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Abstract. Systems of nonlinear partial differential equations modeling turbulent fluid flow and similar processes present
special challanges in numerical analysis. Regions of stability of implicit-explicit methods are reviewed, and an energy norm
based on Dahlquist’s concept of G-stability is developed. Using this norm, a time-stepping Crank-Nicolson Adams-Bashforth
2 implicit-explicit method for solving spatially-discretized convection-diffusion equations of this type is analyzed and shown to
be unconditionally stable.
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1. Introduction. The motivation of this work is to consider the stability of numerical methods when
applied to ordinary differential equations (ODEs) of the form

u′(t) +Au(t)− Cu(t) +B(u)u(t) = f(t), (1.1)

in which A,B(u) and C are d× d matrices, u(t) and f(t) are d-vectors, and

A = AT � 0, B(u) = −B(u)T , C = CT < 0 and A− C � 0. (1.2)

Here � and < denote the positive definite and positive semidefinite ordering, respectively.
Models of the behavior of turbulent fluid flow using convection-diffusion partial differential equations

discretized in the spatial variable give rise to a system of ODEs, such as

·
uij(t) + b · ∇huij − (ε0(h) + ν)∆huij + ε0(h)PH(∆hPH(uij)) = fij , (1.3)

where ∆h is the discrete Laplacian, ∇h is the discrete gradient, ε(h) is the artificial viscosity parameters,
and PH denotes a projection onto a coarser mesh [2]. System (1.3) is of the form (1.1), (1.2) where

A = −(ε0(h) + ν)∆h, C = ε0(h)Ph∆hPh, B(u) = b · ∇h.

In this case the matrix B(·) is constant, but in general it may depend on u, and thus the system is allowed
to have a nonlinear part. A linear multistep method for the numerical integration a system u′(t) = F (t, u),
such as (1.1), is

k∑
j=−1

αjun−j = ∆t

k∑
j=−1

βjFn−j , (1.4)

where t is defined on I = [t0, t0 + T ] ⊂ R, un−j ∈ Rd, Fn−j = F (tn−j , un−j).
This work will discuss the regions of stability for IMEX methods applied to systems of the form (1.1),

and prove that unconditional stability (the method’s stability properties are independent of the choice of
step-size ∆t) holds for a proposed Crank-Nicolson Adams-Bashforth 2 (CNAB2) implicit-explicit (IMEX)
numerical method,

un+1 − un
∆t

+ (A− C)
1
2

(
A(A− C)−

1
2 1

2un+1 +
(

1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

)
+B(En+ 1

2
)(A− C)−

1
2

(
1
2A(A− C)−

1
2un+1 +

(
1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

)
= fn+ 1

2
, (1.5)
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where En+ 1
2

= 3
2un+ 1

2un−1, an explicit approximation of u(tn+ 1
2
). This method is a second-order convergent

numerical scheme of the form (1.4). Section 2 discusses earlier related results for IMEX methods, Section
3 motivates the unconditional stability analysis of (1.5) by deriving illustrative stability results for related
scalar IMEX methods. With these results in mind, unconditional stability of method (1.5) is proven in Section
4, and demonstrated by numerical tests in Section 5. Section 6 briefly discusses an obvious draw-back to
method (1.5) and concludes.

2. Previous IMEX Stability Results. In [5], Frank et al. consider applying IMEX methods to a
system of ODEs of the form

u′(t) = F (t, u(t)) +G(t, u(t)),

where F is the stiff, and G the non-stiff parts of the system. Considering the scalar test equation

u′(t) = λu(t) + γu(t),

they find that under these conditions, λ∆t and γ∆t lying in the regions of stability of their respective
methods are sufficient conditions for the IMEX method to be assymptotically stable. As is demonstrated in
Section 3, these are not necessary conditions when the system is under assymptions (1.2), which is due to
the additional requirement that A− C be positive-definite.

Akrivis et al. study a system of the same form as (1.1) except that B is not assumed to be self-adjoint
instead of skew-symmetric. They analyze a general class of methods that are implicit in all linear terms,
and explicit in all nonlinear terms, and show these methods to be absolutely stable [1].

Finally, Anitescu et al. [2] show that the first-order IMEX method

un+1 − un
∆t

+Aun+1 − Cun +B(u)un+1 = fn+1 (2.1)

is unconditionally stable. Unlike [1] there are two linear terms, one of which will be approximated explicitly,
while the solution vector in the nonlinear term B(u)u(t) is computed using an implicit scheme.

3. Stability for Scalar IMEX Methods. Consider the Cauchy problem

y′(t) = (ε+ ν)λy(t)− ελy(t), (3.1)

y : R→ R, y(0) = 1, λ < 0, 0 < ν, 0 < ε. (3.2)

Note that this is the Dahlquist test-problem y′(t) = νλy(t), with exact solution y(t) = eνλt, broken into two
parts.

Definition 3.1. A-stability (Dahlquist 1963). The multistep method (1.4) applied to the Cauchy test
problem (3.1) is A-stable if A ⊇ C− (where A is entire region of stability for the method). This is equivalent
to requiring the numerical solutions |un| → 0 as tn → +∞ [6].

A method’s A-stability region can be illustrated by plotting its root locus curve, that is, the values of
∆tλν corresponding to the stability boundary roots |ζ(∆tλν)| = 1 of its generating polynomials. Recall that
for stability the roots of these polynomials must be lie within the unit circle (ζj(∆tλν) ≤ 1 in modulus) [6].

The aim here is to explore IMEX methods which, when applied to the Cauchy test problem (3.1) as
stated, display stable behavior. Let us consider methods which apply an implicit scheme to the first part,
and an explicit scheme to the second part. A-priori it is not obvious which mixed methods will exhibit stable
behavior (if at all), and if so, whether the stability properties of the implicit or explicit part will dominate.

3.1. Backward Euler Forward Euler IMEX. Let us first investigate an IMEX method which is
Backward Euler for the implicit part and Forward Euler for the explicit part (BEFE):

un+1 − un
∆t

= (ε+ ν)λun+1 − ελun. (3.3)

This method can be solved for un in terms of λ, ε, ν, and an initial condition u0. Iterating backward n times
gives the sequence of numerical solutions

un = u0

( 1− ελ∆t

1− (ε+ ν)λ∆t

)n
.
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Fig. 3.1: Root Locus Curves for BEFE

As n → +∞, |un| → 0 if
∣∣ 1−ελ∆t

1−(ε+ν)λ∆t

∣∣ < 1. The assumptions in (3.2) are sufficient for this to hold. None

of these conditions is dependent on the choice of step-size ∆t, so we can immediately conclude that this
method is unconditionally stable.

Note that if ε is allowed to be zero, we recover the Backward Euler method, which has the solution

un = u0

( 1

1− νλ∆t

)n
.

Figure 3.4 shows the convergence of the energy of the solutions of BE and BEFE for initial condition u0 = 1,
λ = −10000, ν = .001, ∆t = .01, ε = .01 (for the BEFE scheme). Notice that BE converges faster than
BEFE mixed method. This illustrates that the advantages of using an IMEX method come at the cost of
decreased speed of convergence of the method’s solutions.

To see the stability region of the BEFE method in terms of step-size and eigenvalues, take ζn = un,
µ = ∆tλν, and solving the method (3.3) for µ gives the root locus curve

µ = ν
ρ(ζ)

σ(ζ)
= ν

ζ − 1

(α+ ν)ζ − ε
. (3.4)

Since |eiθ| = 1 for all θ, taking ζ = eiθ in (3.4) and letting θ vary in [0, 2π] produces the desired stability
region (with ν=.001).

The first plot in Figure 3.2 illustrates that the BEFE IMEX method is stable for any choice of µ outside
the solid blue line, which is to say the method (3.3) is A-stable since any choice of ∆tλν in C− will be stable
and the solution un will converge to zero as n gets large. The second plot in Firgure 3.2 shows, somewhat
counterintuitively, that the stability region of BEFE is growing with ε; that is, the region of absolute stability
grows as the scaling of the explicit part of the method approaches that of the implicit.

3.2. Crank-Nicolson Adams-Bashforth 2 IMEX. We are interested in finding a second-order
convergent IMEX method that is also A-stable. Consider

un+1 − un
∆t

= (ε+ ν)λ(
un+1 + un

2
)− ελ( 3

2un −
1
2un−1), (3.5)

which is a Crank-Nicolson second-order (implicit) method for the first part of the Cauchy problem (3.1),
and Adams-Bashforth 2 second-order (explicit) for the second part. If ε is allowed to be zero we recover
Crank-Nicolson:

un =
[1 + 1

2∆tνλ

1− 1
2∆tνλ

]n
.
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Fig. 3.2: Root Locus Curves for CNAB2

The characteristic polynomial of method (3.5) is

Π(r) = (1− 1
2∆t(ε+ ν)λ)r2 − (1 + 1

2∆t(ε+ ν)λ− 3
2∆tελ)r − 1

2ελ∆tr0 = 0.

This second-degree polynomial has two roots,

r1,2 =

(
1−∆tελ− 1

2∆tν
)
± 1

2

√
4 + 4∆tλν + ∆t2νλ2(ν − 8ε)

2−∆tλε−∆tλν
.

Drawing on results from the theory of difference equations, the analytical solutions of the CNAB2 scalar
method (3.5) can be written as

un = γ1r
n
1 + γ2r

n
2 .

Using initial conditions u0, u1 to solve for γ1, γ2 gives

un = +
u1 + r2u0

r1 + r2
rn1 +

u1 + r1u0

r1 + r2
rn2 .

The second plot in Figure 3.4 shows the convergence of the energy of the solutions of Crank-Nicolson and
Crank-Nicolson Adams Bashforth 2 for initial conditions u0 = 1, u1 = .8, λ = −10000, ν = .001, ∆t = .5,
ε = .01. As with BE and BEFE, pure Crank-Nicolson converges faster than the mixed method.

For method (3.5) the root locus curve is

∆tλν = ν
ρ(ζ)

σ(ζ)
= ν

ζ2 − ζ
(ε+ ν)( ζ

2+ζ
2 )− ε( 3

2ζ −
1
2 )
. (3.6)

The first plot in Figure 3.2 shows the region of stability for CNAB2 IMEX is similar to that of BEFE
IMEX, and this method is also A-stable. The second plot shows the root locus curves corresponding to
different values of ε. As with BEFE, the region of stability is growing with ε. This plot is similar, except for
the size of the stability region, for any choice of ε 6= 0.

Figure 3.3 shows that for for ε = .001 and ε = .01 the region of stability for BEFE is relatively larger
than that of CNAB2. This reflects the fact that using a higher order method comes at the cost of a decreased
region of stability.

4



Fig. 3.3: Root Locus Curves of BEFE compared to CNAB2

Fig. 3.4: Energy comparisons for BE to BEFE, CN to CNAB2

3.3. G-stability. Now let us study the stability of the two aforementioned methods under the lens
of a stability definition that is both more complex and in some cases more useful. Consider the Lipschitz
condition

Re〈F (t, u)− F (t, û), u− û)〉 ≤ L‖u− û‖2. (3.7)

If the system u′(t) = F (t, u) satisfies (3.7) with L = 0, then its solutions are contractive. In this case we wish
to know which linear multistep methods also have contractive solutions, and are thus G-stable as defined in
Definition 3.2 stated below. Let

Un = (un+k−1, un+k−2, ..., un)T

be a sequence of numerical solutions to (1.4), and define the G-norm of Un to be ‖Un‖2G = UTn GUn.
Definition 3.2. G-stability (Dahlquist 1976)[3]. A multistep numerical method is G-stable if the system

of ODEs u′ = F (t, u) satisfies (3.7) with L = 0, and if there exists a symmetric positive-definite matrix (SPD)
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G, such that

‖Un+1 − Ûn+1‖G ≤ ‖Un − Ûn‖G, (3.8)

for all steps n and step-sizes ∆t > 0, where Ûn is a sequence of solutions for (1.4) that correspond to different
initial conditions than Un.

Thus, we can use G-stability to test the behavior of a method where the underlying ODE is linear or
nonlinear, providing that it satisfies the Lipschitz condition with L = 0. In the nonlinear case, we have
G-stability when the difference of the solutions Un − Ûn are not growing in the G-norm.

3.4. G-stability of Scalar Crank-Nicolson Adams-Bashforth 2. Showing that the method in
question is G-stable involves checking that the conditions of the G-stability definition hold. Since our
underlying ODE (3.1) is linear, we can consider the Lipschitz and G-norm conditions

Re〈F (t, u), u)〉 ≤ 0, ‖Un+1‖G ≤ ‖Un‖G, (3.9)

respectively. It is easy to see that if λ < 0 and ν > 0 then 〈νλu, u〉 = νλu2 ≤ 0, and the Lipschitz condition
is satisfied. Thus, the task is to see if we can construct a G that satisfies the G-stability definition.

The G-matrix corresponding to this method can be generated directly or indirectly using the proof
Dahlquist’s equivalence theorem as is done in Subsection 3.4.2 [4].

3.4.1. Direct Computation of G. First, consider the inner-product〈
(ε+ ν)λ(

un+1 + un
2

)− ελ( 3
2un −

1
2un−1),

un+1 − un
∆t

)
〉
≥ 0, (3.10)

which holds because they are the RHS and LHS of method (3.5) under consideration. Multiplying by − 1
∆t

and expanding gives

E = −c1u2
n+1 − (c2 − c1)un+1un + c2u

2
n − c3un+1un−1 + c3unun−1 ≤ 0 (3.11)

where

c1 = 1
2 (ε+ ν)λ, c2 = 1

2 (ε+ ν)λ− 3
2ελ, c3 = 1

2ελ.

Now consider the equation

E = ‖Un+1‖2G − ‖Un‖2G + ‖a2un+1 + a1un+1 + a0un‖2, a0, a1, a2 ∈ R. (3.12)

Imposing E ≤ 0 implies ‖Un+1‖2G ≤ ‖Un‖2G, since ‖a2un+1 + a1un+1 + a0un‖2 ≥ 0. Let

G=

(
g11 g12

g21 g22

)
. (3.13)

Thus, if the matrix G produced by matching the coefficients of (3.11) to those of (3.12) is SPD, method (3.5)
is G-stable by Definition 3.2.

Following this approach and letting g12 = g21 produces the following nonlinear system of six equations
in six unknowns:

u2
n+1 : −c1 = g11 + a2

2, un+1un : c1 − c2 = 2g12 + 2a2a1

u2
n : c2 = g22 − g11 + a2

1 un+1un : −c3 = 2a2a0

u2
n−1 : 0 = −g22 + a2

0 unun−1 : c3 = −2g12 + 2a1a0.
(3.14)

Solving this system produces the G-matrix

G=
λ

4

(
−ε− 2ν −ε

−ε −ε

)
. (3.15)
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This matrix is symmetric by construction, and it is easy to see that if λ < 0 all its principle minors have
a positive determinant, and therefore this G is positive-definite by Sylvester’s Criterion. Thus, by Definition
3.2 this IMEX method is G-stable (as well as A-stable, as demonstrated in the previous section). This, as
Dahlquist was finally able to prove in 1978, is not a coincidence.

Theorem 3.3. (Dahlquist 1978)[4]: If a method’s generating polynomials ρ, σ, have no common divisor,
then the method is G-stable if and only it is A-stable.

Figure 3.5 shows the convergence of the energy and G-norm of the solutions of the Crank-Nicolson
Adams-Bashforth 2 schemes for initial conditions u0 = 1, u1 = .8, ε = .01, λ = −10000, ν = .001, and
∆t = .5, ). Notice that the G-norm is monotonically decreasing, as the G-stability definition requires.

Fig. 3.5: G-norm and Energy decay of CNAB2 method

3.4.2. Constructing G Using Generating Polynomials. By following the proof of Theorem 3.3
(see [4], [6]) one can derive a procedure for computing the G matrix that relies on algebraic manipulation of
the the method’s generating polynomials rather than solving a nonlinear system as is required for computing
G directly.

The generating polynomials for scalar CNAB2 IMEX are

ρ(ζ) = ζ2 − ζ, σ(ζ) = (ε+ ν)( ζ
2+ζ
2 )− ε( 3

2ζ −
1
2 ).

Define the function

E(ζ) = 1
2 (ρ(ζ)σ( 1

ζ ) + ρ( 1
ζ )σ(ζ)),

which for CNAB2 is

E(ζ) = 1
2 ((ζ2 − ζ)((α+ ν)(

1
ζ2 +

1
ζ

2 )− ε( 3
2ζ −

1
2 ))( 1

ζ ) + ( 1
ζ2 −

1
ζ )((ε+ ν)( ζ

2+ζ
2 )− ε( 3

2ζ −
1
2 )))

=
ε(ζ − 1)2

4ζ2

=
[√ε

2
[(ζ − 1)2]

][√ε
2

][( 1
ζ − 1)2]

]
= a(ζ)a( 1

ζ ).
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Define the function P (ζ, ω) = 1
2 (ρ(ζ)σ(ω)+ρ(ω)σ(ζ))−a(ζ)a(ω), which with some simplification and factoring

becomes

P (ζ, ω) = 1
4 [−ε(ζ − 1)2(ω − 1)2 + ε(ω − 1)ω − ζ(α(2ν − 4ε)ω + 3αω2) + ζ2(ε− 3εω + 2(ε+ ν)ω2))]

= (ζω − 1)
( (ε+ 2ν)

4
ζω − ε

4
ζ − ε

4
ω +

ε

4

)
= (ζω − 1)(g11ζω − g12ζ − g21ω + g22).

This yields the matrix

G=
1

4

(
ε+ 2ν − ε

− ε −ε

)
, (3.16)

which is SPD. Multiplying (3.16) by the positive constant −λ gives the same result as computing G directly
as in the previous section.

Somewhat surprisingly, under assumptions (3.2) the method’s stability properties are driven by its
implicit part, and this is the motivation that leads to the separation of linear parts A and C as done in (1.1).

4. Unconditional Stability of the Crank-Nicolson Adams Bashforth 2 IMEX Method (1.5).
Let us now return to considering a system of ODEs (1.1) under assumptions (1.2).

The CNAB2 method proposed in Section 1 is a member of a broader family of three level, second order
time-stepping schemes [8]:

(θ + 1
2 )un+1 − 2θun + (θ − 1

2 )un−1

∆t

+ (A− C)
1
2

(
A(A− C)−

1
2 θun+1 +

(
(1− θ)A− (θ + 1)C

)
(A− C)−

1
2un + C(A− C)−

1
2 θun−1)

)
+B(En+θ)(A− C)−

1
2

(
A(A− C)−

1
2 θun+1 +

(
(1− θ)A− (θ + 1)C

)
(A− C)−

1
2un + C(A− C)−

1
2 θun−1)

)
= fn+θ, (4.1)

where En+θ is an implicit or explicit second order approximation of un+1 and θ ∈ [ 1
2 , 1]. Taking θ = 1

2 , and
En+θ = 3

2un −
1
2un−1, gives method (1.5), as introduced in Section 1.

Here we will consider the stability properties of the method (1.5). However, unlike the examples in the
previous chapter, the system under consideration will be d-dimensional and be in terms of non-commmuting
coefficient matrices A, B, C, where B is allowed to be nonlinear. This added complexity is worthwhile since
many processes have highly nonlinear behavior, but it comes at the cost of greatly complicating stability
analysis.

4.1. Well-Posedness of the Problem. Nonlinearity of problem (1.1) will prohibit the Lipschitz
condition (3.7) from holding globally. This is not trivial, since it means none of the well-known global
stability results for the underlying problem will necessarily hold (for a discussion of the well-posedness of
globally Lipschitz continuous Cauchy problems see [7], Chapter 10). The system is, however, locally stable.

Theorem 4.1. Local Stability of Nonlinear System (1.1). Under assumptions (1.2), the solution of
ODE (1.1) is bounded as

‖u(t)‖22 ≤ ‖u(0)‖22et + F 2
T (et − 1), where F 2

T = max
t∈[0,T ]

‖f(t)‖22,

is therefore stable for all t ∈ I = [0, T ], for all finite T .

For the proof of Theorem 4.1 see [2]. This result ensures that problem (1.1) is well-behaved locally, which
is to say that its exact solutions u(t) do not blow up on I. This allows us to conclude that the problem
is sufficiently well-posed in at least a local sense, and we can discuss stability of a numerical method for
approximation of its solution on I.
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4.2. Transformation of the Method. In [2] the numerical solution un provided by the BEFE IMEX
method (2.1) is shown to be nonincreasing,

‖un+1‖E ≤ ‖un‖E , E = I + ∆tC,

in the energy norm E, and this condition is sufficient to conclude the method is unconditionally stable. The
aim of this section will be analogous in nature. Borrowing heavily from the G-stability concepts developed in
Section 3.3, given an appropriately chosen transformation of the method, it can be proved that the numerical
solutions are decreasing at each time step in the G-norm, and the method is unconditionally stable on the
interval of interest I.

Since B(u) is assumed to be skew-symmetric, multiplying method (1.5) from the left by the vector[
(A− C)−

1
2

(
1
2A(A− C)−

1
2un+1 +

(
1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

)]T
(4.2)

will cause the nonlinear term

B(En+ 1
2
)(A− C)−

1
2

(
1
2A(A− C)−

1
2un+1 +

(
1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

)
to disappear, leaving〈

(A− C)−
1
2

(
1
2A(A− C)−

1
2un+1 +

(
1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

)
,

un+1 − un
∆t

+ (A− C)
1
2

(
A(A− C)−

1
2 1

2un+1 +
(

1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

)〉
=
〈

(A− C)−
1
2

(
1
2A(A− C)−

1
2un+1 +

(
1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

)
, fn+ 1

2

〉
.

By the properties of the inner-product and Euclidian norm, this can be rearranged as

1

∆t

〈
un+1 − un , (A− C)−

1
2

(
A(A− C)−

1
2 1

2un+1 +
(

1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

)〉
+
∥∥∥(A(A− C)−

1
2 1

2un+1 +
(

1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

)∥∥∥2

2

=
〈
fn+ 1

2
, (A− C)−

1
2

(
A(A− C)−

1
2 1

2un+1 +
(

1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

)〉
. (4.3)

Focusing on the first line of (4.3), the goal will be to simplify the transformed method into positive pieces
using the G-norm to group and compare terms, as was done in the G-stability examples in Section 3.4. The
G-stability matrix is calculated using the proceedure derived from the proof of Theorem 3.3, as demonstrated
in Subsection 3.4.2. Method (1.5) and its corresponding characteristic polynomials yield matrix

G=

(
−(A−C)−

1
2 ( 1

2A−
1
4C)(A−C)−

1
2 −(A−C)−

1
2 ( 1

4C)(A−C)−
1
2

−(A−C)−
1
2 ( 1

4C)(A−C)−
1
2 −(A−C)−

1
2 ( 1

4C)(A−C)−
1
2

)
. (4.4)

Referring to the G-stability examples in Section 3.4, taking A = −(α+ν)λ, C = −αλ, and ignoring (A−C)−
1
2

terms, G matches matrix (3.15).

4.3. G-norm. We now wish to check that G is a symmetric positive-definite matrix so it can be used
to finish putting the transformed method (4.3) into norms and positive terms.

4.3.1. Symmetry of G. The G matrix defined in (4.4) is a 2 × 2 block-partitioned matrix with
submatrices of size d×d. Since the off-diagonal blocks are the same, symmetry of the four blocks is sufficient
to conclude G is symmetric also.

Since A and C are both symmetric by assumptions (1.2), adding or subtracting positive-definite multiples

of them also results in symmetric matrices. By properties of diagonalizable matrices, (A−C)−
1
2 is symmetric.

This is sufficient to conclude that each block of G is symmetric, and therefore G is also.
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4.3.2. Positive-Definiteness of G. If G is PD the following will be strictly positive for any choice of
d-dimensional vectors u, v not equal to zero:∥∥∥[u

v

]∥∥∥2

G
=
〈[
u
v

]
, G
[
u
v

]〉
. (4.5)

Lemma 4.2. G is a positive-definite matrix.
Proof. Expanding equation (4.5) gives〈[

u
v

]
, G
[
u
v

]〉
= 1

4

[
uT [(A− C)−

1
2 (2A− C)(A− C)−

1
2 ]u− uT [(A− C)−

1
2C(A− C)−

1
2 ]v

− vT [(A− C)−
1
2C(A− C)−

1
2 ]u+ vT [(A− C)−

1
2C(A− C)−

1
2 ]v
]
. (4.6)

Subtracting and adding 1
4

[
uT [(A− C)−

1
2C(A− C)−

1
2 ]u
]

to (4.6) and using the fact that

uT [(A− C)−
1
2C(A− C)−

1
2 ]v =

[
uT [(A− C)−

1
2C(A− C)−

1
2 ]v
]T

= vT [(A− C)−
1
2C(A− C)−

1
2 ]u

gives〈[u
v

]
, G
[u
v

]〉
= 1

4

[
uT [(A− C)−

1
2 (2A− C)(A− C)−

1
2 ]u− uT [(A− C)−

1
2C(A− C)−

1
2 ]u

+ uT [(A− C)−
1
2C(A− C)−

1
2 ]u− 2uT [(A− C)−

1
2C(A− C)−

1
2 ]v + vT [(A− C)−

1
2C(A− C)−

1
2 ]v
]
.

The first two terms can be combined and simplified to be

1
4u

T [(A− C)−
1
2 (2A− 2C)(A− C)−

1
2 ]u = 1

2u
Tu,

which we will call the energy of the method’s solutions. Take F = (A− C)−
1
2C(A− C)−

1
2 . Since F = FT ,

the remaining terms can be factored as

1
4 [uT (F

1
2 )TF

1
2u− 2uT (F

1
2 )TF

1
2 v + vT (F

1
2 )TF

1
2 v]

= 1
4 〈F

1
2u− F 1

2 v, F
1
2u− F 1

2 v〉

= 1
4‖F

1
2u− F 1

2 v‖22 ≥ 0,

and the result immediately follows.

4.4. Unconditional Stability Result. As proved above, the matrix G is symmetric and positive-
definite, and therefore the expression defined in (4.5) is a G-norm.

Lemma 4.3. Let un satisfy (1.5) for all n ∈ {2, . . . , T∆t}. Then

1

∆t

〈
un+1 − un , (A− C)−

1
2

(
1
2A(A− C)−

1
2un+1 +

(
1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

)〉
=

1

∆t

∥∥∥[un+1

un

]∥∥∥2

G
− 1

∆t

∥∥∥[ un
un−1

]∥∥∥2

G
+

1

4∆t
‖
(
un+1−2un+un−1

)
‖2F. (4.7)

4.4.1. Energy Bound. The proof of Lemma 4.2 allows us to conclude that∥∥∥[u
v

]∥∥∥2

G
≥ 1

2
uTu > 0, (4.8)

that is, the energy of the solutions is bounded from above by their G-norm, and this is independent of ∆t.
From (4.8) we have convergence of the solutions in the G-norm implies convergence of their energy.
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4.4.2. Energy Equality. To see that the method is unconditionally stable consider the following energy
equality, which holds for u0, u1 given inital conditions at all time steps n = 1 through N − 1:

1

∆t

∥∥∥[ uN
uN−1

]∥∥∥2

G
+

1

4∆t

N−1∑
n=1

‖un+1 − 2un + un−1‖2F

+

N−1∑
n=1

∥∥∥ 1
2A(A− C)−

1
2un+1 +

(
1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

∥∥∥2

=
1

∆t

∥∥∥[u1

u0

]∥∥∥2

G

+

N−1∑
n=1

〈
fn+ 1

2
, (A− C)−

1
2

(
1
2A(A− C)−

1
2un+1 +

(
1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

)〉
.

(4.9)

Notice Lemma 4.3 and the Energy Equality (4.9) immediately imply G-stability in the case of f(t) = 0.
That is, if the the energy source (forcing function) is removed, stability of the method requires that the
G-norm of the solutions decays weakly at each time step n. To see that this note that

1

∆t

∥∥∥[un+1

un

]∥∥∥2

G
− 1

∆t

∥∥∥[ un
un−1

]∥∥∥2

G
+

1

4∆t

∥∥(un+1−2un+un−1

)∥∥2

F

+
∥∥∥ 1

2A(A− C)−
1
2un+1 +

(
1
2A−

3
2C
)
(A− C)−

1
2un + 1

2C(A− C)−
1
2un−1)

∥∥∥2

= 0

holds for all n ∈ {1, N − 1}. Further,

1

4∆t

∥∥(un+1−2un+un−1

)∥∥2

F
≥ 0,

since F is a positive-definite matrix. Thus we have

∥∥∥[un+1

un

]∥∥∥2

G
≤
∥∥∥[ un
un−1

]∥∥∥2

G
.

Since this result is independent of the the size of time-step ∆t, we have unconditional stablility when f(t) = 0.

4.4.3. Energy Estimate. When f(t) 6= 0 for some t ∈ I, the effect of fn+ 1
2

on the Energy Equality

(4.9) is ambiguous. By applying Cauchy-Schwarz and Young’s Inequalities, the Energy Bound (4.8), and
combining like-terms, we can use (4.9) to derive the following energy estimate to bound the effect of f on
the energy in the system:

‖uN‖2 + 1
2

N−1∑
n=1

∥∥un+1 − 2un + un−1

∥∥2

F

+ ∆t

N−1∑
n=1

∥∥ 1
2A(A−C)−

1
2un+1 +

(
1
2A−

3
2C
)
(A−C)−

1
2un + 1

2C(A−C)−
1
2un−1

∥∥2

≤ 2
∥∥∥[u1

u0

]∥∥∥2

G
+ ∆t

N−1∑
n=1

∥∥(A−C)−
1
2 fn+ 1

2

∥∥2
. (4.10)

Inequality (4.10) gives that solutions uN are bounded from above by the G-norm of initial conditions and a
positive term depending on f , so although monotonicity is no longer required, boundedness is retained.
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5. Numerical Experiments. Consider the general form of the linear multistep numerical method
(1.4). Method (1.5) is of this form, where k = 2 and

α−1 = I, α0 = −I, α1 = 0

β−1 = −(A− C)
1
2 1

2A(A− C)−
1
2 −B(En+ 1

2
)(A− C)−

1
2 1

2A(A− C)−
1
2

β0 = −(A− C)
1
2

(
1
2A−

3
2C
)
(A− C)−

1
2 −B(En+ 1

2
)(A− C)−

1
2

(
1
2A−

3
2C
)
(A− C)−

1
2

β1 = −(A− C)
1
2 1

2C(A− C)−
1
2 −B(En+ 1

2
)(A− C)−

1
2 1

2C(A− C)−
1
2 .

Applying this method for solving the system (1.1) will require solving for the vector un+1 in terms of un,
un−1 (given two initial condition vectors u0, u1), that is

un+1 =
[
I − hβ−1

]−1
[[
I + hβ0

]
un + hβ1un−1

]
. (5.1)

The method requires the inversion[
I − hβ−1

]−1
=
[
I + h(A− C)

1
2 1

2A(A− C)−
1
2 + hB(En+ 1

2
)(A− C)−

1
2 1

2A(A− C)−
1
2

]−1
.

In practice (5.1) will not be solved by computing the inverse since this would be overly costly and introduce
large round-off error. Also of note is that in general, A, B, and C do not commute, and thus the calculation
in (5.1) appears to be somewhat more costly than method (2.1) due to the additional (A−C)−

1
2 and (A−C)

1
2

terms. As seen in the previous section, the fact that these matrices do not commute plays a critical role in
the stability analysis developed in Section 4.

To demonstrate that the proposed CNAB2 method (1.5) is unconditionally stable consider the following
numerical experiments.

5.1. Experiment 1. Take

A = (ε+ ν)

(
100 0
0 1

)
, C = ε

(
100 0
0 1

)
, B(En+ 1

2
) =

√
u2

1 + u2
2

(
0 100
−100 0

)
, f(t) = 0,

where u1 and u2 denote the first and second elements of the vector 3
2un −

1
2un−1 (not the time step). Let

ν = .001, and initial conditions be u1 = u2 = [1, 1]T .
The first plot in Figure 5.1 shows the convergence of the energy and G-norms for CNAB2 (1.5) with

d = 2, and ε = .01. Notice that as in the scalar example in Section 3 (see Figure 3.5), the G-norm decreases
monotonically, even though the energy of the solution does not. The second plot shows the convergence of
the G-norm for CNAB2 (1.5) with d = 2 and f(t) = 0 for various ∆t.

5.2. Experiment 2. Now we relax the restrictions on C and f(t) to study the case where C is not
diagonal, and f(t) 6= 0 for some t. Taking

C = ε

(
100 −1
−1 1

)
, f(t) = e−t,

implies that

A− C =

(
100ν ε
ε ν

)
.

Recalling that A−C is required to be positive-definite, by Sylvester’s Criterion we see that A−C is positive-
definite when 100ν2 − ε2 > 0, which is satisfied by all ν and ε such that 10ν > ε. ε = .009, satisfies the
inequality for ν = .001.

Figure 5.2 shows the energy and G-norms for various ∆t under the new conditions on C and f(t). Notice
that when ∆t = 0.25 the G-norm is not monotically decreasing until t ' 1. This is due to the forcing function
f(t) = e−t, and is an illustration of the Energy Estimate (4.10), which says that the solutions in the G-norm
are bounded by solutions at previous steps and a norm depending on the forcing function f(t). The Energy
Bound (4.8) holds in both experiments, as the theory requires.

12



Fig. 5.1: Convergence CNAB2 with f(t) = 0

Fig. 5.2: Convergence CNAB2 with f(t) = e−t

6. Conclusion. The Crank-Nicolson Adams-Bashforth 2 second-order method analyzed herein offers an
improvement over the first-order method proposed in [2] in terms of accuracy, though it does so at the expense
of being considerably more computationally expensive. Nonetheless, the fact that it is unconditionally stable,
and thus accomodates any choice of ∆t makes it an attractive method in terms of its stability properties.
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