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Abstract. We study adaptive nonlinear filtering in the Leray regularization model for incompressible,
viscous Newtonian flow. The filtering radius is locally adjusted so that resolved flow regions and coherent
flow structures are not ‘filtered-out’, which is a common problem with these types of models. A numerical
method is proposed that is unconditionally stable with respect to timestep, and decouples the problem so
that the filtering becomes linear at each timestep and is decoupled from the system. Several numerical
examples are given that demonstrate the effectiveness of the method.

1. Introduction. The Leray-α model of incompressible Newtonian flow is an adapta-
tion of J. Leray’s original Navier-Stokes regularization,

vt + v · ∇v +∇p− ν∆v = f (1.1)
∇ · v = 0 (1.2)

where v denotes convolution with a Gaussian with filtering radius α > 0 [22]. The only
change to (1.1)-(1.2) to get Leray-α is to replace convolution with a Gaussian with the more
computationally efficient Helmholtz filter (also called α-filter),

−α2∆v + v = v. (1.3)

Since the Helmholtz filter is an O(α4) approximation to the Gaussian filter [9], the Leray-α
model (1.1)-(1.3) is a high order approximation to Leray’s original model, and the inter-
pretation of α as the filtering radius remains valid. Note that the Navier-Stokes equations
(NSE) are recovered when α = 0.

The Leray-α model is interesting for many reasons, including its simplicity (in that it
‘looks like’ the NSE, so the NSE tools can be applied), being well-posed [22, 6], conserving
energy and 2d enstrophy [6, 27], cascading energy through the inertial range at the same
rate as the NSE up to a filtering radius dependent wavenumber [6], then rolling off energy
faster than the NSE on subfilter scales which makes it more computable than the NSE [6],
and allowing for efficient computations with unconditionally stable linearized algorithms
that decouple filtering from the mass/momentum system (in contrast to NS-α, where such
algorithms have yet to be discovered [18]). However, attractive theoretical properties do not
necessarily produce models that give good results, and unfortunately, the Leray-α model is
well-known to over-regularize solutions and even remove critical flow structures [10, 11, 17,
3]. We show herein that by modifying the filter of the Leray-α model to adaptively choose
the filtering radius, over-regularization can be avoided and accurate numerical solutions
can be obtained. Moreover, when our proposed algorithm is used, i) there is no significant
increase in computational cost for the resulting model compared to the usual Leray-α model,
ii) stability with respect to timestep is unconditional, and iii) optimal convergence to true
physical solutions is achieved. Hence we are able to efficiently obtain accurate solutions
with a simple, mathematically sound model.

The filter we consider herein was first proposed in [21], and is based on the phenomeno-
logical idea that in laminar regions or where coherent structures persist, little or no filtering
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is needed because these regions are resolvable. This is implemented as the nonlinear filter

−α2∇ · (a(v)∇v) + v = v, (1.4)

where a(v) satisfies, for β some small constant that enforces positivity,

0 < β < a(v) ≤ 1 for any fluid velocity v(x, t),
a(v) ' 0 selects regions requiring no local filtering,
a(v) ' 1 selects regions requiring O(α) local filtering.

The function a(u) is thus meant to indicate where filtering should be applied, we will refer
to it as an indicator function. Herein we will study several possible choices of indicator
functions, which are presented in Section 2. In [21], this type of nonlinear filtering was used
as part of a ‘evolve, then filter, then relax’ approach to evolution equations, and successful
numerical results were shown for some small 2D problems. Herein we extend the use of this
type of filtering for use with the Leray regularization, and give several 2D and 3D numerical
examples to demonstrate its effectiveness.

In the periodic setting, the well-posedness of (1.1)-(1.2)-(1.3) is guaranteed by α > 0,
and similarly well-posedness can be shown for (1.1)-(1.2)-(1.4) when β > 0. Outside of
the periodic case, care must be taken with the formulation to retain a well-posed system.
Specifically, standard energy estimates require ∇·v = 0 [31], which is not equivalent to (1.2)
outside of the periodic case, and so it must be enforced. But given a v, the filters discussed
above are linear and positive, and so have unique solutions; thus enforcing a solenoidal
constraint on v overdetermines the system. The fix is to add a Lagrange multiplier to the
filter, and then enforce solenoidal constraints on both v and v, resulting in the following
system:

vt + v · ∇v +∇p− ν∆v = f (1.5)
∇ · v = 0 (1.6)

−α2∇ · (a(v)∇v) + v +∇λ = v (1.7)
∇ · v = 0 (1.8)

Remark 1.1. The solution v of this model can still be interpreted as an averaged
velocity, although in a slightly different sense than usual since the averaging radius is chosen
locally by

√
a(v(x))α.

We will present a numerical algorithm for the system (1.5)-(1.8) that decouples the con-
servation system (1.5)-(1.6) from the incompressible filter system (1.7)-(1.8), and provides
an efficiently computable well-posed discrete system.

We note this is not the first attempt at modifying the regularization in Leray−α and
related models in order to improve accuracy. To our knowledge, the best attempt has
been the addition of van Cittert approximate deconvolution to the filter. This has been
found successful in Leray-α, NS-α, and NS-ω models [3, 17, 18, 28, 20]. However, there are
two drawbacks to this technique not present in the proposed method. First, the gain in
accuracy from using deconvolution requires the use of higher order elements, which can be
more expensive to implement, provide less freedom in meshing, and make it computationally
infeasible to ‘crank out one more mesh.’ Second, the accuracy near the boundary remains
an open question; that is, on no-slip boundaries, we are not sure that error goes to zero as
α and the meshwidth tends to zero [3, 18].

This paper is arranged as follows. Section 2 contains preliminaries, introduces the
indicator functions, presents a numerical method for (1.5)-(1.8), and discusses stability and
convergence of the method. Section 3 presents the results of four numerical experiments,
each of which demonstrating that the model/method is very effective at finding accurate
solutions on coarse meshes, and is much more accurate than the usual Leray-α model.
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2. Nonlinear adaptive filtering in the Leray model. In this section, we precisely
define the finite element algorithms to discretize the models discussed above. To begin,
we present some mathematical preliminaries. Then we define the discrete filter and the
associated indicator functions we will use. Finally, we present the scheme for the Leray
model, and provide stability and convergence results.

2.1. Preliminaries. We denote by Ω an open, simply connected domain with piece-
wise smooth boundary. The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·).
For simplicity of the presentation, we assume no-slip boundary conditions, but extension to
other Dirichlet, Neumann or Robin boundary conditions would be done in the usual way.
In this setting, the appropriate velocity and pressure spaces are defined as

X := (H1
0 (Ω))d, Q := L2

0(Ω).

We use as the norm on X , ‖v‖X := ‖∇v‖L2 , and denote the dual space of X by X?, with
the norm ‖ · ‖?. The space of divergence free functions is given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q} .

We denote conforming velocity, pressure finite element spaces based on an edge to edge
triangulations (tetrahedralizations) of Ω (with maximum element diameter h) by

Xh ⊂ X, Qh ⊂ Q.

We assume that Xh, Qh satisfy the usual inf-sup stability condition [12]. For our compu-
tations, we use Taylor-Hood and Scott-Vogelius element pairs (in the appropriate setting),
both of which are known to satisfy the inf-sup condition [4, 33, 1].

2.2. Discrete Filtering. Given an indicator function a(·), a fluid velocity u ∈ X,
an averaging radius α (possibly varying with x), we define the filtered velocity uh using a
selected indicator function, a(·), as the solution of: Find (uh, λh) ∈ Xh ×Qh satisfying

α2(a(u)∇uh,∇vh) + (uh, vh)− (λh,∇ · vh) = (u, vh) ∀vh ∈ Xh , (2.1)

(∇ · uh, q) = 0 ∀q ∈ Qh. (2.2)

As discussed in the introduction for the continuous case, the Lagrange multiplier term λh
allows the solenoidal constraint to be enforced. Note that if the chosen element pair is used
whose weak enforcement of mass conservation does not provide ‘good’ mass conservation,
e.g. Taylor-Hood elements [5], then grad-div stabilization should be added to (2.1) to
improve mass conservation and overall accuracy [16]. Consideration of mass conservation
is particularly important in regularization models, where coarse meshes are used, and thus
relying on global mass conservation may not be sufficient to provide physically relevant
solutions.

When u ∈ X is given input for the filter system (2.1)-(2.2), nonlinear filtering is made
a linear problem. It is shown in [21] that solutions exist uniquely, and satisfy

2
∫

Ω

α2a(u)|∇uh|2dx+ ||uh||2 ≤ ||u||2. (2.3)

Error in discrete filtering is also considered in [21] and the following result is proven, which
shows what is lost through this discrete filtering is due only to discretization error and the
filtering radius.

Theorem 2.1. Consider the discrete nonlinear filter uh given by (2.1), with u ∈ V .
We have ∫

Ω

α2a(u)|∇(u− uh)|2dx+ ||u− uh||2

≤ C infeu∈Xh

{∫
Ω

α2a(u)|∇(u− ũ)|2dx+ ||u− ũ||2
}

+ Cα4||∇ · (a(u)∇u)||2.

A similar result for u ∈ X can be proven [21].
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2.2.1. Indicator functions. We consider the following indicator functions, for use
with the filter (2.1)-(2.2).

1. The Q-criterion based indicator

The most popular method for eduction of coherent vortices is the Q criterion, which
was developed in [13], and is defined as follows. Define deformation and spin tensors
by

∇su :=
1
2
(
∇u+∇utr

)
and ∇ssu :=

1
2
(
∇u−∇utr

)
.

A persistent and coherent vortex is found at regions where spin (local rigid body
rotation) dominates deformation, i.e. where

Q(u, u) :=
1
2

(∇ssu : ∇ssu−∇su : ∇su) > 0.

It is a necessary condition (in 3d) and both necessary and sufficient (in 2d) for
slower than exponential local separation of trajectories.
We define a Q-criterion based indicator function so thatQ(u, u) > 0 implies a(u) ' 0
(we note there are many ways to do this, and this way is certainly improvable), and
is given by

aQ(u) :=
1
2
− 1
π

arctan
(
α−1 Q(u, u)
|Q(u, u)|+ α2

)
.

2. Vreman’s eddy viscosity based indicator

In [32], using only the gradient tensor, Vreman constructs an eddy viscosity coef-
ficient formula that vanishes identically for 320 types of flow structures that are
known to be coherent (non turbulent). Define

|∇u|2F =
∑

i,j=1,2,3

(
∂uj
∂xi

)2, βij :=
∑

m=1,2,3

∂ui
∂xm

∂uj
∂xm

, and

B(u) : = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23.

Then

Vreman’s eddy viscosity coefficient = Cα2

{ √
B(u)
|∇u|4F

, if |∇u|F 6= 0
0, if |∇u|F = 0,

}
where C is a positive tuning constant. Since 0 ≤ B(u)/|∇u|4F ≤ 1 we take as an
indicator function,

aV (u) =

√
B(u)
|∇u|4F

.

3. Relative helicity-based indicator

The relative helicity density is the helicity density scaled by the magnitude of ve-
locity and vorticity. Helicity H(t), helicity density HD(x, t) and relative helicity
density RH(x, t) are given respectively as follows

H(t) :=
1
|Ω|

∫
Ω

u · (∇× u)dx,

HD(x, t) :=
1
|Ω|

u(x, t) · (∇× u(x, t)), and

RH(x, t) :=
u(x, t) · ω(x, t)

|u(x, t)||∇ × u(x, t)|
.
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If the NSE nonlinearity is in rotational form, the helicity, u · ω, and the NSE
nonlinearity, u× ω, are related by

Helicity2 + | NSE nonlinearity|2

|u|2|ω|2
= 1.

Thus (local) high helicity suppresses (local) turbulent dissipation caused by break-
down of eddies into smaller ones by the NSE nonlinearity. For example, storm cells
(with low helicity) break down rapidly due to nonlinear interactions while rotating
“supercell” thunderstorms (with high helicity) maintain their structure over much
longer time scales [25]. Different rates of eddy breakdown due to (local) high or
low helicity has even been taken to explain intermittence, Levich and Tsoniber [24],
[23], [30], Betchov [2]. Thus we develop an indicator function by adjusting relative
helicity density so the values near one imply a(u) ' 0 so that u ' u. Among the
many possibly ways to do this, we propose the following.

aH(u) := 1−
∣∣∣∣ u(x, t) · ω(x, t)
|u(x, t)||ω(x, t)|+ δ2

∣∣∣∣ .
4. Synthesized methods

Given indicator functions ai, constructing synthesized indicator functions can be
easily done via

aij(u) := (ai(u)aj(u))1/2
. (2.4)

With this method, combining two indicator functions that have different selection
criteria can produce a better indicator. In our numerical experiments, the best
results are usually obtained with a synthesized indicator.

2.3. Numerical algorithm for Leray model. We propose the following finite el-
ement algorithm to compute solutions to the Leray regularization model with adaptive
nonlinear filtering.

Algorithm 2.2. Given a forcing f ∈ L∞(0, T ;H−1(Ω)), an initial velocity u0 ∈ V , a
timestep ∆t > 0, endtime T and integer M satisfying T = M∆t, define u−1

h = u0
h to be the

L2 projection into Vh of u0. Then for a fixed constant α chosen of the order of the mesh
width, and given indicator function 0 ≤ a(·) ≤ 1, find (unh, p

n
h) ∈ (Xh, Qh), n = 1, 2, ...,M

satisfying

1
∆t

(vn+1
h − vnh , χh) +

(
3
2
vnh −

1
2
vn−1
h

h

· ∇vn+ 1
2

h , χh

)
−(pn+1/2

h ,∇ · χh) + ν(∇vn+ 1
2

h ,∇χh) = (f(tn+ 1
2 ), χh) ∀χh ∈ Xh, (2.5)

(∇ · vn+1
h , qh) = 0 ∀qh ∈ Qh (2.6)

Remark 2.3. An initial pressure is not needed, provided the first step is taken using a
backward Euler type temporal discretization.

Remark 2.4. If a choice of (Xh, Qh) is used that does not provide pointwise divergence-
free solutions to the filtering problem (e.g. Taylor-Hood), then the nonlinear term in (2.5)
should be skew-symmetrized as in [17], and grad-div stabilization should also be added to
(2.5).

There are several important properties of this discretization. By using a Crank-Nicolson
temporal discretization and linear extrapolation of the filtered term, formal second order
temporal accuracy is retained while decoupling the filter from the conservation law system
and linearizing filter computations; hence at each timestep, two linear solves are needed. In
the discrete filter solve (2.1)-(2.2), the u will be known, and so the filtering will be linear(!)
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and the extra cost is in the calculation of a(u) (which is negligible for our chosen indicator
functions), and also in updating a preconditioner after so many timesteps, depending on the
solver method being employed. Moreover, this scheme is unconditionally stable with respect
to timestep, as stated in the next lemma. We note these important algorithmic properties
(or analogs of them) also hold if a linearized BDF2 is used instead of Crank-Nicolson See,
for example, [8, 19].

Lemma 2.5. For any choice of time step ∆t > 0, solutions to Algorithm 2.2 satisfy

‖vMh ‖2 + ν∆t
M−1∑
n=0

‖∇vn+1/2
h ‖2 ≤ C(data). (2.7)

Proof. Choose χh = v
n+1/2
h . The nonlinear term(s) vanishes, due to skew symmetriza-

tion or directly, if the filtered extrapolated velocity is pointwise divergence-free. The pressure
term vanishes since we can choose qh = pn+1

h in (2.6). This leaves

1
2∆t

(
‖vn+1
h ‖2 − ‖vnh‖2

)
+ ν‖∇vn+1/2

h ‖2 = (f(tn+ 1
2 ), vn+ 1

2
h ).

Applying Cauchy-Schwarz and Young’s inequalities to the right-hand side, multiplying
through by ∆t, summing over time steps, and using the smoothness assumptions on the
problem data gives the result.

Remark 2.6. Since the filter system is linear (in the unknown) and stable, the result
(5) is sufficient to show that Algorithm 2.2 is well-posed. A proof of well-posedness is in-
cluded in the Appendix.

For simplicity in stating the following convergence theorem, we summarize here the
necessary regularity assumptions for the solution (u(x, t), p(x, t)) to the NSE

u ∈ L∞(0, T ;Hk+1(Ω) ∩H3(Ω)), (2.8)
p ∈ L∞(0, T ;Hk(Ω)), (2.9)
∆utt, uttt ∈ L2(0, T ;L2(Ω)). (2.10)

Since the adaptive filter differs from the α-filter only by the indicator function which satisfies
0 < a(·) ≤ q, solutions from Algorithm 2.2 must have consistency to the NSE at least as
good as Leray-α solutions (i.e. when a(·) = 1). We have the following convergence result
for the algorithm:

Theorem 2.7. Let (u, p) ∈ (V,Q) be a strong NSE solution on Ω×(0, T ] for a given set
of data f, u0, ν, satisfying (2.8)-(2.10). Then if (un, pn), n = 0, 1, ...,M is the solution to
Algorithm 2.2 using (Pk, P disck−1 ) Scott-Vogelius elements, and for ∆t > 0, the velocity error
satisfies

‖u(T )− uMh ‖2 + ν∆t
M−1∑
n=0

‖∇(u(tn+1/2)− un+1/2
h )‖2 ≤ Cu

(
∆t4 + h2k + α4

)
, (2.11)

and the pressure error satisfies

∆t
M−1∑
n=0

‖pn+1/2
h − p(tn+1/2)‖2 ≤ Cp1((∆t)4 + α2h2k + hmin{2k+2,2s})

+Cp2(h−1((∆t)4 + α4 + h2k) + h−3((∆t)8 + α8 + h4k)) (2.12)

where Cu, Cp1 , and Cp2 are constants dependent on data and the true solution.
Proof. The proofs are given in the appendix.
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3. Numerical Experiments. In this section, we present several numerical experi-
ments that illustrate the effectiveness of our proposed approach, in giving good coarse mesh
approximations of incompressible flows. In particular, we will show this approach gives
much better results than for the usual Leray-α model, and gives good approximations on
meshes where the NSE is significantly underresolved when computed directly. We note that
the extra cost of using the indicator function (versus a(v) = 1 in the case of Leray-α) was
negligible in our computations. This is due to the chosen timestepping algorithm, which
decouples the filtering and momentum solves, but also linearizes the filter, making the only
extra cost the calculation of a(v) for a given v.

NSE, Mesh 1 (1,762 dof)

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

NSE, Mesh 2 (4,989 dof)
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NSE, Mesh 3 (7,785 dof)
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NSE, Mesh 4 (16,600 dof)
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NSE, Mesh 5 (21,593 dof)
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Fig. 3.1. Shown above is the velocity solutions at T = 40 for 2D flow over a step, found by directly
computing the Navier-Stokes equations (i.e. no filtering), on different meshes. Only the finest mesh correctly
predicts the true solution.

3.1. 2D channel flow over a step. Our first experiment is for two-dimensional flow
over a forward and backward facing step. The domain is a 40 x 10 rectangular channel with a
1 x 1 step five units into the channel at the bottom. We assume no-slip boundary conditions

7



on the top and bottom boundaries, a parabolic inflow profile given by (y(10 − y)/25, 0)T ,
and a zero-traction (do-nothing) outflow. The correct behavior is a smooth velocity field
away from the step, and for eddies to periodically form and shed behind the step.

We first present the results of computing the NSE directly. Computations were made on
five successively finer meshes, using ∆t = 0.01 and ν = 1/600, and Taylor-Hood elements.
Solutions at T = 40 are shown in Figure 3.1 as velocity streamlines over speed contours, and
we observe only the finest mesh gets the correct solution, comparing to [17]. The solution
is very under-resolved on the coarsest two meshes, and on meshes 3 and 4, the predicted
solution captures the eddy formation and detachment, but oscillations are still observed in
the speed contours.

We test the proposed model with Algorithm 2.2 on the two coarsest meshes, using the
same parameters as for the coarse mesh NSE computation, and using indicator functions
a(u) = 1, aV , aQ, and aV Q. Results for Mesh 2 (which provides 4,989 dof) at T = 40 are
shown in Figure 3.2. All four filters found a smooth flow field, but the Vreman filter and
VQ-filter also capture the correct eddy detachment behind the step. Contour Plots of the
different indicator functions at T = 40 are shown for these computations in Figure 3.3. For
this example, we see the V and V Q have expected behavior in that little or no filtering
is required away from the step. These two indicators suggest filtering is needed near the
center of the channel, and we believe this to be a result of the laminar profiles predicted by
NSE and regularization models to be slightly different [3], and so a mixing of the two could
cause numerical artifacts. The Q indicator plot is quite different. It finds near the step
areas to filter and not to filter, which is expected, but throughout the rest of the channel
it gives values near 0.5. From the definition of our filter, the values near 0.5 correspond to
Q(u, u) = 0, and so this suggests additional tuning of aQ could be helpful (for this particular
problem). We also present a plot of the velocity solution obtained using the VQ-filter on
Mesh 1, in Figure 3.4. Here, with only 1,762 dof, a good approximation that predicts eddy
detachment is found.

3.2. 2D Flow around a cylinder. Our next numerical experiment is for two di-
mensional under-resolved channel flow around a cylinder, a well known benchmark problem
taken from Shäfer and Turek [29] and John [14]. The flow patterns are driven by the in-
teraction of a fluid with a wall which is an important scenario for many industrial flows.
This simple flow is actually quite difficult to simulate successfully by a model with sufficient
regularization to handle higher Reynolds number problems.

The domain for the problem is a 2.2×0.41 rectangular channel with a cylinder of radius
0.05 centered at (0.2, 0.2) (taking the bottom left corner of the rectangle as the origin). The
cylinder, top and bottom of the channel are prescribed no slip boundary conditions, and
the time dependent inflow and outflow profile are

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41− y) ,

u2(0, y, t) = u2(2.2, y, t) = 0.

The viscosity is set as ν = 10−3 and the external force f = 0. From time t = 2 to t = 4, the
correct behavior is for two vortices start to develop behind the cylinder. They then separate
into the flow, and soon after a vortex street forms which can be visible through the final
time t = 8. A plot of the resolved t = 6 solution is shown in Figure 3.5.

We compute solutions to Algorithm 2.2 with Taylor-Hood elements on a triangular mesh
providing 14,446 total degrees of freedom, with time step ∆t = 0.001, and filtering radius α
chosen to be the average mesh width, with varying indicator functions. These simulations
are all under-resolved; fully resolved computations of the Navier-Stokes equations use up-
wards of 100,000 degrees of freedom and even smaller time steps. Thus we do not expect
exact agreement with solutions of Algorithm 2.2 with the true solution or lift and drag
reference values. However, we do expect answers to be close, if this model/algorithm is to
be considered useful.
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Leray, a(u) = 1 Mesh 2 (4,989 dof)
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Leray, a(u) = aV (u) Mesh 2 (4,989 dof)
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Leray, a(u) = aQ(u) Mesh 2 (4,989 dof)
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Leray, a(u) = aV Q(u) Mesh 2 (4,989 dof)
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Fig. 3.2. Shown above are the velocity solutions for T = 40 for 2D flow over a step, for the Leray
model with the usual Leray-α model (top) and several choices of indicator functions, on mesh level 1.

To evaluate the solutions, we compute values for the maximal drag cd,max and lift cl,max
coefficients at the cylinder, and for the pressure difference ∆p(t) between the front and back
of the cylinder at the final time T = 8. Lift and drag coefficients (using the one dimensional
method described by V. John [14]) for fully resolved flows will lie in the reference intervals
([29])

crefd,max ∈ [2.93, 2.97], crefl,max ∈ [0.47, 0.49], ∆pref ∈ [−0.115, −0.105]

We test Algorithm 2.2 with indicator functions a(u) = 1, aV , aQ, and aV Q. The
maximum lift and drag coefficients and pressure drop for the simulations are given in Table
3.1, and we see that our algorithm performs well with all three nonlinear filters, but is much
less accurate when the linear filter is used. Even on a finer mesh with 56,477 the linear filter
(i.e. usual α-filter) still does not perform as well as the nonlinear filters on the coarser mesh
(Table 3.1).

3.3. 3D channel flow around a ‘square cylinder’. Our next experiment is for 3D
channel flow around a square cylinder, following the setup described in [29]. The channel is
modeled as a 0.41× 2.5× 0.41 rectangular box, with a 0.41× 0.1× 0.1 block placed in the
channel (and attached to the side walls) as in Figure 3.6. We compute for 0 ≤ t ≤ 8 = T ,
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Fig. 3.3. Contour plots of the Vreman Filter (top), Q-Filter (middle) and VQ-Filter (bottom), mesh
1, T = 40.

Leray, a(u) = aV Q(u), Mesh 1 (1,762 dof)
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Fig. 3.4. Shown above are the velocity solutions at T = 40 for 2D flow over a step, for the Leray model
with the V Q indicator function, on mesh level 1.

Indicator dof cd,max cl,max ∆p
a(u) = 1 14,446 2.2844 0.0176 -0.1267
aV (u) 14,446 2.8472 0.4010 -0.1138
aQ(u) 14,446 2.8574 0.4019 -0.1134
aV Q(u) 14,446 2.8628 0.4051 -0.1135
a(u) = 1 56,477 2.6682 0.2879 -0.1067

DNS Reference Values >100,000 [2.93,2.97] [0.47,0.49] [-0.115,-0.105]
Table 3.1

Lift, drag and pressure drop for the flow around a cylinder experiment with varying indicator functions
used in the filtering.

using ν = 0.001, the inflow condition is given by

u(0, y, t) =

 0
4(1.5)y(0.41− y)/(0.412) sin(πt/8)

0

 ,

we use no-slip boundary conditions on the cylinder as well as the walls of the channel,
enforce an appropriate outflow boundary condition, and take the initial condition to be
u0 = 0. We compute with the indicator functions a(u) = 1 (usual Leray-α model), aQ(u),
aV (u), aV Q(u), and aH(u), using the fixed timestep ∆t = 0.01. ((P3)3, P disc2 ) Scott-Vogelius
elements are used on a barycenter refinement of an coarse tetrahedral mesh (and thus are
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Resolved NSE solution at t=6
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Fig. 3.5. Shown above are the (top) velocity field, (middle) speed countours, and (bottom) pressure
contours for the resolved t = 6 solution to the 2D channel flow around a cylinder problem.
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Fig. 3.6. Shown above is the domain for the 3D channel flow over a step problem.

LBB stable [33]), via the method developed in [26], yielding 246,726 total degrees of freedom.
Lift and drag coefficients (cd, cl) are computed at each timestep via global integrals (see
[14]), and maximum values of the coefficients are given in Table 3.2. Comparing to the
reference values given in [29]: [4.3, 4.5] for cd,max, and [0.01,0.05] for cl,max, which were
determined based on several direct numerical simulations using upward of six million total
degrees of freedom, we observe that the adaptive filtering with the VQ-based indicator
function is the only one to predict maximum lift to within the reference value tolerance,
and both Q-based and VQ-based indicator functions are close to finding the maximum drag
coefficient to within the specified tolerance.

For further comparison of the methods’ solutions, we plot them below as streamlines
over speed contours at the mid-sliceplanes when t = 5. Figure 3.7 shows a resolved solution
resulting from directly computing the NSE on a finer mesh that yields over 1.1 million
degrees of freedom; we will use this plot as a reference comparison for the regularized
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Filter dof cd,max cl,max
a(u) = 1 246,726 2.7536 0.0023

a(u) = aV (u) 246,726 3.510 0.0020
a(u) = aQ(u) 246,726 4.2731 0.0039
a(u) = aV Q(u) 246,726 4.0337 0.0185
a(u) = aH(u) 246,726 2.8131 0.0017

DNS Reference Values > 6,000,000 [4.3, 4.5] [0.01,0.05]
Table 3.2

Maximum lift and drag coefficients for the 3D flow around a cylinder experiment with different indicator
function filters.

solutions. This figure also shows the usual Leray-α solution, and we observe the predicted
wake has a much different character compared to the resolved NSE solution, and displays the
over-regularized behavior commonly known to happen with this model. Solutions from the
Leray-regularization with different indicator functions are shown in Figure 3.8. The solutions
from the VQ-based and Q-based indicator function regularizations both capture the general
behavior of the resolved NSE solution. The Vreman-based indicator function solutions shows
some improvement over the usual Leray-α solution. A plot of the helicity-based indicator
function solution is omitted, as it looks identical to the usual Leray-α solutions (i.e. there
was no visible improvement from using aH).

Resolved NSE solution (fine mesh)

a(u) = 1 (usual Leray-α)

Fig. 3.7. Shown above is velocity streamlines and speed contours on the mid-sliceplanes of the t = 5
velocity solutions for 3D flow over a square cylinder, on a fine mesh as a direct computation with the NSE
(top), and for the usual Leray-α model on the coarse mesh.
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a(u) = aV (u)

a(u) = aQ(u)

a(u) = aV Q(u)

Fig. 3.8. Shown above is velocity streamlines and speed contours on the mid-sliceplanes of the t = 6
velocity solutions for 3D flow over a square cylinder, for the Leray model with several choices of indicator
functions, on a coarse mesh.

3.4. 3D channel flow over a forward-backward step. Our final numerical test is
for time dependent 3D channel flow over a forward-backward facing step with Re = 200.
This problem is a 3D analog of the 2D step problem presented above, and a diagram of the
flow domain is given in Figure 3.9; the channel is 10×40×10 with a 10×1×1 block on the
bottom of the channel, 5 units in from the inlet. No slip boundary conditions are enforced
on the channel walls and on the step. An inflow=outflow condition is enforced, and the
initial condition is the solution of the Re = 50 steady flow. We compute with ((P3)3, P disc2 )
Scott-Vogelius elements on a barycenter refined tetrahedralization of the domain, via the
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Fig. 3.9. Shown above is domain for the 3D channel flow over a step problem.

method of [26], and a uniform timestep of ∆ = 0.025 is used to compute solutions up to
end-time T = 10. This flow was studied in [7], and the correct behavior at T = 10 is for
an eddy to have detached from behind the step and moved down the channel, and a new
eddy to form. For the direct numerical simulation of this problem that was performed in
[7], the total spatial degrees of freedom needed to resolve this flow was 1,282,920. We test
our methods on a much coarser mesh that gives 193,596 total degrees of freedom.

Plots of the solutions obtained by the methods for indicator functions a(u) = 1 (usual
Leray-α), aH , aQ, aV , and aV Q, are shown in Figure 3.10. Neither the usual Leray-α model
nor the filter with helicity indicator function are able to predict eddy detachment. How-
ever, the methods using filters with Q-criterion based, Vreman-based, and VQ synthesized
indicator functions all predict eddy detachment. Of the three, the VQ-based filter appears
to resolve it best; a zoomed in look at the streamribbons near the step in Figure 3.11 shows
a more refined picture of its eddy separation, and matches the solution of [7] qualitatively
well.

4. Conclusions. We proposed an unconditionally stable and efficient algorithm for
computing reduced order approximations to flow problems, by using adaptive nonlinear fil-
tering with the Leray regularization model. We have found this method to be very effective,
and to give much better solutions on coarse meshes than either direct numerical simula-
tions and the ‘usual’ regularization model using linear filtering. Of the indicator functions
studied, the best choice appears to be a synthesis of the Vreman and Q-criterion based
indicator functions. When used by itself, the Q-criterion indicator is likely improvable with
tuning/shifting so that laminar regions can be given less regularization.
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5. Appendix.

Proof. [Proof of uniqueness of solutions of Algorithm 2.2]
Well-posedness of discrete solutions can be proven as follows. First, boundedness of velocity

16



solutions is already proven in , which gives us

‖uMh ‖2 + ν∆t
M−1∑
n=0

‖∇un+1/2
h ‖2 ≤ C(data).

Existence and uniqueness of discrete solutions can be reduced to existence and uniqueness
at each timestep. Since the timestepping procedure linearizes the momentum equation and
decouples the momentum/mass and filtering systems, the decoupled systems needing solved
at each timestep take the form:
System 1: Solve the filter equation: Given unh, u

n−1
h , find Un+1 ∈ Vh satisfying

α2(a(
3
2
unh −

1
2
un−1
h )∇Un+1,∇vh) + (Un+1, vh) = (

3
2
unh −

1
2
un−1
h , vh) ∀vh ∈ Vh,

System 2: Given Un+1
h , unh find un+1

h ∈ Vh satisfying

1
∆t

(un+1
h − unh, vh) + b∗(Un+1

h , u
n+1/2
h , vh) + ν(∇un+1/2

h ,∇vh) = (fn+1/2, vh) (5.1)

Since each of these systems is linear and with number of equations equal to the number of
unknowns, we need only prove uniqueness of solutions. For system 1, suppose two solutions,
and let e ∈ Vh denote their difference. Then

α2(a(
3
2
unh −

1
2
un−1
h )∇e,∇vh) + (e, vh) = 0 ∀vh ∈ Vh,

and letting vh = e, we get ∫
Ω

a(
3
2
unh −

1
2
un−1
h )|∇e|2 + ‖e‖2 = 0.

Since we require indicator functions to be bounded above 0, immediately we get e=0, and
so solutions to System 1 must exist uniquely.

For System 2, again assume two solutions, u1 and u2 and let e = u1−u2. Then we have

1
∆t

(e, vh) + b∗(Un+1, e, vh) + ν(∇e,∇vh) = 0 ∀vh ∈ Vh. (5.2)

Now choosing vh = e gives

1
∆t
‖e‖2 + ν‖∇e‖2 = 0 (5.3)

Thus, e = 0, and our solution is unique. Thus, from linearity and finite dimensionality, it
exists uniquely.

Proof. [Proof of Theorem 2.7]
We begin with the velocity error. The smoothness required for the velocity conver-

gence is u ∈ L∞(0, T ;Hk+1(Ω)) ∩ L∞(0, T ;H4(Ω)), ∇utt ∈ L2(0, T ;H1(Ω)), and uttt ∈
L2(0, T ;L2(Ω)).

At time tn+1/2, an NSE solution satisfies

(
un+1 − un

∆t
, vh) + (E[un, un−1]

h
· ∇un+1/2, vh)− (pn+1/2,∇ · vh)

+ ν(∇un+1/2,∇vh) = (fn+1/2, vh) + Intp(un, pn; vh) (5.4)

for all vh ∈ Vh, where Intp(un, pn; vh) denotes
17



Intp(un, pn; vh) = (
un+1 − un

∆t
− ut(tn+1/2), vh) + (E[un, un−1]

h
· ∇un+1/2, vh)

−(u(tn+1/2) · ∇u(tn+1/2), vh)− (pn+1/2 − p(tn+1/2),∇ · vh)

+ν(∇un+1/2 −∇u(tn+1/2),∇vh) + (f(tn+1/2)− fn+1/2, vh).

Then the error en := un − unh satisfies, for all vh ∈ Vh,

(
en+1 − en

∆t
, vh) + (E[un, un−1]

h
· ∇un+1/2, vh)− (E[unh, u

n−1
h ]

h
· ∇un+1/2

h , vh)

−(pn+1/2 − pn+1/2
h ,∇ · vh) + ν(∇en+1/2,∇vh) = Intp(un, pn; vh). (5.5)

Since SV elements are being used, vh ∈ Vh implies ∇ · vh = 0, and so the pressure term
vanishes. Next, decompose the error as en = (un − Un)− (unh − Un) := ηn − φnh where Un

is the L2 projection of un into Vh, and φnh ∈ Vh. Setting vh = φ
n+1/2
h in (5.5), we obtain

1
2∆t

(
‖φn+1

h ‖2 − ‖φnh‖2
)

+ ν‖∇φn+1/2
h ‖2 ≤ ν(∇ηn+1/2,∇φn+1/2

h )− |Intp(un, pn;φn+1/2
h )|

+ (E[un, un−1]
h
· ∇un+1/2, φ

n+1/2
h )− (E[unh, u

n−1
h ]

h
· ∇un+1/2

h , φ
n+1/2
h ). (5.6)

We now bound the terms in the RHS of (5.6) individually. Cauchy-Schwarz and Young’s
inequalities give

ν(∇ηn+1/2,∇φn+1/2
h ) ≤ ν‖∇ηn+1/2‖‖∇φn+1/2

h ‖

≤ εν‖∇φn+1/2
h ‖2 + Cν‖∇ηn+1/2‖2. (5.7)

In order to bound the nonlinear terms we will need the following lemmas.
Definition 5.1. Assume that Xh, Qh satisfy the dicrete inf-sup condition. Given an

indicator function a(·), wh ∈ Vh, and w ∈ X we define the frozen nonlinearity filtered
velocity ŵh using the selected indicator function as the solution of:

α2(a(wh)∇ŵh,∇χh) + (ŵh, χh) = (w,χh) ∀χh ∈ Vh. (5.8)

Now we consider the error in ŵh − whh.
Lemma 5.2. Let Xh, Qh satisfy the dicrete inf-sup condition. We have

α2

∫
Ω

a(wh)|∇(ŵh − whh)|2 +
‖ŵh − whh‖2

2
≤ ‖w − wh‖

2

2
.

Proof. By defintion of whh

α2(a(wh)∇whh,∇χh) + (whh, χh) = (wh, χh) ∀χh ∈ Vh. (5.9)

Subtracting (5.9) from (5.8) and choosing χh = ŵh − whh we obtain

α2

∫
Ω

a(wh)|∇(ŵh − whh)|2 + ‖ŵh − whh‖2 = (w − wh, ŵh − whh).

Young’s inequality completes the proof.
Lemma 5.3. Let Xh, Qh satisfy the dicrete inf-sup condition. We have

‖wh − whh‖2 ≤ C(‖w − wh‖2 + α2 min{‖∇w‖2, α2‖∇ · (a(wh)∇w)‖2}
+ inf
χ∈V h

{α2‖∇(w − χ)‖2 + ‖w − χ‖2}+ α4‖∇ · (a(w)∇w)‖2). (5.10)
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Proof. Let us rewrite wh − whh as (wh − w) + (ŵh − whh) + (w − ŵh). Applying the
triangle inequality along with the previous lemma, Theorem 2.1 and Lemma A.2 in [21]
finishes the proof.

For the nonlinear terms, we first write them as

(E[un, un−1]
h
· ∇un+1/2, φ

n+1/2
h )− (E[unh, u

n−1
h ]

h
· ∇un+1/2

h , φ
n+1/2
h )

= ((E[un, un−1]
h
− E[unh, u

n−1
h ]

h
) · ∇un+1/2, φ

n+1/2
h ) + (E[unh, u

n−1
h ]

h
· ∇en+1/2, φ

n+1/2
h )

= ((E[un, un−1]
h
− E[unh, u

n−1
h ]

h
) · ∇un+1/2, φ

n+1/2
h ) + (E[unh, u

n−1
h ]

h
· ∇ηn+1/2, φ

n+1/2
h )

= ((E[un, un−1]
h
− E[unh, u

n−1
h ]

h
) · ∇un+1/2, φ

n+1/2
h ) + (E[un, un−1]

h
· ∇ηn+1/2, φ

n+1/2
h )

−((E[un, un−1]
h
− E[unh, u

n−1
h ]

h
) · ∇ηn+1/2, φ

n+1/2
h ), (5.11)

and bound them separately:

|(E[un, un−1]
h
· ∇ηn+1/2, φ

n+1/2
h )| ≤ εν‖∇φn+1/2

h ‖2 + C‖∇ηn+1/2‖2. (5.12)

From (5.10) we have

|((E[un, un−1]
h
− E[unh, u

n−1
h ]

h
) · ∇un+1/2, φ

n+1/2
h )|

≤ C‖(E[un, un−1]
h
− E[unh, u

n−1
h ]

h
)‖‖∇un+1/2‖L∞(Ω)‖∇φ

n+1/2
h ‖

≤ εν‖∇φn+1/2
h ‖2 + C

(
‖E[en, en−1]‖2 + α4 + (α2h2k + h2k+2)‖u‖2L∞(0,T ;Hk+1(Ω))

)
≤ εν‖∇φn+1/2

h ‖2 + C
(
‖E[ηn, ηn−1]‖2 + ‖E[φnh, φ

n−1
h ]‖2 + α4 + h2k

)
≤ εν‖∇φn+1/2

h ‖2 + C
(
‖ηn‖2 + ‖ηn−1‖2 + α4 + h2k

)
+ C(‖φnh‖2 + ‖φn−1

h ‖2). (5.13)

Using the assumption that the mesh is quasi-uniform, by the inverse inequality we have

|((E[un, un−1]
h
− E[unh, u

n−1
h ]

h
) · ∇ηn+1/2, φ

n+1/2
h )|

≤ εν‖∇φn+1/2
h ‖2 + Ch−1‖(E[un, un−1]

h
− E[unh, u

n−1
h ]

h
)‖2‖∇ηn+1/2‖2

≤ εν‖∇φn+1/2
h ‖2 + Ch−1

(
‖E[ηn, ηn−1]‖2 + ‖E[φnh, φ

n−1
h ]‖2 + α4 + α2h2k + h2k+2

)
‖∇ηn+1/2‖2

≤ εν‖∇φn+1/2
h ‖2 + Ch−1

(
h2k+2‖u‖2L∞(0,T ;Hk+1(Ω)) + ‖φnh‖2 + ‖φn−1

h ‖2 + α4 + α2h2k
)
‖∇ηn+1/2‖2.(5.14)

Combining (5.6)-(5.7), (5.11)-(5.14) and summing from n = 0 to M − 1 (assuming that
‖φ0

h‖ = 0) we obtain

‖φMh ‖2 + ν
∆t
2

M−1∑
n=0

‖∇φn+1/2
h ‖2

≤ C(1 + h2k−1 + h−1α4)
M∑
n=0

∆t‖∇ηn‖2 + C∆t
M−1∑
n=0

‖φnh‖2(1 + h−1‖∇ηn+1/2‖2)

+
M−1∑
n=0

∆t|Intp(un, pn;φn+1/2
h )|+ CT (α4 + h2k). (5.15)

Let us introduce the following discrete norm:

‖|u|‖m,k :=

(
∆t

NT∑
n=0

‖u(tn)‖mk

)1/m

.
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We continue to bound the terms on the right-hand side of (5.15):

C

M∑
n=0

∆t‖∇ηn‖2 ≤ C∆t
M∑
n=0

h2k|un|2k+1 ≤ Ch2k‖|u|‖22,k+1 (5.16)

C∆t
M−1∑
n=0

‖φnh‖2(1 + h−1‖∇ηn+1/2‖2) ≤ C∆t
M−1∑
n=0

‖φnh‖2(1 + h2k−1‖u‖2L∞(0,T ;Hk+1(Ω)))

≤ C∆t
M−1∑
n=0

‖φnh‖2. (5.17)

We now bound the terms in Intp(un; pn;φn+1/2
h ). Using the standard inequalities and

the error estime for the discrete filter,

(E[un, un−1]
h
· ∇un+1/2, φ

n+1/2
h )− (u(tn+1/2) · ∇u(tn+1/2), φn+1/2

h )

= ((E[un, un−1]
h
− E[un, un−1]) · ∇un+1/2, φ

n+1/2
h ) + ((E[un, un−1]− u(tn+1/2)) · ∇un+1/2, φ

n+1/2
h )

+(u(tn+1/2) · ∇(un+1/2 − u(tn+1/2)), φn+1/2
h )

≤ 3ε‖∇φn+1/2
h ‖2 + C(α2h2k + h2k+2)|E[un, un−1]|2k+1 + Cα4‖∇ · (a(E[un, un−1]∇E[un, un−1]‖2

+C(∆t)4‖∇utt‖2 + C(∆t)3

∫ tn+1

tn

‖∇utt‖2dt. (5.18)

Combine (5.18) and [15] to obtain

∆t
M−1∑
n=0

‖Intp(un, pn;φn+1/2
h )|

≤ 7ε∆t
M−1∑
n=0

‖∇φn+1/2
h ‖2 + C(∆t)4

(
‖uttt‖22,0 + ‖ftt‖22,0 + ‖∇utt‖22,0

)
+C(α2h2k + h2k+2)‖u‖20,k+1 + Cα4‖∇ · (a(E[un, un−1]∇E[un, un−1]‖22,0. (5.19)

Putting everything together we get

‖φMh ‖2 + ν
∆t
4

M−1∑
n=0

‖∇φn+1/2
h ‖2

≤ C∆t
M−1∑
n=0

‖φnh‖2 + Ch2k‖|u|‖22,k+1 + Cα4(‖∇ · (a(E[un, un−1]∇E[un, un−1]‖22,0 + ‖u‖2L∞(0,T ;Hk+1(Ω)))

+C(∆t)4
(
‖uttt‖22,0 + ‖ftt‖22,0 + ‖∇utt‖22,0

)
+ C(α2h2k + h2k+2)‖u‖20,k+1. (5.20)

Applying Gronwall’s lemma along with the triangle inequality gives us (2.11).
In order to prove (2.12) we will additionally assume that

∆utt ∈ L2(0, T ;L2(Ω)).

We will now derive a bound that will be used in proving the (2.12). Let us again consider
(5.5). Decompose the velocity error as en = (un − Un) − (unh − Un) := ηn − φnh where

φnh ∈ V h, and Un is the Stokes projection of un in V h. Setting vh = φn+1
h −φn

h

∆t ∈ V h in (5.5)
we obtain that
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‖
φn+1
h − φnh

∆t
‖2 + ν

‖∇φn+1
h ‖2 − ‖∇φnh‖2

2∆t

= (
ηn+1 − ηn

∆t
,
φn+1
h − φnh

∆t
) + ν

(
∇η

n+1 + ηn

2
,∇

φn+1
h − φnh

∆t

)
−
(
p(tn+1) + p(tn)

2
− qh,∇ ·

φn+1
h − φnh

∆t

)
+ ((E[un, un−1]

h
− E[unh, u

n−1
h ]

h
) · ∇un+1/2,

φn+1
h − φnh

∆t
)

− ((E[un, un−1]
h
− E[unh, u

n−1
h ]

h
) · ∇en+1/2,

φn+1
h − φnh

∆t
)

+ (E[un, un−1]
h
· ∇en+1/2,

φn+1
h − φnh

∆t
)

+ Intp(u, p;
φn+1
h − φnh

∆t
), (5.21)

where, using Taylor expansion

Intp(u, p;
φn+1
h − φnh

∆t
)

= (
un+1 − un

∆t
− ut(tn+1/2),

φn+1
h − φnh

∆t
) + (E[un, un−1]

h
· ∇un+1/2,

φn+1
h − φnh

∆t
)

−(u(tn+1/2) · ∇u(tn+1/2),
φn+1
h − φnh

∆t
) + ν(∇un+1/2 −∇u(tn+1/2),∇

φn+1
h − φnh

∆t
)

+(f(tn+1/2)− fn+1/2,
φn+1
h − φnh

∆t
). (5.22)

It follows from the definiton of the Stokes projection that

ν

(
∇η

n+1 + ηn

2
,∇

φn+1
h − φnh

∆t

)
−
(
p(tn+1) + p(tn)

2
− qh,∇ ·

φn+1
h − φnh

∆t

)
= 0. (5.23)

We now bound the three nonlinear terms on the right-hand side of (5.21). For the first
term use the generalized Holder’s inequality

((E[un, un−1]
h
− E[unh, u

n−1
h ]

h
) · ∇un+1/2,

φn+1
h − φnh

∆t
)

≤ ‖(E[un, un−1]
h
− E[unh, u

n−1
h ]

h
)‖‖∇un+1/2‖L∞(Ω)‖‖

φn+1
h − φnh

∆t
‖

≤ ε‖
φn+1
h − φnh

∆t
‖2 + C‖(E[un, un−1]

h
− E[unh, u

n−1
h ]

h
)]‖2

≤ ε‖
φn+1
h − φnh

∆t
‖2 + C(‖E[en, en−1]‖2 + α4 + h2k)

≤ ε‖
φn+1
h − φnh

∆t
‖2 + C(∆t4 + h2k + α4). (5.24)

For the second term use the bound for the nonlinear terms, error estimate for the discrete
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filter, inverse and Young’s inequalities to get

((E[un, un−1]
h
− E[unh, u

n−1
h ]

h
) · ∇en+1/2,

φn+1
h − φnh

∆t
)

≤ Ch−3/2‖(E[un, un−1]
h
− E[unh, u

n−1
h ]

h
)‖‖∇en+1/2‖‖

φn+1
h − φnh

∆t
‖

≤ ε‖
φn+1
h − φnh

∆t
‖2 + Ch−3‖∇en+1/2‖2(h2k + (∆t)4 + α4). (5.25)

For the third term use the inverse and Young’s inequalities to get

(E[un, un−1]
h
· ∇en+1/2,

φn+1
h − φnh

∆t
)

≤ Ch−1/2‖∇E[un, un−1]
h
‖‖∇en+1/2‖‖

φn+1
h − φnh

∆t
‖

≤ ε‖
φn+1
h − φnh

∆t
‖2 + Ch−1‖∇en+1/2‖2. (5.26)

As in (5.18), we obtain that

|Intp(u, p;
φn+1
h − φnh

∆t
)|

≤ 5ε‖
φn+1
h − φnh

∆t
‖2 + ‖(u

n+1 − un

∆t
− ut(tn+1/2))‖2 + ‖(f(tn+1/2)− fn+1/2‖2

+‖E[un, un−1]
h
· ∇un+1/2 − u(tn+1/2) · ∇u(tn+1/2)‖2

+Cν(∆t)3‖∆utt‖2L2(tn,tn+1;L2(Ω)). (5.27)

Inserting the bounds (5.24)-(5.27) into (5.22), multiplying by 2∆t and summing from 0 to
M − 1 we get

2∆t
M−1∑
n=0

‖
φn+1
h − φnh

∆t
‖2 + ν‖∇φMh ‖2

≤ C((∆t)4 + α4 + h2k) + Ch2k+2‖ut‖2L2(0,T ;Hm+1(Ω))

+C(h−1 + h−3((∆t)4 + α4 + h2k))∆t
M−1∑
n=0

‖∇en+1/2‖2. (5.28)

Applying (2.11) and the triangle inequality gives

∆t
M−1∑
n=0

‖en+1 − en
∆t

‖2 + ν‖∇eM‖2

≤ C(h−1((∆t)4 + α4 + h2k) + h−3((∆t)8 + α8 + h4k)). (5.29)

Now we prove (2.12). For any vh ∈ Xh we have

(ut(tn+1/2)−
un+1
h − unh

∆t
, vh) + (u(tn+1/2) · ∇u(tn+1/2)

−E[unh, u
n−1
h ]

h
· ∇un+1/2

h , vh)− (p(tn+1/2)− pn+1/2
h ,∇ · vh)

+ν(∇u(tn+1/2)−∇un+1/2
h ,∇vh) = 0. (5.30)

22



Decompose the pressure approximation error into

p(tn+1)− pn+1
h = (p(tn+1)− I(p))− (pn+1

h − I(p)) = qn+1 − rn+1
h , (5.31)

where rn+1
h ∈ Qh, I(p) is a projection of p(tn+1) into Qh. Using the error decomposition

(5.31) in (5.30) and applying the discrete LBBh condition we obtain

βh‖rn+1/2
h ‖ ≤ C

(
‖ut(tn+1/2)− u(tn+1)− u(tn)

∆t
‖+ ‖en+1 − en

∆t
‖
)

+C‖(p(tn+1/2)− I(p))‖+ ‖∇(u(tn+1/2)− un+1/2)‖+ ‖∇en+1/2‖+ ‖u(tn+1/2)∇en+1/2‖

+‖(u(tn+1/2)− E[un, un−1])∇un+1/2
h ‖+ ‖(E[un, un−1]

h
− E[un, un−1])∇un+1/2

h ‖. (5.32)

Taylor expansion and stability of unh gives

βh‖rn+1/2
h ‖ ≤ C((∆t)2 + αhk + hk+1) + hs‖p‖Hs(Ω)

+‖en+1 − en
∆t

‖+ ‖∇en+1/2‖. (5.33)

Squaring both sides of (5.33), sum from 0 to M − 1 and multiply by ∆t gives

∆t
M−1∑
n=0

‖rn+1/2
h ‖2 ≤ C(u, T, ν)((∆t)4 + α2h2k + hmin{2k+2,2s})

+∆t
M−1∑
n=0

(‖en+1 − en
∆t

‖2 + ‖∇en+1/2‖2). (5.34)

Applying (5.29) yields

∆t
M−1∑
n=0

‖rn+1/2
h ‖2 ≤ C(u, T, ν)((∆t)4 + α2h2k + hmin{2k+2,2s})

+C(h−1((∆t)4 + α4 + h2k) + h−3((∆t)8 + α8 + h4k)). (5.35)

The triangle inequality finishes the proof.
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