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Abstract. The MHD flows are governed by the Navier-Stokes equations coupled with the Maxwell
equations through coupling terms. We prove the unconditional stability of a partitioned method for the
evolutionary full MHD equations, at high magnetic Reynolds number, in the Elsässer variables. The method
we analyze is a first order, one step scheme, which consists of implicit discretization of the subproblem terms
and explicit discretization of coupling terms.

1. Introduction. The equations of magnetohydrodynamics (MHD) describe the mo-
tion of electrically conducting, incompressible flows in the presence of a magnetic field. If
an electrically conducting fluid moves in a magnetic field, the magnetic field exerts forces
which may substantially modify the flow. Conversely, the flow itself gives rise to a second,
induced field and thus modifies the magnetic field. Initiated by Alfvèn in 1942 [1], MHD
is widely exploited in numerous branches of science including astrophysics and geophysics
[18, 25, 13, 10, 9, 3, 6, 12], as well as engineering. Understanding MHD flows is central to
many important applications, e.g., liquid metal cooling of nuclear reactors [2, 17, 27], process
metallurgy [7], sea water propulsion [23].

The MHD flows involve different physical processes: the motion of fluid is governed by
hydrodynamics equations and the magnetic field is governed by Maxwell equations. One
approach to coupled problem is by monolithic methods. In these methods, the globally
coupled problem is assembled at each time step and then solved iteratively. Partitioned
methods, which solve the coupled problem by successively solving the sub-physics problems,
are another attractive and promising approach for solving MHD system.

Most terrestrial applications, in particular most industrial and laboratory flows, involve
small magnetic Reynolds number. In this cases, while the magnetic field considerably alters
the fluid motion, the induced field is usually found to be negligible by comparison with the
imposed field [7]. Neglecting the induced magnetic field one can reduce the MHD systems
to the significantly simpler Reduced MHD (RMHD), for which several IMplicit-EXplicit
schemes were studied in [22].

In this report, we prove the unconditional stability of a partitioned method for the evo-
lutionary full MHD equations, at high magnetic Reynolds number, in the Elsässer variables.
The method we study herein is a first order, one step scheme, which consists of implicit
discretization of the subproblem terms and explicit discretization of coupling terms.

2. Magnetohydrodynamics. The equations of magnetohydrodynamics describing the
motion of an incompressible fluid flow in presence of a magnetic field are the following (see,
e.g. [21, 4, 5])

∂u

∂t
+ (u · ∇)u− (B · ∇)B − ν∆u +∇p = 0, ∇ · u = 0,

∂B

∂t
+ (u · ∇)B − (B · ∇)u− νm∆B = 0, ∇ ·B = 0,

in Ω × (0, T ), where Ω is the fluid domain, u = (u1(x, t), u2(x, t), u3(x, t)) is the fluid
velocity, p(x, t) is the pressure, B = (B1(x, t), B2(x, t), B3(x, t)) is the magnetic field, ν is
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the kinematic viscosity and νm is the magnetic resistivity. On the boundary we prescribe
homogeneous Dirichlet boundary conditions.

The total magnetic field can be split in two parts B = B◦ + b (mean and fluctuations).
Then the Elsässer fields [11]

z+ = u + b, z− = u− b, (2.1)

merging the physical properties of the Navier-Stokes and Maxwell equations, suggest stable
time-splitting schemes for the full MHD equations. The momentum equations, in the Elsässer
variables, are

∂z±

∂t
∓ (B◦ ·∇)z± + (z∓ ·∇)z± − ν+νm

2
∆z± − ν−νm

2
∆z∓ +∇p = 0, (2.2)

while the continuity equations are ∇ · z± = 0. We note that the nonlinear interactions
occur between the Alfvènic fluctuations z±. The mean magnetic field plays an important
role in MHD turbulence, for example it can make the turbulence anisotropic; suppress the
turbulence by decreasing energy cascade, etc. In the presence of a strong mean magnetic
field, z+ and z− wavepackets travel in opposite directions with the phase velocity of B◦, and
interact weakly. For Kolmogorov’s and Iroshnikov/Kraichnan’s phenomenological theories of
MHD isotropic and anisotropic turbulence, see [19, 20, 8, 24, 28, 26, 14, 15, 29].

3. First order unconditionally stable IMEX partitioned scheme. One approach
to coupled MHD problem is monolithic methods, or implicit (fully coupled) algorithms, that
are robust and stable, but quite demanding in computational time and resources. The method
we propose and analyze herein has the coupling terms lagged, thus the system uncouples
into two subproblem solves. Let approximate the momentum equations (2.2) and continuity
equations in the Elsässer variables by the following first-order IMEX scheme (backward-Euler
forward-Euler)

z±n+1 − z±n
∆t

∓ (B◦ · ∇)z±n+1 + (z∓n · ∇)z±n+1 (3.1)

− ν + νm
2

∆z±n+1 −
ν − νm

2
∆z∓n +∇pn+1 = 0,

∇ · z±n+1 = 0. (3.2)

The scheme (3.1)-(3.2) has the following appealing features:
(i) Unconditional absolute stability.
(ii) Modularity: the variables z+ and z− are decoupled.

Remark 3.1. Using the defect-correction method [16] a second order scheme can be
constructed from (3.1)-(3.2). In the remainder we denote by | · | the usual L2(Ω) norm.

Theorem 3.1. Let z+
n , z

−
n , pn satisfy (3.1)-(3.2) for each n ∈ {1, 2, . . . , T∆t}. Then the

following energy estimate holds

|z+
N |2 + |z−N |2

2∆t
+

1
2∆t

N∑
n=1

(
|z+
n − z+

n−1|2 + |z−n − z−n−1|2
)

(3.3)

+
(ν−νm)2

4(ν+νm)
(
|∇z+

N |
2+|∇z−N |

2
)
+

ννm
ν+νm

N∑
n=1

(
|∇z−n |2+|∇z+

n |2
)

+ |ν−νm|
4

N∑
n=1

(√
ν+νm

|ν−νm| |∇z+
n |+

√
|ν−νm|
ν+νm

|∇z−n−1|
)2
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+ |ν−νm|
4

N∑
n=1

(√
ν+νm

|ν−νm| |∇z−n |+
√
|ν−νm|
ν+νm

|∇z+
n−1|

)2

≤ |z
+
0 |2 + |z−0 |2

2∆t
+

(ν−νm)2

4(ν+νm)
(
|∇z+

0 |2+|∇z−0 |2
)
.

Proof. First we multiply the momentum equations (3.1) with z+
n+1, z

−
n+1, respectively,

use the continuity equations and the polarized identity to obtain

|z+
n+1|2 − |z+

n |2 + |z+
n+1−z+

n |2

2∆t
+
ν+νm

2
|∇z+

n+1|2 +
ν−νm

2
〈∇z−n ,∇z+

n+1〉 = 0,

|z−n+1|2 − |z−n |2 + |z−n+1−z−n |2

2∆t
+
ν+νm

2
|∇z−n+1|2 +

ν−νm
2
〈∇z+

n ,∇z−n+1〉 = 0.

Then add up the two relations to get

|z+
n+1|2 + |z−n+1|2 − |z+

n |2 − |z−n |2

2∆t
+
|z+
n+1 − z+

n |2 + |z−n+1 − z−n |2

2∆t
(3.4)

+
ν+νm

2
(
|∇z+

n+1|2+|∇z−n+1|2
)

+
ν−νm

2
(
〈∇z−n ,∇z+

n+1〉+〈∇z+
n ,∇z−n+1〉

)
= 0.

Secondly, the dissipation terms can be estimated, using the Cauchy-Schwarz inequality and
the polarized identity, as follows

ν + νm
2
|∇z+

n+1|2 +
ν + νm

2
|∇z−n+1|2 +

ν − νm
2
〈∇z−n ,∇z+

n+1〉+
ν − νm

2
〈∇z+

n ,∇z−n+1〉

≥ (ν−νm)2

4(ν+νm)
(
|∇z+

n+1|2+|∇z−n+1|2−|∇z−n |2−|∇z+
n |2
)
+

ννm
ν+νm

(
|∇z−n+1|2+|∇z+

n+1|2
)

+|ν−νm|
4

(√
|ν−νm|
ν+νm

|∇z−n |+
√

ν+νm

|ν−νm| |∇z+
n+1|

)2

+ |ν−νm|
4

(√
|ν−νm|
ν+νm

|∇z+
n |+

√
ν+νm

|ν−νm| |∇z−n+1|
)2

.

The substitution of the above estimate in (3.4) implies

|z+
n+1|2 + |z−n+1|2 − |z+

n |2 − |z−n |2

2∆t
+
|z+
n+1 − z+

n |2 + |z−n+1 − z−n |2

2∆t

+
(ν−νm)2

4(ν+νm)
(
|∇z+

n+1|2+|∇z−n+1|2−|∇z−n |2−|∇z+
n |2
)

+
ννm
ν+νm

(
|∇z−n+1|2+|∇z+

n+1|2
)

+ |ν−νm|
4

(√
|ν−νm|
ν+νm

|∇z−n |+
√

ν+νm

|ν−νm| |∇z+
n+1|

)2

+ |ν−νm|
4

(√
|ν−νm|
ν+νm

|∇z+
n |+

√
ν+νm

|ν−νm| |∇z−n+1|
)2

≤ 0.

Finally, summation from n = 0 to N − 1 gives the energy estimate (3.3), which yields the
unconditional stability of scheme (3.1)-(3.2).

Remark 3.2. In the original velocity and magnetic field variables u and B, the method
(3.1)-(3.2) writes:

un+1−un
∆t

+(un ·∇)un+1−(Bn ·∇)Bn+1−
ν+νm

2
∆un+1−

ν−νm
2

∆un+∇pn+1 =0,

Bn+1−Bn

∆t
+ (un ·∇)Bn+1 − (Bn ·∇)un+1 −

ν+νm
2

∆Bn+1 +
ν−νm

2
∆Bn = 0,
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and ∇ · un = 0,∇ ·Bn = 0. The local truncation error is

τun+1(∆t) =
u(tn+1)− u(tn)

∆t
+ (u(tn) · ∇)u(tn+1)− (B(tn) · ∇)B(tn+1)

− ν + νm
2

∆u(tn+1)− ν − νm
2

∆u(tn) +∇p(tn+1),

τBn+1(∆t) =
B(tn+1)−B(tn)

∆t
+ (u(tn) · ∇)B(tn+1)− (B(tn) · ∇)u(tn+1)

− ν + νm
2

∆B(tn+1) +
ν − νm

2
∆B(tn).
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[9] E. Dormy and M. Núñez, Introduction [Special issue: Magnetohydrodynamics in astrophysics and

geophysics], Geophys. Astrophys. Fluid Dyn., 101 (2007), p. 169.
[10] E. Dormy and A. M. Soward, eds., Mathematical aspects of natural dynamos, vol. 13 of Fluid Me-

chanics of Astrophysics and Geophysics, Grenoble Sciences. Universite Joseph Fourier, Grenoble,
2007.
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