. Then it is easy to see that m ≤ m2. If m < m2, then
L is metrizable by Proposition 5. Otherwise, by Proposition 3, we can find
{xn : n ∈ ω} which converges to m from the right. Then for each n ∈ ω,
xn < (xn)2. Hence Lxn is metrizable for each n by Proposition 5. Therefore
L is metrizable.

Case 2. minL does not exist and there is some b ∈ L with b2 < b.
Then we can take m = inf{a : a < a2}. This follows because we can get
c < c2 from a < c and a < a2 from Proposition 4. Then it is easy to check
m = m2. Let x1 < x2 < · · · and y1 > y2 > · · · both converge to m. And
let Rxi = {a ∈ L : a ≤ xi}. A proof similar to that of Proposition 5, shows
that Rxi is metrizable for each i. Since Lyi is also metrizable, we get that
L is metrizable.
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Case 3. minL does not exist and a < a2 for any a ∈ L. If there is a
countable co-initial decreasing sequence {xn : n ∈ ω} which is unbounded,
then L =

⋃
n∈ω Lxn is metrizable because Lxn is metrizable for each n ∈ ω. If

not, we take {xα : α ∈ ω1} which is strictly decreasing and unbounded below
without countable co-initial subsequence. Then we take a ∈ L. Consider
the set {(xα)m : m ∈ ω, α ∈ ω1}. Then we can find n0, m0 and α0 such
that (xα)m0 ∈ [an0 , an0+1] for α > α0. This is because x < y ⇒ xn < yn.
Then we can suppose {(xα)m0 : α > α0} converges to b ∈ [an0 , an0+1]. This
contradicts the first countability of L. So we get a contradiction. ¤

Next, we have another nice theorem about the metrizability of a separable
linearly ordered topological space.

Theorem 6. Every separable linearly ordered topological space which is also
a cancellative topological semi-group is metrizable.

Proof. Recall that a separable LOTS is metrizable if and only if its set of
endpoints (points with either an immediate predecessor or an immediate
successor) is at most countable. Also, note that in a separable LOTS every
uncountable set contains a limit point, since every LOTS is monotonically
normal

Assume L is a separable LOTS with uncountably many endpoints, and
let L be a cancellative topological semi-group. Since L is separable, L has
at most countably many isolated points. So we may assume, without loss
of generality, that L has no isolated points (because the sum of nonisolated
points can not be isolated, and L is semigroup). Then the endpoints occur
in pairs of adjacent points. Let E be the set of all such adjacent point pairs,
x = (x1, x2) with x1 < x2.

Let L∗ be the space obtained by identifying each pair (x1, x2) to a point
x. Then L∗ is metrizable with metric δ which induces a pseudometric d on
L. Let E = {(x1, x2) : d(x1, x2) = 0}.

For each x = (x1, x2) ∈ E, we know x1 + x2 /∈ {2x1, 2x2} by the can-
cellativity of addition. Notice that 2x1 = 2x2 is possible. So if diamd{x1 +
x2, 2x1, 2x2} = 0, then we can get 2x1 = 2x2, and (p, q) or (q, p) is in E if
x1 + x2 = p and 2x1 = q.

Now consider the subset, F = {x ∈ E : diamd{x1 + x2, 2x1, 2x2} > 0}, of
L∗. Two cases arise:

Case 1. F is uncountable. Then since L is separable and monotonically
normal, F has cluster points in L. That leads to a contradiction to the
continuity of the operation and the distance function.

Case 2. F is countable. Then without loss of generality we can assume
B′ = {x ∈ E : (2x1, x1 + x2) ∈ E} is uncountable [otherwise, {x ∈ E :
(x1 +x2, 2x1) ∈ E} is uncountable]. Then, by separability, all but countably
many points of B′ are limit points of B′. By the continuity of the semi-
group operation, for each x ∈ B′, there is nx ∈ ω such that if δ(x, t) < 1/nx,
then t1 + t2 ≤ 2x1 = 2x2 < x1 + x2. Then there is ε > 0 such that
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G = {x ∈ B′ : 1/nx > ε} is uncountable. Now we can pick x, z ∈ G such
that δ(x, z) < ε. It follows that

z1 + z2 < x1 + x2 < z1 + z2

which is a contradiction.
Thus L is metrizable. ¤
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