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Abstract. Magnetohydrodynamics (MHD) studies the dynamics of electrically conducting flu-
ids, involving Navier-Stokes (NSE) equations in fluid dynamics and Maxwell equations in eletromag-
netism. The physical processes of fluid flows and electricity and magnetism are quite different and
numerical simulations of each sub-process can require different meshes, time steps and methods. In
most terrestrial applications, MHD flows occur at low magnetic Reynold numbers. We introduce
two partitioned methods to solve evolutionary MHD equations in such cases. The methods we study
allow us at each time step to call NSE and Maxwell codes separately, each possibly optimized for
the subproblem’s respective physics. Complete error analysis and computational tests supporting
the theory are given.
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1. Introduction. Broadly, MHD flows divide into plasmas and astrophysical
flows at high magnetic Reynolds numbers (denoted by Rm throughout this paper)
and terrestrial applications, such as liquid metals, at low Rm. We consider herein
the reduced MHD or RMHD model of MHD flows at low Rm. Incompressible flow
of an electrically conducting fluid in the presence of a magnetic field at low Rm is
modelled by the system, see, e.g., [15, 6, 21]: Given f , B and time T > 0, find
u : Ω× [0, T ] → ℝ

d, p : Ω× [0, T ] → ℝ and � : Ω× [0, T ] → ℝ such that:

1

N
(ut + u ⋅ ∇u)− 1

M2
Δu+∇p = f + (B×∇�+B× (B× u)) ,

Δ� =∇ ⋅ (u×B), and ∇ ⋅ u = 0. (RMHD)

Here Ω is a bounded, Lipschitz domain in ℝ
d (d = 3) and the body force f and the

magnetic field B are assumed to be known with ∇ ⋅ B = 0. Further, u is the fluid
velocity, p is pressure and � is electric potential. M , N are the Hartman number and
interaction parameter given by

M = BL

√

�

��
, N = �B2 L

�u

where u, B, L are the characteristic velocity, magnetic field and length, respectively.
The other parameters appearing above are the density �, the kinematic viscosity �,
and the electrical conductivity �, all assumed constant. The system (RMHD) is
supplemented by the homogeneous Dirichlet boundary conditions

u = 0, � = 0 on ∂Ω× [0, T ]
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and the initial data

u(x, 0) = u0(x) ∀x ∈ Ω. (1.1)

Other boundary conditions and variable material parameters can be considered. How-
ever, constant parameters and simple boundary conditions allow us to focus on the
physical coupling between u and � and an algorithm allowing uncoupling of RMHD
into physical subprocesses.

In this report, we propose and analyze the stability and errors of two partitioned
methods for the evolutionary RMHD equations. The methods we study herein include
a first order, one step scheme and a second order, two step scheme, both of which
consist of implicit discretization of the subproblem terms and explicit discretization
of coupling terms. These approaches solve the coupled problems by solving each sub-
physics problem per time step (without iteration), allowing the use of optimized NSE
codes and Ohm’s law codes. We prove that the new partitioned method (IMEX1)
below is convergent at first order and stable over 0 ≤ t < ∞. This method does not
require a restriction on time step size Δt, even though we treat the coupling terms
explicitly. The second method, (IMEX2), is second order convergent and stable over
0 ≤ t < ∞, provided that the time step is small. We also present numerical tests to
confirm the theoretical results.

1.1. Previous works. For a justification of using simplified MHD equations to
model MHD flows in terrestrial applications, we refer to [3, 8, 16]. There are several
different, almost equivalent formulations for RMHD. The one we study in this paper
can be found in [15, 6, 21]. Applications of MHD in industry and engineering are
abundant. They include liquid metal cooling of nuclear reactors [1, 7, 18], sea water
propulsion [11] and process metallurgy [2].

The results on existence, uniqueness and finite element approximation of the
steady-state MHD problems were developed through work in [20] (for two dimen-
sional case), [15] (for small magnetic Reynolds number case) and [6] (for full MHD
flows with perfectly conducting wall condition). In [12, 13, 10, 14], Meir et. al. stud-
ied variational methods and numerical approximation for solving stationary MHD
equations under more physically realistic boundary conditions that account for the
electromagnetic interaction of the fluid with the outside world. For further discussions
on mathematical and numerical analysis of steady-state MHD flows, we refer to [5, 4].

There are much less works on time-dependent MHD. Schmidt [17] developed a
formulation for evolutionary MHD and established the existence of global-in-time
weak solutions via the Galerkin method. To the best of our knowledge, the first
papers dealing with time discretization schemes of MHD problems were of Yuksel and
Ingram [21] and Trenchea [19]. The former studied the stability and error analysis
of the fully coupled, monolithic Crank-Nicolson method for reduced MHD equations
while the latter introduced an unconditionally stable, first order partitioned method
for full MHD based on uncoupling Elsässer variables. Our methods was presented
in [9] where partial result on stability was proven (but not convergence). Herein,
we review stability and give a complete and comprehensive convergence and error
analysis as well as new tests.

2. Notation and preliminaries. Throughout this paper, we will use C0 to
represent a generic positive constant whose value may be different from place to place
but which is independent of mesh size and time step. We denote the L2(Ω) norms
and corresponding inner products by ∥⋅∥ and (⋅, ⋅). Likewise, the Lp(Ω) norms and
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the Sobolev W k
p (Ω) norms are denoted by ∥ ⋅ ∥Lp and ∥ ⋅ ∥Wk

p
, respectively. For the

semi-norm in W k
p (Ω) we use ∣ ⋅ ∣Wk

p
. Hk(Ω) is used to represent the Sobolev space

W k
2 (Ω), and ∥ ⋅ ∥k denotes the norm in Hk(Ω). The space H−k(Ω) denotes the dual

space of Hk
0 (Ω). For functions v(x, t) defined on the entire time interval (0, T ), we

define for 1 ≤ m <∞

∥v∥∞,k := EssSup[0,T ]∥v(t, ⋅)∥k , and ∥v∥m,k :=

(

∫ T

0

∥v(t, ⋅)∥mk dt

)1/m

.

The velocity, pressure and potential spaces are X = (H1
0 (Ω))

d, Q = L2
0(Ω) and

S = H1
0 (Ω), respectively. The space of divergence free functions is given by

V = {v ∈ X : (∇ ⋅ v, q) = 0 ∀q ∈ Q} .

A weak formulation of (RMHD) is: Find u : [0, T ] → X, p : [0, T ] → Q and
� : [0, T ] → S for a.e. t ∈ (0, T ] satisfying

1

N
((ut,v) + (u ⋅ ∇u,v))+

1

M2
(∇u,∇v) − (p,∇ ⋅ v)

+(u×B,v ×B)− (∇�,v ×B) = (f ,v) ∀v ∈ X,

(∇ ⋅ u, q) = 0 ∀q ∈ Q,

−(∇�,∇ ) + (u×B,∇ ) = 0 ∀ ∈ S,

(2.1)

with the initial condition (1.1) a.e. in Ω. Note that, setting v = u,  = � and adding,
the coupling terms exactly cancel in the monolithic sum and one verifies the stability
of the continuous problem.

To make a spatial discretization of the RMHD system by the finite element
method, we select finite element spaces

velocity: Xℎ ⊂ X , pressure: Qℎ ⊂ Q, and potential: Sℎ ⊂ S
which are built on a conforming, edge to edge triangulation with maximum triangle
parameter denoted by a subscript “ℎ”. We assume that Xℎ ×Qℎ satisfies the usual
discrete inf-sup condition for the stability of the discrete pressure and Xℎ, Qℎ, Sℎ

satisfy approximation properties of piecewise polynomials on quasi-uniform meshes of
local degrees k, k − 1, k respectively. The error analysis in [15, 21] indicates that the
same order elements to be used for the velocity and electric potential. The discretely
divergence free velocity space is denoted by

V ℎ := Xℎ ∩ {vℎ : (qℎ,∇ ⋅ vℎ) = 0, for all qℎ ∈ Qℎ}.

Also define the usual, explicitly skew symmetrized trilinear form

b(u,v,w) =
1

2
((u ⋅ ∇v,w) − (u ⋅ ∇w,v)).

The monolithic, semi-discrete approximation of (2.1) (see [21]) are maps (uℎ, pℎ, �ℎ) :
[0, T ] → Xℎ ×Qℎ × Sℎ satisfying for all vℎ ∈ Xℎ, qℎ ∈ Qℎ,  ℎ ∈ Sℎ

1

N
((uℎ,t,vℎ) + b(uℎ,uℎ,vℎ))+

1

M2
(∇uℎ,∇vℎ)− (pℎ,∇ ⋅ vℎ)

+(uℎ ×B,vℎ ×B)− (∇�ℎ,vℎ ×B) = (f ,vℎ),

(∇ ⋅ uℎ, qℎ) = 0,

−(∇�ℎ,∇ ℎ) + (uℎ ×B,∇ ℎ) = 0.

(2.2)
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2.1. The implicit-explicit partitioned schemes. The methods we propose
and analyze herein have the coupling terms lagged or extrapolated in a careful way
that preserves stability. Thus the system at each time step uncouples into two sub-
problem solves. The first scheme we study is a combination of the two level implicit
method with the coupling terms treated by the explicit method. We shall use the
same time step in both subproblems. It reads

Algorithm 2.1 (First order IMEX scheme). Given un
ℎ ∈ Xℎ, pnℎ ∈ Qℎ, �nℎ ∈ Sℎ,

find un+1
ℎ ∈ Xℎ, pn+1

ℎ ∈ Qℎ, �n+1
ℎ ∈ Sℎ satisfying

1

N

((

un+1
ℎ − un

ℎ

Δt
,vℎ

)

+ b(un+1
ℎ ,un+1

ℎ ,vℎ)

)

+
1

M2
(∇un+1

ℎ ,∇vℎ)

−(pn+1
ℎ ,∇ ⋅ vℎ) + (un+1

ℎ ×B,vℎ ×B)−(∇�nℎ ,vℎ ×B) = (fn+1,vℎ),

(∇ ⋅ un+1
ℎ , qℎ) = 0, (IMEX1)

−(∇�n+1
ℎ ,∇ ℎ) + (un

ℎ ×B,∇ ℎ) = 0,

for all vℎ ∈ Xℎ, qℎ ∈ Qℎ and  ℎ ∈ Sℎ.
The second scheme we consider employs second order, three level BDF discretiza-

tion for the subproblem terms. The coupling terms are treated by two step extrap-
olation in Navier-Stokes equation and by implicit method in Ohm’s law. Since one
needs the updated value of uℎ at current time level to compute �ℎ, this method is
uncoupled but sequential: �nℎ → un+1

ℎ → �n+1
ℎ . Nevertheless, solving the subprob-

lems sequentially may be an acceptable tradeoff for higher accuracy and preservation
of stability. Computing time for the nonlinear equation of uℎ is normally expected to
dominate that for the Poisson solve for �ℎ.

Algorithm 2.2 (Second order IMEX scheme). Given un−1
ℎ ,un

ℎ ∈ Xℎ, pn−1
ℎ , pnℎ ∈

Qℎ, �n−1
ℎ , �nℎ ∈ Sℎ, find un+1

ℎ ∈ Xℎ, pn+1
ℎ ∈ Qℎ, �n+1

ℎ ∈ Sℎ satisfying

1

N

((

3un+1
ℎ − 4un

ℎ + un−1
ℎ

2Δt
,vℎ

)

+ b(un+1
ℎ ,un+1

ℎ ,vℎ)

)

+
1

M2
(∇un+1

ℎ ,∇vℎ)

−(pn+1
ℎ ,∇ ⋅ vℎ) + (un+1

ℎ ×B,vℎ ×B)− (∇(2�nℎ − �n−1),vℎ ×B) = (fn+1,vℎ),

(∇ ⋅ un+1
ℎ , qℎ) =0, (IMEX2)

−(∇�n+1
ℎ ,∇ ℎ) + (un+1

ℎ ×B,∇ ℎ) = 0,

for all vℎ ∈ Xℎ, qℎ ∈ Qℎ and  ℎ ∈ Sℎ.

3. Stability of the two partitioned methods. In this preliminary section, we
establish stability of the approximations in Algorithms IMEX1 and IMEX2. Theorem
3.1 was presented previously in [9]. We repeat its (short) proof here for completeness.

Theorem 3.1 (Unconditional stability of Algorithm IMEX1). Let (un
ℎ, p

n
ℎ, �

n
ℎ)

∈ Xℎ ×Qℎ × Sℎ satisfy (IMEX1) for each n ∈ {1, 2, ..., T
Δt}. Then

1

N
∥un

ℎ∥2 +
1

N

n−1
∑

j=0

∥uj+1
ℎ − u

j
ℎ∥2 +Δt∥∇�nℎ∥2 +Δt∥B× un

ℎ∥2 +
Δt

M2

n−1
∑

j=0

∥∇u
j+1
ℎ ∥2

+Δt

n−1
∑

j=0

(

∥ − ∇�jℎ + u
j+1
ℎ ×B∥2 + ∥ − ∇�j+1

ℎ + u
j
ℎ ×B∥2

)

(3.1)

≤ 1

N
∥u0

ℎ∥2 +Δt∥∇�0ℎ∥2 +Δt∥B× u0
ℎ∥2 +M2Δt

n−1
∑

j=0

∥f j+1∥2−1.
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Proof. In (IMEX1), we set vℎ = u
j+1
ℎ , qℎ = pj+1

ℎ ,  ℎ = �j+1
ℎ , add and multiply

by 2Δt and sum from j = 0 to n− 1. This gives

1

N
∥un

ℎ∥2 +
1

N

n−1
∑

j=0

∥uj+1
ℎ − u

j
ℎ∥2 +Δt∥∇�nℎ∥2 +Δt∥B× un

ℎ∥2 (3.2)

+
2Δt

M2

n−1
∑

j=0

∥∇u
j+1
ℎ ∥2 +Δt

n−1
∑

j=0

(

∥ − ∇�jℎ + u
j+1
ℎ ×B∥2 + ∥ − ∇�j+1

ℎ + u
j
ℎ ×B∥2

)

=
1

N
∥u0

ℎ∥2 +Δt∥∇�0ℎ∥2 +Δt∥B× u0
ℎ∥2 + 2Δt

n−1
∑

j=0

(f j+1,uj+1
ℎ ).

Applying Young’s inequality yields the result.
Remark 3.1. Besides the electric potential �, the electric current density J

defined by J = �(−∇� + u×B) is another important electromagnetic quantity to be
determined in MHD flows, see [16, 3]. For IMEX1, the stability of J comes directly

from the boundedness of 1
N

∑n−1
j=0 ∥uj+1

ℎ − u
j
ℎ∥2 and Δt

∑n−1
j=0 ∥ − ∇�j+1

ℎ + u
j
ℎ ×B∥2

in (3.1).
Next, we turn to Algorithm IMEX2. We prove that it is stable over 0 ≤ t < ∞

with a condition related the time step and the problem data but independent of the
spacial meshwidth, a result stated without proof in [9].

Theorem 3.2 (Stability of Algorithm IMEX2). Let (un
ℎ, p

n
ℎ, �

n
ℎ) ∈ Xℎ×Qℎ×Sℎ

satisfy (IMEX2) for each n ∈ {1, 2, ..., T
Δt}. Under the time step restriction

Δt <
1

2N∥B∥2L∞(M2C2
P ∥B∥2L∞ + 1)

(3.3)

Algorithm IMEX2 is stable

1

2N
∥un

ℎ∥2 +
1

2N
∥2un

ℎ − un−1
ℎ ∥2 + Δt

2M2

n−1
∑

j=1

∥∇u
j+1
ℎ ∥2 + Δt

�2

n−1
∑

j=1

∥2Jj − Jj−1∥2

≤ 1

2N
∥u1

ℎ∥2 +
1

2N
∥2u1

ℎ − u0
ℎ∥2 + 2ΔtM2

n−1
∑

j=1

∥f j+1∥2−1. (3.4)

Proof. Set vℎ = u
j+1
ℎ in the first equation of (IMEX2) and use the identity

1

4
[3a2 − 4b2 + c2] +

1

2
(a− b)2 − 1

2
(b − c)2 +

1

4
(a− 2b+ c)2 =

1

2
(3a− 4b+ c)a

with a = u
j+1
ℎ , b = u

j
ℎ, c = u

j−1
ℎ to get

1

4Δt
⋅ 1

N

(

3∥uj+1
ℎ ∥2 − 4∥uj

ℎ∥2 + ∥uj−1
ℎ ∥2

)

+
1

2Δt
⋅ 1

N
∥uj+1

ℎ − u
j
ℎ∥2 −

1

2Δt
⋅ 1

N
∥uj

ℎ − u
j−1
ℎ ∥2

+
1

4Δt
⋅ 1

N
∥uj+1

ℎ − 2uj
ℎ + u

j−1
ℎ ∥2 + 1

M2
∥∇u

j+1
ℎ ∥2 + 1

2
∥B× u

j+1
ℎ ∥2

+
1

2
∥ − ∇(2�jℎ − �j−1

ℎ ) + u
j+1
ℎ ×B∥2

=
1

2
∥∇(2�jℎ − �j−1

ℎ )∥2 + (f j+1,uj+1
ℎ ).

(3.5)
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The third equation of (IMEX2) gives

−(∇(2�jℎ − �j−1
ℎ ),∇ ℎ) + ((2uj

ℎ − u
j−1
ℎ )×B,∇ ℎ) = 0.

Setting  ℎ = 2�jℎ − �j−1
ℎ , we have

∥∇(2�jℎ − �j−1
ℎ )∥2 = ∥(2uj

ℎ−u
j−1
ℎ )×B∥2 (3.6)

− ∥−∇(2�jℎ − �j−1
ℎ ) + (2uj

ℎ−u
j−1
ℎ )×B∥2.

Plugging (3.6) into (3.5) yields

1

4Δt
⋅ 1

N

(

3∥uj+1
ℎ ∥2 − 4∥uj

ℎ∥2 + ∥uj−1
ℎ ∥2

)

(3.7)

+
1

2Δt
⋅ 1

N
∥uj+1

ℎ − u
j
ℎ∥2 −

1

2Δt
⋅ 1

N
∥uj

ℎ − u
j−1
ℎ ∥2

+
1

4Δt
⋅ 1

N
∥uj+1

ℎ − 2uj
ℎ + u

j−1
ℎ ∥2 + 1

M2
∥∇u

j+1
ℎ ∥2 + 1

2
∥B× u

j+1
ℎ ∥2

+
1

2
∥ − ∇(2�jℎ − �j−1

ℎ ) + u
j+1
ℎ ×B∥2 + 1

2
∥−∇(2�jℎ − �j−1

ℎ ) + (2uj
ℎ−u

j−1
ℎ )×B∥2

=
1

2
∥(2uj

ℎ−u
j−1
ℎ )×B∥2 + (f j+1,uj+1

ℎ ).

Next, observe that for an arbitrary � > 0

∥(2uj
ℎ−u

j−1
ℎ )×B∥2 = ∥(−u

j+1
ℎ + 2uj

ℎ−u
j−1
ℎ )×B∥2 + ∥uj+1

ℎ ×B∥2 (3.8)

+ 2((−u
j+1
ℎ + 2uj

ℎ−u
j−1
ℎ )×B,uj+1

ℎ ×B)

=∥(−u
j+1
ℎ + 2uj

ℎ−u
j−1
ℎ )×B∥2 + ∥uj+1

ℎ ×B∥2 + 1

�2
∥(−u

j+1
ℎ + 2uj

ℎ−u
j−1
ℎ )×B∥2

+ �2∥uj+1
ℎ ×B∥2 − ∥(1

�
(−u

j+1
ℎ + 2uj

ℎ−u
j−1
ℎ )− �uj+1

ℎ )×B∥2

≤
(

1 +
1

�2

)

∥B∥2L∞∥(−u
j+1
ℎ + 2uj

ℎ−u
j−1
ℎ )∥2 + ∥uj+1

ℎ ×B∥2

+ �2C2
P ∥B∥2L∞∥∇u

j+1
ℎ ∥2 − ∥(1

�
(−u

j+1
ℎ + 2uj

ℎ−u
j−1
ℎ )− �uj+1

ℎ )×B∥2

where CP is the Poincaré constant.
From (3.8), we can hide 1

2∥(2u
j
ℎ−u

j−1
ℎ ) × B∥2 in the left hand side of (3.7) to

obtain

1

4Δt
⋅ 1

N

(

3∥uj+1
ℎ ∥2 − 4∥uj

ℎ∥2 + ∥uj−1
ℎ ∥2

)

(3.9)

+
1

2Δt
⋅ 1

N
∥uj+1

ℎ − u
j
ℎ∥2 −

1

2Δt
⋅ 1

N
∥uj

ℎ − u
j−1
ℎ ∥2

+

(

1

4Δt
⋅ 1

N
− 1

2

(

1 +
1

�2

)

∥B∥2L∞

)

∥uj+1
ℎ − 2uj

ℎ + u
j−1
ℎ ∥2

+
1

2
∥ − ∇(2�jℎ − �j−1

ℎ ) + u
j+1
ℎ ×B∥2 + 1

2
∥−∇(2�jℎ − �j−1

ℎ ) + (2uj
ℎ−u

j−1
ℎ )×B∥2

+
1

2
∥(1
�
(−u

j+1
ℎ + 2uj

ℎ−u
j−1
ℎ )− �uj+1

ℎ )×B∥2 +
(

1

M2
− 1

2
�2C2

P ∥B∥2L∞

)

∥∇u
j+1
ℎ ∥2

≤ (f j+1,uj+1
ℎ ).
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Let � = (CPM∥B∥L∞)−1, under the condition (3.3), we have from (3.9)

1

4Δt
⋅ 1

N

(

3∥uj+1
ℎ ∥2 − 4∥uj

ℎ∥2 + ∥uj−1
ℎ ∥2

)

+
1

2Δt
⋅ 1

N
∥uj+1

ℎ − u
j
ℎ∥2 −

1

2Δt
⋅ 1

N
∥uj

ℎ − u
j−1
ℎ ∥2

+
1

2
∥ − ∇(2�jℎ − �j−1

ℎ ) + u
j+1
ℎ ×B∥2 + 1

2
∥−∇(2�jℎ − �j−1

ℎ ) + (2uj
ℎ−u

j−1
ℎ )×B∥2

+
1

2
∥(1
�
(−u

j+1
ℎ + 2uj

ℎ−u
j−1
ℎ )− �uj+1

ℎ )×B∥2 + 1

2M2
∥∇u

j+1
ℎ ∥2

≤ (f j+1,uj+1
ℎ ).

Summing from j = 1 to n− 1, multiply both sides by 2Δt and use the identity

3

2
a2 − 1

2
b2 + (a− b)2 =

a2

2
+

(

a
√
2− b√

2

)2

we get

1

2N
∥un

ℎ∥2 +
1

2N
∥2un

ℎ − un−1
ℎ ∥2 + Δt

M2

n−1
∑

j=1

∥∇u
j+1
ℎ ∥2

+Δt
n−1
∑

j=1

∥ − ∇(2�jℎ − �j−1
ℎ ) + u

j+1
ℎ ×B∥2

+Δt

n−1
∑

j=1

∥−∇(2�jℎ − �j−1
ℎ ) + (2uj

ℎ−u
j−1
ℎ )×B∥2

≤ 1

2N
∥u1

ℎ∥2 +
1

2N
∥2u1

ℎ − u0
ℎ∥2 + 2Δt

n−1
∑

j=1

(f j+1,uj+1
ℎ ).

Applying Young’s inequality for the term involving body force yields the energy esti-
mate (3.4).

4. Error analysis. We proceed to give an á priori error estimate for the parti-
tioned methods IMEX1 and IMEX2. Due to the length and technicality of the proofs,
for the compactness, we only analyze the error of the first order IMEX scheme, i.e.
Algorithm IMEX1. With minor modifications (and greater length), the analogous
convergence rates are obtained for Algorithm IMEX2.

Let tj = jΔt and uj := u(tj) (and similarly for other variables). To establish the
optimal error estimate for the model, we introduce the following discrete norms

∥∣!∣∥∞,k := max
0≤j≤T/Δt

∥!j∥k, ∥∣!∣∥2,k :=

⎛

⎝

T/Δt
∑

j=0

∥!j∥2kΔt

⎞

⎠

1/2

and assume the following regularity of the true solution

u ∈ L∞(0, T ; (Hk+1(Ω))d) ∩H1(0, T ; (Hk+1(Ω))d) ∩H2(0, T ; (L2(Ω))d),

p ∈ L2(0, T ;Hs+1(Ω)), � ∈ L∞(0, T ;Hk+1(Ω)) ∩H1(0, T ;H1(Ω))
(4.1)
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Denote the errors by ej
u
= uj − u

j
ℎ, e

j
� = �j − �jℎ and ej

J
= −∇ej� + ej

u
×B. We have

the following theorem
Theorem 4.1. For u, p, � satisfying the weak formulation (2.1) and regularity

condition (4.1), and un
ℎ, p

n
ℎ, �

n
ℎ given by Algorithm IMEX1 with n ∈ {1, 2, ..., T

Δt}, we
have for Δt sufficiently small

∥enu∥2 +
n−1
∑

j=0

∥ej+1
u − eju∥2 +

NΔt

M2

n−1
∑

j=0

∥∇ej+1
u ∥2 +NΔt

n−1
∑

j=0

∥∇ej+1
� ∥2 (4.2)

+NΔt

n−1
∑

j=0

∥ − ∇ej� + ej+1
u

×B∥2 +NΔt

n−1
∑

j=0

∥ − ∇ej+1
� + ej

u
×B∥2

≤ C0

(

∥u0 − u0
ℎ∥2 + ∥∇(�0 − �0ℎ)∥2 + ℎ2k+2∥∣u∣∥2∞,k+1 + ℎ2k∥∣�∣∥2∞,k+1

+ ℎ2k+2∥ut∥22,k+1 + ℎ2k∥∣u∣∥22,k+1 + ℎ4k∥∣u∣∥44,k+1 +Δt2∥�t∥22,1 + ℎ2s+2∥∣p∣∥22,s+1

+Δt2∥utt∥22,0 + ℎ2k∥∣�∣∥22,k+1 + ℎ2k+2∥∣u∣∥22,k+1 +Δt2∥ut∥22,0

)

.

Proof. At time tj+1 = (j + 1)Δt, the true solution (u, p, �) of (2.1) satisfies

1

N

((

uj+1 − uj

Δt
,vℎ

)

+ b(uj+1,uj+1,vℎ)

)

+
1

M2
(∇uj+1,∇vℎ)

− (pj+1,∇ ⋅ vℎ) + (uj+1 ×B,vℎ ×B)− (∇�j ,vℎ ×B) = (f j+1,vℎ)

+ (∇(�j+1 − �j),vℎ ×B) +
1

N

(

uj+1 − uj

Δt
− ut(t

j+1),vℎ

)

∀vℎ ∈ Xℎ,

− (∇�j+1,∇ ℎ) + (uj ×B,∇ ℎ) = −((uj+1−uj)×B,∇ ℎ) ∀ ℎ ∈ Sℎ.

(4.3)

We construct the error equations for velocity and electric potential. Decompose the
velocity error

uj+1 − u
j+1
ℎ = (uj+1 − ũ

j+1
ℎ ) + (ũj+1

ℎ − u
j+1
ℎ ) =: �j+1 +U

j+1
ℎ

and the electric potential error

�j+1 − �j+1
ℎ = (�j+1 − �̃j+1

ℎ ) + (�̃j+1
ℎ − �j+1

ℎ ) =: �j+1 +Φj+1
ℎ

where ũj+1
ℎ and �̃j+1

ℎ will be the interpolation of uj+1 and �j+1 in Vℎ and Sℎ, respec-
tively.

Substract (4.3) from (IMEX1) and set vℎ = U
j+1
ℎ and  ℎ = Φj+1

ℎ to obtain

1

2Δt
⋅ 1

N

(

∥Uj+1
ℎ ∥2 − ∥Uj

ℎ∥2 + ∥Uj+1
ℎ −U

j
ℎ∥2
)

+
1

M2
∥∇U

j+1
ℎ ∥2 + ∥B×U

j+1
ℎ ∥2

− (∇Φj
ℎ,U

j+1
ℎ ×B) = − 1

N

(

�j+1 − �j

Δt
,Uj+1

ℎ

)

− 1

N
b(Uj+1

ℎ ,uj+1,Uj+1
ℎ ) (4.4)

− 1

N
b(uj+1

ℎ , �j+1,Uj+1
ℎ )− 1

N
b(�j+1,uj+1,Uj+1

ℎ ) + (pj+1 − �j+1
ℎ ,∇ ⋅Uj+1

ℎ )

− 1

M2
(∇�j+1,∇U

j+1
ℎ )− (�j+1 ×B,Uj+1

ℎ ×B) + (∇�j ,Uj+1
ℎ ×B)
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+ (∇(�j+1 − �j),Uj+1
ℎ ×B) +

1

N

(

uj+1 − uj

Δt
− ut(t

j+1),Uj+1
ℎ

)

,

for every �j+1
ℎ ∈ Qℎ, and

− ∥∇Φj+1
ℎ ∥2 + (Uj

ℎ ×B,∇Φj+1
ℎ ) = (∇�j+1,∇Φj+1

ℎ )

− (�j ×B,∇Φj+1
ℎ )− ((uj+1 − uj)×B,∇Φj+1

ℎ ).
(4.5)

We have from (4.5)

2∥∇Φj+1
ℎ ∥2 − (Uj

ℎ ×B,∇Φj+1
ℎ ) = (Uj

ℎ ×B,∇Φj+1
ℎ )− 2(∇�j+1,∇Φj+1

ℎ )

+ 2(�j ×B,∇Φj+1
ℎ ) + 2((uj+1 − uj)×B,∇Φj+1

ℎ ).
(4.6)

Adding (4.4) and (4.6) and rearranging terms in the left hand side give

1

2Δt
⋅ 1

N

(

∥Uj+1
ℎ ∥2 − ∥Uj

ℎ∥2 + ∥Uj+1
ℎ −U

j
ℎ∥2
)

+
1

M2
∥∇U

j+1
ℎ ∥2

+
1

2
∥Uj+1

ℎ ×B∥2 − 1

2
∥Uj

ℎ ×B∥2 + 1

2
∥∇Φj+1

ℎ ∥2 − 1

2
∥∇Φj

ℎ∥2

+
1

2
∥ − ∇Φj

ℎ +U
j+1
ℎ ×B∥2 + 1

2
∥ − ∇Φj+1

ℎ +U
j
ℎ ×B∥2 + ∥∇Φj+1

ℎ ∥2

= − 1

N

(

�j+1 − �j

Δt
,Uj+1

ℎ

)

− 1

N
b(Uj+1

ℎ ,uj+1,Uj+1
ℎ )

− 1

N
b(uj+1

ℎ , �j+1,Uj+1
ℎ )− 1

N
b(�j+1,uj+1,Uj+1

ℎ ) + (pj+1 − �j+1
ℎ ,∇ ⋅Uj+1

ℎ )

− 1

M2
(∇�j+1,∇U

j+1
ℎ )− (−∇�j + �j+1 ×B,Uj+1

ℎ ×B) + (Uj
ℎ ×B,∇Φj+1

ℎ )

+ (∇(�j+1 − �j),Uj+1
ℎ ×B) +

1

N

(

uj+1 − uj

Δt
− ut(t

j+1),Uj+1
ℎ

)

− 2(∇�j+1,∇Φj+1
ℎ ) + 2(�j ×B,∇Φj+1

ℎ ) + 2((uj+1 − uj)×B,∇Φj+1
ℎ ).

(4.7)

We proceed to bound each term on the right hand side of (4.7), absorb like-terms
into the left hand side. For an arbitrary " > 0,

− 1

N

(

�j+1 − �j

Δt
,Uj+1

ℎ

)

≤ 1

4"N2

∥

∥

∥

∥

�j+1 − �j

Δt

∥

∥

∥

∥

2

−1

+ "∥∇U
j+1
ℎ ∥2. (4.8)

The first nonlinear term can be bounded as

− 1

N
b(Uj+1

ℎ ,uj+1,Uj+1
ℎ ) ≤ C0∥Uj+1

ℎ ∥∥uj+1∥2∥∇U
j+1
ℎ ∥

≤ C2
0

4"
∥Uj+1

ℎ ∥2∥uj+1∥22 + "∥∇U
j+1
ℎ ∥2. (4.9)

We now give an estimation for − 1
N b(u

j+1
ℎ , �j+1,Uj+1

ℎ ):

− 1

N
b(uj+1

ℎ , �j+1,Uj+1
ℎ ) = − 1

N
b(uj+1, �j+1,Uj+1

ℎ )

+
1

N
b(�j+1, �j+1,Uj+1

ℎ ) +
1

N
b(Uj+1

ℎ , �j+1,Uj+1
ℎ ),
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where terms in the right hand side can be controlled as

− 1

N
b(uj+1, �j+1,Uj+1

ℎ ) ≤ C0∥∇uj+1∥∥∇�j+1∥∥∇U
j+1
ℎ ∥ (4.10)

≤ C2
0

4"
∥u∥2∞,1∥∇�j+1∥2 + "∥∇U

j+1
ℎ ∥2,

1

N
b(�j+1, �j+1,Uj+1

ℎ ) ≤ C2
0

4"
∥∇�j+1∥4 + "∥∇U

j+1
ℎ ∥2, (4.11)

and

1

N
b(Uj+1

ℎ , �j+1,Uj+1
ℎ ) ≤ C0∥Uj+1

ℎ ∥1/2∥∇U
j+1
ℎ ∥1/2∥∇�j+1∥∥∇U

j+1
ℎ ∥ (4.12)

≤ C0ℎ
−1/2∥Uj+1

ℎ ∥∥∇�j+1∥∥∇U
j+1
ℎ ∥ ≤ C0ℎ

1/2∥Uj+1
ℎ ∥∥uj+1∥2∥∇U

j+1
ℎ ∥

≤ C2
0

4"
ℎ∥Uj+1

ℎ ∥2∥uj+1∥22 + "∥∇U
j+1
ℎ ∥2.

The last nonlinear term can be bounded exactly like in (4.10). For the pressure term

(pj+1 − �j+1
ℎ ,∇ ⋅Uj+1

ℎ ) ≤ C2
0

4"
∥pj+1 − �j+1

ℎ ∥2 + "∥∇U
j+1
ℎ ∥2. (4.13)

We continue to deal with the remaining terms. Firstly,

− 1

M2
(∇�j+1,∇U

j+1
ℎ ) ≤ C2

0

4"
∥∇�j+1∥2 + "∥∇U

j+1
ℎ ∥2. (4.14)

Next, we have

− (−∇�j + �j+1 ×B,Uj+1
ℎ ×B) ≤ ∥ −∇�j + �j+1 ×B∥∥Uj+1

ℎ ×B∥ (4.15)

≤ C0∥ − ∇�j + �j+1 ×B∥2 + ∥B∥2L∞∥Uj+1
ℎ ∥2.

Also, observe that

(Uj
ℎ ×B,∇Φj+1

ℎ ) ≤ ∥Uj
ℎ ×B∥∥∇Φj+1

ℎ ∥ ≤ 1

4"′
∥B∥2L∞∥Uj

ℎ∥2 + "′∥∇Φj+1
ℎ ∥2, (4.16)

and

(∇(�j+1 − �j),Uj+1
ℎ ×B) ≤ C0∥∇(�j+1 − �j)∥2 + ∥B∥2L∞∥Uj+1

ℎ ∥2. (4.17)

Furthermore,

1

N

(

uj+1 − uj

Δt
− ut(t

j+1),Uj+1
ℎ

)

≤ C0

∥

∥

∥

∥

uj+1 − uj

Δt
− ut(t

j+1)

∥

∥

∥

∥

∥

∥

∥∇U
j+1
ℎ

∥

∥

∥ (4.18)

≤ C2
0

4"

∥

∥

∥

∥

uj+1 − uj

Δt
− ut(t

j+1)

∥

∥

∥

∥

2

+ "
∥

∥

∥∇U
j+1
ℎ

∥

∥

∥

2

.

We also have

− 2(∇�j+1,∇Φj+1
ℎ ) ≤ 2∥∇�j+1∥∥∇Φj+1

ℎ ∥ ≤ 1

"′
∥∇�j+1∥2 + "′∥∇Φj+1

ℎ ∥2. (4.19)
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Finally, it gives

2(�j ×B,∇Φj+1
ℎ ) ≤ 2∥�j ×B∥∥∇Φj+1

ℎ ∥ ≤ 1

"′
∥B∥2L∞∥�j∥2 + "′∥∇Φj+1

ℎ ∥2, (4.20)

and

2((uj+1 − uj)×B,∇Φj+1
ℎ ) ≤ 2∥(uj+1 − uj)×B∥∥∇Φj+1

ℎ ∥ (4.21)

≤ 1

"′
∥B∥2L∞∥uj+1 − uj∥2 + "′∥∇Φj+1

ℎ ∥2.

Applying estimate (4.8)–(4.21) to (4.7) with " = 1
18M2 and "′ = 1

8 gives

1

2Δt
⋅ 1

N

(

∥Uj+1
ℎ ∥2 − ∥Uj

ℎ∥2 + ∥Uj+1
ℎ −U

j
ℎ∥2
)

+
1

2M2
∥∇U

j+1
ℎ ∥2

+
1

2
∥Uj+1

ℎ ×B∥2 − 1

2
∥Uj

ℎ ×B∥2 + 1

2
∥∇Φj+1

ℎ ∥2 − 1

2
∥∇Φj

ℎ∥2

+
1

2
∥ − ∇Φj

ℎ +U
j+1
ℎ ×B∥2 + 1

2
∥ − ∇Φj+1

ℎ +U
j
ℎ ×B∥2 + 1

2
∥∇Φj+1

ℎ ∥2

≤
(

9

2
C2

0M
2∥uj+1∥22(1 + ℎ) + 2∥B∥2L∞

)

∥Uj+1
ℎ ∥2 + 2∥B∥2L∞∥Uj

ℎ∥2

+
9M2

2N2

∥

∥

∥

∥

�j+1 − �j

Δt

∥

∥

∥

∥

2

−1

+ 9C2
0M

2∥u∥2∞,1∥∇�j+1∥2 + 9

2
C2

0M
2∥∇�j+1∥4

+
9

2
C2

0M
2∥pj+1 − �j+1

ℎ ∥2 + 9

2
C2

0M
2∥∇�j+1∥2 + C0∥ − ∇�j + �j+1 ×B∥2

+ C0∥∇(�j+1 − �j)∥2 + 9

2
C2

0M
2

∥

∥

∥

∥

uj+1 − uj

Δt
− ut(t

j+1)

∥

∥

∥

∥

2

+ 8∥∇�j+1∥2 + 8∥B∥2L∞∥�j∥2 + 8∥B∥2L∞∥uj+1 − uj∥2.

(4.22)

Let � = 9C2
0M

2N∥u∥2∞,2(1 + ℎ) + 8∥B∥2L∞N , summing from j = 0 to j = n− 1 and
applying the discrete Gronwall lemma yield

∥Un
ℎ∥2 +

n−1
∑

j=0

∥Uj+1
ℎ −U

j
ℎ∥2 +

NΔt

M2

n−1
∑

j=0

∥∇U
j+1
ℎ ∥2 +NΔt

n−1
∑

j=0

∥∇Φj+1
ℎ ∥2 (4.23)

+NΔt

n−1
∑

j=0

∥ − ∇Φj
ℎ +U

j+1
ℎ ×B∥2 +NΔt

n−1
∑

j=0

∥ − ∇Φj+1
ℎ +U

j
ℎ ×B∥2

≤ exp

(

(n+ 1)
Δt�

1−Δt�

)

(

∥U0
ℎ∥2 +NΔt∥U0

ℎ ×B∥2 +NΔt∥∇Φ0
ℎ∥2

+Δt
9M2

N

n−1
∑

j=0

∥

∥

∥

∥

�j+1 − �j

Δt

∥

∥

∥

∥

2

−1

+ 2NΔt

(

9C2
0M

2∥u∥2∞,1 +
9

2
C2

0M
2

) n−1
∑

j=0

∥∇�j+1∥2

+ 9ΔtC2
0M

2N

n−1
∑

j=0

∥∇�j+1∥4 + 9ΔtC2
0M

2N

n−1
∑

j=0

∥pj+1 − �j+1
ℎ ∥2

+ 2NΔtC0

n−1
∑

j=0

∥∇(�j+1 − �j)∥2 + 9ΔtC2
0M

2N

n−1
∑

j=0

∥

∥

∥

∥

uj+1 − uj

Δt
− ut(t

j+1)

∥

∥

∥

∥

2
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+ 2NΔt(2C0 + 8)

n
∑

j=0

∥∇�j∥2 + 2NΔt(2C0 + 8)∥B∥2L∞

n
∑

j=0

∥�j∥2

+ 16NΔt∥B∥2L∞

n−1
∑

j=0

∥uj+1 − uj∥2
)

provided that Δt < 1/�.
We next bound the right hand side of (4.23). First,

∥U0
ℎ∥2 +NΔt∥U0

ℎ ×B∥2 +NΔt∥∇Φ0
ℎ∥2

≤ 2∥u0 − u0
ℎ∥2 + 2∥�0∥2 + 2NΔt∥(u0 − u0

ℎ)×B∥2 + 2NΔt∥�0 ×B∥2

+ 2NΔt∥∇(�0 − �0ℎ)∥2 + 2NΔt∥∇�0∥2 (4.24)

≤ (2 + 2NΔt∥B∥2L∞)∥u0 − u0
ℎ∥2 + 2NΔt∥∇(�0 − �0ℎ)∥2

+ C0(2 + 2NΔt∥B∥2L∞)ℎ2k+2∥∣u∣∥2∞,k+1 + 2NΔtC0ℎ
2k∥∣�∣∥2∞,k+1

≤C0∥u0 − u0
ℎ∥2 + C0∥∇(�0 − �0ℎ)∥2 + C0ℎ

2k+2∥∣u∣∥2∞,k+1 + C0ℎ
2k∥∣�∣∥2∞,k+1.

The next term can be controlled as follows

Δt
9M2

N

n−1
∑

j=0

∥

∥

∥

∥

�j+1 − �j

Δt

∥

∥

∥

∥

2

−1

≤ C0

n−1
∑

j=0

∫ tj+1

tj
∥�t∥2dt ≤ C0ℎ

2k+2∥ut∥22,k+1. (4.25)

We also have

9NΔtC2
0M

2
(

2∥u∥2∞,1+1
)

n−1
∑

j=0

∥∇�j+1∥2

≤ C0Δt

n−1
∑

j=0

ℎ2k∥uj+1∥2k+1 = C0ℎ
2k∥∣u∣∥22,k+1. (4.26)

Observe that

9ΔtC2
0M

2N

n−1
∑

j=0

∥∇�j+1∥4 ≤ C0Δt

n−1
∑

j=0

ℎ4k∥uj+1∥4k+1 = C0ℎ
4k∥∣u∣∥44,k+1, (4.27)

and

2NΔtC0

n−1
∑

j=0

∥∇(�j+1 − �j)∥2 ≤ C0Δt
2
n−1
∑

j=0

∫ tj+1

tj
∥∇�t∥2dt ≤ C0Δt

2∥�t∥22,1. (4.28)

Let �j+1
ℎ be the interpolation of pj+1 in Qℎ, we have

9ΔtC2
0M

2N

n−1
∑

j=0

∥pj+1 − �j+1
ℎ ∥2 ≤ C0ℎ

2s+2∥∣p∣∥22,s+1. (4.29)

Moreover, it gives

9ΔtC2
0M

2N

n−1
∑

j=0

∥

∥

∥

∥

uj+1 − uj

Δt
−ut(t

j+1)

∥

∥

∥

∥

2

≤C0Δt
2
n−1
∑

j=0

∫ tj+1

tj
∥utt∥2dt=C0Δt

2∥utt∥22,0.

(4.30)
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On the other hand, we can see that

2NΔt(2C0+8)

n
∑

j=0

∥∇�j∥2 ≤ C0Δt

n
∑

j=0

ℎ2k∥�j∥2k+1 = C0ℎ
2k∥∣�∣∥22,k+1. (4.31)

Finally, we have

2NΔt(2C0+8)∥B∥2L∞

n
∑

j=0

∥�j∥2 ≤ C0Δt

n
∑

j=0

ℎ2k+2∥uj∥2k+1 = C0ℎ
2k+2∥∣u∣∥22,k+1,

(4.32)

and

16NΔt∥B∥2L∞

n−1
∑

j=0

∥uj+1−uj∥2 ≤ C0Δt
2
n−1
∑

j=0

∫ tj+1

tj
∥ut∥2dt ≤ C0Δt

2∥ut∥22,0. (4.33)

Combining (4.23)–(4.33) gives

∥Un
ℎ∥2 +

n−1
∑

j=0

∥Uj+1
ℎ −U

j
ℎ∥2 +

NΔt

M2

n−1
∑

j=0

∥∇U
j+1
ℎ ∥2 +NΔt

n−1
∑

j=0

∥∇Φj+1
ℎ ∥2 (4.34)

+NΔt
n−1
∑

j=0

∥ − ∇Φj
ℎ +U

j+1
ℎ ×B∥2 +NΔt

n−1
∑

j=0

∥ − ∇Φj+1
ℎ +U

j
ℎ ×B∥2

≤ C0

(

∥u0 − u0
ℎ∥2 + ∥∇(�0 − �0ℎ)∥2 + ℎ2k+2∥∣u∣∥2∞,k+1 + ℎ2k∥∣�∣∥2∞,k+1

+ ℎ2k+2∥ut∥22,k+1 + ℎ2k∥∣u∣∥22,k+1 + ℎ4k∥∣u∣∥44,k+1 +Δt2∥�t∥22,1 + ℎ2s+2∥∣p∣∥22,s+1

+Δt2∥utt∥22,0 + ℎ2k∥∣�∣∥22,k+1 + ℎ2k+2∥∣u∣∥22,k+1 +Δt2∥ut∥22,0

)

.

To obtain the error estimate given in (4.2), we add both sides of (4.34) with

Extra terms = ∥�n∥2 +
n−1
∑

j=0

∥�j+1 − �j∥2 + NΔt

M2

n−1
∑

j=0

∥∇�j+1∥2+NΔt

n−1
∑

j=0

∥∇�j+1∥2

+NΔt
n−1
∑

j=0

∥ − ∇�j + �j+1 ×B∥2 +NΔt
n−1
∑

j=0

∥ − ∇�j+1 + �j ×B∥2

and apply the triangle inequality for the left hand side, noticing that the upcoming
new terms are already contained in the right hand side of the model.

Consequently, for Taylor-Hood elements, i.e. k = 2, s = 1, we have the following
result.

Corollary 4.2. Consider Algorithm IMEX1. Under the assumptions of The-
orem 4.1, suppose that (Xℎ, Qℎ) is given by P2-P1 Taylor-Hood approximation ele-
ments and Sℎ is P2 finite element. Then, there is a positive constant C0 such that

∥∣eu∣∥2∞,0 + ∥∣∇eu∣∥22,0 + ∥∣∇e�∣∥22,0 + ∥∣eJ∣∥22,0 ≤ C0(Δt
2 + ℎ4).
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5. Numerical experiments. We present two numerical experiments to test the
algorithms proposed herein. First, given exact solutions, we verify the convergence
rates of our methods. Second, we will test the stability in case M and N are large.
The code was implemented using the software package FreeFEM++.

5.1. Test 1. A verification of convergence rates for a smooth exact solution was
presented in [9]. We test herein a solution that is more oscillatory than the test in
[21]. Taking the time interval 0 ≤ t ≤ 1, M = 20, N = 16 and setting the imposed
magnetic field B = (0, 0, 1), we consider true solution (u, p, �) given by

u(x, y, t) = (5 cos(5x) sin(5y),−5 sin(5x) cos(5y), 0)e−5t,

p(x, y, t) = 0,

�(x, y, t) = (cos(5x) cos(5y) + x2 − y2)e−5t.

defined on the domain Ω = [0, �]2, satisfying Δ� = ∇ ⋅ (u×B). We utilize piecewise
quadratic for velocity and piecewise linear for pressure for the Navier-Stokes equation
and continuous piecewise quadratic finite elements for the Ohm’s law. Convergence
rates are calculated from the errors at two successive values of ℎ in the usual manner
by postulating e(ℎ) = Cℎ� and solving for � via � = ln(e(ℎ1)/e(ℎ2))/ ln(ℎ1/ℎ2). The
boundary condition on the problem is inhomogeneous Dirichlet: uℎ = u on ∂Ω. The
initial data and source terms are chosen to correspond the exact solution.

For this section, we denote ∥ ⋅ ∥∞ = ∥ ⋅ ∥L∞(0,T ;L2(Ω)) and ∥ ⋅ ∥2 = ∥ ⋅ ∥L2(0,T ;L2(Ω)).
From Tables 5.1 and 5.2, IMEX1 is first order and IMEX2 is second order.

The performance of numerical methods we studied herein is also compared with
the monolithic, fully implicit methods (same discretization of subdomain terms but
implicit discretization of coupling terms). Specifically, using the same test problem,
Table 5.3 compares the errors ∥u − uℎ∥∞ + ∥� − �ℎ∥∞ produced by IMEX1 and
Backward Euler method (BE), and compares those errors of IMEX2 and second order,
implicit BDF method (BDF).

ℎ Δt ∥u−uℎ∥∞ Rate ∥∇u−∇uℎ∥2 Rate ∥∇�−∇�ℎ∥2 Rate
1/20 1/160 9.196e-1 – 5.361e+0 – 8.046e-1 –
1/40 1/320 5.307e-1 0.793 2.856e+0 0.908 4.455e-1 0.853
1/60 1/480 3.644e-1 0.927 1.935e+0 0.960 3.031e-1 0.950
1/80 1/640 2.769e-1 0.955 1.462e+0 0.974 2.293e-1 0.970
1/120 1/960 1.870e-1 0.968 9.826e-1 0.980 1.542e-1 0.979

Table 5.1
The convergence performance for Algorithm IMEX1.

ℎ Δt ∥u−uℎ∥∞ Rate ∥∇u−∇uℎ∥2 Rate ∥∇�−∇�ℎ∥2 Rate
1/20 1/160 1.209e-1 – 1.725e+0 – 2.137e-1 –
1/40 1/320 1.187e-2 3.348 4.147e-1 2.056 5.227e-2 2.032
1/60 1/480 3.417e-3 3.071 1.769e-1 2.101 2.338e-2 1.984
1/80 1/640 1.516e-3 2.825 9.738e-2 2.075 1.321e-2 1.985
1/120 1/960 5.782e-4 2.377 4.253e-2 2.043 5.897e-3 1.989

Table 5.2
The convergence performance for Algorithm IMEX2.
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ℎ Δt IMEX1 BE IMEX2 BDF

1/20 1/160 1.073e+0 9.573e-2 1.407e-1 1.238e-1
1/40 1/320 6.195e-1 4.295e-2 1.372e-2 1.339e-2
1/60 1/480 4.254e-1 3.104e-2 3.942e-3 3.873e-3
1/80 1/640 3.233e-1 2.376e-2 1.758e-3 1.597e-3
1/120 1/960 2.183e-1 1.602e-2 6.710e-4 4.592e-4

Table 5.3
Errors ∥u− uℎ∥∞ + ∥�− �ℎ∥∞ of IMEX1, IMEX2 and corresponding monolithic methods.

5.2. Test 2. Many important applications of MHD in laboratory and industry
involve large Hartmann number and interaction parameter, see, e.g., [16, 3]. The
theory shows that Algorithm IMEX1 is unconditionally stable. However, the time
step condition for stability of Algorithm IMEX2 looks pessimistic in these cases. In
the following experiment, we test and compare the performance of our methods for
such flows. We confirm the unconditional stability of Algorithm IMEX1 and show
that Algorithm IMEX2 to be stable for much larger time steps than predicted by
Theorem 3.2.

Let Ω = [0, 10−1]2 and B = (0, 0, 1). A test for liquid aluminium was performed
in [9]. Herein, we consider the flow of liquid sodium at 100∘C, which involves larger
M and N :

� = 1.03 ⋅ 107 mho/m, � = 928 kg/m3,

� = 7.39 ⋅ 10−7 m2/s, � = 7.72 ⋅ 10−2 m2/s.

We take the characteristic values of length, velocity and magnetic field to be L = 0.1m,
u = 0.05m/s, B = 1T, practical for laboratory and industrial flows. The Reynolds
number, magnetic Reynolds number, Hartmann number and interaction parameter
are then Re = 6766, Rm = 0.064736, M = 12255, N = 22198 correspondingly.

We take the source term f and the boundary condition to be 0 and the initial
condition is given by

u0(x, y) = (10� cos(10�x) sin(10�y),−10� sin(10�x) cos(10�y), 0),

�0(x, y) = (cos(10�x) cos(10�y) + x2 − y2).

For a system lacking of external energy exchange and body forces, the system energy

decays over time. The energy Ej = 1
2

(

∥uj
ℎ∥2 + ∥�jℎ∥2

)

is computed using two differ-

ent methods studied herein, on ℎ = 1/10. For each algorithm, the time step is chosen
purposely to give us an estimate of practical time step restriction for the stability of
the method. The results are showed in Figure 5.1.

Figure 5.1 confirms the unconditional stability of IMEX1 established in Theorem
3.1. It also indicates that the experimental stability condition for IMEX2 is Δt ≲
1/5000, which, while still restrictive, is significantly better than the condition in
Theorem 3.2.

6. Conclusion. In this paper, we give a complete analysis on stability and errors
of a promising approach to solving the MHD problems at low magnetic Reynolds
numbers. Our algorithms lag or extrapolate the coupling terms to previous time
levels at which their values are known; therefore, at each time step, the multi-physics
problem is uncoupled and solved non-iteratively. Compared to monolithic methods,
our methods allow the use of legacy and optimized codes for subproblems.
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Fig. 5.1. The decay of system energy computed by IMEX1 (left) and IMEX2 (right) with several
different time steps chosen.

Normally, for uncoupling a coupled problem, the price to be paid is stability. The
first order scheme is, surprisingly, unconditionally stable. However, the time step
condition of second order scheme, while independent of ℎ, may be too restrictive in
some applications involving small or large physical parameters. Open problems in
elaborating this approach to MHD flows include higher order partitioned methods
that are long time stable with improved time step restrictions with respect to the
physical parameters. Another important question which naturally arises is developing
partitioned methods for general MHD flows, which occur in both astrophysics and
terrestrial applications and whose coupling terms are nonlinear.
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